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ABSTRACT

Identifying four-vertex subgraphs has long been recognized as a fundamental

technique in bioinformatics and social networks. However, listing these structures

is a challenging task, especially for graphs that do not fit in RAM. To address this

problem, we build a set of algorithms, models, and implementations that can handle

massive graphs on commodity hardware. Our technique achieves 4 − 5 orders of

magnitude speedup compared to the best prior methods on graphs with billions of

edges, with external-memory operation equally efficient.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Assume an undirect graph G = (V,E) have n = |V | vertices and m = |E| edges.

A subgraph of G is a graph whose vertices are a subset of V , and whose edges are a

subset of the E. Suppose a k-vertex subgraph have exact k vertices. Then, a small

subgraph, also known as graphlet and motif, is a subgraph of G with a small k (usually

1 < k < 10 ). For bioinformatics people, the interest of counting small subgraphs

start from [34]. The report [34] defined ”network motifs” to be small subgraphs that

more likely to occur in real world graph than randomized graph. The authors of this

report find ”network motifs” in networks from biochemistry, neurobiology, ecology,

and engineering. After this report, this technique have been widely used in biology

[32], [41] include protein function prediction, network alignment, and phylogeny [27],

[33], [53]. The study of graphlets counting in social network have a long history [10],

[13], [18]. Other application of motif listing include Computing network [3], [8], [16],

Chemoinformatics [24], [43], Image segmentation [64], [65], Machine learning [11],

[35], [45], [46], [60].

There are two directions in the research of small subgraphs listing. One direction

is listing general small subgraphs with a vary k like paper mentioned above. Another

direction is listing subgraphs with a fix k. Small subgraphs listing with k = 3(triangle

listing) and k = 2(densest subgraph) are well studied problems. Both of those two

problems have efficient algorithms and fluent applications. The importance of 4-vertex

subgraphs listing in social media is introduced by [59] which find social network have
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Graph Nodes n Edges m

Twitter 41,652,230 2,405,026,390

Yahoo 720,242,173 12,869,122,070

PLD 86,534,416 3,416,273,404

WebUK 62,338,347 1,877,431,056

Table I. Real world graph.

more motifs than random graph. They also find that in event classification problem,

4-vertex subgraph is a better feature than triangle. [59] shows that use 4-vertex

motif as feature achieve higher precision than triangle in event classification problem.

4-node graphlets frequency is used as a feature in Twitter recommendation system

[15]. The ego 3-profile problem introduced by [7] which have applications on spam

detection and generative models can be transfer to 4-vertex subgraph counting. As

4-vertex subgraph become more and more important, many algorithms have been

proposed to improve the performance of listing 4-vertex subgraphs. However, there is

no efficient and scalable solution exist. With single thread, the state-of-the-art exact

listing algorithm [1] takes nearly 6 hours to finish a graph with 4.7 millions edges.

Since real world graph always have billions of edges as present on Table I, current

solution need years to finish process those graphs. Another problem of real world

graph is that they can not fit in RAM. For instance, the size of PLD graph is 16 GB

and the size of Yahoo graph is 53 GB. All previous work assume the graph is fit in

RAM and there is no external solution exist. So, there is no algorithms that able to

handle those real world graphs.

A graph is connected when there is a path between every pair of vertices. Previ-

ous research [30], [22] only consider 4-vertex subgraphs that are connected. Recently,

the paper [1] investigated the general 4-vertex subgraph listing algorithms which in-

clude unconnected 4-node patterns. The results of [1] shows that the overhead of

listing unconnected 4-vertex subgraph is minor compared to connected 4-vertex sub-

2
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Fig. 1. Types of 4-vertex subgraph.

graph listing. So we focus on connected 4-vertex subgraph. As shown in Figure 1,

there are in total 6 patterns of connected 4-vertex subgraph. There are two types of

counting strategies which called induced and non-induced subgraph counting. The

difference between these two strategy occur when there are some overlap between

patterns. For example, a 4-clique will also contains a 4-cycle. There are two ways

to handle this problem. An induced subgraph is a subset of V together with any

edges whose endpoints are both in this subset. For a 4-clique, we count it only as

a 4-clique if we are counting induced subgraphs. If we count a 4-clique both as

one 4-clique and six 4-cycle, we are counting non-induced subgraphs. Our algorithm

should be able to count both of them. There exist a formula to transfer non-induced

4-vertex subgraphs counts to induced 4-vertex subgraphs counts. So we first listing

non-induced subgraphs and transfer it to induced counts later. We denote the number

of induced ith subgraph by Ci (Figure 1). We also denote the number of non induced

ith subgraph by Ni. The formula is given by:

3
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1.1.1 Contribution

Our first contribution is applied Relabeling and Orientation which are well known

techniques in triangle listing to 4-vertex subgraph listing. After apply those two

techniques, we avoid calculate redundancy and decreased the operation number in

our algorithm. Our second contribution is proposed a series of algorithm that highly

improved the bottleneck of previous work. We achieved over 50,000x speedup in a

real world graph with 3.6 billion edges. Our third contrition is build the first external

memory solution for 4-vertex subgraph counting. Our external-memory solution has

basically the same CPU overhead with our in-memory algorithms while it require

minor IO. Our fourth contrition is build a set of models to estimate the overhead of

our algorithm. Our model match with the experiment results.

1.2 Related Work

Most previous research is interest in general cases of motif counting. Paper [61],

[62] propose a system called Fanmod which use BFS to counting small subgraphs.

Fanmod need 574 minutes to compute a graph with 75k edges. The paper [17] propose

a exact counting algorithm called ORCA for counting small subgraphs. To listing

four-node graphlets, Orca will first listing all 3-vertex subgraphs and search any

4



possible vertex that can form 4-node graphlets with them. Orca is several hundred

times faster than Fanmod in graphs with thousand of vertices. [31] propose a exact

counting algorithm called acc-Motif. To counting k-vertex subgraph, Acc-Motif will

listing (k − 2)-vertex subgraph and form k-vertex subgraph by them. Acc-Motif

achieved 40x speedup from Fanmod in small graphs. The algorithm proposed by [40]

is called SGIA-MR which is basically DFS on Map-Reduce. They use a cluster have

64 machines. For a graph with 394,552 edges and 11,920 vertices, SGIA-MR require

260 sec. [29] propose a subgraph listing mapreduce algorithm called TwinTwigJoin.

In experiment, they use a cluster with 15 nodes. Each of the computing nodes has

one 3.47 GHz Intel Xeon CPU with 6 cores and 12 GB memory. For a graph with 3

million vertices and 12 million edges, TwinTwigJoin require 10 minutes to counting 4-

cycles and 1 minutes to counting 4-cliques. There are also many motif listing research

in bioinformatics area [5], [6], [14], [23], [25], [28], [36], [44], [49], [63]. The paper [9]

proposed a algorithm to counting k-clique using mapreduce. They method require

O(m3/2) total space and O(mk/2) work. However, those algorithms only scale to

thousands of vertices.

Some research focus on graphlets that involve 3 vertices. There are fluent research

target to estimating triangle numbers [20], [50], [51]. There are also fluent research

aim to find exact triangle listing algorithm [37], [38], [39], [47], [52], [54], [57]. Early

research on triangle listing only work for graph that fit in memory. Recent years, some

work make triangle listing for massive graph possible. Among those work, Trigon

is the state-of-the-art triangle listing algorithm. Trigon investigated the impact of

total order (degree order or vertex id order). Trigon also proposed external-memory

solution for triangle listing.

There are some research target at exact counting 4-vertex motifs. The paper

[30] present a series algorithms called RAGE to exact 4-vertex subgraph. In RAGE,

5



the time complexity of counting 4-cycle and 4-clique are O(d|E|) + O(|E|2) while

other motifs at most need O(d|E|) (d is the average degree and |E| is the number of

vertex). So The bottleneck of RAGE are 4-cycle and 4-clique counting. In our test,

RAGE 4-cycle algorithm have higher time complexity than RAGE 4-clique. RAGE

is being treat as baseline in following 4-vertex exact counting papers. Authors of

this paper only test their algorithms on one graph that have 26,561 nodes and 92,584

edges, RAGE finish this graph in 40 minutes while Fanmod need nearly 3 hours. In

our experiment, we implement RAGE and achieved at least 10x speedup compare

to it’s original implementation. We do not investigate the reason for the speedup.

[1] extend the patterns of 4-vertex subgraphs. They aim to listing the general case

of 4-vertex include 4-vertex subgraphs that are not connected. [1] also proposed the

state-of-the-art 4-vertex listing algorithm. However, the system proposed by [1] do

not improve the bottleneck of RAGE since it’s 4-cycle and 4-clique counting methods

are exactly the same with RAGE. The authors of [1] claim their algorithm is 460

times faster than RAGE. A important reason for the improvement is that PGD have

parallelization while RAGE only have one thread. Another improvement of PGD is

sort the graph by degree order which is a standard technique in triangle listing. [1] do

not investigate how the performance of 4-vertex motif listing is effect by Relabeling

order. So PGD keep the order choice to be a open question. We tried different graph

order in our tests. The results shows that the PGD can at most be 2× faster no matter

which order we choose. This indicate that the improve of PGD that contribute by

relabeling is small. In our tests, PGD have similar performance with RAGE when

PGD run with original graph order and only have single thread.

Since exact counting 4-node graphlets is very time consuming, some research start

focus on investigate estimation algorithm. Algorithms in [4], [12], [42], [55], [56], [58]

aims to estimate frequencies of general small subgraphs. For specific 4-vertex sub-

6



graph estimation, Path Sampling proposed by [21] has the best performance. There

are several drawbacks of estimation algorithm. The first drawback is that sampling

algorithm always have high error bounds. The second drawback is that only motif

counting is possible for estimation algorithm while there is no sampling algorithm

that able to listing motifs.

1.3 Overview

In following section, we propose our in-memory and external-memory solutions

for counting or listing 4-vertex subgraphs. Since M1, M2, and M3 are very to count,

we just use the algorithm from RAGE. The algorithm to listing M1, M2, and M3 have

maximum time complexity that is equal to triangle listing. Our work is focus on M4,

M5, and M6 which are discussed on following sections. We use Mi to represent ith

type of motif in Figure 1. We present both in-memory and external-memory solution

for each motif. We also derive a series of accurate models for our algorithms. Suppose

vi have Xi out-neighbors, Yi in-neighbors, and di undirect neighbors. We also assume

that Ti to be number of triangles belong to vi. We investigate the techniques to

improve basic operation performance. We focus on merging and intersection since

they are majority operations in our algorithms. Table II shown the benchmark of

every operation appear in our algorithms.

1.3.1 Preprocessing

For each type of 4-vertex subgraph xyzw, there may be k nodes that are equiva-

lent. For instance, k = 4 in 4-cycle. Therefore, it is possibly listed k! times according

to different permutations of the node sequence (x, y, z, w). In order to eliminate such

duplicates and improve efficiency, our goal is to list all 4-vertex subgraph uniquely

7



Implementation Speed (M/s)

Random Access, 32 bit key 135

Sorting, 64 bit key STL Sort 6

Intersection, 32 bit key

Scalar(CPU) 246
SIMD 1119

SIMD with compression 1801
SIMD with counters 1001

Merging, 32 bit key
Scalar(CPU) 221

SIMD 1110
SIMD with compression 1720

Table II. Benchmark of operation speed.

in certain order O. This goal can be achieved by standard techniques from trian-

gle listing [2], [3], [26], [52]. There are 3 steps in such techniques. The first step,

which we call relabeling, will sort the nodes by O and sequentially assign IDs from

sequence (1,2,...,n). The most common relabel order in triangle listing is random and

descending-degree. Trigon proves that descending order have the best performance in

triangles listing. In our experiment, descending order have best performance in our

algorithms. Follow the definition in Trigon, we use Gθ to denote the relabeled graph.

The second step, which we call orientation, will scan Gθ and split each undirect neigh-

bor lists N(y) into in-neighbor lists N−(y) and out-neighbor lists N+(y). Suppose

in-graph G−θ and out-graph G+
θ is generated after orientation. Also suppose node i

have out-degree Xi, in-degree Yi, and total degree di = Xi + Yi in directed graph

G∗θ = (V,E∗θ ). The third step will list triangles with node IDs in either ascending or

descending order. Due to it’s good performance, relabeling and orientation is default

in our algorithms.

8



CHAPTER II

PROBLEM AND SOLUTIONS

2.1 Four-Cycle

Listing 4-cycles is the bottleneck in prior work [1], [30]. To address this problem,

we propose a series of novel algorithms that significantly improve upon the existing

methods.

2.1.1 RAGE

To find 4-cycle in Figure 1, RAGE will first iterates over each edge. Then, for a

edge (y, z) (y > z), RAGE will store all z′s neighbors in a hashtable. Third, RAGE

will iterates over y′s neighbors. For y′s neighbor x, RAGE will check whether x′s

neighbors in hashtable, each hit find a 4-cycle. RAGE will count 4-cycle 4 times Since

same process will apply to every edge of a 4-cycle.

There are two major type of operations in this algorithm. The first type is hash

table insert and the second type is hash table lookup. Since the undirect neighbors

of the smaller vertex of a edges will insert to hash table, v′is undirect neighbors will

be insert into hash table Yi times. So the overhead of hash table insert is:

n∑
i=1

(Yidi) (1)

For every out-neighbors vi have, all the neighbors of neighbors of vi will lookup

hash table once. So the hash table lookup is:

n∑
i=1

(Xi(

di∑
j=1

dij)) (2)

9
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Fig. 2. Types of directed 4-cycles.

Algorithm 1 Intersection-Based 4-Cycle(V,E)

1: for w ∈ V do

2: for x ∈ N+(w) and z ∈ N+(w) and x < z do

3: for y ∈ N(x) ∩N(z) and y < w do

4: output 4-cycle (x, y, z, w)

The final overhead is given by:

cn(RAGE, θn) =
n∑
i=1

(Yidi +Xi(

di∑
j=1

d+ij)) (3)

2.1.2 Intersection-Based (IB)

For each 4-cycle �xyzw, its four nodes are equivalent. Therefore, it is possi-

bly listed 4! = 24 times according to different permutations of the node sequence

(x, y, z, w). In order to eliminate such duplicates and improve efficiency, our goal is

to list all 4-cycles uniquely in certain order O, which is achieved with relabeling and

orientation. After orientation, the directions of edges in a 4-cycle is shown in Figure

2. By fixing w as the pivot node, we list all 4-cycles that have w as the largest node.

The directions of edges (w, x) and (w, z) are determined because w > x and w > z.

Without loss of generality, assume x < z, we discover 3 possible orders of the node

sequence (x, y, z), which correspond to the three types of 4-cycles in Figure 2.

Based on the above observations, we propose our M4-listing algorithm based on

intersection. As shown in Algorithm 1, each source node is taken as w, candidate

10



pairs (x, z) are picked from N+(w) and follow the order x < z < w. Finally, the

intersection discovers possible nodes y in all three cases. In order to enforce w as

the largest node, the intersection should stop at w; otherwise duplicate 4-cycles are

listed. This implies the intersection involves all out- neighbors and a portion of the

in-list up to hash y. The overhead is then

Cn(IB, θn) =
n∑
i=1

(Xi−1)∑
j=1

Xi∑
k=j+1

(d+ij(i) + d+ik(i)). (4)

which can be simplified to

Cn(IB, θn) =
n∑
i=1

(Xi−1)∑
j=1

(
d+ij(i)(Xi − j) +

Xi∑
k=j+1

d+ik(i)

)
(5)

=
n∑
i=1

(Xi−1)∑
j=1

d+ij(i)(Xi − j) +

Xi∑
j=2

(d+ij(i)(j − 1)

 (6)

=
n∑
i=1

(Xi−1)∑
j=2

d+ij(i)(Xi − 1) + d+i1(i)(Xi − 1) + di,Xi(Xi − 1)

 (7)

=
n∑
i=1

(Xi − 1)

Xi∑
j=1

d+ij(i) (8)

Theorem 1. the overall complexity of IB is given by:

Cn(IB, θn) =
n∑
i=1

(Xi − 1)

Xi∑
j=1

d+ij(i). (9)

Since every common node in the intersection discovers only one 4-cycle, the num-

ber of intersection operations is no less than the number of 4-cycles. Moreover, many

intersection scans are useless because no common nodes are found. Table III shown

that IB only achieve 2.3x speedup compare to RAGE. We next seek for algorithms

that break the limit by performing fewer operations and discovering multiple 4-cycles

per operation.
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Method Operations

RAGE 30 Q

IB 12.9 Q

UWT 123 T

DWT without relabeling 10.7 T

DWT 0.51 T

Table III. Operation numbers of different algorithm in Twitter.

(a) T1 (b) T2 (c) T3

Fig. 3. Types of directed wedges.

2.1.3 Undirected Wedge Traveler (UWT)

Nodes x, y, z form a wedge pivoting at y if (x, y), (y, z) ∈ E. We call (x, z) end

nodes. We notice that if two wedges (x, y, z) and (x,w, z), where y 6= w, exist in G,

a 4-cycle �xyzw is discovered. So, 4-cycle can be listed by match wedges. Besides

choosing y and w as the pivots, �xyzw can be also discovered by match (y, x, w) and

(y, z, w). Therefore, every 4-cycle will be listing twice if we listing 4-cycle by match

wedges. Based on above observations, we propose a new algorithm called undirected

wedge traveler (UWT).

UWT first iterates over each node and generates all pairs of end nodes. Then,

UWT match the wedges by sorting them and grouping end nodes together. If k

wedges have the same end nodes, any pair of wedges choose from those k wedges can

form 4-cycle. So, we can count
(
k
2

)
4-cycles when k duplicate is detected. Finally,

since there are two ways to decompose a 4-cycle, its total number should be divided

by 2. For 4-cycle counting, we only need to sort end-node pair. However, the pivot

nodes need to be attached with the end-node pairs if we want to list each 4-cycle. For

12



x

y z

w

(a) T1+T1

x

y z

w

(b) T1+T2

x

y z

w

(c) T2+T2

Fig. 4. Directed 4-cycles with T1 and T2 wedges.

each source node i with degree di, a total number of
(
di
2

)
wedges pivoting at i can be

generated.

Theorem 2. the wedges generated by UWT is given by:

wn(UWT ) =
n∑
i=1

di(di − 1)

2
. (10)

Since wedges need to be sorted and linear scanned to match. the actual com-

plexity of this algorithm is:

cn(UWT ) = wn(UWT ) log2wn(UWT ) + wn(UWT ) (11)

UWT is able to update multiple 4-cycles in a single operation. This potentially

improves the performance upon IB. As shown on Table III, the operations of UWT

is 100x less than IB. Although the improvement of UWT is significant, sorting 123

trillion wedges is unpractical. Based on the sorting speed on Table II, UWT need 237

days to finish Twitter graph.

2.1.4 Directed Wedge Traveler (DWT)

In According to Figure 2, there are three types of oriented wedges (x, y, z), which

we call T1-T3. Their directions are illustrated in Figure 3. Note that wedge (x,w, z)

is always T1 since w is the largest node. Therefore, the three types of 4-cycles can be

viewed as the combinations of T1+T1, T1+T2, and T1+T3. However, if we consider

13



x and z as the pivot nodes, there is another way to decompose these three types of

4-cycles: T3+T3, T2+T3, and T2+T2.

After analyzing the patterns of directed 4-cycles, we find that T1 and T2 wedges

are enough to construct all possible cases. We illustrate this finding in Figure 4, where

the pivot nodes are marked as hollow cycle. For each source node i as the pivot node,

the number of T1 wedges generated by UWT is:

c(T1, θ) =
n∑
i=1

Xi(Xi − 1)

2
. (12)

The number of T2 pairs generated by UWT is:

C(T2, θ) =
n∑
i=1

XiYi. (13)

Therefore, after dropping T3 wedges, we get the following result.

Theorem 3. The total number of wedges generated by DWT is given by:

wn(DWT, θn) = c(T1, θ) + C(T2, θ). (14)

We found that C3 is exactly the same with the CPU complexity of edge iterator

in Trigon. The authors of Trigon investigate the impact of permutation to operation

numbers and prove that descending-degree order is indeed optimal for edge iterator.

Therefore, descending-degree order is the best permutation for DWT. Skipping T3

wedges significantly reduces the overhead for two reasons: 1) under descending-degree

permutation, it is possible to transform the majority of wedges to T3 and avoid them

altogether. Since the total number of wedges C2 is fixed, the rest T1 and T2 wedges

are minor; 2) by using only two types of wedges, every 4-cycle is constructed in an

unique way and thus listed only once.
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Consider pair sorting and matching, the final complexity is:

cn(DWT, θn)c(T1, θ)(log2 c(T1, θ) + 1)

+c(T2, θ)(log2 c(T2, θ) + 1) (15)

Table III shows that DWT achieve 12x speedup by dropping T3 wedges. DWT

achieve another 20x speedup by apply optimal permutation.

2.1.5 Implementing Directed Wedge Traveler

Now we discuss the implementation of DWT. The obvious method (DWT1) is

to store all wedges (x,z) in RAM and then sort them using std::sort. The problem

is that the number of wedges in real world graph is too large to fit in RAM. For

instance, Twitter have around 510 billion T1 and T2 wedges. Suppose a wedge need

8 byte, DWT1 will require 4TB space to store wedges. To solve this problem, we can

split wedges into blocks and only store the wedges of one block in RAM.

We split the nodes into ω disjoint sets V1, V2, . . . , Vω, where

ω⋃
k=1

Vk = V and Vi ∩ Vj = ∅ for i 6= j. (16)

For each set Vj, we only store wedges whose smallest end-point falls into Vj. The

number of wedges generated from Vj is:

Wj =
n∑
i=1

∑
k∈Vj

(Xi − k + Yi) (17)

When k = 1 and max |Vj| = 1, Wj achieve the minimum

n∑
i=1

(Xi − 1 + Yi) = m− n (18)

Therefore, the minimum RAM require by DWT1 is 2m − n. To achieve load
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Algorithm 2 VertexSplitting(V,E∗)

1: Initialize array W to 0

2: for i = 1 to n do

3: for xij as the j-th out-neighbor of i do

4: W [xij] = W [xij] +Xi − j + Yi

5: S = 0

6: j = 1

7: for i = 1 to n do

8: if S +W [i] > M then

9: j = j + 1

10: S = 0

11: S = S +W [i]

12: Vj = Vj ∪ {i}

balance in vertex splitting, we propose Algorithm 2.

The next method (DWT2) generates wedges from the smallest node instead of

the one in the middle. Assume x is the smallest node in a 4-cycle, Figure 5 compares

wedges generated from DWT1 and DWT2, where the pivot node is marked in hollow

cycle. Again, we only consider T1 and T2.

Fixing the smallest node x as the pivot, we only need to generate the end point

z instead of the pair (y, z) for each wedge, which saves 50% memory. Moreover, this

allows us to process each pivot node x separately, which only requires the memory to

hold all end points z for a given x. DWT2 operates by holding G in RAM, scan G−θ ,

visiting each node x, jumping to its in-neighbors yx1,yx2,..., grab it’s undirected lists

of neighbors larger than x as the candidate end points z. Note that the undirected

neighbors N(y) are sorted already. Therefore, instead of globally sorting all end
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(a) DWT1 T1 (b) DWT2 T1

(c) DWT1 T2 (d) DWT2 T2

Fig. 5. Comparison of DWT1 vs DWT2.

Method Operations

Actual merge overhead 7 T

search without start point 151 B

search with start point 1.2 B

Table IV. Benchmark of start point in Twitter.

points for x, DWT2 just needs to merge Yx sorted lists. Finally, in the sorted list of

end points, a node z that appears k times indicates
(
k
2

)
4-cycles. The total number

of end points that need to be processed is the same as C3.

DWT2 requires a hash table that keeps for each y ∈ V the following: a) the

offset in the G buffer of its neighbor list; b) out-degree; c) in-degree, and d) the start

point from which we search for x in y’s neighbors. The search can be linear, binary, or

interpolation. Note that when the start point exceeds the out-degree, there is no need

to perform the search - all y’s in-neighbors are automatically larger than x. Since x

are processed in increasing order, the start point moves forward monotonically.

We now examine how fast DWT2 works on Twitter with and without the start

point. In the latter case, the number of nodes scanned should be (focusing on the
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middle node y)

wn(DWT
′

2, θn) =
n∑
i=1

Yi∑
j=1

d−ij

=
n∑
i=1

Xi∑
j=1

di

=
n∑
i=1

(XiYi +X2
i ) (19)

and in the former

wn(DWT2, θn) =
n∑
i=1

Yi∑
j=1

(d−ij − d−ij(i))

=
n∑
i=1

Xi∑
j=1

(di − j)

=
n∑
i=1

(XiYi +
Xi(Xi − 1)

2
) (20)

On Twitter, (19) yields 0.66T and (20) produces 0.51T(i.e., they differ by
∑
Xi(Xi+

1)/2=151B). Converting cost to binary comparisons, these become

cn(DWT
′

2, θn) =
n∑
i=1

log2 Yi

Yi∑
j=1

d−ij (21)

and

cn(DWT2, θn) =
n∑
i=1

log2 Yi

Yi∑
j=1

(dij− − d−ij(i)) (22)

which are 8.7T and 7T, respectively. This means that scanning for x improves

total comparison cost by 20% in this graph. Note that this model fails to account for

elimination of duplicates in the merge tree (the current implementation does not do

this anyway due to difficulties in coding the counter into SIMD merge).

Searching for x sequentially from the beginning of each list requires 151B extra
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scalar comparisons. Note that this number is much smaller than the un- necessary

merge overhead (i.e., 1.7T) because the latter is repeated at every level of the merge

tree. If we use the start position, the scan overhead drops to 1.2B (Table IV). It

appears that none of the suggested searches (i.e., SSE, binary, interpolation) would

help improve the runtime due to the already negligible number of comparisons (i.e.,

1.2B/7T = 0.017%). To save RAM, we could also eliminate the start position and

live with a 151B/7T = 2.1% increase in cost. Since scalar search is slower than SSE

merge, this will likely lead to a 6-8% increase in runtime.

For DWT2, RAM must be large enough to store two copies of the longest set of

wedges for a given node x. This would be the sum of partial out-degree across all in-

neighbors of x. Specially, suppose the j-th in-neighbor of i has X−ij (i) out-neighbors

with labels larger than i. Then, RAM usage is

2 max
i

Yi∑
j=1

(d−ij − d−ij(i)). (23)

For Twitter, the largest list occupies 1.4 GB and thus the method requires 2.8

GB to be the merge buffer.

2.1.6 SIMD Merging

We also explored SIMD merging to increase merging speed. Similar to intersec-

tion, SIMD merging achieved 4x speedup compared to CPU-based merging. The

SIMD merging algorithm used in our implementation is from [19]. The paper [19] use

128-bit vector registers to perform 4x4 and 8x8 32-bit integer merging. We adopt 8x8

merging since 8x8 merging out-perform 4x4 merging in our experiments.

We try to improve merging speed by applying graph compression. However, our

experiments shows that the graph compression do not increase the speed of merging.
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RAGE UWT DWT

PLD 140 Q 1.4 T 1.4 T

Twitter 30 Q 0.51 T 0.51 T

Yahoo 39.7 T 0.43 T 0.43 T

Table V. Operation numbers of M4 listing algorithms.

Algorithm Operation Type

RAGE Random Access

DWT1 Sorting

DWT2 Merging

Table VI. Operation types of M4 listing algorithms.

For the merging order, the naive method is binary merging which is easy to implement.

However, we can improve merging performance by apply optimal merging. Optimal

merging always merge two lists with the shortest length. This algorithm is performed

by maintaining a min heap with sorted lists as nodes. The key of the min heap is

the length of each sorted list. After merging two lists popped from min heap, we

re-insert the result list into the heap. The improvement of optimal merging is depend

on graph. Optimal merging achieve 10% speedup compare to binary merge in PLD

graph. In PLD graph, optimal merging have 17.5 trillion operations while binary

merging have 19 trillion operations.

2.1.7 Runtime Estimation

The models derived in previous section is able to compute the operation number

of each algorithm. Table V shown the operation number of DWT and RAGE in PLD,

Twitter, and Yahoo graph. Since PGD have the same CPU complexity with RAGE,
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RAGE DWT1 DWT2

PLD 33 years 2.7 days 5 hours

Twitter 7 years 1 day 2 hours

Yahoo 9.3 years 20 hours 1.7 hours

Table VII. Estimated runtime of M4 listing algorithms.

Algorithm 3 G∗θ Partition

1: size = 0

2: k = 1

3: for y = 1 to n do

4: if dy + size > M then

5: k = k + 1

6: size = 0

7: size+ = dy

8: V [k].add(y)

we only use RAGE as the baseline for compare. Based on operation type in Table VI

and operation speed in Table II, we can estimate the runtime of RAGE and Falcon

(Table VII). From Table VII, we can see that DWT have significant speedup from

RAGE. DWT1 is 2-4 magnitude faster than RAGE. DWT2 achieve 12-13x speedup

compare to DWT1.

2.1.8 Partitioning

We build external solution for 4-vertex subgraph listing. One fundamental tech-

nique in our external solution is graph partition. Since we need to partition G+
θ and

G∗θ in following section. We present the algorithm to partition G+
θ and G∗θ.

The partitioning algorithm in Falcon is similar to graph partition algorithm of
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Trigon. We start from split G+
θ and then extend to split (G−θ , G

+
θ ). The first step of

split G+
θ is divide V into w set V1..., Vw that satisfy 16.

Each direct edge in G+
θ that point to a vertex in Vk will be put into G+

θ (k). Based

on this strategy, we will iterate over vertices y in G+
θ and divide it’s out-neighbor list

to s+y chunks.

The strategy to split G∗θ is basically the same with G+
θ except we consider both

in-neighbor lists and out-neighbor lists. Each direct edge in G+
θ that point to a vertex

in Vk and each direct edge in G−θ that start from a vertex in Vk will be put into G∗θ(k).

Every vertex y′s direct neighbor list will divide into s∗y chunks.

One problem of graph is load balancing. To maximum the usage of RAM, each

subgraph generated by partitioning algorithm should as close to available RAM size

as possible. So, given available RAM to be M , the optimal partition strategy should

produce subgraphs that all have size M . Simply even distribute vertex to Vi will

not satisfy this requirement. Since graph is sort by degree, most edges are belong to

small source nodes. So, even distributed vertex will lead to unbalance of subgraph

size. To achieve optimal partition for G∗θ, we propose Algorithm 3. The basic idea of

this algorithm is iterate over vertex y in increase (or decrease) order, check whether

Xy + Yy still allow current partition to fit in RAM. If fit, put y in Vk; If not, put y in

Vk+1 and increment k. For G+
θ partition, we only need replace dy with Yy.

2.1.9 External Memory

The external solution is straightforward - partition G (using techniques present

in section) as in Trigon into subgraphs G(1), G(2),..., then run DWT2 using pairs

(G−θ , Gθ(k)), where the latter is stored in RAM and the former is scanned from disk.

The amount of information in the hash table can be 25% less: a) the offset each

neighbor list in the G(k) buffer; b) total degree; and c) the start point. The hash
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8.0 GB 4.0 GB 2.0 GB 1.0 GB

PLD 19.9 GB 26.5 GB 39.7 GB 59.5 GB

Twitter 16 GB 22.2 GB 34.4 GB 58.9 GB

Yahoo 274.1 GB 489.4 GB 920.1 GB 1781.6 GB

Table VIII. IO complexity of DWT on real world graph.

table determine the minimum RAM require by our external solution. In our partition

algorithm, the largest |Gθ(k)| will be at least max di. Since hash table need 12 byte

for keys and 4 byte for value, each vertex require at least 16 bytes. In Yahoo, the

minimum RAM size is 122 MB which is small enough for most situations.

The I/O overhead is O(m2) using simplified analysis. Ignoring the wedge array,

there are = m/M partitions, where M is RAM size in nodes. Since G−θ whose size

is m/2 will be read w times, the read overhead is m2/(2M). Combine with the read

overhead of
∑
|Gθ(k))|=m, we get the following result.

Theorem 4. The I/O overhead of DWT is given by:

H(DWT, θ) =
m2

2M
+m. (24)

Table VIII shows the I/O complexity of DWT works on real graphs.

2.1.10 Experiment Setup

We use a single server to perform our experiments. This server has a six-core

Intel i7-3930K 4.4 GHz processor, Asus Rampage IV Extreme motherboard, quad-

channel DDR3 RAM @ 2133 MHz, and a RAID systerm capable of I/O at 1 GB/s.

Falcon is compare to previous solutions include RAGE and PGD. RAGE do not have

parallelization while Falcon and PGD have. To make experiments more fair, all the

algorithms are running on a single thread.

23



Graph n m M4 RAGE-O RAGE-N PGD reg PGD des Falcon 1.0 Falcon 2.0

Amazon0302 260,000 1,240,000 2.5 M 0.84 1.08 0.6 0.5 0.08

Amazon0505 410,000 3,360,000 36 M 9.8 6.48 4.26 2.2 0.4

Cit-Patents 3,370,000 16,500,000 342 M 55 84.3 48.54 24.8 3.6

web-Google 880,000 5,100,000 540 M 118 53.64 68.82 4.2 0.76

web-Stanford 280,000 2,300,000 13 B 605 476.7 500.94 2.9 0.42

web-WikiTalk 2,390,000 5,020,000 2 B 20,532 4069.74 2127.84 32 3.6

web-Youtube 1,140,000 2,990,000 469 M 453 144.6 136.68 6.7 0.9

Table IX. Benchmark of M4 for small graphs.

Motifs RAGE-O PGD des DWT1 FDWT2

PLD 518,205,999,844,451 - - 3.8 days 4.8 hours

Twitter 466,222,645,290,726 - - 2.1 hours

Yahoo 6,402,519,185,064,717 - - 1.9 hours

Table X. Benchmark of M4 on large graphs.

The first set of graphs we use are standard datasets from previous works. We

download all those graphs from SNAP (Stanford Network Analysis Project) website.

Since the graphs in first set have max millions of edges, we call them small graphs.

Small graphs can be load on RAM in commodity servers. To verify our solution can

scale to billions of edges, we also used Twitter, Yahoo and a new graph called PLD

graph. The vertex and edge number of those graph can be found on Table I.

2.1.11 DWT Runtime

Table IX presents the runtime of 4-cycle counting on small graphs. We assume

that every small graphs can load into RAM. We can see that the performance of

PGD and RAGE are very close on every graph. It prove that PGD is RAGE with

parallelization. We notice that despite the fact that all those graphs have similar

amount of vertices and edges, the runtime of 4-cycle counting is quite different. The
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8.0 GB 4.0 GB 2.0 GB 1.0 GB

PLD 52 min 55 min 1 hour 1.3 hour

Table XI. Runtime of DWT2 when RAM is limit.

reason is that the structure of a graph decide the time complexity of 4-cycle counting.

More dense the graph, more run-time need for 4-cycle counting. The speedup rate

is increase when the runtime of a graph is rise. This prove that falcon have lower

time complexity than PGD and RAGE. Falcon 1.0 is several hundred times faster

than PGD des in densest graph (Wikitalk). DWT2 achieve 6-11x speedup compare

to DWT1. M4 counting is the biggest bottleneck in PGD and RAGE. However, in

our solution, the runtime M4 counting is close to M6 which is a huge improvement.

Table X presents the runtime of DWT and RAGE on PLD graph. RAGE can not

finish 4-cycle counting. The runtime of DWT is close to our estimation which proves

that our estimation mechanism is reasonable. Due to our estimation, RAGE need 33

years to finish 4-cycle counting. For DWT2, we have around 360,000x speedup of M4

counting on PLD graph. Our solutions is able to efficient counting 4-vertex motifs on

graphs with billions of edges.

Since there is no previous external solution for 4-vertex counting exist, we only

compare our external solution with our in memory solution. Table XI presents the

runtime of our external solution on different RAM limit. We can see that runtime is

increase when available RAM is decrease. However, the performance decrease is on a

reasonable range. When we only have 1 GB RAM, the runtime is not double for all

the motifs. The performance of Falcon-D prove that our external solution is efficient.
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Fig. 6. 4-cycle with a chord.

2.2 Four-Cycle With a Chord

Although M5 has one more edge compared to M4, it is actually much easier to

list M5 in terms of complexity because the additional edge (i.e., the chord) serves

as the pivot edge that helps locate the corresponding M5. In contrast, without the

chord, M4 requires BFS explore to at least depth 2, which is quite expensive.

2.2.1 RAGE

This method takes each edge (x, y) and intersects N(x) with N(y), both undi-

rected lists. If |N(x)N(y)| = c, RAGE increments the motif counter for (x, y) by

c(c1)/2. To enforce a single visit through each edge, we can use implicit orientation

y > x. Note that RAGE and PGD both use array-based hash tables of size n. In

that case, the cost is

cn(RAGE, θn) =
n∑
i=1

d2i , (25)

2.2.2 Streaming Intersector (SI)

We use Trigons approach to intersection (i.e., SSE) and utilize a directed graph

with some θn. M5 is easily located by its chord. Without loss of generality, assume

y < w, the direction of the chord is illustrated in Figure 6. Fixing the chord, any

two common neighbors, e.g., x and z, of the chord’s incident nodes y and w indicate
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Algorithm 4 M5 Counting(V,E)

1: C = 0

2: for y ∈ V do

3: for w ∈ N−(y) do

4: k = |N(y) ∩N(z)|

5: C = C +
(
k
2

)
6: return C

x

yz

Fig. 7. Directed triangle with x < y < z.

a M5, where the common neighbors can be easily computed with an intersection.

Since there are no specific requirements of the directions of the other four edges, the

intersection is applied to the undirected neighbors of y and w. This leads to our first

version of M5 counting algorithm as shown in Algorithm 4. The intersection at each

chord (y, w) can be done in dy + dw time.

Theorem 5. This intersection overhead in Algorithm 4 is given by:

Cn(SI) =
∑

(y,w)∈E∗
(dy + dw) =

n∑
i=1

d2i . (26)

which is 246T on Twitter.

2.2.3 Edge Loader (EL)

The complexity Cn(SI) is a bottleneck in large graphs. To overcome this, we

notice that listing M5 is similar to listing triangles. The idea here is to use Trigon to

find all cycles in G and attach a counter to every edge that indicates the number of
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Algorithm 5 M5 Counting 2.0(V,E∗)

1: setup a counter Cxy = 0 for each edge (x, y)

2: C = 0

3: for z ∈ V do

4: for y ∈ N+(z) do

5: for x ∈ N+(y) ∩N+(z) do

6: Cxy = Cxy + 1

7: Cxz = Cxz + 1

8: Cyz = Cyz + 1

9: for (x, y) ∈ E∗ do

10: C = C +
(
Cxy
2

)
11: return C

triangles the edge belongs to. After Trigon finishes, we iterate over edges and compute

the number of motifs they participate in. Specifically, if the counter is c >= 2, the

number of motifs for the edge is c(c1)/2; otherwise, it is zero. Based on this idea,

we next leverage the state-of-art triangle listing algorithm to facilitate our M5 listing

process. After orientation, the directions of edges in a triangle is illustrated as Figure

7. Without loss of generality, assume x < y < z, we set the edge y ← z as the

pivot edge (marked in bold). The other node x is then discovered by intersection the

out-neighbors of y and z. Once a triangle is detected, update the counter of its three

edges. This process is illustrated in Algorithm 5. By applying intersection only on

the out-neighbors, the overhead is significantly reduced. The intersection overhead of

this algorithm is the same with E3 in Trigon.
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RAGE SI EL

PLD 83 T 83 T 1.4 T

Twitter 246 T 246 T 0.51 T

Yahoo 56.4 T 56.4 T 0.43 T

Table XII. Operation numbers of M5 listing algorithms.

Theorem 6. This intersection overhead in Algorithm 5 is given by:

cn(EL) =
n∑
i=1

(
Xi(Xi − 1)

2
+XiYi

)
. (27)

2.2.4 SIMD Intersection

SIMD intersection can achieve a significant speedup compare to CPU-based

scalar intersection. We use the technique in [48] which use 128-bit vector registers to

intersect 32-bit or 16-bit integers. In our experiment, SIMD intersection is 4 times

faster than CPU-based intersection.

While the vertex ID in our graph is 32-bit ID, we can achieve better intersection

performance by compress them to 16-bit. The compression is done by group vertices

into chunks by the upper 16 bits. For each chunk, we store the length and a list of

lower 16-bit integers. Compression will double the performance of SIMD intersection

and decrease the graph size by 50%. So, our SIMD intersection in total achieve 8x

speedup compare to CPU-based Scalar intersection. This feature is apply on FR2
5.

In FR2
5, we need intersect lists that have counter attach to each element. Since

there is no previous work have this feature, we proposed a novel SIMD intersect al-

gorithm that able to solve this problem. While counters double the size of lists, our

SIMD-intersection-with-counters achieved 59% performance of original SIMD inter-

section in experiment. Figure 6 shown the code of SIMD intersection with counters.
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Algorithm Operation Type

RAGE Intersection & Random Memory Access

SI Intersection

EL Intersection

Table XIII. Operation types of M5 listing algorithms.

RAGE SI EL

PLD 3.9 days 15 hours 36 min

Twitter 11.5 days 55 hours 11.2 min

Yahoo 2.6 days 12.6 hours 9.4 min

Table XIV. Estimated runtime of M5 listing algorithms.

2.2.5 Runtime Estimation

The models derived in previous section is able to compute the operation number

of each algorithm. Table XII shown the operation number of SI, EL, and RAGE in

PLD, Twitter, and Yahoo graph. Since PGD have the same CPU complexity with

RAGE, we only use RAGE as the baseline for compare. Based on operation type

in Table XIII and operation speed in Table II, we can estimate the runtime of SI,

EL, and RAGE (Table XIV). From Table XIV, we can see that our solution have

significant speedup from RAGE. SI is 2-4x faster than RAGE. EL achieve 30-250x

speedup compare to SI.

2.2.6 External Memory

The external solution of M5 listing is the same with Trigon-D except each vertex

in our algorithm have a counter. This counter will double both intersection overhead

and I/O overhead of Trigon-D. Following Trigon-D, the intersection overhead of our
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8.0 GB 4.0 GB 2.0 GB 1.0 GB

PLD 66.2 GB 105.8 GB 198.2 GB

Twitter

Yahoo 107.6 GB 121.8 GB 139.8 GB 163 GB

Table XV. IO complexity of EL on real world graph.

algorithm is:

H intersect
cpu = 2 ∗

n∑
i=1

(
Xi(Xi − 1)

2
+XiYi)

=
n∑
i=1

(Xi(Xi − 1) + 2XiYi) (28)

The hash table lookup overhead is the same with Trigon-D:

H lookup
cpu =

n∑
i=1

(s∗iXi) (29)

I/O complexity in our algorithm is different with Trigon-D. The first step of our

algorithm is triangle listing. When we process (Gc
θ(k), G+

θ (k)), Cxy and Cxz is in RAM

while Cyz not. Therefore, we need write the Cyz to disk. A counter file that have the

Graph n m M5 RAGE-O RAGE-N PGD reg PGD des SI EL

Amazon0302 260,000 1,240,000 3 M 0.84 0.84 0.42 0.09 0.05

Amazon0505 410,000 3,360,000 45 M 1.90 3 1.62 0.41 0.24

Cit-Patents 3,370,000 16,500,000 84 M 11.99 25.14 11.4 3.83 2.00

web-Google 880,000 5,100,000 621 M 13.26 11.76 13.02 1.56 0.27

web-Stanford 280,000 2,300,000 9 B 43.22 63.18 73.44 3.98 0.07

web-WikiTalk 2,390,000 5,020,000 1.4 B 172.81 459.66 451.92 3.82 0.86

web-Youtube 1,140,000 2,990,000 252 M 17.85 15.72 14.4 2.37 0.28

Table XVI. Benchmark of M5 in small graphs.
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Motifs RAGE-O PGD des SI EL

PLD 336 T 5.2 days 17 hours 355 sec

Twitter 103,341,853,863,470 201.5 sec

Yahoo 1,920,147,871,975,643

Table XVII. Benchmark of M5 on large graphs.

8.0 GB 4.0 GB 2.0 GB 1.0 GB

PLD 388 sec 410 sec 443 sec 525 sec

Twitter

Yahoo

Table XVIII. Runtime of EL when RAM is limit.

same size with Gc
θ(k) will created. Then, the I/O complexity in this step is:

w∑
k=1

2|Gc
θ(k)| =

n∑
i=1

2siYi (30)

After we finish listing triangles, we merge all the counter files. The I/O com-

plexity of in this step is:

w∑
k=1

(|Gc
θ(k)|+ |G+

θ (k)|) =
n∑
i=1

si(2Yi +Xi) (31)

Table XV shows the I/O complexity of EL works on real graphs.

2.2.7 SI and EL Runtime

The benchmark of M5 counting are show on Table XVI. We can see that the

performance of PGD and RAGE are also very close on every graph. For both M5

counting, SI achieved several hundred times speedup from PGD des in densest graph

(Wikitalk). Also, EL is several times faster than SI in all graphs. Table XVII presents
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the runtime of Falcon and RAGE on PLD graph. Since RAGE do not have external

memory solution, we load the whole PLD graph into RAM. We finished RAGE on

M5 counting, the runtime is close our estimation. It proves that our estimation

mechanism is reasonable. In Twitter, EL achieve 3750x speedup compare to RAGE.

Table XVIII presents the runtime of external EL on different RAM limit. We can see

that runtime is increase when available RAM is decrease. However, the performance

decrease is on a reasonable range. The performance of our external memory solution

prove that our external solution is efficient.

2.3 Four-Clique

2.3.1 RAGE

For each found 2yzwx, where y → z is the pivot edge, RAGE checks existence of

(w, x) ∈ E. Specifically, it pushes S
′
yz = N(y) ∩ N(z) into a table and then for all

x ∈ S ′yz performs a lookup for all w ∈ N(x). The push adds 1 extra memory hit per

triangle, each of which is processed three times, leading to

cn(RAGE) =
n∑
i=1

(d2i +
∑
j=1

(di + dj + dk + 3). (32)

This number is 32Q on Twitter. RAGE lists each clique six times, treating each

possible edge as the chord. Duplicate elimination for this algorithm is still a major

headache.

2.3.2 Triangle Composer (TC)

Similar to M5, M6 can also be listed using triangle techniques. Since the nodes

(x, y, z, w) in a M6 are identical to each other, we can assume w < x < y < z without

losing generality. After orientation, the directions of edges in a 4-clique is shown in
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x

yz

w

Fig. 8. Directed 4-clique with w < x < y < z.

Figure 8, where the largest node z has 3 out-links, the smallest node w has 3 in-links,

and the other two nodes y and x have 2 out-links, 1 in-link and 1 out-link, 2 in-links.

Note that the case is different from M4, where the four nodes are actually not identical

to each other. For the example in Figure 1(d), in the perspective of w, nodes x and

z are its neighbors, whereas y is not. Therefore, we cannot simply assume the order

between y and x, z, which leads to the three cases in Figure 2. From this point of

view, we claim that M6 is also a simpler problem than M4.

As shows on Algorithm 7, the first idea is to use E1 to discover all triangle

4xyz, where y is the pivot node and z > y is fixed. This produces an intersection

Syz = N+(y) ∩N+(z), which we save into another array. We then continue through

all nodes x in Syz and compute the intersection of their out-neighbors N+(x) against

Syz. We are looking for nodes w, which are the smallest in the clique. Note that the

intersection is automatically limited to the range [1, x] within Syz. The overhead can

then be expressed using

cn(TC, θn) = cn(E1, θn) +
n∑
i=1

(
Xi|4i∗∗|+

Yi∑
j=1

sij(sij − 1)

2

)
, (33)

where4i∗∗ is the set of all triangles with i being the smallest node and sij = |Sij|.

The rationale for this formula comes from Trigon there is local overhead related to

x and remote related to Syz. In the former case, we scan all out- neighbors of x

exactly the number of times it appears in some Syz, which is the number of triangles

it participates in as the smallest node. The latter case arises when we scan Syz in the
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y xz

l

yk x

lk

...

Fig. 9. List of triangles with z > y > x.

range [1, x], for all x ∈ Syz. Note that

n∑
i=1

Xi|4i∗∗| =
n∑
i=1

Yi∑
j=1

∑
k∈Sij

Xk, (34)

which might be simpler to compute in practice. Another way to represent overhead

is to iterate over all triangles

cn(TC, θn) = cn(E1, θn) +
∑

4ijk∈G∗θ

(|Sjk(i)|+Xi), (35)

where Syz(x) is the set Syz restricted to nodes smaller than x. The total cost on

Twitter is 43T and the extra RAM usage is minimal since |Sxz| <= maxiXi.

Theorem 7. This intersection overhead in Algorithm 7 can be present by (33) or

(35).

2.3.3 Triangle Director (TD)

This is a slight improvement over TC. Observe that a clique can be uniquely

identified using three directed triangles 4xyz, 4wxz, 4wyz, all ending with z.We first

use E3, pivoting on the largest node z, to discover all triangles Tz = 4xyzxy, where

x < y < z. The only caveat is that we enumerate the ys backwards, starting at the

end of N+(z). We dump the result into a set Sz = (y, Syz)y. Note that the ys are in

descending order and x ∈ Syz are in ascending. Fix pairs (y, Syz) and (x, Sxz) such

that y > x. Then, suppose we scan Syz from the start position backwards to discover

x. This indicates the presence of triangle 4xyz. Now, taking an intersection of Syz

35



RAGE TC TD

PLD 8 Q 106 T 76 T

Twitter 4.8 Q 43 T 17 T

Table XIX. Operation numbers of M6 listing algorithms.

Algorithm Operation Type

RAGE Intersection & Random Access

TC Intersection

TD Intersection

Table XX. Operation types of M6 listing algorithms.

in [1, start] and Sxz detects all w that participate in additional triangles 4wyz and

4wxz. After the pair (y, Syz) and (x, Sxz) is processed, we move to the next x. Once

all x are processed for a given y, we move to the next y, reset the start pointer to 1,

and repeat. The code of this algorithm is show on Algorithm 8.

Theorem 8. This intersection overhead in Algorithm 8 is given by:

cn(TD, θn) = cn(E1, θn) +
∑

4ijk∈G∗θ

(|Sjk(i)|+ |Sik|), (36)

where we ignore the terms related to scanning from the start position to discover

x. This cost is simply
∑

i |Si|. Note that TD is faster (17T operations on Twitter)

than TC because it intersects a partial set Syz with Sxy rather than N+(x). However,

memory consumption of TD is higher around 6M nodes in the largest set Sz on

Twitter.
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RAGE TC TD

PLD 1.9 years 16.4 hours 11.7 hours

Twitter 1.1 years 6.6 hours 2.6 hours

Table XXI. Estimated runtime of M6 listing algorithms.

8.0 GB 4.0 GB 2.0 GB 1.0 GB

PLD 0 141.7 GB 384.8 GB 1424.3 GB

Twitter 0 GB 69.4 GB 153.5 GB 549.5 GB

Table XXII. IO complexity of TD on real world graph.

2.3.4 Runtime Estimation

The models derived in previous section is able to compute the operation number

of each algorithm. Table XIX shown the operation number of TC, TD, and RAGE

in PLD, Twitter, and Yahoo graph. Since PGD have the same CPU complexity with

RAGE, we only use RAGE as the baseline for compare. Based on operation type

in Table XX and operation speed in Table II, we can estimate the runtime of TC,

TD, and RAGE (Table XXI). From Table XXI, we can see that our algorithms have

significant speedup from RAGE. TC is 80-100x than RAGE. TD achieve 30%-60%

speedup compare to TC.

2.3.5 External Memory

The idea is rather simple. We load in RAM all possible pairs of graphs G+
θ (k)

and G+
θ (j) for all j < k. Note that x is detected in the k-th partition and w in the

j-th. The streaming portion reads companion files Gc operation. We do not need the

companion files of G+
θ (j) since it contains all the relevant edges already. Note that

this methods also works for TC, after an appropriate adjustment to the companion
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files.

Suppose w = m/M is the number of partitions, each containing M edges. Then,

the I/O involved in the out-graphs is Mw(w+ 1)/2m2/(2M); however, a bigger issue

is that we have to read Gc
θ(k) exactly wk times. Assuming all companion files have

the same size H3/w, this I/O becomes Gc
θ(1)w2/2 = H3w/2 = H3m/(2M). Since

H3 can be substantially larger than m, this may become a potential problem. In the

worst case, H3 = mw and our I/O is O(m3/M2). For constant degree, H3 = O(n)

and TD has O(n2/M) complexity.

Table XXII shows the I/O complexity of TD works on real graphs.

2.3.6 TC and TD Runtime

The benchmark of M6 counting are show on Table XXIII. We can see that the

performance of PGD and RAGE are also very close on every graph. For both M6

counting, TC achieved 400 hundred times speedup from PGD des in densest graph

(Wikitalk). Also, TD is 30%-60% faster than TC in all graphs. RAGE can not finish

process any real graphs. In Twitter, TD achieve 2000x speedup compare to RAGE.

Table XXV presents the runtime of external TD on different RAM limit. We can see

Graph n m M6 RAGE-O RAGE-N PGD reg PGD des TC TD

Amazon0302 260,000 1,240,000 304 K 0.46 0.96 0.48 0.05 0.04

Amazon0505 410,000 3,360,000 4.3 M 2.7 4.44 2.4 0.31 0.21

Cit-Patents 3,370,000 16,500,000 3.5 M 16.25 30.24 12.78 2.47 2.08

web-Google 880,000 5,100,000 40 M 30.7 50.22 32.4 0.51 0.36

web-Stanford 280,000 2,300,000 79 M 148.49 394.08 365.64 0.22 0.21

web-WikiTalk 2,390,000 5,020,000 65 M 391.02 982.2 959.58 1.84 0.80

web-Youtube 1,140,000 2,990,000 5 M 37.55 60.72 51.96 0.40 0.27

Table XXIII. Benchmark of M6 for small graphs.
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Motifs RAGE-O PGD des Falcon 1.0 Falcon 2.0

PLD 32,646,228,464,854 - - 16 hours 11.4 hours

Twitter 6,622,234,180,319 - - 2.9 hours

Table XXIV. Benchmark of M6 on large graphs.

8.0 GB 4.0 GB 2.0 GB 1.0 GB

PLD 1.9 hours 2.1 hours 2.4 hours 3.3 hours

Twitter

Table XXV. Runtime of TD when RAM is limit.

that runtime is increase when available RAM is decrease. However, the performance

decrease is on a reasonable range.
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Algorithm 6 SIMD intersection with counters
1: count = 0, i a = 0, i b = 0

2: sta = (sa / 4) * 4, stb = (sb / 4) * 4

3: while i a < st a && i b < st b do

4: v a = mm loadu si128(A[i a]), v b = mm loadu si128(B[i b])

5: a max = mm extract epi32(v a, 3)

6: b max = mm extract epi32(v b, 3)

7: i a += (a max <= b max) * 4

8: i b += (a max >= b max) * 4

9: cmp mask1 = mm cmpeq epi32(v a, v b)

10: v b = mm shuffle epi32(v b, SHIFT)

11: cmp mask2 = mm cmpeq epi32(v a, v b)

12: v b = mm shuffle epi32(v b, SHIFT)

13: cmp mask3 = mm cmpeq epi32(v a, v b)

14: v b = mm shuffle epi32(v b, SHIFT)

15: cmp mask4 = mm cmpeq epi32(v a, v b)

16: cmp maski = mm or si128(

17: mm or si128(cmp mask1, cmp mask2),

18: mm or si128(cmp mask3, cmp mask4))

19: cmp mask = mm castsi128 ps(cmp maski)

20: mask = mm movemask ps(cmp mask)

21: p = mm shuffle epi8(v a, sh 32 mask[mask])

22: mm storeu si128(C[count], p)

23: count += mm popcnt u32(mask)
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Algorithm 7 M6 Counting(V,E∗)

24:1: C = 0

2: for y ∈ V do

3: for z ∈ N−(y) do

4: S = N+(y) ∩N+(z)

5: for x ∈ S do

6: C = C + |N+(x) ∩ S|

7: return C

Algorithm 8 M6-Counting2.0(z, y1, l1, . . . , yk, lk)

1: C = 0

2: setup a variable StartPi for each triangle chunk li

3: for i = 1 to k − 1 do

4: for j = i+ 1 to k do

5: pos = BinarySearch(li,StartPi , yj)

6: if pos ≥ 0 then

7: C = C + |li,pos+1 ∩ lj|

8: StartPi = pos+ 1

9: return C

Algorithm 9 Triangle(V,E∗)

1: for z ∈ V do

2: for yi ∈ N+(z) do

3: li = N+(z) ∩N+(yi)
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CHAPTER III

CONCLUSION

Our algorithms are the most scalable and efficient solution for 4-vertex subgraph

exact listing. Previous work only focus on graphs with millions of edges while our

solution can extend to billions of edges. Despite the fact that we achieved the best

performance, there still be several open issues. The first one is to find an 4-clique

listing algorithm that able to break the lower bound. The second one is to extend our

algorithm to 5-vertex subgraph. The third one is to find an external solution that

have linear I/O complexity.
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ical network alignment uncovers biological function and phylogeny,” Journal of

the Royal Society Interface, vol. 7, no. 50, pp. 1341–1354, Mar. 2010.

[28] M. Kuramochi and G. Karypis, “Finding frequent patterns in a large sparse

graph*,” Data mining and knowledge discovery, vol. 11, no. 3, pp. 243–271, Nov.

2005.

[29] L. Lai, L. Qin, X. Lin, and L. Chang, “Scalable Subgraph Enumeration in

MapReduce,” PVLDB, vol. 8, no. 10, pp. 974–985, Jun. 2015.

[30] D. Marcus and Y. Shavitt, “Efficient counting of network motifs,” in Proc. IEEE

ICDCS Workshops, Jun. 2010, pp. 92–98.
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