
PROBABILISTIC RISK MAPPING COUPLING BAYESIAN 

NETWORKS AND GIS, AND BAYESIAN MODEL CALIBRATION 

OF SUBMARINE LANDSLIDES 

A Dissertation 

by 

PATRICIA YSOLDA VARELA GONZALEZ 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

Chair of Committee,  Zenon Medina-Cetina 
Committee Members, Marian Eriksson 

Gretchen Miller 
Arash Noshadravan 

Head of Department, Robin Autenrieth 

December 2017 

Major Subject: Civil Engineering 

Copyright 2017 Patricia Ysolda Varela-Gonzalez



 

ii 

 

ABSTRACT 

 

A spatial and causal probabilistic methodology is introduced for risk assessment based 

on the coupling of a conceptual Bayesian Network (BN) model and GIS to generate risk 

maps. The proposed integration of these spatial events is referred to as BN+GIS, which 

features forward and inverse modeling, denoted in this work as spatial prognosis and 

spatial diagnosis, respectively. This approach is illustrated through two case studies: (1) 

environmental risk associated to oil and gas site developments implemented in the 

Barnett Shale Play in Texas, and (2) landslide susceptibility in the Elliott State Forest in 

the Oregon Coastal Range. This approach will equip stakeholders, such as land owners, 

operators, regulators, government officials, and other related organizations with a 

platform that can help them improve the assessment of future potential risk scenarios, 

and to identify likely consequences that would lead to undesirable states of environmental 

risks ahead of time. A sensitivity analysis was performed on BN+GIS to study the 

influence of some of the user-defined parameters on the model’s results, such as sample 

size, spatial interval of the systematic sampling methodology, and the prescribed 

diagnosis distribution used for decision making purposes. As an additional effort to 

portray the potential application of the Bayesian paradigm on risk assessment, a 

parameter estimation methodology is implemented using bathymetry data and CPT logs. 

This approach is illustrated through a study case, where information was mined from 

existent landslides to perform a Bayesian calibration on an infinite slope model. This 

approach allowed to estimate posterior probability distributions of physical parameters 
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given a prescribed factor of safety, to assess the most likely depth of failure, and to 

identify the optimum amount of samples required to maximize the reliability of the 

inferences. This work focusses on providing a substantial contribution to improved 

policymaking and management through the use of integrated sources of evidence such as 

real data, model predictions and experts educated beliefs.  



 

iv 

 

DEDICATION 

 

This work is dedicated to my family. Their ceaseless support and encouragement 

represented a good source of fuel that I have used to go through this journey from the day 

I came to Texas A&M University. A special feeling of gratitude to my brother, Jose 

Miguel Varela, for being a role model, for consistently showing me the right way to do 

things, and for kindheartedly receiving me in his house every year. 

I also dedicate this work to the chosen family I met in College Station, Jeniree 

Flores, Agustin Diaz, Nefeli Moridis and Troy Brown. My heart is full of joy because I 

have had the privilege to keep them close every step of the way. I will always appreciate 

their unconditional support, which I have received in ways I had never imagined possible. 

  

 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Zenon Medina-Cetina, for his 

dedication to my professional and technical development.  He saw something in me and 

gave the fight when it was needed, and now I am truly thankful for his efforts. I hope that 

in the future, I can make a difference in a young professional the way he has done it for 

me.  

I would like to acknowledge the contributions of my committee member, Dr. 

Marian Eriksson, for her guidance and support throughout the course of this research. 

After a countless amount of coffee cups and lunches, I feel fortunate to consider her a 

good friend. 

It is important to highlight the generous contributions of Grupo Plenum to the 

Stochastic Geomechanics Laboratory, particularly Dr. Victor Gutierrez and Dr. Alberto 

Muñoz. Another special tanks to Mr. Andrew Haigh for receiving me as his intern during 

difficult times, and to all other members of the Gardline office in Houston.  

Another important acknowledgement goes to my Stochastic Geomechanics 

Laboratory colleagues. Specially Yichuan Zhu and Roneet Daas for helping me out at 

different stages of my research. To Tam Duong and Jungrak Son for their warm and kind 

personality, and to Rachel Holanda for proof reading the manuscripts. 

 Thanks also go to the department faculty and staff for making my time at Texas 

A&M University a great experience. It was an extraordinary pleasure to meet and work 

with Theresa Taeger, Laura Byrd, Kay Choate, and Maria Medrano. 



 

vi 

 

CONTRIBUTORS AND FUNDING SOURCES 

 

This work was supervised by a dissertation committee consisting of Texas A&M 

University Professors Zenon Medina-Cetina (Chair), Gretchen Miller and Arash 

Noshadravan of the Department of Civil Engineering, Professor Marian Eriksson of the 

Department of Ecosystem Science and Management. Dr. William Haneberg of the 

Kentucky Geological Survey, University of Kentucky, also advised and supervised 

portions of this dissertation. 

The data analyzed for Chapter V was provided by Gardline, and the script used for 

its implementation was modified from previous work developed on the Stochastic 

Geomechanics Laboratory. All other work conducted for the dissertation was completed 

by the student, under the advisement of Dr. Zenon Medina-Cetina and Dr. Marian 

Eriksson. 

This work was made possible by the funding provided by the Grupo Plenum with 

the project “Stochastic Geomechanics for Shale Gas Developments”. Its contents are 

solely the responsibility of the authors and do not necessarily represent the official views 

of the Grupo Plenum. 

 



 

vii 

 

TABLE OF CONTENTS 

 Page 

CHAPTER I  INTRODUCTION ....................................................................................... 1 
 

CHAPTER II  COUPLING BAYESIAN NETWORKS AND GIS FOR PROGNOSIS 
AND DIAGNOSIS ENVIRONMENTAL RISK ASSESSMENT .................................... 5 
 

Introduction .................................................................................................................... 5 
Methodology ................................................................................................................ 13 

Definition of Marginal Probabilities ........................................................................ 14 
Bayesian Networks and Risk Assessment ................................................................ 16 

Case Study .................................................................................................................... 23 
State of Parent Nodes ............................................................................................... 24 

Results .......................................................................................................................... 31 
Prognosis .................................................................................................................. 32 
Diagnosis .................................................................................................................. 34 

Analysis and Discussion .............................................................................................. 36 
Conclusions .................................................................................................................. 40 
 

CHAPTER III  PARAMETRIC SENSITIVITY ANALYSIS OF 
ENVIRONMENTAL RISK MAPPING FOR THE BARNETT SHALE PLAY ............ 43 
 

Introduction .................................................................................................................. 43 
BN+GIS ........................................................................................................................ 50 
Experimental Design .................................................................................................... 52 

Spatial Sampling Experiment ................................................................................... 52 
Diagnosis Experiment .............................................................................................. 55 

Results .......................................................................................................................... 56 
Spatial Sampling ....................................................................................................... 56 
Diagnosis .................................................................................................................. 62 

Analysis ........................................................................................................................ 68 
Conclusions .................................................................................................................. 70 
 

CHAPTER IV  RISK ASSESSMENT FOR LANDSLIDES USING BAYESIAN 
NETWORKS AND REMOTE SENSING DATA ........................................................... 73 
 

Introduction .................................................................................................................. 73 
BN and Risk ................................................................................................................. 76 
Case Study .................................................................................................................... 78 

State of parent nodes ................................................................................................ 80 
Results and Analysis ................................................................................................ 85 

Conclusions .................................................................................................................. 91 



viii 

Disclosure ..................................................................................................................... 92 

CHAPTER V  BAYESIAN MODEL CALIBRATION OF SUBMARINE 
LANDSLIDES ................................................................................................................. 93 

Introduction .................................................................................................................. 93 
Methodology ................................................................................................................ 96 

Infinite Slope Model ................................................................................................. 96 
Bayesian Probabilistic Calibration ........................................................................... 98 

Case Study .................................................................................................................. 101 
Experimental Design .............................................................................................. 105 
Definition of Prior Probability Distributions .......................................................... 106 
Observations of Su ................................................................................................. 119 

Results ........................................................................................................................ 121 
One Population 0 to 5 m ......................................................................................... 121 
Five Populations ..................................................................................................... 139 

Analysis ...................................................................................................................... 158 
Conclusions ................................................................................................................ 162 

CHAPTER VI CONCLUSIONS ................................................................................... 164 

REFERENCES ............................................................................................................... 167 



ix 

LIST OF FIGURES 

Page 

Fig 2.1 Methodological sequence of BN+GIS tool. ......................................................... 14 

Fig 2.2 Methodology used in BN+GIS to generate the marginal probability 
distributions of parent nodes. ............................................................................ 15 

Fig 2.3 Graphical relationship between grid size (g) and buffer distance (b) during 
spatial sampling. ............................................................................................... 16 

Fig 2.4 BN on causal relationship between the evidence (E) and the hypothesis (H) 
depicting the Bayes Theorem. .......................................................................... 17 

Fig 2.5 Proposed BN model for environmental Risk Assessment. .................................. 20 

Fig 2.6 Shale Gas Plays and Location of Study Area. ..................................................... 24 

Fig 2.7 Maps of Parent Nodes. Initial condition of threat intensity levels. ...................... 31 

Fig 2.8 Result Maps of Prognostic Analysis. ................................................................... 33 

Fig 2.9 Result maps of diagnostic analysis. Updated probability of Surface Water 
(top) and Aquifers (bottom) hazards. ................................................................ 35 

Fig 2.10 Result maps of diagnostic analysis. Updated probability of Ecoregions (top) 
and Land Use/Land Cover (bottom) hazards. ................................................... 36 

Fig 2.11 Location of production wells and their correspondent Risk index .................... 38 

Fig 3.1 BN model for environmental risk assessment. .................................................... 51 

Fig 3.2 Relationship between parameters g and b on sampling methodology. ................ 54 

Fig 3.3 Four combinations of fixed probabilities of ES. .................................................. 55 

Fig 3.4 Empirical density functions (EDF) of the RI maps for each combination of 
݃ and	ܾ. ............................................................................................................. 57 

Fig 3.5 (A) Mean and (B) standard deviation of RI for 36 combinations of ݃ 
and	ܾ. ................................................................................................................ 58 

Fig 3.6 (A) Sensitivity coefficient (∅) and (B) sensitivity index (SI) of Risk Index 
(RI) for different sizes of ݃ and	ܾ. .................................................................... 59 



x 

Fig 3.7 Standard deviation (σ) of RI across study area for selected sizes of ݃ 
and	ܾ. ................................................................................................................ 60 

Fig 3.8 Directional Pearson’s autocorrelation coefficients and fitted curve for RI 
map for sampling parameters b02g02.............................................................. 61 

Fig 3.9 Updated hazard to A using fixed diagnostic messages C1, C2, C3 and C4. ....... 62 

Fig 3.10 Updated hazard to W using fixed diagnostic messages C1, C2, C3 and 
C4. ..................................................................................................................... 63 

Fig 3.11 Updated hazard to E using fixed diagnostic messages C1, C2, C3 and 
C4. ..................................................................................................................... 63 

Fig 3.12 Updated hazard to L using fixed diagnostic messages C1, C2, C3 and 
C4. ..................................................................................................................... 64 

Fig. 4.1 Example of BN showing parent's marginal probabilities and their effect 
on the child node as a conditional probability. ................................................. 77 

Fig. 4.2 Study area ........................................................................................................... 79 

Fig. 4.3 BN model proposed for integrated landslide risk mapping. ............................... 79 

Fig. 4.4 SLIDO method for susceptibility mapping using “Landslide Density” and 
“Slope Prone to Landslide” maps. .................................................................... 82 

Fig. 4.5 Simplified Infinite Slope Model ......................................................................... 83 

Fig. 4.6 Threat intensity maps over Hillshade. ................................................................ 85 

Fig. 4.7 WE and NS spatial autocorrelation curves of preliminary risk index 
values ................................................................................................................ 86 

Fig. 4.8 Prognostic maps of probability of landslide vulnerability, and risk index 
over hillshade. ................................................................................................... 87 

Fig. 4.9 Quantification of risk of landslides on existent roads and historic 
landslides. ......................................................................................................... 88 

Fig. 4.10 Diagnostic maps of updated probability of hazard levels for 1 m sliding 
mass. ................................................................................................................. 90 

Fig. 5.1 Infinite slope model scheme ............................................................................... 97 

Fig. 5.2 Flowchart of Bayesian model calibration using a MCMC process .................. 100 



xi 

Fig. 5.3 (A) Bathymetry and CPT borehole locations. (B) Bathymetry, interpreted 
faults and catalogued landslides. .................................................................... 102 

Fig. 5.4 Modeled and measured values of Su (kPa) retrieved from CPT logs. .............. 103 

Fig. 5.5 High plasticity clay samples on plasticity chart. .............................................. 105 

Fig. 5.6 Experimental Design. ....................................................................................... 106 

Fig. 5.7 Landslide samples used for geometric analysis of deformation patterns. ........ 107 

Fig. 5.8 Methodological sequence to obtain sediment height (ܪ) at failure.................. 109 

Fig. 5.9 Modeled interpolation surfaces for representative landslide. ........................... 110 

Fig. 5.10 (A) Relative frequency of H, lognormal PDF, (B) empirical and 
lognormal CDF of  H. ..................................................................................... 112 

Fig. 5.11 (A) Relative frequency of α, lognormal PDF, (B) empirical and 
lognormal CDF of  α. ...................................................................................... 113 

Fig. 5.12 Site factors used on peak ground acceleration estimates for site type E ........ 116 

Fig. 5.13 (A) Relative frequency of ݇, lognormal PDF, (B) empirical and 
lognormal CDF of  ݇. ..................................................................................... 117 

Fig. 5.14 Submerged unit weight (ܾݑݏߛ) with respect to depth retrieved from CPT 
logs .................................................................................................................. 118 

Fig. 5.15 (A) Relative frequency of ܾݑݏߛ, lognormal PDF, (B) empirical and 
lognormal CDF of  118 ............................................................................... .ܾݑݏߛ 

Fig. 5.16 (A) Relative frequency of γsat, lognormal PDF, (B) empirical and 
lognormal CDF of  γsat. ................................................................................. 119 

Fig. 5.17 (A) Relative frequency of one population of Su, lognormal PDF, (B) 
empirical and lognormal CDF of one population of Su. ................................ 120 

Fig. 5.18 (A) Relative frequency of 5 populations of Su, lognormal PDF, (B) 
empirical and lognormal CDF of 5 populations of Su. ................................... 120 

Fig. 5.19 Sampling of measured Su values. (A) 5 ݀ݏܾ݋ and (B) 20 ݀122 ....................ݏܾ݋ 

Fig. 5.20 Convergence plots of parameters for a FS at LS between 0 and 5 m 
depth. .............................................................................................................. 123 



xii 

Fig. 5.21 Forward modeling and experimental observations of Su for a FS at limit 
state between 0 and 5 m depth. ....................................................................... 124 

Fig. 5.22 PDF and CDF curves of SM from 0 to 5 m depth and a FS at limit state 
between 0 and 5 m depth. ............................................................................... 125 

Fig. 5.23 PDF and CDF curves of submerged unit weight from 0 to 5 m depth and 
a FS at limit state. ........................................................................................... 127 

Fig. 5.24 PDF and CDF curves of saturated unit weight from 0 to 5 m depth and a 
FS at limit state. .............................................................................................. 127 

Fig. 5.25 PDF and CDF curves of sediment heights from 0 to 5 m depth and a FS 
at limit state. .................................................................................................... 128 

Fig. 5.26 PDF and CDF curves of slope angle from 0 to 5 m depth and a FS at 
limit state. ....................................................................................................... 128 

Fig. 5.27 PDF and CDF curves of seismic coefficient from 0 to 5 m depth and a 
FS at limit state. .............................................................................................. 129 

Fig. 5.28 Convergence plots of physical parameters for a FS as a random variable 
between 0 and 5 m depth. ............................................................................... 131 

Fig. 5.29 Forward modeling and experimental observations of Su for a FS as a 
random variable between 0 and 5 m depth. .................................................... 132 

Fig. 5.30 PDF and CDF curves of SM from 0 to 5 m depth and a FS as a random 
variable between 0 and 5 m depth. ................................................................. 133 

Fig. 5.31 PDF and CDF curves of submerged unit weight from 0 to 5 m depth and 
a FS as a random variable. .............................................................................. 135 

Fig. 5.32 PDF and CDF curves of saturated unit weight from 0 to 5 m depth and a 
FS as a random variable. ................................................................................. 135 

Fig. 5.33 PDF and CDF curves of sediment height from 0 to 5 m depth and a FS 
as a random variable. ...................................................................................... 136 

Fig. 5.34 PDF and CDF curves of slope angle from 0 to 5 m depth and a FS as a 
random variable .............................................................................................. 136 

Fig. 5.35 PDF and CDF curves of seismic coefficient from 0 to 5 m depth and a 
FS as a random variable. ................................................................................. 137 

Fig. 5.36 PDF and CDF curves of factor of safety from 0 to 5 m dept. ......................... 137 



xiii 

Fig. 5.37 Forward modeling and experimental observations of Su for a FS at LS 
for 5 populations of depth. ............................................................................... 141 

Fig. 5.38 PDF and CDF curves of SM for a FS at LS for 5 populations of depth ........... 142 

Fig. 5.39 PDF and CDF curves of ܾݑݏߛ	for a FS at LS for 5 populations of depth ........144 

Fig. 5.40 PDF and CDF curves of ݐܽݏߛ	for a FS at LS for 5 populations of depth......... 145 

Fig. 5.41 PDF and CDF curves of ܪ	for a FS at LS for 5 populations of depth. ........... 145 

Fig. 5.42 PDF and CDF curves of α for a FS at LS for 5 populations of depth. ............ 146 

Fig. 5.43 PDF and CDF curves of k for a FS at LS for 5 populations of depth. .............. 146 

Fig. 5.44 Forward modeling and experimental observations of Su for a FS as a 
RV for 5 populations of depth and 20 samples. ................................................ 149 

Fig. 5.45 PDF and CDF curves of SM for a FS as a RV for 5 populations of depth 
using 20 samples. .............................................................................................. 150 

Fig. 5.46 PDF and CDF curves of ܾݑݏߛ	for a FS as a RV for 5 populations of 
depth using 20 samples. .................................................................................... 152 

Fig. 5.47 PDF and CDF curves of ݐܽݏߛ for a FS as a RV for 5 populations of 
depth using 20 samples. .................................................................................... 153 

Fig. 5.48 PDF and CDF curves of ܪ	for a FS as a RV for 5 populations of depth 
using 20 samples. .............................................................................................. 153 

Fig. 5.49 PDF and CDF curves of ߙ	for a FS as a RV for 5 populations of depth 
using 20 samples. .............................................................................................. 154 

Fig. 5.50 PDF and CDF curves of ݇	for a FS as a RV for 5 populations of depth 
using 20 samples. .............................................................................................. 154 

Fig. 5.51 PDF and CDF curves of FS for 5 populations of depth using 20 samples........ 155 



xiv 

LIST OF TABLES 

Page 
Table 2.1 Conditional probability table of environmental sensibility (ES) node 

given parent nodes classes. ............................................................................... 21 

Table 3.1 Pearson’s correlation coefficients for NS and WE directions, for lag 
distances 1 to 15 km. ........................................................................................ 61 

Table 3.2 Marginal probability distributions of points I and II........................................ 65 

Table 3.3 Updated Probabilities of A, W, E and L given a set of diagnostic 
messages C1, C2, C3 and C4 for points I and II. .............................................. 66 

Table 4.1 Data sources for the definition of hazard variables. ........................................ 80 

Table 5.1 Classification laboratory tests. ....................................................................... 104 

Table 5.2 First order statistics of ܪ for ranges of depth................................................ 113 

Table 5.3 Peak ground acceleration (PCA), short period spectral acceleration (Ss), 
and one second period spectral acceleration (Sl) data. ................................... 115 

Table 5.4 Prior estimated values of ݇............................................................................ 116 

Table 5.5 First order statistics of Su at varying depths .................................................. 121 

Table 5.6 States of evidence of Su from 0 to 5 m depth and a FS at limit state ............ 126 

Table 5.7 States of evidence of model parameters for 5 and 20 samples using one 
population and a FS at limit state. .................................................................. 130 

Table 5.8 States of evidence of Su from 0 to 5 m depth and a FS at limit state............. 134 

Table 5.9 States of evidence of model parameters for 5 and 20 samples using one 
population and a FS as a random variable. ..................................................... 138 

Table 5.10 Standard deviation of samples extracted from 5 populations of Su............. 139 

Table 5.11 States of evidence of Su for a FS at limit state for 5 populations of 
depth. .............................................................................................................. 143 

Table 5.12 States of evidence of ݐܽݏߛ ,ܾݑݏߛ and ܪ for 20 samples using five 
populations and a FS as at limit state. ............................................................. 147 



xv 

Table 5.13 States of evidence of α and k for 20 samples using five populations 
and a FS as at limit state. ................................................................................ 148 

Table 5.14 States of evidence of Su for a FS as a RV for 5 populations of depth.......... 151 

Table 5.15 States of evidence of ݐܽݏߛ ,ܾݑݏߛ and ܪ for 20 samples using five 
populations and a FS as a RV. ........................................................................ 156 

Table 5.16 States of evidence of ߙ, ݇ and FS for 20 samples using five 
populations and a FS as a RV. ........................................................................ 157 



 

1 

 

CHAPTER I  

INTRODUCTION 

 

Risk assessment in engineering is conducted with the purpose of performing informed 

decision-making that can be applied to solve problems related to environmental 

conservation and societal impact while maximizing material or financial resources (Faber 

and Stewart 2003). The heterogeneous nature of the available information that can serve 

for a detailed and comprehensive risk assessment methodology embodies a challenge for 

the standardization of methods that can be implemented for diverse purposes. Bayesian 

networks (BN) provides a suitable solution for modeling the interaction and the causal 

relationship between variables through a probabilistic approach, and for the integration of 

real data with experts beliefs (Korb and Nicholson 2004; Chen and Pollino 2012).  

Most of this work focuses on the use of BNs within a risk assessment framework, 

scaled to a spatial domain through the use of GIS. To illustrate the proposed 

methodology, a first approach is discussed in chapter I, were the environmental risk due 

to oil and gas (O&G) site developments is mapped, given the occurrence of an event that 

could potentially trigger adverse consequences. This approach couples the use of a 

conceptual Bayesian Network (BN) model and GIS to generate risk maps, illustrated 

through a case study implemented in the Barnett Shale Play. The proposed integration of 

these spatial events is referred to as BN+GIS, which features forward and inverse 

modeling. The proposed methodology is illustrated through the development of risk maps 

aimed at improving the process selecting optimal locations for future infrastructure while 
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accounting for potential environmental impacts to aquifers, surface water, ecoregions, 

and land use - land cover. This approach can equip stakeholders, such as land owners, 

operators, regulators and other related organizations with a platform that can help them 

improve the assessment of future potential environmental risk scenarios, and to identify 

likely scenarios that would lead to undesirable states of environmental risks ahead of 

time.  

A parametrical sensibility analysis of the study case implemented in chapter II is 

illustrated in chapter III. The methodology used to estimate the marginal probabilities of 

the network consists on a systematic spatial sampling that requires the selection of 

sampling intervals (݃) and buffer sizes (ܾ). A factorial experimental design is used to 

estimate the influence of these parameters on the results to map the uncertainty and to 

estimate their best combination to maximize the significance of the results. The sensitivity 

of the model to policy-making decisions using a diagnostic type of reasoning were also 

analyzed in this work. A spatial analysis was conducted yielding the visualization and 

identification of areas with higher levels of uncertainty and a quantification of the 

autocorrelation structure of the results. The implementation of the parametric sensitivity 

analysis discussed in this chapter allows to expand the understanding of the spatial 

behavior of the uncertainty, and to maximize the quality and quantity of the probabilistic 

inferences derived from the use of BN+GIS. Consequently, this updated state of 

knowledge can be used by stakeholders to further improve the decision making process. 

Chapter IV describes the implementation of the BN+GIS tool for the quantification of 

landslide vulnerability and risk using LiDAR-derived data and other ancillary information. 
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In this chapter, LiDAR derived information such as a Digital Terrain Model (DTM) and a 

Canopy Height Model (CHM) from a designated area of the Oregon Coast Range, is used 

to develop a set of landslides hazard and risk index maps. The manipulation of these 

models resulted in three maps designated as Physical Model, Vegetation Density and 

Wetness Index that were combined with an existing landslide susceptibility map known as 

SLIDO. The integration of these maps served as input to a Bayesian network capable of 

assessing the state of risk. Forward and inverse modeling were also tested in this study 

case to provide illustrative examples of how BN+GIS can aid the strategic allocation of 

resources to minimize the vulnerability to landslides.  

As an additional application of the Bayesian paradigm for aiding a better decision-

making process, chapter V illustrates a study case where the probability of failure of 

submarine landslides is assessed by combining sources of evidence such as bathymetry 

and geotechnical survey logs (CPT). An algorithm using a Bayesian model calibration 

method is used to estimate the parameters of an infinite slope model, which serves as the 

physical association between the tested variables. The hypothesis of this chapter consists 

on the belief that this method can aid to significantly reduce the vulnerability of offshore 

infrastructure design, especially when limited information is available. 

The principal objective of this work is to contribute to the enhancement of current 

practices for integrated risk and reliability analysis through the use of Bayesian 

probabilistic approaches. It is hypothesized that the replication of the proposed 

methodology can be systematically used for a robust, informed and comprehensive 

decision-making process. The specific objectives of this work are: 
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 To develop a methodology for the systematic implementation of Bayesian 

networks within a risk assessment framework that can be scaled to a spatial 

domain. 

 To map prognostic and diagnostic scenarios that can aid the decision-making 

process. 

 To map the uncertainty and examine the conditions that can allow decision 

makers to maximize the significance of the model’s estimated scenarios.  

 To conduct large scale risk assessment through a logical and efficient 

integration of disparate sources of information, model predictions, and expert’s 

beliefs.  

 To provide a methodology capable to improve the reliability on modeled 

estimates of physical parameters when limited access to different sources of 

evidence exists. 
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CHAPTER II  

COUPLING BAYESIAN NETWORKS AND GIS FOR PROGNOSIS 

AND DIAGNOSIS ENVIRONMENTAL RISK ASSESSMENT 

 

Introduction 

With the surge of new technologies for unconventional reservoir exploration, completion, 

and enhanced production, there is a growing need to provide decision-making systems 

capable of maximizing economic benefits while simultaneously minimizing likely 

environmental and social impacts. That is, there is the need to develop Environmentally 

Friendly Drilling (EFD) systems given the shortage of integrated decision making 

methodologies to identify, quantify, and manage different sources of risk for a given oil 

and gas (O&G) site development (Yu et al. 2012; Ethridge et al. 2015). Moreover, 

environmental risk assessment and mapping still demand further advances (Lan et al. 

2015) and can be improved by the development of a standard methodology for scaling the 

risk to a spatial and temporal domain. 

The risk management process as described by Ethridge et al. (2015) consists on a series 

of steps involving the interaction between different stakeholders such as problem 

identification, risk management options, assessments, decision, and evaluation, which 

leads to a single problem evaluation at a time. These steps are implemented using scientific 

information along with policies and protocols described by The Texas Commission of 

Environmental Quality (TCEC), the Railroad Commission of Texas (RRC), the United 



 

6 

 

States Environmental Protection Agency (US EPA) and local municipalities that serve as 

the regulating authorities regarding the required environmental conditions for the approval 

of drilling permits and their operation’s management in the State of Texas (Ethridge et al. 

2015). The International Association of Drilling Contractors (IADC 2009) recommends 

the use of a health, safety, and environmental risk assessment matrix classifying 

qualitatively the identified hazards in order to define the correspondent risk-reduction 

measures and define the tolerability of the consequences. The potential hazards that 

operators consider for risk management include blowout, toxic release, explosions, 

rigging/ lifting incidents, fire, and structural failure among others (IADC 2009). Individual 

O&G companies often contract environmental firms to maximize the efficiency of impact 

assessment and risk management, resulting in tools such as the one described by Westfall 

(2016). The process described by Westfall (2016) includes the revision of financial, 

environmental, social, and health management plans through a series of tables and 

flowcharts that ultimately rank the magnitude and manageability of the impacts. Yet, these 

types of approaches are mostly utilized for risk management and do not consider the 

probabilistic causal relationships between the implemented activities. Furthermore, they 

are not yet implemented within standardized procedures for a quantitative risk assessment 

and do not allow for the consideration of more than one site at a time.  

The objective of this work is to generate environmental risk maps that can guide 

selection of optimal well placement within an EFD framework. To achieve this goal, a 

new methodology is introduced that integrates the use of Bayesian networks (BN) and 

geographical information systems (GIS). A unique benefit of this approach is the 
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possibility to perform forward and inverse modeling, denoted in this work as spatial 

prognosis and spatial diagnosis, respectively. The new system is referred to herein as 

BN+GIS; it is anticipated that it will improve the understanding of the state of 

environmental risk for a given O&G site development based on inputs from different 

stakeholders, including operators, land owners, regulators and non-government 

organizations. BNs rely on the definition of probability distributions of variables that are 

depicted as nodes, and their relationships represent causal evidence for a process at a given 

point in space and time.   

The proposed BN model was formulated as a proof of concept using four key 

environmental variables (parent nodes) that cover prescribed time and spatial domains. 

These input variables comprise four maps in and around the Barnett Shale Formation in 

northern Texas, where the development of the O&G industry has been particularly intense 

for more than a decade. Dissensions concerning air quality, noise pollution, land footprint, 

water resources, ecosystem degradation, waste disposal and ecological risk to wildlife due 

to O&G site developments are among the most common environmental topics examined 

in the literature (Dincer 1999; Mariano and La Rovere 2007; HARC 2010; Vidic et al. 

2013; Brittingham et al. 2014; Wright 2014; Ethridge et al. 2015; Wesfall 2016). A set of 

conditions used to select the four parent nodes in this work included (1) relevance of the 

variable to the objective of the model, (2) availability of information on reliable and 

official web sources, (3) spatial coverage of 100% of the area of interest, and (4) the ability 

to be measured or validated with field examination. Based on this criteria, the four key 

parent nodes considered by the authors were proximity to surface water bodies (W), the 
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presence of aquifers (A), the existent ecoregions (E), and the correspondent land use/ land 

cover (L). The selection of these four variables provided minimum temporal variability 

which allows the model to create prognostic and diagnostic scenarios that can be 

representative of relatively large periods of time. The joint influence of these variables on 

the given site defined the environmental sensibility (ES) node, which allows the model to 

introduce a risk index in a prognostic analysis. Although the definition of the number of 

variables for the proposed model is not exhaustive, the authors consider that this can serve 

well to integrate a first conceptual spatial environmental risk assessment on the impact of 

O&G site developments. On the other hand, the diagnostic reasoning allows for the 

mapping of likely scenarios targeting a prescribed state of risk (i.e. risk index) for the same 

variable conditions and provides a unique tool for generating policy making scenarios 

based on acceptable risks (Reid 2000; IADC 2009). BNs, such as the one proposed in this 

work, provide a mathematical tool for combining multiple variables through conditional 

probability tables (CPTs) reflecting cause-effect relationships using simple graphics 

comprised of nodes and arrows (Korb and Nicholson 2004).  

A number of studies have explored the use of BNs to represent different processes 

(both physically based and non-physically based). Aguilera et al. (2011) presented an 

analysis of 1,375 references based on ISI Web of Knowledge (Reuters 2010) and narrowed 

their search to 128 publications on BN applications completed between 1990 and 2010. 

These included 27% applications in computer science, 21% in mathematics, 16% in 

engineering, 15% in health science, 11% in life science, 4% in sociology and education, 

and 4% in environmental sciences, which shows a limited contribution of BN to 
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environmental studies. This suggests that there is a need to further develop applications of 

BN within environmental studies. 

Early applications implementing decision-making tools and spatial analysis via BN 

and GIS include classification of digital surface models (Brunn and Weidner 1997), risk 

assessment of desertification due to burned forests (Stassopoulou et al. 1998), and 

salinization monitoring of farmlands (Kiiveri and Caccetta 1998). More recently, spatial 

data managed through a GIS has been used as input for BNs for a wide variety of 

applications, such as image interpretation (Growe et. al. 2000), model design using spatial 

relationships (Walker et. al. 2005), land use or land cover change (Bacon et. al. 2002; 

Kocabas and Dragicevic 2007; Aitkenhead and Aalders 2009), environmental analysis of 

habitat suitability (Smith et al. 2007), marine planning (Stelzenmüller et al. 2010) and risk 

assessment (Grêt-Regamey and Straub 2006; Medina-Cetina and Nadim 2008; Li et al. 

2010; Liu et. al. 2015).  Another branch of exploitation of BN’s capability to combine 

diverse sources of information from data and experts beliefs for decision making has been 

explored by Huang and Yuan (2007) and Huang et al. (2008) with applications on data 

mining from spatially explicit sources including GPS data, remote sensing, GIS, and 

ancillary information. Most of these studies use spatial data that has been pre- and post- 

processed using GIS or remote sensing tools and introduce the use of BNs to model cause-

effect processes.  

Johnson et al. (2012) summarized some of the most relevant BN and GIS integration 

study cases that illustrate good practice for different applications. They identified four 

ways in which the integration has been performed by researchers: (1) GIS input to BN; (2) 
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GIS input to and output from BN; (3) BN and GIS complex interactions; and (4) BN and 

GIS within a larger framework. The first two categories are related to the use of spatial 

data to populate the variables of the BN and its potential to produce results that can be 

mapped. Yet, the complex interactions of BN and GIS consist on the model’s capability 

to update and account for uncertainty. BN and GIS within a larger framework describe the 

uses in which the output of the BN is part of an integrated model of a higher order. The 

closest depiction of the conceptual model presented in this study within the 

characterization provided by Johnson et al. (2012) corresponds to the category (3) with 

the additional, and important, feature of performing diagnostic analysis to update the likely 

states of the input variables.  

Suggestions of proper practices for the design of BNs (Marcot et al. 2006) and its 

integration with GIS (Chen and Pollino 2012) have been made. An important aspect to 

consider is whether BNs are a friendly tool for data integration. Further, BNs can be 

misused if unreliable models are used. Therefore, it is necessary that the overall model is 

reviewed by several experts to ensure the coherence of the node’s relationships and proper 

calibration with appropriate information, when possible, so that meaningful results may 

be extracted (Marcot et al. 2006). Chen and Pollino (2012) recommend certain protocols 

that should be followed for achieving the best results from combining BN and GIS. These 

practices include the clear definition of the model’s objective and the appropriate use of 

the information so that the nature of the system is accurately represented. They also 

suggest the use of as few node’s classes as possible when the CPTs are defined by expert’s 
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belief and the inclusion of a comprehensive documentation of the assumptions and 

reasoning behind the definition of each variable.  

When implementing BNs and coupling them with GIS, there is a paucity of studies 

that calibrate and validate their models (Marcot et al. 2006; Aguilera et al. 2011). Even 

fewer studies developed the automation of the BN for GIS applications in order for it to 

be accessed from an ArcGIS environment (Grêt-Regamey and Straub 2006; Varela 2013) 

or to perform diagnostic spatial analysis. In this case study, the GIS analysis is not limited 

to the data pre- and post- processing. On the contrary, a process was designed to automate 

the implementation of a BN from the ArcMap toolbox in a way that the user does not need 

to do any computation but to run a tool from the software.  

Most BN representations of risk-based decision-making processes focus mainly on 

methodological aspects, such as the analysis of dependencies between events, the 

integration of qualitative and quantitative evidence, the integration of temporal aspects, 

uncertainty quantification and uncertainty propagation (Weber et al. 2012) but do not 

focus often on spatial applications. Medina-Cetina and Nadim (2008) introduced a 

definition of risk widely used in engineering applications into the form of a BN, based on 

the delineation of hazards, vulnerability, and elements at risk that can be addressed using 

different sources of evidence such as existing data, model predictions and expert’s 

educated opinions. The proposed methodology within this study extends Medina-Cetina 

and Nadim’s risk assessment approach from a point to a space formulation when applied 

to the environmental risk assessment for O&G site developments. 
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Yu (2010) developed a Bayesian decision network model for describing a 

comprehensive system of activities developed by the O&G industry when a site is chosen 

for drilling. This model evaluates the combination of several technologies in decision 

nodes that are grouped as site and rig, power, and operations categories. The causal 

dependencies, derived from the deterministic choices made in the decision nodes, are also 

discriminated according to cost, environmental impact, and public perception. The 

consecutive propagation of the information through the model allows for making 

probabilistic inferences about the state of the emissions, footprint, and monetary costs for 

each subsystem. This probabilistic approach provides a value of risk that serves as a 

decision-making factor which is obtained after evaluating a combination of technologies 

for a single site at a specific geographical location. To ensure the applicability of Yu’s 

model based on environmental and societal requirements, Medina-Cetina and Varela 

(2012) enhanced the decision-making model by coupling it with the Score Card System 

(HARC 2010). To follow up with the real applications of BNs for improved economic, 

social, and environmental decision-making, additional capability to scale the model to a 

spatial and/or temporal domain was required. To test the hypothesis that these types of 

risk scenarios can be mapped and used for a systematic decision making process became 

the principal motivation for the development of the methodology proposed in this work 

for merging BNs and GIS capabilities in a comprehensive O&G risk assessment model.  

Considering these antecedents, the key contributions of this work are: (1) the definition 

of environmental risk scenarios based on the analysis of surface water bodies, aquifers, 

ecoregions and land use / land cover maps, (2) the development of a computational tool to 
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assess risk maps through a BN model under prognostic and diagnostic modeling, and 

consequently, (3) the improvement of the decision-making process associated to the 

selection of environmentally friendly suitable regions to locate O&G operation sites 

reasoning in prognosis and diagnosis. 

 

Methodology 

The proposed BN+GIS methodology consists of four phases: (I) data collection, (II) data 

pre-processing, (III) data analysis, and (IV) data post-processing (Fig. 2.1). The data 

collection comprises gathering the relevant spatial data from different publicly available 

repositories. A CPT designating the influence of the input variables on the results and the 

definition of the coefficients used to transform the probability distribution into a state of 

risk are also prepared in this stage. On the data pre-processing phase, ArcMap 10 is used 

to transform the maps to an adequate projection system and to extract the spatial data from 

the area of interest. In this phase is also prepared the classification of the parent nodes into 

discrete states (e.g. high, moderate, and low). The criteria used for the classification of the 

nodes, for the selection of the CPT values, and for the definition of the aforementioned 

coefficients can be derived either from data collection, model predictions, or expert’s 

beliefs, as discussed by Marcot et al. (2006), Medina-Cetina and Nadim (2008), and Chen 

and Pollino (2012). A Python algorithm (version 2.6) was developed and embedded into 

ArcToolbox with the name of BN+GIS to extract the spatial samples and perform the BN 

analysis while populating the output feature classes displayed in phase IV.  
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Fig 2.1 Methodological sequence of BN+GIS tool. 
 
 

Definition of Marginal Probabilities 

A systematic sampling is performed to obtain the marginal probabilities of the BN from 

the spatial domain. The script generates a grid over the study area and creates a buffer 

around the centroid of each grid element to define the spatial extent of the samples used 

to assess the BN’s inputs. The distance between the centroids of the grid elements serve 

as sample intervals, and the buffer serves as the plot area. Each buffer functions as a clip 

tool to extract the spatial information from the input variables, which is used to compute 

the percentage of the area that each state of the four parent nodes occupies within the 

buffer (see Fig. 2.2). This proportion provides the BN’s marginal probability distribution 

of each discrete element in the study area.  
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Fig 2.2 Methodology used in BN+GIS to generate the marginal probability distributions of 
parent nodes. 
 

The size of the grid elements and the buffer distances are parameters specified by the 

user through the toolbox’s interactive window when the BN+GIS is launched (see setup 

script Fig. 2.1). To reach full coverage of the study area during the spatial sampling 

process, it is desired to select buffer distances (b) equal or larger than half of the diagonal 

of the grid cells (g) as seen in Fig. 2.3-A, where the relationship can be expressed as ܾ ൒

√ଶ

ଶ
݃. Notice that when this condition is achieved, an overlapped sampling area is produced 

between contiguous grid elements. The proportion of the areas that will be sampled 

multiple times will rise as the buffer distance increases with respect to the grid size, as 

illustrated in Fig. 2.3-B.  
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Fig 2.3 Graphical relationship between grid size (g) and buffer distance (b) during spatial 
sampling. Shaded areas shown as the sampling coverage of the central grid element for (A) 
minimum buffer size for 100% spatial coverage, and (B) Buffer size 2 times the grid size. 
 

Bayesian Networks and Risk Assessment 

Bayesian Networks 

Bayesian Networks are a graphical modeling method used to represent the causal 

dependencies between continuous or discrete random variables of a process through a 

probabilistic approach that are able to follow the natural structure of a process (Korb and 

Nicholson 2004). The Bayes theorem is described by Korb and Nicholson (2004) to be a 

representation of the most elemental structure of the probabilistic inference as seen in Fig. 

2.4, where a BN of the normalized conditional probability between a hypothesis H (child 

node) and the evidence E (parent node) is illustrated. 
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Fig 2.4 BN on causal relationship between the evidence (E) and the hypothesis (H) depicting the 
Bayes Theorem. Modified from Korb and Nicholson (2004). There might be multiple 
parents/children. 
 

A prognosis type of reasoning is performed when the model maps the evidence from the 

parents to the child node. This concept represents predictive reasoning or a forward 

modeling, where the causes provide a posterior state of the effects, updating the condition 

of the child node (Korb and Nicholson 2004; Medina-Cetina and Nadim 2008; Varela 

2013). Consider a BN with a simple structure of n nodes ( ଵܺ ൌ ,ଵݔ ܺଶ ൌ ,ଶݔ … , ܺ௡ ൌ  (௡ݔ

with ݊ െ 1 independent parent nodes connected to one child node. Using the chain rule, 

the joint probability distribution of this model can be expressed as ܲሺݔଵ, ,ଶݔ … , ௡ሻݔ ൌ

ܲሺݔଵሻ ൈ ܲሺݔଶ|ݔଵሻ ൈ …ൈ ܲሺݔ௡|ݔଵ, … , ௡ିଵሻݔ ൌ ∏ ܲሺݔ௜|௜ ,ଵݔ ,ଶݔ … ,  ௜ିଵሻ. Note thatݔ

∏ ܲሺݔ௜|௜ ,ଵݔ ,ଶݔ … , ௜ିଵሻݔ ൌ ∏ ܲሺݔ௜|௜ ሺݏݐ݊݁ݎܽܲ ௜ܺሻሻ. Given the assumed independence of 

the parent nodes, it is inferred that ܲሺݔଶ|ݔଵሻ ൌ ܲሺݔଶሻ, ܲሺݔଷ|ݔଵ, ଶሻݔ ൌ ܲሺݔଷሻ,  and so on, 

until ܲሺݔ௡ିଵ|ݔଵ, ,ଶݔ … , ௡ିଶሻݔ ൌ ܲሺݔ௡ିଵሻ. The child node ܺ௡ ൌ ݊ ௡ depends on theݔ െ 1 

independent parent nodes, hence, the joint probability function is expressed as  

∏ ܲሺݔ௜|௜ ሺݏݐ݊݁ݎܽܲ ௜ܺሻሻ ൌ ܲሺݔଵሻ ൈ ܲሺݔଶሻ ൈ …ൈ ܲሺݔ௡ିଵሻ ൈ ܲሺݔ௡|ݔଵ, ,ଶݔ … ,  ௡ିଵሻ. If allݔ

nodes are discretized in m classes or states, where ௜ܺ௝ ൌ ሺݔ௜భ, ,௜మݔ … ,  ௜೘ሻ, thenݔ

∏ ܲ൫ݔ௜௝ห௜௝ ሺݏݐ݊݁ݎܽܲ ௜ܺ௝ሻሻ returns a list of ݉௡ values with all the possible combinations 

of m discrete states of n probabilistic nodes. Obtaining the posterior state of the probability 



 

18 

 

of the child node requires to sum the values of this list that correspond to each state m, and 

can be expressed by equation 2.1. 

 

ܲ൫݈݄݅ܥ ௝݀൯ ൌ ܲሺݔ௡ೕሻ ൌ

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ܲۓ ൬ݔ௡ೕసభฬܲܽݏݐ݊݁ݎ൫ ௜ܺ௝൯൰ ൌ෍ෑ ܲ൫ݔ௜௝ห

௜௝
ሺݏݐ݊݁ݎܽܲ ௜ܺ௝ሻሻ

௡
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ሺݏݐ݊݁ݎܽܲ ௜ܺ௝ሻሻ

௡

௜ୀଵ
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											ሺ2.1ሻ 

 

The values used for Eq. 2.1 correspond to the marginal probabilities of the parent nodes 

and the conditional probability table (CPT) quantifying the dependence of the child node, 

which are mined from available evidence or experts beliefs.  

When the model propagates the evidence from the child to the parent nodes, it is 

performed an inverse modeling or diagnosis type of reasoning (Korb and Nicholson 2004). 

In this case, the child node is fixed with a prescribed distribution to assess the new 

conditions of the marginal probabilities of ݔଵ, ,ଶݔ … ,  ௡ିଵ. In other words, the modeler canݔ

populate the probability distribution of ܲ′ሺݔ௡ሻ and update the state of the parent nodes 

(ܲ′ሺݔଵ, ,ଶݔ … ,  ௡ሻ). Using Bayes’ Theorem of conditional probability illustrated inݔ|௡ିଵݔ

Fig. 4, the diagnostic modeling can be expressed as ܲ′ሺݔଵ, ,ଶݔ … , ௡ሻݔ|௡ିଵݔ ൌ

∏ ௉ሺ௫೔|೔ ௉௔௥௘௡௧௦ሺ௑೔ሻሻൈ௉ᇲሺ௫೙ሻ

௉ሺ௫೙ሻ
. In this case, using the probabilistic semantics of BN,  

ܲ′ሺݔଵ, ,ଶݔ … , ∏ ,௡ሻ represents the updated parent nodeݔ|௡ିଵݔ ܲሺݔ௜|௜ ሺݏݐ݊݁ݎܽܲ ௜ܺሻሻ is the 



 

19 

 

likelihood, ܲ′ሺݔ௡ሻ represents the prior distribution, and 
ଵ

௉ሺ௫೙ሻ
 represents a normalizing 

constant  used to allow the updated probabilities to sum to 1 (Korb and Nicholson 2004). 

This can be re-written as ܲ′ሺ݈݄ܲܽ݀݅ܥ|ݏݐ݊݁ݎሻ ൌ  .ሻ݈݄݀݅ܥሻܲ′ሺݏݐ݊݁ݎܽܲ|݈݄݀݅ܥሺܲߙ

Considering the m number of states of all the BN’s nodes, the updated probabilities of the 

parent nodes can be expressed by Eq. 2.2. 

ܲ൫ܲܽݐ݊݁ݎ௜௝൯

ൌ ܲ′ሺݔଵ, ,ଶݔ … , ௡ሻݔ|௡ିଵݔ
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∏ ܲ൫ݔ௜௝ห௜௝ ሺݏݐ݊݁ݎܽܲ ௜ܺ௝ሻሻ ൈ ܲ′ሺݔ௡ሻ

∑ ሾܲ൫ݔ௜௝ห௠೙
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					ሺ2.2ሻ 

 

To illustrate the implementation of BN, Fig. 2.5 introduces the model used in this work, 

with parent nodes: surface water -W, aquifers -A, ecoregions -E and land use/cover -L and 

one child node, Environmental Sensibility -ES, illustrating the cause and effect 

relationship between the selected variables and a probabilistic joint state of the 

environmental impact due to O&G operations. Notice that the oval nodes represent 

probability functions discretized in three classes named low, moderate and high.  
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Fig 2.5 Proposed BN model for environmental Risk Assessment. 
 

The BN+GIS script loops through each grid element and populates a prognosis table with 

the P൫ES୨൯ list as illustrated in Fig. 2.1. The conditional probability described in Eq. 2.1 is 

depicted by a CPT (Table 2.1) that joins the probability of the parent nodes where the 

influence of each variable has been equally weighted. For this proof-of-concept model, 

the CPT was populated using a subjective criterion based on experts opinions due to the 

lack of evidence or observations that can be used to assess the influence of W, A, E and L 

on the environmental risk. The authors defined these values considering higher 

probabilities of ܵܧு௜௚௛ when the parent nodes are high and vice versa. Notice that parent 

nodes are treated as independent variables with respect to each other. The fact that the 

model introduces independency among the variables is to guarantee the simplicity of the 

model, which would allow proofing the coupling of BN with GIS. To depart from the 

simplicity of the model will require further phenomenological examination such as the 
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work conducted by Tong and Chen (2002), Sohl and Sayler (2008) or GWP (2014) for 

modeling the relationship between land use and surface water quality, ecoregions and 

aquifers, respectively.  

 

Table 2.1 Conditional probability table of environmental sensibility (ES) node given parent 
nodes classes. 

Parent Node 1   
(A, W, E, or L) 

Parent Node 2   
(A, W, E, or L) 

Parent Node 3   
(A, W, E, or L) 

Parent Node 4   
(A, W, E, or L) 

P(ES: 
High) 

P(ES: 
Moderate) 

P(ES: 
Low) 

High High High High 0.950 0.040 0.010

High High High Moderate 0.800 0.150 0.050

High High High Low 0.800 0.100 0.100

High High Moderate Moderate 0.450 0.450 0.100

High High Moderate Low 0.600 0.200 0.200

High High Low Low 0.450 0.100 0.450

High Moderate Moderate Moderate 0.150 0.800 0.050

High Moderate Moderate Low 0.200 0.600 0.200

High Moderate Low Low 0.200 0.200 0.600

High Low Low Low 0.100 0.100 0.800

Moderate Moderate Moderate Moderate 0.025 0.950 0.025

Moderate Moderate Moderate Low 0.050 0.800 0.150

Moderate Moderate Low Low 0.100 0.450 0.450

Moderate Low Low Low 0.050 0.150 0.800

Low Low Low Low 0.010 0.040 0.950
 

Once the child node is assessed, the utility function shown in Eq. 2.3 (adapted from Korb 

and Nicholson 2004), is implemented to transform the probability distribution into a single 

useful index that quantifies the model’s output. To reach a single value, it is assigned a 

weighted designation of coefficients (e.g. ܿଵ ൌ 1, ܿଶ ൌ 0.5, ܿଷ ൌ 0) to the probabilistic 

levels of the child node. For the model proposed in this work, this function quantifies each 

state of the risk index, therefore the maximum coefficient ሺܿଵ ൌ 1ሻ is assigned to ESHigh 

since it embodies the most unfavorable state.  
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															ܷሺܥሻ ൌ ܿଵܲሺܵܧு௜௚௛ሻ ൅ ܿଶܲሺܵܧெ௢ௗሻ ൅ ܿଷܲሺܵܧ௅௢௪ሻ																												ሺ2.3ሻ 

 

Risk Assessment 

There are different definitions of risk currently in use within engineering and scientific 

applications. For instance, the definition provided by Jones (2006) states that the risk is 

“the probable frequency and probable magnitude of future loss” (p. 7). This definition 

includes the probabilistic approach that is used in this study but focusses on the likelihood 

of a natural threat or any other catastrophic event. On the other hand, a more neutral 

definition is conceived by the ISO (2009), which describes risk as the influence of the 

uncertainty on the objects of study. Purdy (2010) rephrases this definition as “the 

consequence of an organization setting and pursuing objectives against an uncertain 

environment” (p. 882). According to this definition, risk is the result of a configuration of 

uncertain events and is able to describe both loss and benefits.  

The Office of the United Nations Disaster Relief Coordinator (UNDRO 1979) relates 

the risk as a function of the Hazard, Vulnerability and Elements at Risk. The Hazard is 

described by Medina-Cetina and Nadim (2008) as the probability of a threat occurring, 

and the Vulnerability is described as the conditional probability of an event occurring 

given the intensity of the threat. The Elements at Risk are defined by UNDRO (1979) as 

the social, economic or environmental elements that are exposed to a triggering event. If 

the parent nodes of the proposed BN model are considered as Hazards, and the conditional 

probability of the ES is considered as the Vulnerability of the modeled system; then Eq. 1 

can be interpreted as the UNDRO (1979) definition of Risk as follows: 	ܴ݅݇ݏ	 ൌ
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	ሾ݀ݎܽݖܽܪሿ ∗ ሾܸݕݐ݈ܾ݅݅ܽݎ݈݁݊ݑሿ ∗ ሾݏ݁ܿ݊݁ݑݍ݁ݏ݊݋ܥሿ ൌ ሾPሺܹሻ ∗ Pሺܣሻ ∗ Pሺܧሻ ∗ Pሺܮሻሿ 	∗

	ሾPሺܣ,ܹ│ܵܧ, ,ܧ ሻሿܮ ∗ ሾUሺCሻሿ. 

In this study case, P(W), P(A), P(E) and P(L) are marginal probabilities of the hazard, 

depicting the state of the threat to those variables given a triggering event due to O&G 

operations. P(ES│W, A, E, L) is an assessment of the vulnerability given the states of the 

hazards. The utility function U(C) is evaluating the impact of the consequences (C) as a 

single risk index. The implementation of U(C) as defined in Eq. 3 translates the probability 

of ES to a value that oscillates between 0 and 1, indicating the minimum and maximum 

Risk Index, respectively. This method has been successfully implemented by Medina-

Cetina and Nadim (2008) and by Gardoni and LaFave (2016). 

 

Case Study 

The benchmark BN model proposed in this study was implemented in the Barnett Shale 

area located at the central-northern region of Texas. The intensive research made in this 

play, due to the increased development of its gas resources, has created a substantial 

amount of available information, where economic, societal, environmental and other 

technical data can be reached through numerous official sources. Additionally, the Barnett 

Shale was selected due to its importance in the local and national economy, given that the 

growth of the production in this play has been a key factor for unconventional reservoirs 

all over the country, as discussed by Montgomery et al. (2005).  

The Barnett Shale is a geological formation located in the Fort Worth basin. Pollastro 

et al. (2007) defines the Fort Worth Basin as a depression that deepens and wedges to the 
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northeast encompassing approximately 38,100 km2. The age of the Barnett Shale is 

middle-late Mississippian, and the shale represents the primary source rock of gas in the 

Bendarch-Fort Worth basin in Texas. The formation is a thermally mature and organic 

rich shale, making it a large unconventional gas reservoir (Pollastro et al. 2007). The Texas 

RRC (2014) states that the Barnet Shale lies within twenty five counties and is located in 

the north eastern region of Texas (Fig. 2.6), including the Dallas-Fort Worth metropolitan 

area. 

 

Fig 2.6 Shale Gas Plays and Location of Study Area. Modified from: EIA, 2011. 
 

State of Parent Nodes 

The classification of the four parent nodes was made using a criterion that the authors 

considered provided a reasonable estimation of the environmental risk. Each parent node 

responds to the state of the variable given the occurrence of a potential triggering event 
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with possible negative environmental impacts, such as hydrocarbon spills, increased 

footprint, and pollutant emissions among others. Conversely, while a spill event does not 

occur at a drilling location, its correspondent risk index should be equal to zero; even 

though, the hazard does not change. If the vulnerability of the model is updated as the 

drilling campaign advances, lower values of the risk index would be observed. This 

updating feature is not presented in this work. 

An environmental impact assessment of a given O&G site development depends on 

multiple elements that may include the depletion or contamination of natural resources, 

air pollution, ecosystem degradation, potential alteration of forests and protected areas 

such as National Parks, archaeological sites and land and habitat fragmentation among 

many other factors (Dincer 1999; Mariano and La Rovere 2007; IADC 2009; Vidic et al. 

2013; Wright 2014). For the development of this conceptual model, the authors selected 

four variables that can be mapped across the complete study area with available and 

reliable public data. Similar mapping can be replicated with other variables. For BN+GIS 

under a risk assessment framework, the spatially discretized state of the hazard was 

defined as intensity levels of the probability of a threat to A, W, E and L given a triggering 

event due to O&G developments. Fig. 2.7 shows the spatial representation of the parent 

nodes using the following criteria: 
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Aquifers (A) 

Operation activities such as O&G drilling or production could potentially affect the quality 

or deplete the water sources, making the presence of underground major or minor water 

bodies an important topic to consider. The spatial data was retrieved from the Texas Water 

Development Board (TWDB 2006a; TWDB 2006b) and the Oklahoma Water Resources 

Board (OWRB 2006a; OWRB 2006b) in polygon geodatabase format (scale 1:250,000). 

These files were modified to define the hazard levels for this variable as follows: 

 High: is composed of the outcrop zones of any major or minor aquifer. It represents 

most of the recharge zones, where the aquifer formation is exposed to the surface. 

The hazard is higher in this zone due to the sensitivity of the water quality given 

any triggering event on the surface or in the wellbore. 

 Moderate: represents the area where the aquifer is below the outcrop formation 

meaning that if a well is perforated in that zone, the aquifer will be reached. These 

zones are called subcrop or downdip regions and represent a medium level of 

hazard since the aquifers could be reached by a drilling operation or the site could 

be located at the recharge zone of the aquifer. 

 Low: are the zones where major or minor aquifers are absent on the surface and 

subsurface. If a triggering even occurs, the aquifer is not going to be directly 

affected because is not in contact with the wellbore. However, a minimum hazard 

level is considered for this state, given that any triggering event could reach a 

stream or water body that contributes to the recharge zone of any major or minor 

aquifer. 
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Surface Water (W) 

The surface water bodies represent areas with a particular environmental and social 

sensitivity for placing a rig site. These concerns are related to accidental oil spills, waste 

water disposal, water depletion and wildlife conservation (Vidic et al. 2013; Brittingham 

et al. 2014). The hazard related to the surface water bodies can be defined by their setback 

distance from the O&G wells, but no current federal regulation exists that can be used as 

a norm for defining these buffers. In Texas the Oil and Gas Division of the RRC, the 

primary regulatory jurisdiction over oil and gas issues, does not stipulate specific 

limitations about the distance of the wellheads to the surface water bodies. However, local 

cities such as Fort Worth mention either restrictions for issuing permits to gas wells drilled 

within any floodplain or floodway identified by the Federal Emergency Management 

Agency (FEMA) and have defined setback distances from protected buildings or protected 

areas of 100m (Forth Worth City Council 2009). A regulatory ordinance in Coppell City 

also requires minimum setback distances of 100m from non-residential areas if it is 

approved by two thirds of the City Council and if they reach unanimous consent of the 

property owners within a 333 m radius (City of Coppell 2013).  In other cases, local 

regulations require larger setbacks, such as the town of Flower Mound; in its Ordinance 

N° 29-11 (Council of the Town of Flower Mound 2011), the municipal government 

prohibits issuing well permits closer than 500m from parks, residences, fresh water wells 

and other official or habitable buildings. Due to the lack of regulation of setbacks from 

water bodies, the authors consider that the current protocols designed for urban 

infrastructure could be used as a reference for the definition of hazard levels on this model. 
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Therefore, the hazard to water bodies associated to the placement of O&G wells and its 

supplementary infrastructure installation was defined as: 

 High: one hundred meters (100m) from a water body. 

 Moderate: one hundred to five hundred meters (100m – 500m) from a water body. 

 Low: more than five hundred meters (500m) from a water body. 

The data was retrieved from the United States Geological Survey (USGS 2010). 

According to the USGS feature directory for national hydrography datasets, stream/river, 

perennial stream, inundation areas, perennial lake/pond larger than 2,500 m2, 

swamp/marsh and reservoirs (artificial basins for accumulating liquids) larger than 2,500 

m2 were selected for preparing the surface water variable. The selected minimum areas of 

surface water bodies was considered by the authors as a reasonable criteria to reduce the 

dataset to a manageable size without compromising the significance of the results. 

Ecoregions (E) 

The ecoregions are defined as areas where the ecosystems possess similar types, quality 

and quantity of natural resources (US EPA 2011). This map was developed under the 

hypothesis that ecological regions can be categorized due to the combination of different 

natural expressions such as geology, physiography, vegetation, climate, soils type, land 

use, wildlife and hydrology. The level IV ecoregions map was used for this study (Scale 

1:250,000) and was retrieved from the U.S. Environmental Protection Agency (EPA) 

website for Texas and Oklahoma states. The hazard levels recognized for this variable 

were defined by the authors using the following criteria: 
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 High: are areas with elevated precipitation levels where the soils possess a high 

capability to hold nutrients and the vegetation is abundant, including wooded 

forests. Placing a rig site in this zone requires clearing arboreal vegetation, causing 

an important negative footprint impact, and representing a potential threat for the 

water quality on the area. 

 Moderate: are isolated wooded areas on sandstones and shale beds with irregular 

topography with a history of O&G production. The soil does not hold many 

nutrients but the placement of a well site in these areas might lead to logging 

activities and flattening the surface, which denotes a moderate footprint impact. 

 Low: are either dry badlands, flat prairies with lower variety and quantity of 

vegetation, or even sandy / acidic soils that are unable to support an extensive 

ecosystem. These conditions allow the threat to have a low environmental impact 

given that the vegetation density is low and few water bodies are present. 

Land Use / Land Cover (L) 

This variable represents a description of the land surface in terms of the type of soil and 

vegetation present and the particular use given to it. Urban areas, wetlands and agricultural 

lands are all delineated in this classification system. These data were retrieved from the 

U.S. Department of Agriculture (NRCS-USDA 2007) website at a scale of 1:24,000. The 

spatial distribution of the hazard for this variable is based on the presence of important 

features that could cause a higher ecosystem footprint when the land is altered and if a 

potential accidental spill occurs. The description of the hazard levels were defined by the 
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authors using a professional judgement, which is consistent with a previous approach used 

for cataloging environmental sensitivity of the land performed by Jensen et al. (1998). 

 High: are agricultural lands with low sparse grasslands, conifer forests, wetlands, 

lakes, reservoirs and beaches. The hazard is considered higher when an area is 

currently less affected by human activities, e.g., wild lands. 

 Moderate: are composed of urban areas, croplands, savannas and rangelands. The 

impact of placing a rig site in these areas depends on the intervention to the land 

that has already been modified, but that can affect the air quality or water bodies 

used for residents on the vicinity or by the wild local species. 

 Low: are urban industrial lands, sandy areas other than beaches, strip mines 

quarries and gravel pits. Since these areas are already highly modified by anthropic 

intervention, the environmental impact due to O&G practices is considered lower 

than in natural wild lands or water bodies. 
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Fig 2.7 Maps of Parent Nodes. Initial condition of threat intensity levels. 
 

Results 

As a preliminary approach for illustrating the applicability of the BN+GIS tool, the model 

was implemented using a grid size of 5 km and a buffer sampling radius of 10 km (as 

illustrated in Fig. 3b). However, any combination of these parameters can be used by the 
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user through an interactive window launched from ArcMap’s toolbox. The fixed 

probability of ES to be used during the diagnostic analysis (ܲ′ሺݔ௡ሻ in Eq. 2), was ESHigh = 

0.2, ESModerate = 0.3, and ESLow = 0.5, yielding a Risk index of 0.35 (Eq. 2.3). 

Prognosis 

The four parent nodes have a visible and important impact on the patterns observed in the 

prognosis maps for the ES node. The influence of aquifers and ecoregions input maps 

show marked elongated clusters northeastward that can be observed on the three ES maps 

and in the risk index map (Fig. 8). The scattered appearance of W and L maps gives the 

results a more disperse pattern than the observed on the highly clustered maps A and E. 

Some of the most important lakes in the surface water bodies’ map are delimitating a local 

increase of the risk index. Since the ES maps sum to one, it can be seen that the areas 

where the ESLow map present higher probabilities, ESHigh depicts lower probability values, 

while the ESMod map complements the two extremes.  

The risk map (Fig. 2.8 - bottom right) shows an important influence from the input 

variables, as a result of the implementation of the utility function (Eq. 2.3) from the ES 

distribution. Given the occurrence of a triggering event, the areas with risk indexes ranging 

between 0.8 and 1.0 are located at the eastern extreme of the Barnett Shale. Its lateral 

extension is approximately 60 km wide by 140 km long, occupying the settlements of east 

Dallas, Lancaster, Ennis, Midlothian, Ennis, Milford, Itasca, north Hillsboro and Hubbard. 

This area coincides with a cluster of major rivers, a major aquifer outcrop, the most 

sensitive prairies, abundant lakes and cropland zones. The highest risk index value is 0.88 

at the Lake Ray Hubbard, and the intensity of the risk is dissipated westward, reaching the 
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lowest intervals in the northern and western sections of the Barnett Shale counties (Albany 

and Lueders). The areas with the lowest risk indexes correspond to zones where the surface 

water is not abundant, aquifers are absent, the ecoregions are mostly semi-arid prairies, 

and the L variable is mostly composed by moderate hazard state rangelands.  

 

Fig 2.8 Result Maps of Prognostic Analysis. 
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Diagnosis 

The results of this diagnostic analysis are 12 maps (Figs. 2.9 and 2.10) representing the 

updated probability of the four parent nodes (hazard) given a prescribed state of risk of 

0.35. The diagnosis analysis indicates that the variability of the fixed risk index does not 

affect the general clustering or patterns of the parent nodes. However, the transition zones 

between hazard levels (high – moderate - low) are the most sensitive, showing updated 

values different from the initial parent node’s states. This is observed by contrasting the 

original and updated maps of less clustered maps such as surface water and land use/land 

cover with maximized transition zones between node’s classes. Conversely, sites 100% 

within a class produce the same probability distribution than before the diagnostic 

analysis. This effect is more evident for largely clustered parent nodes such as aquifers 

and ecoregions, where little differences can be observed between the updated maps and 

the original conditions. These observations lead to deduce that the diagnostic reasoning’s 

results are sensitive to the clustering patterns of the parents’ maps. The implications of 

this observed relationship for diagnostic analysis implies that management decisions made 

to improve the current state of risk using the proposed methodology are going to have a 

higher influence in transition zones between the node’s states. 
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Fig 2.9 Result maps of diagnostic analysis. Updated probability of Surface Water (top) and 
Aquifers (bottom) hazards. 
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Fig 2.10 Result maps of diagnostic analysis. Updated probability of Ecoregions (top) and Land 
Use/Land Cover (bottom) hazards. 
 

Analysis and Discussion 

The use of the proposed BN+GIS methodology is designed to facilitate the decision 

making process based on a probabilistic assessment of the risk. The results obtained by 

the proposed benchmark model represents a symbolic magnitude of the environmental risk 

that has been constrained between 0 and 1. In a temporal stand, this analysis can be 

performed prior to the development of a specific project to predict future scenarios that 

can help with the engineering design for vulnerability mitigation and improved reliability. 

However, when this analysis is made posterior to the development of a project, this tool 



 

37 

 

can provide a quantification of the present state of risk that can be used for monitoring, 

maintenance planning or remediation purposes.  

A posteriori analysis of the state of risk of the Barnett Shale’s well placements was 

performed with production data gathered from the DrillingInfo (2015) online repository 

between January 2000 and January 2015 in shapefile format. The selected wells from this 

search were targeting the Barnett Shale Formation in any of the following categories: 

active permit, gas producer, oil producer, injection well or permitted oil and gas well. They 

sum to a total of 20,017 wells, and their location was contrasted with the risk index map 

(Fig. 2.11). It is observed that given the occurrence of a triggering event less than 1% of 

the well placements are located on a risk index zone of less than 0.3; 2% are between 0.3 

and 0.4; 7% are within 0.4 and 0.5; 53% are in the 0.5 and 0.6 range; 34% are between 0.6 

and 0.7; and 4% present a risk index higher than 0.7. These results show that 87% of the 

wells present a risk index between 0.5 and 0.7, distinguishing a Gaussian behavior on the 

frequency plot with mean risk index of 0.58 and a standard deviation of 0.07.  
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Fig 2.11 Location of production wells and their correspondent Risk index. The pie diagram (top right) 
shows the proportion of the Risk index for the production wells (left). A frequency histogram of the risk 
index of production wells (bottom right) is modeled with a normal distribution with a mean of 0.58. 
 

The diagnostic analysis provided a visualization of the updated probabilistic scenarios of 

the hazards (parent nodes) for a risk index fixed by the user. With this tool, decision 

makers can identify the well placements that can be intervened with sustainable 

vulnerability management practices. Likewise, learning about the required initial 

conditions necessary to achieve a specific risk value contributes to an improved 

management of the engineering design of new site developments.  

The Tobler’s first law of geography, which states that closer objects are more related 

to each other than distant objects (Tobler 1970), is a principle that addresses the natural 

spatial similarities between geographical attributes. The sampling methodology proposed 

in this study computes a marginal probability at each individual grid element, and it is 
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inferred that the overlapping effect between neighboring sampling buffers accounts for 

Tobler’s law. This overlapping effect provides a spatial dependency that can be quantified 

with a parametrical sensitivity analysis of the results.  

The grid size used to discretize the study area represents a spatial simplification made 

to optimize the computational time of the script and to provide a global visualization of 

the environmental risk. However, as an epistemic uncertainty, this effect can be reduced 

by defining a grid with a higher resolution to the cost of larger computational times. In 

such a case, the resolution of the proposed grid should not be finer than the resolution of 

the maps used to define the parent nodes.  

Oreskes et al. (1994) discusses that a model, which can be validated, “does not contain 

known or detectable flaws and is internally consistent” (p. 642). Hence, if the model 

follows a logical sequence of thoughts then it can be validated. Although some 

assumptions were made to simplify the model, the reasoning behind the BN used in this 

work follows a logical sequence of cause and effect, given the natural dependencies of the 

processes addressed. Additionally, the authors agree that the definition of the hazards for 

the parent nodes also follow a coherent reasoning. Therefore, this benchmark model can 

be validated by an expert granted that the results are interpreted as an illustration of the 

joint state of evidence provided by the selected input variables. 

The compatibility between Python 2.6 and ArcGIS (ESRI 2012) provided an important 

connection between Bayesian Networks and GIS. This compatibility acted as a bridge to 

link the spatial data with the Bayesian probabilistic method. However, the code was 

designed so that the geoprocessor (an object that executes ArcMap’s toolbox) was used 
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outside the section that loops through all of the 2,360 grid elements in this study case. This 

measure was implemented given that the process tended to delay more time to complete 

each time the geoprocess was repeated.  

 

Conclusions 

The benchmark Bayesian Network model proposed in this study was able to recreate 

multiple environmental risk scenarios following a probabilistic approach in a spatial 

domain due to the potential occurrence of a triggering event related to O&G infrastructure 

installation and operations. When this analysis is performed prior to the design of a well 

development, these maps can be used to find the most suitable place to drill and operate, 

based on the variables provided by the model. If the analysis is made a posteriori to the 

development of a site, this tool can aid with the risk quantification of the existent 

infrastructure, which can be used for monitoring design, maintenance or reduction of the 

site’s vulnerability through risk management practices. One of the most important 

contributions of this work is its potential application for economic or societal risk 

assessment. For instance, the same methodology proposed in this work can be 

implemented using spatially sensitive societal and economic variables that can also 

converge into social and economic risk indexes, respectively. Furthermore, these potential 

assessments can also be used for the evaluation of a robust risk index that unifies the 

environmental, societal and economic conditions using BN+GIS. Considering all the 

potential applications of the proposed methodology and its implementation for prognostic 
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and diagnostic analysis, it is considered that this study provides a systematic and 

comprehensive tool for improved decision-making and risk assessment. 

The surface water bodies, aquifers, ecoregions and land use / land cover maps used as 

input variables of the proposed model provided satisfactory results that were capable of 

assessing the Environmental Sensibility of the Barnett Shale counties. The maps produced 

by BN+GIS are symbolic representations of the environmental risk based in the 

geographical distribution of the selected hazard’s features. Even though the results are 

symbolic and is not possible to physically measure risk on the field, the definition of the 

conceptual model and the methodology followed lineaments suggested in the literature for 

best BN modeling practices and it can be validated by experts.  

The risk assessment methodology provided an appropriate tool to be coupled with the 

proposed BN, where the parent nodes are defined as hazards. The conditional probability 

table of the ES served as the vulnerability of the modelled system, and the utility function 

provided a dimension of the consequences. When these results were compared to the 

actual location of the well placements in the Barnett Shale Play, it was possible to quantify 

the state of risk of the existent infrastructure given the potential occurrence of a triggering 

event. 

Prognosis and diagnosis types of reasoning were implemented in this study, resulting 

in a set of four maps when solving the forward problem and 12 maps when solving the 

inverse problem. The resulting maps showed patterns, clustering and geographical patterns 

that are visibly inherited from the parent nodes. The risk index fixed during the diagnostic 

analysis (fixing the ES node) does not significantly impact the general shape of the updated 
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hazard maps. However, those areas showing a visible effect on the diagnosis results are 

the transition zones between node’s states of each parent node. Therefore, when this type 

of diagnostic analysis is made prior to the development of a site, land management 

decisions are going to have a higher impact on the mitigation of the risk if these practices 

are implemented in transition zones between the parent node’s states. 

As a preliminary approach, the proposed methodology captured different elements of 

risk assessment, but further parametrical analysis is required to better understand the effect 

of this type of modeling on the decision-making process.  
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CHAPTER III  

PARAMETRIC SENSITIVITY ANALYSIS OF ENVIRONMENTAL 

RISK MAPPING FOR THE BARNETT SHALE PLAY 

 

Introduction 

A parametrical sensitivity analysis is critical for model validation, and can be used to 

identify variables that require further investigation for epistemic uncertainty reduction, 

model simplification, or estimation of correlation structures between model’s inputs and 

outputs (Hamby 1994). In this paper, a parametric sensibility analysis was conducted as a 

statistical approach to maximize the number and quality of inferences derived from the 

user-defined parameters of a Bayesian network (BN) model coupled with GIS, referred by 

Varela (2013) as BN+GIS. This model was defined to map the environmental risk due to 

oil and gas (O&G) site developments. Coupling BN, risk assessment, and GIS enables an 

efficient synthesis of spatial evidence that can be used for improved and informative 

decision-making (Varela 2013; Medina-Cetina et al. 2017). The proof-of-concept network 

proposed in their work uses maps classified in levels of threat intensity to aquifers (A), 

surface water bodies (W), ecoregions (E) and land use/land cover (L) as model’s inputs. 

These input variables are denoted in the BN nomenclature as parent nodes (Korb and 

Nicholson 2010). The joint probability distribution of these four parent nodes are 

represented by a child node that embodies the environmental sensibility (ES) of a specific 

site. The probability of ES is used to assess a risk index (RI) symbolizing the desirability 
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of the model’s outputs, and allows the modeler to map the risk given the occurrence of a 

triggering event that could jeopardize the integrity of the parent nodes. The 

implementation of this BN within a risk assessment framework consisted on (1) 

quantifying the probability of a threat intensity embodied by the parent nodes, which is 

known as hazard (UNDRO 1979), (2) considering the conditional probability between 

parent and child nodes as a measure of the vulnerability, and (3) using a utility function 

to represent the risk in a unit that can be used for decision-making purposes (UNDRO 

1979, Medina-Cetina and Nadim 2008, Varela 2013). The spatial sampling methodology 

used to define the marginal probabilities of the parent nodes depends upon the modeler’s 

choice of sample interval (grid size-g) and realization’s plot size (buffer distance-b). The 

combination of these two parameters can influence the BN+GIS results, and affect the 

significance of the decisions derived from the modeling process. Given the ability of BNs 

to integrate different sources of information with different resolution and accuracy, the 

spatial sampling methodology could be influenced by the heterogeneity of the spatial 

observations. Hence, quantifying the spatial correlation structure of the risk maps 

generated by BN+GIS can help the decision-maker to select adequate parameters to 

populate the most informative maps.  

BNs are defined as directed acyclic graphs representing the causal relationship of 

variables or nodes connected by arcs. Each node denotes the probability distribution of a 

random discrete or continuous variable, and the arcs represent the conditional probabilities 

relating the variables. Bayes’ theorem of conditional probability is used to propagate the 

information across the network using two types of reasoning: (1) forward modeling, 
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referred in this work as prognosis, and (2) inverse modeling, denoted as diagnosis (Korb 

and Nicholson 2010). The prognostic type of reasoning (1) uses the evidence of the parent 

nodes to estimate the joint probability distribution of the child nodes, mapping the 

influence of the causes on the effects. Conversely, the diagnostic modeling (2) is used to 

fix an anticipated condition of a child node to update the probability of the parent nodes, 

estimating the probable causes of a prescribed effect (Korb and Nicholson 2010; Medina-

Cetina et al. 2017). Numerous authors concur on their acceptance of BNs as a suitable tool 

for risk assessment and decision-making due to its capability to integrate different sources 

of evidence such as data, model predictions, and expert’s educated beliefs considering the 

causal relationship between variables (Kiiveri and Caccetta 1998; Grêt-Regamey and 

Straub 2006; Medina-Cetina and Nadim 2008, Liu et. al. 2015).  

The BN examined in this work is designed to estimate RI values based on the spatial 

configuration of the input maps in prognostic modeling. Additionally, BN+GIS also 

performs a diagnostic analysis designed as a policy-making tool to assess the required 

initial conditions necessary to achieve a prescribed RI. Expressly, fixing the probability of 

the child node ES and solving the inverse problem, the model returns the updated 

probabilities of the parent nodes A, W, E, and L (hazard maps). This work aims to estimate 

the spatial influence of the prescribed probability of the child node on the updated parent 

nodes during the diagnostic modeling, and to understand the effect on the uniformity of 

that distribution on the updated results. Conditioning the diagnostic tool to a diverse set of 

policies allows an understanding of the model’s response to different scenarios that can 

be used to improve the state of knowledge of stakeholders.  
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Given these considerations, the objectives of this study are: (1) to identify the 

parameters that contribute to higher variability on the environmental risk maps, (2) to 

identify the conditions that lead to its increased uncertainty, (3) to define a methodology 

to be used by future BN+GIS users to select suitable spatial sampling parameters, and (4) 

to analyze the effect of the selection of prescribed environmental risk indexes on the 

updated maps of the parent nodes (risk threats), and its significance on the decision-

making process. To achieve these goals, the authors consider that a factorial experimental 

design can be utilized to assess the sensitivity of BN+GIS given a set of values for g and 

b, and a set of probability distributions of ES. It is hypothesized that using BN+GIS with 

an optimal combination of spatial sampling parameters allows the extraction of substantial 

information that can increase the confidence on the inferences derived from the results. A 

better understanding of the policy-making mechanism (diagnosis) used in this model and 

its limitations is regarded by the authors as a valuable and important aspect to consider for 

maximizing the applicability of the updated hazard maps for informed decision-making.  

Scientific inference is linked to different types of uncertainty. Aleatoric uncertainties 

on BN+GIS are derived from the irreducible and inherent random nature of the input 

variables, while epistemic uncertainties could potentially be mitigated or managed at 

different stages of the modeling process (Helton et al. 2006; Matthies 2007). The selection 

of quality data, the expert’s model validation, and the use of calibration methods to assess 

the influence of each input variable on the results are considered by the authors as 

acceptable mechanisms to reduce the epistemic sources of uncertainty. Yet, this work 

focuses specifically on the identification and reduction of the uncertainties derived from 
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the choice of b, g and ES as an approach to enhance the understanding of the methodology 

proposed by Medina-Cetina et al. (2017). 

Hamby (1994) summarized a comprehensive description of methods used for 

sensitivity analysis, such as differential sensitivity, one-at-a-time sensitivity, factorial 

design, sensitivity index, and other approaches that include the use of random sampling 

techniques. These methods rely on differential analysis to estimate the variabilities of the 

model’s responses given the influence of the selected inputs, according to a specific type 

of experimental design. Saltelli et al. (2000) provided important contributions on the use 

of sensitivity analyses as part of the modeling process, discussing the use of variance-

based techniques such as extended Fourier Amplitude Sensitivity Testing (FAST), and the 

method of Sobol’ (Saltelli et al, 1999; Sobol’ 1993). They suggest that these type of 

approaches offer advantages such as taking into consideration the probability density 

function of the inputs, and the independence of the sensitivity technique to the model’s 

structure. The implementation of these random techniques often requires the use of Monte 

Carlo methods that are considered to elevate the dimensionality of the analysis that can be 

particularly useful for modeling the behavior of multiple continuous variables. For this 

particular study case, the authors consider that a basic approach such as a factorial 

experimental design and a differential analysis can provide simple answers to solve the 

proposed uncertainty problem. Consequentially, the set of tools available in most GIS 

software packages can be used to map these uncertainties across the spatial domain and 

observe patterns and clusters of higher variance. 
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Multiple sensitivity analyses can be found in the literature for modeling natural 

processes in a spatial domain. Daniel McKenney (1999) conducted a one-at-a-time 

sensitivity analysis technique of a spatially distributed solar radiation model in Canada to 

estimate the parameters with the highest influence on the model’s outputs. Among a set of 

five variables, it was possible to conclude that the amount of effort invested on defining 

atmospheric parameters such as cloudiness and sunshine fraction (in relation to hours of 

sunlight per day) should be more thorough than for other parameters of the model. Bou-

Zeid and El-Fadel (2004) performed a sensitivity analysis to identify the most significant 

parameters necessary for the assessment of leachate migration and transport from a landfill 

site to the nearest groundwater source. That study suggested that dispersivity and aquifer 

hydraulic conductivity are among the most important parameters affecting their modelled 

transport mechanism. Estimates of evapotranspiration and pan evaporation on the Yangtze 

River were mapped by Xu et al. (2006), followed by an analysis of seven cases of varying 

meteorological variables, concluding that the model is most sensitive to relative humidity 

and net total radiation. In such cases, the implementation of an experimental design that 

compares the model predictions for a set varying input parameters was a successful 

approach for estimating the most sensitive variables. However, little effort have been made 

on mapping the uncertainty and discussing the conditions that lead to higher sensitivity of 

a variable across the spatial domain. 

The implementation of any type of sensitivity analysis on BNs that have been scaled 

to a spatial domain using GIS is a practice that is sparsely found in the literature. Some of 

these efforts include the use of software based entropy reduction analysis (Smith et al. 
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2007 and McCloskey et al. 2011), and analysis of variance (Stelzenmüller et al. 2010). In 

these cases, the sensitivity analysis was oriented to study the influence of the network’s 

conditional probability tables on the outputs, and not to examine the method used to 

extract spatial information to populate the model. 

Efforts to develop analytical methods to compute sensitivity values on BNs 

(Spiegelhalter and Lauritzen 1990; Laskey 1995; Castillo et al. 1997, Coupé and Van Der 

Gaag 2002) have focused on the influence of the conditional probabilities and the 

probabilities of parent nodes on the model’s outputs. These methods include uncertainty 

quantification using a Bayesian statistical paradigm (Spiegelhalter and Lauritzen 1990) 

and symbolic propagation methods where conditional probabilities can be expressed as 

ratios of a polynomial function (Castillo et al. 1997). The use of algebraic structures testing 

the methods to define marginal probabilities, their dependence, and their joint distributions 

are focused on understanding the propagation of uncertainty across the model introduced 

by the combination of expert’s opinions, model predictions and samples from a user-

defined dataset. More recently, evolutionary algorithms were employed to simplify and 

optimize BNs by excluding connectors or dependencies, and therefore avoiding biases or 

errors on the definition of large conditional probability tables (Aitkenhead and Aalders 

2009). The variety of sensitivity analysis methods found in the literature suggests that a 

well-documented and a comprehensive understanding of the influence of marginal and 

conditional probabilities on the results exists. It is important to highlight that this work is 

not aimed to study the effect of the uncertainties derived from the marginal and conditional 

probability distributions, but to assess the effect of the user-defined parameters of BN+GIS 



 

50 

 

on the results. In other words, this work focuses on the sensitivity of the results to the 

spatial sampling methodology and to the diagnostic reasoning proposed during the 

coupling process between BN and GIS, as suggested by Medina-Cetina et al. (2017). 

 

BN+GIS 

The BN model illustrated in Fig. 3.1 was implemented by Medina-Cetina et al. (2017) as 

the simplest conceptual model used to assess the environmental risk of the Barnett Shale 

Play, Texas, given the occurrence of triggering events such as hydrocarbon spills or failure 

of the borehole casing.  The study case was selected due to the intensive O&G 

development in the area and the importance in the local and national economy of the 

Barnett Shale Formation (Montgomery et al. 2005). A risk assessment framework 

commonly used in engineering and described by the Office of the United Nations Disaster 

Relief Organization (UNDRO 1979) was utilized to design the model. Hence, input 

variables of the network are classified based on the threat intensity to A, W, E and L (as 

seen in Fig. 3.1), the conditional probability distribution as a measure of the vulnerability, 

and a utility function as a convolution of probability values to a symbolic risk index 

quantifying the desirability of the consequences (UNDRO 1979; Medina et al. 2017). This 

section summarizes the methodology used by Medina-Cetina et al. (2017) to sample the 

threat intensity maps in order to retrieve marginal probability distributions from the 

proposed BN’s parent nodes.  
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Fig 3.1 BN model for environmental risk assessment. 
 

 

BN+GIS uses a systematic sampling methodology to extract the spatial information from 

the threat intensity attributes (low, moderate and high) of the input maps. This information 

is translated into marginal probability distributions to populate the BN, yielding a 

quantification of the hazard (UNDRO 1979) to each variable per realization (Medina et 

al. 2017). BN+GIS creates a grid across the study area using square polygons that serve 

as discrete elements for the computation of the model to complete this task. Let ߆ 

represent the spatial population to be sampled, thus ߆ ൌ ∑ ሺ݊݋݃ݕ݈݋݌	ܽ݁ݎܽሻ௜
௡
௜ୀଵ . The 

distance between centroids of the grid elements serve as sampling interval, and it is 

denoted as g. A buffer of radius b around each centroid is used as plot sample to quantify 

the proportion of each threat intensity class for the four input maps. This proportion is 

used to populate the marginal probability distributions of the parent nodes in the proposed 
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BN model, which are posteriorly used by BN+GIS script to loop through each g and 

compute a prognostic estimate of ES and RI. (Medina-Cetina et al. 2017).  

The script is also equipped with the ability to perform diagnostic analysis by 

introducing a user-defined probability of ES to back-propagate a fixed desired condition 

of the posterior and update the state of the parent nodes across ߆. The results of diagnostic 

BN+GIS are used as a policy-making tool to assess the potential original conditions that 

caused the selected posterior distribution of the model. The selection of the posterior fixed 

distribution of ES represents another parameter used by BN+GIS before starting the 

looping process through ߆, and computes the updated probabilities of the threat intensity 

to A, W, E and L to be high, moderate or low (Medina-Cetina et al. 2017). 

 

Experimental Design 

Spatial Sampling Experiment 

A factorial experimental design was conducted to test the spatial sampling methodology 

aiming to achieve the lowest variance and maximizing the significance of the inferences 

derived from BN+GIS. This type of analysis is a one-at-a-time type of experiment that 

consists on the selection of a number of values for sampling parameters g and b, and the 

examination of the results for all possible combinations (Hamby 1994; Hashemi et al. 

2000; Franchini et al. 2000). The experimental design used in this work consisted on the 

use of six grid sizes (g = 2, 4, 6, 8, 10, and 12 km) and six buffer distances (b = 2, 4, 6, 8, 

10, and 12 km). This configuration yields a total of 62 = 36 maps, allowing the observation 
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of the variation of the RI across the selected study area. Note that for larger grid sizes, 

fewer elements are required to cover ߆, which results in maps with a number of samples 

(n) inversely proportional to ݃. A differential analysis using a sensitivity coefficient (∅) 

and a sensitivity index (ܵܫ) was implemented to quantify the rate of change of the RI given 

the variability of b and g (Hamby 1994). The coefficient ∅ provides a measurement of the 

variability of the results with respect to the ratio of change of the input parameters, which 

can be expressed as ∅ ൌ
|డோூ|

డ௚,௕
. The ܵܫ quantifies the difference of the outputs with respect 

to the maximum and minimum values that can be obtained from all combinations, which 

can be expressed as ܵܫ௜ ൌ
ோூ೘ೌೣ೔

ିோூ೘೔೙೔

ோூ೘ೌೣ೔
, where ݅ accounts for all 36 combinations of g and 

b (modified from Hamby 1994).  

As seen in Fig. 3.2, the relationship between g and b can influence the RI estimates 

and the associated epistemic uncertainty observed across ߆. If ܾ is smaller than half of the 

grid element’s diagonal (ܾ ൑ √ଶ

ଶ
݃), then omitted areas are not sampled within each grid 

element’s realization (Fig. 3.2, left). Wang et al. (2012) noted that the uncertainty of the 

sampling methodology related to the random nature of a given sampling site could be 

reduced when the full population is surveyed. A 100% coverage of ߆ is reached when the 

grid element is inscribed within the plot area (ܾ ൒ √ଶ

ଶ
݃), yielding overlapping areas 

between contiguous grid elements (Fig. 3.2, right). However, the plot area could 

potentially get large enough to cover the entire population, in which case ߆ would be fully 

sampled for every grid element, and the variance would be zero. This extreme case would 

diminish the uncertainty derived from the randomness of the spatial configuration of the 
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input maps, but would widely overestimate the influence of the spatial relationship 

between two random locations. 

 

 

Fig 3.2 Relationship between parameters g and b on sampling methodology. 
 

This spatial relationship principle is commonly referred as Tobler’s first law of 

geography (1970), which states that objects located at a closer proximity are more similar 

than objects located further apart. Given the proximal spatial relationship of the BN+GIS 

results, a spatial autocorrelation analysis of the risk index maps was conducted to estimate 

the optimum distance (plot size b) for all realizations in ߆. As a simple approach to assess 

and quantify the strength of the linear association between the output’s attribute and its 

spatial proximity, an autocorrelation plot using Parson’s correlation coefficient was 

examined (Haining 1991; Hauke and Kossowski 2011). Let ܴܫሺܺሻ be a vector with risk 

index values for all elements ܺ in the study area. For each lag distance ݇ at a given 

direction, the Pearson’s correlation coefficient can be implemented using the expression 
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௞ߩ ൌ
஼ை௏ሾோூሺ௑ሻ,ோூሺ௑ା௞ሻሿ

ఙ೉ఙ೉శೖ
ൌ ாሾሺோூሺ௑ሻିோூതതതሺ௑ሻሻൈሺோூሺ௑ା௞ሻିோூതതതሺ௑ା௞ሻሻሿ

ఙ೉ఙ೉శೖ
 (modified from Haining 

1991).  

 

Diagnosis Experiment 

As an approach to assess the sensitivity of the diagnostic feature of BN+GIS, four 

probability distributions of the ES node and their influence on the updated maps of A, W, 

E and L are tested. The four conditions (C1, C2, C3 and C4) of ES observed in Fig. 3.3 

were used. These combinations depict two opposite risk conditions (C1: RI = 0.2 and C4: 

RI = 0.8) and two combinations yielding a RI = 0.5 with different probability distributions 

of the ES variable (C2 and C3).  C1 and C4 were tested to examine the impact of extreme 

policies on the decision making process, while C2 and C3 were selected to study the 

influence of different uncertainty levels on the model’s inferences.  

 

Fig 3.3 Four combinations of fixed probabilities of ES. Posterior distributions tested for inverse 
modeling. 
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Results 

Spatial Sampling 

The first approach to observe the influence of b and g on the output consisted on the 

contrast of the empirical density functions of the prognostic RI maps (ܨܦܧ ൌ

ݕܿ݊݁ݑݍ݁ݎ݂
݊ ∗ ൗ݁ݖ݅ݏ	ܾ݊݅ ) for each combination of the experimental design with a bin size 

of 0.02 (Fig. 3.4). This assessment illustrates that the general trend of the output presents 

a consistent trimodal behavior, typically with a predominant mode around a RI value of 

0.5, and two subordinated modes around 0.23 and 0.85. This behavior can be attributed to 

the influence of the low, moderate and high intensity states of the probabilistic input 

variables of the BN model. It is observed that the RI does not reach either of the extremes 

of the domain (0 or 1) for any of the tested b and g combinations. Empirical density 

functions of smaller g are observed smoother than the curves of larger grid elements, 

which can be attributed to the influence of larger numbers of samples (n) for a thinner 

grid. 
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Fig 3.4 Empirical density functions (EDF) of the RI maps for each combination of ݃ and	ܾ. 
 

Since very little variability is observed on the behavior of the empirical density functions 

of all combinations of sampling intervals and plot sizes, further analysis was performed 

on the quantification of the first order statistics derived from this experiment. Plots of the 

mean and standard deviation (ߪ) of the RI values of all the elements on the study area for 

all b and g combinations is observed in Fig. 3.5. It is observed that the mean RI shows 

little variation with values between 0.485 and 0.489, representing a sensitivity of 0.4% of 

the complete risk index domain [0,1], with slightly higher values for smaller buffer sizes. 

The ߪ plot shows that the systematic sampling methodology present a higher sensitivity 

to the size of b than to g, and it is clearly observed that the standard deviation decreases 

for all tested grid sizes with larger b distances. This trend can be interpreted as a response 

to wider sample sizes with large overlapping areas resulting on lower overall uncertainties. 

Still, a slight trend of lower standard deviation values for smaller g is also observed, which 
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could be accredited to the influence of larger numbers of sampling points as the sampling 

interval decreases.  

 

Fig 3.5 (A) Mean and (B) standard deviation of RI for 36 combinations of ݃ and	ܾ. 
 

The sensitivity coefficient (∅) and sensitivity index (SI) computed during this experiment 

provided more information about the behavior of the model’s outputs given different 

sampling parameters. As mentioned before, the coefficient ∅ is the ratio of change of the 

outputs given a change of the input parameters. Expressly, for a fixed b it is possible to 

compute a value of ∅ per-grid element of the RI for a set of varying values of g, such as 

ሺܾ02݃02 െ 	ܾ02݃04ሻ/2, ሺܾ02݃02 െ 	ܾ02݃06ሻ/4, and so on. Likewise, testing the 

sensitivity of the outputs to changes of b requires the calculation of ∅ ratios for fixed 

values of g. The results, shown in Fig. 6(A), display the mean values of ∅ for b and g 

differentials. It is observed that the range of the sensitivity coefficient shows less variation 

to the change of grid size than to the plot size, and that lower sensitivity coefficients are 

achieved as the differentials of b and g increases.  

Moreover, the SI refers to the ratio of change on the range of the RI. Higher SI values 

are portrayed by combinations from the experimental design returning wider ranges of the 
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RI domain, defined between 0 and 1. The resulting SI for each tested combination, as 

observed in Fig. 6(B), shows that the range of risk index values presents a stronger 

dependency on b than on g. The result obtained using the smallest grid and buffer size 

returns the highest SI, hence, the combination ܾ 02݃02 returns the most informative output 

given that it presents the widest range of Risk Index values. 

 

Fig 3.6 (A) Sensitivity coefficient (∅) and (B) sensitivity index (SI) of Risk Index (RI) for 
different sizes of ݃ and	ܾ. 
 

A set of maps was prepared to examine the influence of b and g on the variability of the 

results across the spatial domain (Fig. 3.7). Each map is the representation of the ߪ per 

spatial element of the RI for the 6 cases where the value of g or b remains constant (e.g. 

σሺܾ02ሻ ൌ σሺܾ02݃02, ܾ02݃04, ܾ02݃06, ܾ02݃08, ܾ02݃10	and	ܾ02݃12). Comparing 

these results with the features observed in the input maps allows one to identify clusters 

of higher standard deviation values located in regions where contrasting classes of A, W, 

E and L are. It is also observed a decrease of the standard deviation’s color intensity as the 

buffer size increases, which is consistent with the results observed in Fig. 3.5(B). The 
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observed σ values show distinctive patterns and clusters for smaller grid sizes, also 

following the preferential arrangement of the input variable’s threat intensity classes.   

 

Fig 3.7 Standard deviation (σ) of RI across study area for selected sizes of ݃ and	ܾ. 
 

Following up with the trend suggesting that larger plot sizes imprints on the results a 

decrease of the uncertainties levels, a spatial autocorrelation analysis was implemented to 

assess the optimum distance to account for spatial relationships during the sampling 

process. This analysis was conducted using the smallest grid and plot size (ܾ02݃02) in 

order to maximize the spatial resolution and minimize the overlapping effect on the results. 

The spatial autocorrelation was determined by the computation of the Pearson’s 

correlation coefficient in the west-east (WE) direction and north-south (NS) direction (Fig. 

3.8). A curve fitting procedure was utilized to estimate the correspondent lag distance for 

a desired level of spatial correlation on the estimation of RI. The lag distance can serve 

the same purpose as the plot size b utilized for the spatial sampling methodology, which 

is directly related to the extent of a realization’s area. 
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Fig 3.8 Directional Pearson’s autocorrelation coefficients and fitted curve for RI map for 
sampling parameters b02g02. 
 

The results of the autocorrelation analysis can be summarized in Table 3.1, which can be 

used by the modeler’s to select the required level of spatial relationship. 

 

Table 3.1 Pearson’s correlation coefficients for NS and WE directions, for lag distances 1 to 15 
km. 

Lag Distance (km.) Direction NS Direction WE 

1 0.9901 0.9794 

2 0.9803 0.9618 

3 0.9707 0.9449 

4 0.9611 0.9286 

5 0.9516 0.9130 

6 0.9423 0.8981 

7 0.9330 0.8837 

8 0.9239 0.8699 

9 0.9148 0.8567 

10 0.9059 0.8440 

11 0.8971 0.8319 

12 0.8883 0.8202 
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Diagnosis  

The diagnostic analysis was performed using the maximum resolution from the selected 

parameters of the experimental design (݃ ൌ 02), and a NS and WE correlation of 0.91 and 

0.84, respectively, equivalent to ݃ ൌ 10. A set of 12 maps is returned each time the model 

is executed in diagnosis, corresponding to three probabilistic states of the threat intensity 

levels defined to the four input variables. Testing four probability distributions (C1, C2, 

C3 and C4) used to propagate the diagnostic message returns a set of 48 maps. Hence, the 

updated condition of each input variable produces a subset of 12 maps of three threat 

intensity levels given the four diagnostic distributions used in this experimental design 

(see Fig. 3.9 to 3.12).  

 

Fig 3.9 Updated hazard to A using fixed diagnostic messages C1, C2, C3 and C4. 
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Fig 3.10 Updated hazard to W using fixed diagnostic messages C1, C2, C3 and C4. 
 

 

Fig 3.11 Updated hazard to E using fixed diagnostic messages C1, C2, C3 and C4. 
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Fig 3.12 Updated hazard to L using fixed diagnostic messages C1, C2, C3 and C4. 
 

The points designated as “I” and “II” in figures 3.9 to 3.12 have been individually 

examined to illustrate the model’s response in diagnosis.  These points were arbitrarily 

selected to analyze the influence of the skewness of the marginal probability distributions 

for different threat intensity levels. Explicitly, the A, W, E and L marginal probability 

distributions in point I are less skewed than the distributions observed in Point II, as seen 

in table 3.2.  
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Table 3.2 Marginal probability distributions of points I and II. 
Point I Point II 

ܲሺܣூሻ ൌ ൝
:ݓ݋ܮ 80.83%,

:݁ݐܽݎ݁݀݋ܯ 19.07%,
:݄݃݅ܪ 0.10%

ൡ ܲሺܣூூሻ ൌ ൝
:ݓ݋ܮ 0.00%,

:݁ݐܽݎ݁݀݋ܯ 0.00%,
:݄݃݅ܪ 100.00%

ൡ 

ܲሺ ூܹூሻ ൌ ൝
:ݓ݋ܮ 76.86%,

:݁ݐܽݎ݁݀݋ܯ	 18.46%,
:݄݃݅ܪ 4.68%

ൡ ܲሺ ூܹሻ ൌ ൝
:ݓ݋ܮ 89.75%,

:݁ݐܽݎ݁݀݋ܯ 8.47%,
:݄݃݅ܪ 1.78%

ൡ 

ܲሺܧூሻ ൌ ൝
:ݓ݋ܮ 20.51%,

:݁ݐܽݎ݁݀݋ܯ 79.49%,
:݄݃݅ܪ 0%

ൡ ܲሺܧூூሻ ൌ ൝
:ݓ݋ܮ 0.00%,

:݁ݐܽݎ݁݀݋ܯ 0.00%,
:݄݃݅ܪ 100.00%

ൡ 

ܲሺܮூሻ ൌ ൝
:ݓ݋ܮ 0.03%,

:݁ݐܽݎ݁݀݋ܯ 81.51%,
:݄݃݅ܪ 18.46%

ൡ ܲሺܮூூሻ ൌ ൝
:ݓ݋ܮ 0.00%,

:݁ݐܽݎ݁݀݋ܯ 0.08%,
:݄݃݅ܪ 99.92%

ൡ 

 

The updated probabilistic values of A, W, E and L are listed in table 3. It is observed that 

the selection of a fixed P(ES) responds differently to contrasting skewness of the marginal 

probability distributions. At point I, a fixed condition favoring low states of ES (C1) 

returns updated probabilities of low hazard higher than the fixed condition favoring high 

states of ES (C4) for all four variables. For this point, the influence of a predominant mode 

on the fixed distribution C3 produced changes on the updated probabilities of low hazard 

up to 9% lower than the results obtained for low updated hazard using C2, even though 

both distributions return the same RI = 0.5. However, it is observed that the updated 

probability distributions of A, E, and L show no-changes with respect to its marginal 

probabilities in point II for all diagnostic messages, suggesting that higher skewness of 

marginal probabilities decreases the sensitivity of the BN to diagnostic analysis. 
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Table 3.3 Updated Probabilities of A, W, E and L given a set of diagnostic messages C1, C2, C3 
and C4 for points I and II. 

Point I 

Condition State P(ES) 
Updated 

P(A) 

Updated 

P(W) 

Updated 

P(E) 

Updated 

P(L) 

C1 

Low 0.70 0.72 0.73 0.39 0.00 

Moderate 0.20 0.27 0.24 0.61 0.35 

High 0.10 0.01 0.04 0.00 0.64 

C2 

Low 0.33 0.63 0.67 0.30 0.00 

Moderate 0.34 0.35 0.29 0.70 0.37 

High 0.33 0.01 0.04 0.00 0.63 

C3 

Low 0.15 0.55 0.69 0.23 0.00 

Moderate 0.70 0.44 0.26 0.77 0.43 

High 0.15 0.01 0.05 0.00 0.56 

C4 

Low 0.10 0.61 0.68 0.27 0.00 

Moderate 0.30 0.37 0.26 0.73 0.31 

High 0.70 0.02 0.06 0.00 0.68 

Point II 

C1 

Low 0.70 0.00 0.63 0.00 0.00 

Moderate 0.20 0.00 0.33 0.00 0.01 

High 0.10 1.00 0.04 1.00 0.99 

C2 

Low 0.33 0.00 0.53 0.00 0.00 

Moderate 0.34 0.00 0.42 0.00 0.01 

High 0.33 1.00 0.05 1.00 0.99 

C3 

Low 0.15 0.00 0.44 0.00 0.00 

Moderate 0.70 0.00 0.51 0.00 0.01 

High 0.15 1.00 0.05 1.00 0.99 

C4 

Low 0.10 0.00 0.49 0.00 0.00 

Moderate 0.30 0.00 0.43 0.00 0.00 

High 0.70 1.00 0.08 1.00 1.00 
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However, the influence of the diagnostic tool have a wide variety of responses when 

it is tested on random spatial variables. For instance, the updated maps of A and E show 

imperceptible sensibility to any of the four back propagated probabilities in diagnosis, 

while more significant changes can be appreciated on the updated maps of W and L. 

Considering that the four input variables have the same weighted influence on the results, 

as designated in the conditional probability table, this observation allows to deduce that 

the diagnostic type of reasoning is more significant for maps with higher levels of 

dispersion, and less with clustered spatial features. However, the updated L map is 

observed to have a minor sensibility to the diagnostic message propagated from the ES 

node. This effect can be interpreted as the result of having small features of low threat 

intensity to L, resulting in updated maps predicting the behavior of only moderate and high 

hazard conditions. Given that the results show most significant sensitivity to the diagnostic 

spatial analysis of W, further description of the experimental outputs is based on the 

behavior of the updated maps of this variable. 

It is observed that the fixed condition favoring ESLow (C1) produces updated maps with 

larger areas depicting higher likelihoods of W classified as a low hazard, as compared to 

the maps with a diagnostic message favoring ESHigh (C4). Explicitly, it is predicted that to 

achieve the fixed condition C1, a 25.14% of the study area should be categorized as low 

hazard to W; while only 4.12% would require to have higher likelihoods of low hazard 

levels to W using the distribution C3. It is observed that using a distribution close to 

uniform such as C2 produces larger areas with probabilities of updated low and high 

hazards than the maps derived from the presence of a prominent mode, as depicted by C3. 
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Comparing the updated hazard maps using C2 and C3 it is deduced that the results are 

sensitive to the shape of a fixed distribution propagated in diagnosis as long as the variable 

is not clustered and presents more than two representative threat intensity levels. 

 

Analysis 

The relative frequency analysis provided insight to the behavior of the BN+GIS tool under 

varying spatial conditions, as defined during the experimental design. The results showed 

that the number of categories used to discretize the input variables A, W, E, and L has an 

important influence on the RI, regardless of the spatial sample parameters selected. This 

influence is evidenced by the three predominant modes observed in all 36 tested 

combinations of b and g. It was also revealed that the range of values obtained from the 

RI maps does not reach either of the extremes of the domain [0,1], which could be 

interpreted as either (1) no extreme values are found in the study area, or (2) the model 

requires further calibration. In both cases, given that the predicted values are not a 

measurable physical or parametrical value, further calibration of this model is not viable. 

Regardless, the significance of these results rely on the quantification of a symbolic value 

(RI) that shows relative changes in the spatial domain, and that can aid decision makers in 

the allocation of resources in areas that show higher sensitivity to the proposed model.  

It was observed that these relative changes of the outputs across the spatial domain can 

differ according to the selected parameters b and g. The maps of standard deviation 

highlight the location of the most sensitive areas to changes on the spatial sampling 
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parameters. These higher levels of uncertainty are closely related to the location of the 

zones of contrasting threat intensity levels defined for the variables A, W, E, and L.  

The differential analysis implemented by computing a sensitivity coefficient and a 

sensitivity index helped to exhibit how the spatial sampling parameters can affect the 

results. In this study case, higher levels of model sensitivity to b and g are considered to 

be a desirable condition given that the process is capturing a wider response from the 

model. The ∅ and SI evidence obtained during the experimental design was used to infer 

that the sensitivity of the model decreases as b and g increases. However, figures 3.5 and 

3.7 suggest that larger b and g reduces uncertainty of the RI maps, and that the standard 

deviation is more sensitive to b than to g. Based on these observations, it is presumed that 

small grid sizes are most appropriate to maximize the sensitivity of the results without 

engaging to significantly higher levels of uncertainty.  

Yet, the selection of the most suitable and significant buffer size was not answered by 

the examination of sensitivity measurements and standard deviations. Identifying the 

optimal distance to sample a geographical population required the quantification of the 

spatial correlation structure of the results. The autocorrelation analysis using Pearson’s 

coefficient provided a criteria to select a lag distance that can be used as a proxy to buffer 

sizes. It is observed that the combined spatial influence of the input variables A, W, E and 

L returns RI maps with a stronger autocorrelation in the NS direction than on the WE 

direction for lag distances shorter than 60 km. These analysis can be used to select the 

level of relevance of the spatial sample with respect to each discrete element.  
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The diagnostic tool proved to be sensitive to the skewness of the marginal probability 

distributions of the network. This is interpreted as marginal probabilities depicting 100% 

certainty of a particular state showed to return full certainty of the updated variable to be 

the same. The uncertainty level reached with less skewed marginal probability 

distributions allow the diagnostic tool to return different updated probabilities. This 

observation is consistent with the response of the BN+GIS model given different levels of 

spatial clustering. Highly clustered variables such as A and E present large areas with 

marginal probability distributions depicting 100% certainty that a sample is located within 

a single threat intensity level, showing the least visible sensitivity to any of the fixed 

diagnostic messages. In contrast, the updated hazard states of surface water, a less 

clustered variable, showed to be the most sensitive to the prescribed diagnostic 

distributions. The updated W maps exhibited higher sensitivity in the proximity of the 

major water bodies located in the study area. The variability observed on the updated 

diagnostic maps show the areas where the implementation of policies towards the 

improvement of the vulnerability of the input variables are located. It is observed that 

higher sensitivity levels are located in zones with contrasting states of threat intensity, 

such as point I.  

 

Conclusions 

The sensitivity analysis implemented in the BN+GIS tool provided information about the 

assumptions made by modelers in the search of an improved decision making tool. The 

spatial sampling methodology showed that the use of higher resolution (small grid size) 
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provided results with less uncertainty and higher levels of sensitivity. Lower uncertainty 

levels are also achieved with larger buffer distances, however, the authors conclude that 

to select the most appropriate plot size, it should be taken under consideration the spatial 

autocorrelation of the results. Examining the Pearson’s correlation coefficient in NS and 

WE directions showed to be a useful mechanism to quantify and select a desired level of 

spatial relationship during the sampling process. Following the methodology suggested in 

this work, the BN+GIS modeler is capable of having an informed criteria to select the 

desired level of uncertainty and spatial autocorrelation of the results.   

The diagnostic reasoning performed by this tool was designed to guide policy makers 

in their task of selecting the areas that require further investment of resources to reach a 

desired condition. In the case illustrated in this study, the results could represent the 

protection of the endangered elements in zones of high probability of updated high threat 

intensity. The sensitivity analysis performed in this study was used to examine the benefits 

and limitations of using the BN+GIS methodology in diagnosis. It was learned that the 

diagnostic tool is limited to interpretations on spatially disperse variables with maximized 

perimetral contact between three or more discrete states, such as surface water bodies. 

This variable is observed to be less clustered than other variables and presented the highest 

sensitivity to the selection of different diagnostic messages. Under these type of variables, 

the tested examples provided insights about the influence of the policy-making criteria on 

the results. Policies requiring low impacts (C1) provided maps highlighting large areas 

where resources for active counteractions need to be allocated. Likewise, if policy-makers 

are willing to assume higher levels of risk (C4), the BN+GIS diagnostic tool returns 
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smaller areas of updated threat intensities that would require less intervention. Testing 

constant values of RI with contrasting shapes of the ES message resulted in maps that show 

visible differences favoring larger areas of updated low hazard states for a uniform 

distribution.  

BN+GIS users can maximize the significance of their results to optimize the allocation 

of resources for future development projects, as well as making informed decisions of 

maintenance and monitoring campaigns in existent infrastructures by replicating the 

methods used in this work.  
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CHAPTER IV  

RISK ASSESSMENT FOR LANDSLIDES USING BAYESIAN 

NETWORKS AND REMOTE SENSING DATA* 

 

Introduction 

Landslides are considered to be among the most damaging natural disasters in the US, 

with the Pacific Mountain System and the Appalachian Mountain region being among the 

most susceptible areas within the contiguous United States (Smith et al. 2014). Multiple 

methods have been implemented for landslide hazard assessment and management. The 

rise of publicly available remote sensing datasets such as spectral imagery and LiDAR 

point clouds, along with the increment of software with computational capabilities to 

manipulate them, have helped researchers to develop new techniques applicable to a wide 

spectrum of spatial disciplines (Jaboyedoff et al. 2010). As a result of the manipulation of 

LiDAR point clouds it is possible to obtain a series of surfaces such as Digital Elevation 

Models (DEM), Digital Terrain Models (DTM) and Canopy Height Models (CHM). 

Although this evidence does not substitute a detailed field survey, it can provide 

significant information for large areas with difficult or minimum accessibility, and has 

                                                 

*This chapter is reprinted with permission from ASCE. Modified from “Risk Assessment for Landslides 
Using Bayesian Networks and Remote Sensing Data” by Patricia Varela Gonzalez and Zenon Medina-
Cetina, 2017. Geo-Risk 2017 Conference, GSP 285, 113-123, Copyright 2017 by ASCE. This material may 
be downloaded for personal use only. Any other use requires prior permission of the American Society of 
Civil Engineers. 
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consistently proven to be a successful baseline for landslide applications (Jaboyedoff et 

al. 2010).  

 
The use of LiDAR for landslide investigations was broadly divided in four main 

applications by Jaboyedoff et al. (2010) as: landslide detection-characterization, hazard 

and susceptibility mapping, modelling and monitoring. Mapping landslide susceptibility 

using remote sensing techniques is a practice that has been implemented using qualitative 

and quantitative methods that range from visual interpretation of landslide features to 

statistical and probabilistic techniques. For instance, the Oregon Department of Geology 

and Mineral Industries (DOGAMI) has developed a protocol for the mapping of landslides 

using LiDAR derived models, aerial photography, landslide inventories and geologic 

maps (Burns and Madin 2009). This protocol serves as a detailed description of the 

methodology to be followed for the visual cataloging process of landslide features such as 

sediment deposits, scarps, delineation of flanks, adjacent slope angle, type of movements 

and the level of confidence the interpreter has with the potential identification of a 

landslide. Other approaches rely on mathematical or probabilistic methods such as 

Logistic Regressions, Weights of Evidence, Frequency Ratio, Receiver Operating 

Characteristics, Hierarchy Processes, among others (Lee and Min 2001; Cepeda 2010; 

Prahdan 2010a; Pourghasemi et al. 2013; Cerovski-Darriau 2016; Gorsevski et al 2016; 

Mahalingam et al. 2016). This remote sensing information has also been used on more 

elaborated modeling methods such as Artificial Neural Networks (Biswajeet and Saro 

2007; Lee 2007; Brown 2012; Bui et al. 2012; Mahalingam et al. 2016), Bayesian 

Networks (Song et al. 2012) and Fuzzy Logic (Pistocchi and Napolitano 2002; Prahdan 
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2010b; Ercanoglu and Gokceoglu 2012) for landslide susceptibility mapping. All these 

methods rely on the mathematical relationship between existent landslide inventories 

(used as samples for training and validation) and physiographical characteristics such as 

slope angle, aspect, relief amplitude, curvature, roughness, among others. At the same 

time, researchers have used spectral imagery that results in the identification of land cover 

features such as vegetation, rivers and roads.  

Nevertheless, little progress is observed on combining independent maps and methods 

to create a robust assessment of the landslide susceptibility that can be replicated not only 

locally, but on a regional or national scale. The objective of this work is to integrate 

different sources of landslide threats through the representation of causal relationships on 

a Bayesian Network (BN) to map the state of risk in prognostic analysis, and to assess the 

original conditions required to achieve a prescribed risk value in diagnostic analysis. The 

methodology of integrating spatial variables of a BN in a Geographical Information 

System’s (GIS) platform is described by Varela (2013) and it is referred as BN+GIS. One 

of the most significant benefits of using BN+GIS is its capability to be updated with new 

evidence to account for land cover changes and for the increment of publicly available 

remote sensing datasets. This method is intended to be used by researchers, land managers 

and decision makers to quantify the state of risk of landslide occurrence by having a 

systematic methodology as opposed to subjective visually-based analyses of individual 

landslide susceptibility maps, if available.  
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BN and Risk 

BNs are defined as non-cyclic graphical models that represent the probabilistic cause and 

effect relationship (arcs) between variables (nodes) while reasoning under uncertainty 

(Korb and Nicholson 2010). Each variable is represented by a probability density function, 

while the arcs or connections are depicted as conditional probability tables. The hazard 

variables are discretized in classes that in this study are defined using three levels of 

intensity of the threats: low, moderate and high. Bayes theorem represents a probabilistic 

inference between a hypothesis (ܪ) and the evidence (ܧ) to assess the posterior conditional 

probability ܲሺܧ|ܪሻ. This relationship is interpreted as a causal dependency between 

‘parent’ and ‘child’ nodes, through a conditional probability table that allows for 

transmitting the message through the graphic’s arcs. When the message is propagated from 

parents to child (cause to effect), a prognostic reasoning is in place, and when the message 

propagates from child to parents (effect to cause), we are reasoning in a diagnostic manner.   

Fig. 4.1 shows an example of a BN with three independent parent variables (V1, V2 and 

V3) and one child node illustrating a four variables network (n=4), where each variable is 

discretized in three classes (m=3). The prognosis message ()) is described by equation 

4.1, which produces a list of 81 values (mn) with all the possible combinations of the three 

discrete states of the four variables. When inverse reasoning is performed, a diagnosis 

message () is propagated from the child node to the parent nodes, which is computed 

using equation 4.2. The diagnosis message consists of a fixed probability distribution of 

the child node defined by the user, so the BN can compute the potential scenarios that can 

cause a specific prescribed outcome.  
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Fig. 4.1 Example of BN showing parent's marginal probabilities and their effect on the child 
node as a conditional probability. 

ܲሺ݈݄݀݅ܥ௜ሻ ൌ෍ߨሺܼ௜ሻ
ଶ଻

௝ୀଵ

ൌ෍ܲሺ ଵܸ௜ሻ ∗ ܲሺ ଶܸ௜ሻ ∗ ܲሺ ଷܸ௜ሻ ∗ ܲሺ݈݄݀݅ܥ௜| ଵܸ௜ , ଶܸ௜ , ଷܸ௜ሻ
ଶ଻

௝ୀଵ

 ሺ4.1ሻ 

ܲሺܲܽݐ݊݁ݎ௞ሻ ൌ ෍
ሺܼሻߨ ∗ ሺܼሻߣ

∑ ሺܼሻߨڿ ∗ ଵ଼ۀሺܼሻߣ
௟ୀଵ

ଶ଻

௝ୀଵ

 ሺ4.2ሻ 

 ݁݀݋ܰ	ݐ݊݁ݎܽܲ	:ܸ
݅:	ሼ݈݁ݐܽݎ݁݀݋݉,ݓ݋, ݄݄݅݃ሽ   
݆:	ሼ1,2, … ,27ሽ		݈݅ݐݏ	݂݋	ݏ݊݋݅ݐܾܽ݊݅݉݋ܿ	݁ݎ݄݁ݓ	݄݁ݐ	݈݄݀݅ܥ	݁݀݋݊	ݏ݅	݁ݐܽݎ݁݀݋݉,ݓ݋݈	ݎ݋	݄݄݅݃ 
݇:	ሼ1,2,3ሽ	ݐ݊݁ݎܽ݌	݁݀݋݊	ݔ݁݀݊݅    
݈:	ሼ1,2, … ,81ሽ		݈݅ݐݏ	݂݋	ݏ݊݋݅ݐܾܽ݊݅݉݋ܿ	ݎ݋݂	݁݁ݎ݄ݐ	ݏ݁ݏݏ݈ܽܿ	݂݋	ݎݑ݋݂	ݏ݁݀݋݊.	 
 

The risk definition used in this study considers the parent nodes as ‘Hazard’ variables that 

are combined using equal weights to assess the child node as a measure of the 

‘Vulnerability’, resulting in a probabilistic distribution of the Landslide Sensibility. When 

the results of the probabilistic distribution of the Vulnerability node are included in the 

Utility Function (ܷሺܥሻ) shown in equation 4.3 a Risk Index that represents a non-

probabilistic value that can be used for engineering decision making is obtained. The 

process as described in equations 4.1 and 4.3 returns the UNDRO (1979) definition of 
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Risk (equation 4), which has been successfully implemented by Medina-Cetina and Nadim 

(2006) and by Gardoni, P., and LaFave. (2016). 

 

ܷሺܥሻ ൌ 1 ∗ ܲሺ݈݄݀݅ܥு௜௚௛ሻ ൅ 0.5 ∗ ܲሺ݈݄݀݅ܥெ௢ௗሻ ൅ 0 ∗ ܲሺ݈݄݀݅ܥ௅௢௪ሻ ሺ4.3ሻ 

݇ݏܴ݅ ൌ ሾ݀ݎܽݖܽܪሿ ∗ ሾܸݕݐ݈ܾ݅݅ܽݎ݈݁݊ݑሿ ∗ ሾݏ݁ܿ݊݁ݑݍ݁ݏ݊݋ܥሿ

ൌ ሾܲሺ ଵܸ௜ሻ ∗ ܲሺ ଶܸ௜ሻ ∗ ܲሺ ଷܸ௜ሻሿ ∗ ሾܲሺ݈݄݀݅ܥ௜| ଵܸ௜ , ଶܸ௜, ଷܸ௜ሻሿ

∗ ሾܷሺܥሻሿ 

ሺ4.4ሻ 

 

Case Study 

To achieve this goal a case study was analyzed in a 19.5 km2 area located in the Oregon 

Coastal Range, within the Elliott State Forest in Coos County se Fig. 4.2). The area was 

selected due to the presence of a geomorphology dominated by hillslopes, with the 

availability of point cloud data and the presence of a database with historical landslides 

that can be used for the validation and calibration of the proposed risk analysis. The 

geologic unit that outcrops in the area is the Tyee Formation formed by marine 

sedimentary rocks (Smith et al. 2014) that have been weathered degrading into a clayey 

and silty residual soil of variable thickness (USDA 2013).  
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Fig. 4.2 Study area. Modified from Google Earth. 
 

 

In order to assess the hazard of the study area, a set of four input variables (maps) that 

represent different criteria for measuring the landslide sensibility of a specific site was 

defined. All the hazard variables have been developed using remote sensing LiDAR data. 

The variables are: SLIDO Landslide Susceptibility (SLIDO), a Safety Factor obtained 

from a physical infinite slope model (Physical Model), Density of Trees (Vegetation 

Density), and a Compound Topographic Index (Wetness Index).  The prototype BN 

defined for this study can be seen in Fig. 4.3.  

 

Fig. 4.3 BN model proposed for integrated landslide risk mapping. 
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The datasets used in this study are observed in table 4.1. All the data was projected to 

NAD 1983 Oregon Statewide Lambert. A 10 m DEM was obtained from the point cloud 

using Quick Terrain Modeler software, which represented the best estimate of the terrain 

without sharp spikes due to the influence of the vegetation. A 1 m resolution CHM was 

also obtained using this software. The DEM was processed with a “fill” tool in ArcGIS to 

eliminate potential local peaks or sinks. 

 

Table 4.1 Data sources for the definition of hazard variables. 
Dataset Source Author Data Type Other Information 

Airborne 
LiDAR Point 

Cloud 

OpenTopography 
– Public Domain 

DOGAMI  Point Cloud 
(.las) 

Survey Date: 
03/15/2007 - 
09/03/2010 
Point Density: 8,34 
points per m2 

SLIDO 
Susceptibility 
Map 3.0 and 

Historic 
Landslides 

DOGAMI – 
Public Domain 

DOGAMI  Raster (.tiff) 
Vector, 
point (.shp) 

Update Date: February 
2016 
Resolution: 10 m 

Soil Types of 
Coos County, 

OR 

Web Soil Survey 
SSURGO (Soil 
Survey 
Geographic 
Database) – 
Public Domain

USDA, 
Natural 
Resources 
Conservation 
Services  

Vector, 
polygon 
(.shp) 

Publication Date: Sept, 
2015 

 

State of parent nodes 

SLIDO 

SLIDO is a susceptibility map developed by the Oregon Department of Geology and 

Mining Industries that discretizes the Oregon State in four main classes: low, moderate, 

high and very high. These maps were generated using a geologic map, historic landslide 
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inventories, and a slope map (Burns et al. 2016). Based on this information, they 

developed a ‘Landslide Density’ layer that was generated by computing the mean (dens) 

and standard deviation (dens) of the percentage of the landslide coverage area for each 

generalized geologic unit. They discretized the Landslide Density maps in three states 

according to the following statistical criteria: Low Density (< dens = 7%), Moderate 

Density (>7% and < dens + dens = 17%), and High Density: (>17%). Their method of 

defining the thresholds for this variable is not only based on statistical markers such as 

mean and standard deviation of their inventory, but are also consistent with other national 

thresholds considered in their literature review. Burns et al. (2016) also produced a ‘Slopes 

Prone to Landslides’ layer by computing the slope statistics such as mean (slope) and 

standard deviation (slope) within the landslide polygons in relation to the geologic units. 

The discretization of this layer was defined as: Low (slopes < slope - slope of slopes found 

within the landslides per geologic unit), Moderate (slopes > slope - slope and slopes < 

slope), and High (slopes ≥ slope). ‘Landslide Density” and ‘Slopes Prone to Landslides’ 

layers were combined (see Fig. 4.4) to define the susceptibility map as follows: Low 

(Landslide Density and Slopes Prone to Landslides low), Moderate (Landslide Density 

low or moderate and Slopes Prone to Landslides low or moderate), High (Landslide 

Density high with Slopes Prone to Landslides moderate or low, or Slopes Prone to 

Landslides high with Landslide Density moderate or low), and Very High (existing 

landslides). In the selected study area, it is observed that the SLIDO susceptibility hazard 

states are Moderate, High and Very High. 
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Fig. 4.4 SLIDO method for susceptibility mapping using “Landslide Density” and “Slope Prone 
to Landslide” maps. 
 

 

Physical Model 

A simplified infinite slope model was implemented for a prescribed landslide failure depth 

(H) of 1 m with a constant water depth of 0.5 m below surface. The equilibrium forces 

considered in this model are Weight (W), Shear Force (T), Normal Force (N), pore water 

pressure (u), and Seismic Force using a pseudo-static seismic coefficient (Kh*W) as 

illustrated in Fig. 4.5 (Briaud 2013). The slope angle was obtained from the DEM. Soil 

parameters such as unit weight and friction angle were estimated based on the soils unit 

map, and additional information provided by the SSURGO that include Atterberg limits 

and sieve analysis on representative samples of each soil unit. The analysis was developed 

considering normally consolidated cohesionless residual soils. A Factor of Safety (FS) 

was computed for each pixel of the DEM by calculating the ratio between the resistant 

and sliding shear stress. The threshold defining the ‘High’ hazard class was selected at the 
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limit state where FS≤1. The authors defined the inferior limit of the ‘Low’ hazard state 

under the assumption that the global stability of the slopes should have at least the same 

FS as a structure designed to retain it. A Geotechnical Design Manual (Oregon Department 

of Transportation 2015) developed by the Highway- Geo-Environmental Section of the 

State of Oregon recommends the use of the AASHTO LRFD Bridge Design Specifications 

(AASHTO 1998) as a reference, which suggests a minimum FS = 1.5 for the global 

stability of a critical support structure. Consequently, the physical model hazard was 

defined as: Low: FS ≥ 1.5, Moderate: 1<FS<1.5, and High: FS≤1.  

 

Fig. 4.5 Simplified Infinite Slope Model 
 

 

Vegetation Density 

The influence of the vegetation root system is known to provide additional strength to the 

soil, and to reduce the probability of failure of landslides (Miles and Swanson 1986, Rickli 

et al. 2001). This variable was obtained using a CHM derived from the LiDAR point cloud, 

which provides a surface of the top of the tree canopy without the influence of the terrain’s 

relief. The CHM was manipulated in ArcGIS to obtain an estimate of individual stems per 

area using local maximum heights that was later used to define the density of the trees. A 
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cumulative density function of the resulting density was plotted to extract the hazard 

thresholds for this variable: Low (< 33%), Moderate (>33% and < 67%), and High 

(>67%). 

 

Wetness Index 

This is a secondary terrain attribute that is defined as a steady state value to predict zones 

of saturation (Gorsevski et al. 2006) that can be interpreted as an index that reflects the 

likelihood of a pixel of capturing water due to the physiographical configuration of the 

terrain. Slope angle, flow direction and flow accumulation raster layers were obtained 

from the DEM. The index is computed using the specific catchment area (ݏܣ ൌ

ሾ݊݋݅ݐ݈ܽݑ݉ݑܿܿܣݓ݋݈ܨ௥௔௦௧௘௥ ൅ 1ሿ ∗  divided by the tangent of the slope angle (݁ݖ݅ݏ	݈݈݁ܿ

(Beven and Kirkby 1979). A cumulative density function of the resulting wetness index 

was plotted to extract the hazard thresholds for this variable: Low (< 33%), Moderate 

(>33% and < 67%), and High (>67%). Still, the riverbed pixels were manually modified 

to a low threat intensity to adjust the significance of this variable and its influence on the 

occurrence of landslides. 

The four spatial hazard variables are illustrated in Fig. 4.4.  
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Fig. 4.6 Threat intensity maps over Hillshade. 
 

 

Results and Analysis 

A preliminary set of results using 20 m grid size was used to identify the optimum plot 

size during the sampling process considering the directional spatial autocorrelation of the 

results. Fig. 4.7 illustrates the Pearson’s correlation coefficient obtained in a WE and NS 

direction of the preliminary results of risk index values. In this study, a plot radius of 20 

m was selected, which embodies a WE autocorrelation value of 0.91 and a NS 

autocorrelation value of 0.88.  
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Fig. 4.7 WE and NS spatial autocorrelation curves of preliminary risk index values 
 

 

The BN+GIS system produced a set of four maps that reflects the prognosis analysis (Fig. 

4.8) defined by “Probability of High Landslide Vulnerability”, “Probability of Moderate 

Landslide Vulnerability”, “Probability of Low Landslide Vulnerability” and by “Risk 

Index for Landslide”, as described in the BN model presented in Fig. 4.3. The vulnerability 

maps highlight the state of each probability level across the spatial domain, and for each 

pixel, the sum of each map values is equal to 1. The risk index map shows a strong 

influence of the vegetation density hazard variable since the zones defined in SLIDO and 

FS hazard maps are depicting almost a single hazard state, providing little variability to 

the results. The wetness index provides a set of finer polygon clusters with varying risk 
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index values within slope faces, accounting for a physiographical response to the 

capability of the terrain to capture water. 

 

Fig. 4.8 Prognostic maps of probability of landslide vulnerability, and risk index over hillshade. 
 

The infrastructure observed in this study area consists of rural roads that represent 

potential social, environmental and economic risks in the case of a triggered landslide. 

The location of 2,341 road points downloaded from the US Census Bureau (2013) were 

overlaid with the resulting risk index map in order to quantify the potential impact of a 

landslide on the present infrastructure to aid with a more effective decision making 

process. Fig. 4.9 (top right) shows the relative frequency plot of the points sampled across 

the existent roads, along with a fitted normal density function. The mean risk index value 

for these roads is 0.52 with a standard deviation of 0.13. These results are considerably 

less conservative than the SLIDO susceptibility and the map depicting the FS of an infinite 
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slope model used as hazard variables of the BN, due to the influence of the vegetation 

density and the wetness index effect. 

A validation analysis was performed by comparing the 110 historic landslides for 

depth of 1 m or less reported by DOGAMI’s database with the risk index value obtained 

during this prognosis analysis (see Fig. 4.9, left). The historic landslides present an 

average risk index of 0.66, a standard deviation of 0.12 and a bimodal frequency (see Fig. 

4.9, bottom right). The modes of these samples are located at Risk Index = 0.53 and Risk 

Index = 0.78. The proportion of the risk index value for these landslides is: 5% between 

0.25 and 0.5, 60% between 0.5 and 0.75 and 35% in the 0.75 and 1.0 range. Considering 

that the historic landslides are inventories of slopes that have already experienced 

deformation and find themselves in a post-failure equilibrium state, it is reasonable to infer 

that these show risk index values smaller than 1. Consequently, the BN+GIS risk 

predictions are expected to have values closer to 1.  

 

Fig. 4.9 Quantification of risk of landslides on existent roads and historic landslides. 
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The BN+GIS produced as well a set of maps that reflects the diagnostic analysis (Fig. 

4.10) where a prescribed condition of the probability of the three states of landslide 

sensibility was set as: High = 0.3, Moderate = 0.4, and Low = 0.3, which yields a Risk 

index of 0.5 (equation 4.3). Notice that this probability represents the  term in equation 

4.2. Since all four hazard variables are discretized in three classes, the results of the BN 

in diagnosis yielded 12 maps. The updated patterns observed on these maps are more 

sensitive to changes in the transition zones between hazard states such as high next to 

moderate, moderate next to low, and low next to high. This is due to the fact that a sample 

polygon with 100% of a specific hazard state will return the same probability on the 

diagnostic computation. In order to achieve the prescribed risk index of 0.5 across the 

complete study area it is necessary to implement the correspondent counter-measurements 

required to achieve the updated hazards state depicted by the diagnosis maps. For instance, 

the low vegetation density zones representing high updated hazard states can be reforested 

using species to strengthen the soils on those particular slopes.   

 

 



 

90 

 

 

Fig. 4.10 Diagnostic maps of updated probability of hazard levels for 1 m sliding mass. 
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Conclusions 

This study is a preliminary approach to map the hazard, the vulnerability and the risk based 

on a probabilistic approach capable of integrating different sources of information. This 

methodology can be updated as more LiDAR datasets are available for public domain, and 

later compared for analyzing land cover changes. The results of this analysis show that by 

integrating different approaches for landslide susceptibility, the BN+GIS tool is already 

capable of predicting the state of hazard, vulnerability and risk without training data. 

Future work will focus on the integration of historic landslides for training the conditional 

probability table to have a better estimate of the vulnerability. The validation analysis 

provided a quantification of the model’s accuracy, resulting on 95% of pre-existing 

landslides having a risk index larger than 0.5 with a mean of 0.66. Comparing the input 

maps with the risk index map it is observed that the integration of multiple hazard variables 

derived mostly from LiDAR data, reduces significantly the amount of high risk scenarios, 

showing a less conservative depiction of the risk. This allows for the narrowing of the 

spatial domain that needs to be treated, especially when contrasted with the existent 

infrastructure, which represents a more efficient and improved decision making process. 

The maps obtained during the diagnostic analysis portray the required initial conditions 

necessary to achieve the prescribed risk scenario of 0.5 in the whole study area (notice 

that other risk scenarios can be formulated). Therefore, the updated hazard maps allow for 

the identification of the changes that can to be made in order to obtain that specific risk 

index value. It is important to highlight that the decisions based on the diagnosis analysis 

is applicable for variables that measure a state that can be modified by human intervention. 
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In this case, the variable that better fits this condition is the vegetation density. In order to 

take actions to modify the physical initial conditions of the SLIDO susceptibility, the FS 

map, or the wetness index, is necessary to change the shape of the topography, which, 

although not realistic in a large scale, it is achievable for specific slopes or small sites. 

 

Disclosure 

This chapter is an updated version of a final draft proceedings article published by ASCE 

at the GeoRisk Conference, Denver, CO. on May 2017. The link to the bibliographic 

record of the published version in the ASCE Library or Civil Engineering Database is 

<https://doi.org/10.1061/9780784480724.011>.  
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CHAPTER V  

BAYESIAN MODEL CALIBRATION OF SUBMARINE 

LANDSLIDES 

 

Introduction 

Offshore integrated site characterization is conducted to plan and design for the 

installation of infrastructure such as wind farms, telecommunication cables, hydrocarbon 

pipelines, and oil and gas production infrastructure. Most of the geotechnical aspects 

considered for the development of an offshore project are related to the identification of 

potential hazards and the definition of soil properties to predict their behavior as it interacts 

with the installed infrastructure. Some of the challenges faced during an integrated site 

characterization include the understanding of the geological conditions and processes 

reigning the environment, the spatially variable stratigraphy and the heterogeneous nature 

of the soil properties in place. However, the financial cost required to complete surveying 

offshore campaigns force geoscientists and engineers to develop techniques that maximize 

the amount of inferences derived from the data that can be collected (Young et al. 2011).  

Masson et al. (2016) describes submarine landslides as part of the sediment transport 

mechanism of the continental shelf responsible for damages on offshore infrastructure. 

The occurrence of marine or inland landslides is frequently used to estimate the strength 

of the soils and to conduct back analysis to assess their physical properties (Gilbert et al. 

1998). However, as pointed out by Duncan (1992), the definition of the landslide failure 
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mechanism can be a challenging task, and relying solely on bathymetric data reduces the 

reliability on such predictions. The Bayesian inference for model calibration and back 

analysis of physical parameters is described in the literature as a suitable approach to 

maximize the inferences obtained from the available datasets by means of uncertainty 

quantification (Gilbert et al. 1998). Moreover, the Bayesian method allows to combine 

disparate sources of evidence such as available observations, model predictions and 

educated expert’s beliefs (Robert 2007; Ranalli et al. 2013).  

In this work, the Bayesian paradigm was applied to a simple physical model to predict 

the probability of failure of submarine landslides.  Bathymetric data, cone penetration tests 

(CPT), laboratory soil testing, and expert’s prior knowledge of geotechnical parameters 

were used as sources of evidence. The initial state of the submerged and saturated soil unit 

weight (ߛ௦௨௕,  pseudo-static seismic coefficient (݇) and slope ,(ܪ) ௦௔௧), thickness of sliceߛ

angle (ߙ) served as prior probabilities of an infinite slope model to achieve model 

predictions of probability of failure and their correspondent uncertainty. Previous research 

conducted by Das (2016) have used this methodology defining the typical behavior of 

these prior distributions using expert’s beliefs for mean, variance and shape of the prior 

distributions. Relying solely on bathymetric data and expert’s elicitation of information, 

Das’ findings comprise the suitability of the Bayesian framework to reduce the uncertainty 

of the estimated parameters and consequently, of the probability of failure. As a 

continuation of Das’ contributions, this work used informed priors based on bathymetric 

data (ߙ), CPT logs (ߛ௦௨௕,  for the selection of the ܪ ௦௔௧), and modeled values of ݇ andߛ
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prior distributions.  Furthermore, values of undrained shear strength (ܵ௨) obtained from 

the CPT logs were used to calibrate the model.  

This work was conducted with the purpose of fulfilling the following objectives: (1) 

extending the methodology discussed by Das (2016) to estimate the calibrated probability 

of failure of a submarine slope due to static loading conditions, (2) to study the effect of 

the sediment thickness on the results, (3) to estimate updated probability distributions of 

the physical parameters of the slope stability model, and (4) to quantify the uncertainty 

about prior and posterior estimations.  

Submarine landslides have been roughly categorized by Masson et al. (2016) 

according to four distinctive failure mechanisms: (1) slide of a coherent mass of sediment 

with distinctive boundaries, (2) debris flow of a cohesive material transported in a laminar 

flow, (3) debris avalanche of rock conglomerates, and (4) turbidity currents of sediment 

particles suspended in a turbulent flow. Slope failures occur due to an increase of loading 

forces, for a decrease of the resistance of the soil, or given a combination of those two 

scenarios (Rahman 1994). In marine environments, events such as seismic activity, 

sedimentary loading, excess pore water pressure, diapirism, tidal scour, currents, cyclic 

loading, sea level changes, among others, can trigger the occurrence of landslides 

(Rahman 1994; Masson et al. 2016). All these considerations must be carefully examined 

in every step of the design and development of offshore infrastructure, and it starts with 

an integrated geological, geophysical and geotechnical site characterization. This type of 

analysis is site-dependent, and it requires the collaboration of experts with multiple areas 

of expertise to produce a comprehensive geohazard and risk assessment. This work is 
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designed to contribute with a technique that can help to improve the reliability of the 

design parameters used for offshore infrastructure, given a limited amount of available 

information. 

 

Methodology 

Infinite Slope Model 

Based on Spencer’s limit-equilibrium analysis (Spencer 1967), this method constitutes the 

simplest approach to assess the stability of a slope assuming that the failure surface is 

parallel to the slope surface, and that the mobilized sediment is orders of magnitude thinner 

than the length of the slope. In other words, the infinite slope analysis assumes that the 

slope has a relative infinite length (Briaud 2013). The free body diagram illustrated in Fig. 

5.1 shows a schematic example of the load vectors applied to a volume of sediment such 

as horizontal pseudo-static seismic coefficient (݇), weight of the volume of soil (ܹ), and 

undrained shear strength (ܵݑ), along with the thickness of the estimated slip surface ܪ, 

the slope angle (ߙ), and the length of the sliding surface for the studied element (݈) with a 

top view length ܾ.  
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Fig. 5.1 Infinite slope model scheme. Modified from Spencer (1967). 
 

At a limit-equilibrium state the vectors ݇ and ܹ depict loading forces that contribute to 

the sliding of the sediment wedge, and are equivalent to the resistance provided by the 

vector ܵ ܵ This relationship can be expressed as .ݑ ௨ ∙ ݈ ൌ ܹᇱߙ݊݅ݏ ൅ ܹ where ,ߙݏ݋ܹܿ݇ ൌ

′ܹ and ,ܪ௦௔௧ܾߛ	 ൌ  ሻ itߙሺ	Substituting ݈ by ܾ/cos .(modified from Spencer 1967) ܪ௦௨௕ܾߛ	

is possible to estimate that the undrained shear strength required to achieve equilibrium 

state with the loading forces is ܵ௨ ൌ ܪ௦௨௕ߛ	 ቀsin ߙ cos ߙ ൅ ݇ ఊೞೌ೟
ఊೞೠ್

cosଶ  ቁ (Hanebergߙ

2012). Hence, the factor of safety (ܵܨ) is defined as the ratio between the resisting and the 

loading forces using equation 5.1 (Bishop 1955). 

ܵܨ										 ൌ 	
ݏ݁ܿݎ݋ܨ	݃݊݅ݐݏ݅ݏܴ݁
ݏ݁ܿݎ݋ܨ	݃݊݅݀ܽ݋ܮ

ൌ
ܵ௨

ሺsinܪ௦௨௕ߛ ߙ cos ߙ ൅ ݇
௦௔௧ߛ
௦௨௕ߛ

cosଶ ሻߙ
																					ሺ5.1ሻ 

The Safety Margin (ܵܯ ൌ ݏ݁ܿݎ݋ܨ	݃݊݅ݐݏ݅ݏܴ݁ െ  is regarded as the (ݏ݁ܿݎ݋ܨ	݃݊݅݀ܽ݋ܮ

threshold describing the amount of allowed increase of loading forces before failure occurs 

(Shooman 1968). Assuming that the parameters of this model are regarded as random 

variables, it is possible to describe the loading and resisting forces as probability density 

functions. Thus, the probability of failure is expressed as ܲሺ݂ሻ ൌ ܲሺܵܯ ൏ 0ሻ.  
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Bayesian Probabilistic Calibration 

The Bayesian inference is described as an inductive reasoning method based on Bayes’ 

rule (ሺܲሺܤ|ܣሻ ൌ ሺܣ|ܤሻܲሺܣሻ/ܲሺܤሻ) for updating the probabilistic state of random 

variables. Consider the parameter space  ൌ ሼߠଵ, ,ଶߠ … ,  ௡ሽ such that is representative ofߠ

a set of random parameters that allows a function ݃ሺθሻ to retrieve the best estimate of a 

studied phenomenon. The purpose of Bayesian inference consists on learning from  and 

quantifying the reduction of the uncertainty about its statistical properties (Hoff 2009). 

The probabilities of each element of the sample space (ܲሺߠଵሻ, ܲሺߠଶሻ, … , ܲሺߠ௡ሻ) are 

considered as prior distributions depicting the belief that they are representative of the 

true population. Let the quantity ݀ ௢௕௦ represent a set of samples derived from experimental 

observations of , and ݀௣௥௘ௗ represent the predictions of the forward model ݃. Using the 

Bayes’ rule, the posterior probability ߨሺߠ|݀௢௕௦ሻ can be expressed by equation 5.2 

assuming that the parameters are collectively exhaustive, where ߨሺߠሻ is depictive of the 

priors, and ݂ሺ݀௢௕௦|݃ሺߠሻሻ is called the likelihood function.  

௢௕௦ሻ݀|ߠሺߨ									 ൌ
݂ሺ݀௢௕௦|ߠሻߨሺߠሻ

׬ ݂ሺ݀௢௕௦|ߠሻߨሺߠሻ݀ߠ

ൌ
݂ሺ݀௢௕௦|݃ሺߠሻሻߨሺߠሻ

׬ ݂ሺ݀௢௕௦|݃ሺߠሻሻߨሺߠሻ݀ߠ

																				ሺ5.2ሻ 

The likelihood function is contrasting the model’s predictions with the experimental 

observations. Considering that both sources of evidence (݀௢௕௦, ݀௣௥௘ௗ) are subject to either 

epistemic and/or aleatoric uncertainties, the Bayesian probabilistic calibration uses a 

normally distributed likelihood function ܰሺ݀௣௥௘ௗ,  ௗ೚್ೞିௗ೛ೝ೐೏) to estimate the probabilityߪ

of the experimental observations to be true given the predictions of the model. 
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A systematic sampling mechanism such as the Markov Chain Monte Carlo (MCMC) 

algorithm is used to extract random samples from the probability distribution of the priors 

and to estimate the posterior distributions. A coefficient of variation (CoV) is used to 

control the step size of the parameters for each loop. However, to avoid the periodicity of 

the estimations with every iteration, the proposed methodology includes the use of the 

Metropolis-Hastings algorithm to test a value that is posing as the current state of evidence 

with a candidate value. The acceptance or rejection criteria is retrieved from equation 5.3. 

Let ݑ represent a random sample that ranges between 0 and 1. If ܣ ൒  the posterior of ,ݑ

the candidate vector of parameters is accepted and becomes the new current state of 

evidence, otherwise, the chain does not move and examines a new candidate (adapted from 

Hoff 2009). 

ܣ																																	 ൌ ݉݅݊ ൜1,
ሻ݁ݐሺܿܽ݊݀݅݀ܽݎ݋݅ݎ݁ݐݏ݋ܲ
ሻݐ݊݁ݎݎݑሺܿݎ݋݅ݎ݁ݐݏ݋ܲ

ൠ																																										ሺ5.3ሻ 

A vector with the accepted set of parameters is retrieved after the iterative process is 

finished. Cross plots of the number of iterations vs updated parameters are examined to 

ensure that the process has captured the best estimates and that the variance remains 

homogeneous. The iteration number at which the variance curve starts to show a 

homoscedastic behavior is denoted as the burn-in point, and serves to select the set of 

values of the output vector to discard (before burn-in point), and those used to define the 

posterior distributions of the analysis. The forward model (݃ሺߠሻ) is computed using the 

prior and the posterior state of evidence for comparison, and to determine the reduction of 
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uncertainty achieved after the model is calibrated. A flowchart illustrating this process is 

observed in Fig. 5.2.  

 

Fig. 5.2 Flowchart of Bayesian model calibration using a MCMC process 
 

In this study, the Bayesian probabilistic calibration method is used to obtain a posterior 

distribution of the parameters used on the infinite slope forward model to estimate the 

undrained shear strength (Su) of the soil. Hence, ߠ ൌ ሼ݄, ,ߙ ݇, ,௦௨௕ߛ  ௦௔௧ሽ is the set ofߛ

parameters to be estimated, and d௢௕௦ are the evidence of Su used to calibrate such 
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predictions. The computational implementation of the process described in Fig. 5.2 was 

conducted using a Matlab programming language. 

The results of the forward model using the prior and posterior state of evidence are 

considered to be representative of the expected value of the Su population. A set of random 

samples are extracted from both estimations, which serve as the mean of the modelled 

prior and posterior populations of the load using the standard deviation of the measured 

values of Su. In other words, the loading forces are simulated by the forward model of the 

prior and the posterior state of Su, and the resistant forces are represented by the 

population of laboratory tested Su values. Thus, these populations are used to compute the 

SM and the probability of failure of submarine landslides.  

 

Case Study 

The evidence used in this project consists on a dataset of high resolution bathymetry (3m) 

and 8 CPT logs (see Fig. 5.3-A). The study area occupies 784 km2 and is located in an 

offshore location under a water column that ranges approximately between 1,500 m and 

1,800 m deep. Features such as NS oriented submarine canyons, and ridges with a NW-

SE preferential orientation are observed in the area of interest. Other linear features are 

interpreted as slip faults oriented in a SW-NE direction, and thrust faults proximal to the 

observed ridges in a NW-SE orientation. Additionally, a total of 152 (Fig. 5.3-B) 

mobilized and accumulated sediments were interpreted as submarine landslides that have 

already surpassed the failure state. The observed displaced sediments are mostly of the 
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slide type (Masson et al. 2006) suggesting that the infinite slope model could be a suitable 

method for analyzing the failure mechanisms identified in the dataset.  

 

 

Fig. 5.3 (A) Bathymetry and CPT borehole locations. (B) Bathymetry, interpreted faults and 
catalogued landslides. 
 

The CPT logs used in this study reach up to 100 m depth that include modeled values of 

undrained shear strength (Su) obtained from the cone penetration resistance. The models 

displayed in these logs include the classical approach of empirical cone factor for clays 

Nkt = 15 and Nkt = 20 (Rémai 1998), and a method proposed by Quiros et al. (2000) with 

and without the use of a relationship between undrained shear strength and the pressure 

water content ratio, labeled as SPW and SP, respectively. The in-situ tests were conducted 

along with the use of fixed piston samplers equipped with 67 mm inner diameter liner used 

to obtain soil samples for laboratory testing. Tests to assess values of undrained shear 

strength (Su) such as torvane, miniature vane (ASTM D4648/D4648M − 16) and 
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unconsolidated undrained triaxial (ASTM D2850 − 15) are also reported in the CPT logs 

displayed in Fig. 5.4.  

 

 

Fig. 5.4 Modeled and measured values of Su (kPa) retrieved from CPT logs. 
 

The soil unit at the top of the surveyed area is consistently described as a very soft olive 

gray clay, frequently calcareous, with shell fragments, foraminifers, and pockets of 

organic matter. None of the boreholes reached the base of this unit, suggesting that its 

thickness is larger than 100m. Yet, the logs indicate that the clay’s strength transitions 

from soft to stiff as the depth increases. Occasional lenses of stratified sand or silt were 

detected between 9 and 13 m of depth. Classification laboratory tests reported in the CPT 
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logs include submerged soil unit weight (ASTM D7263 − 09), water content (ASTM 

D4959 − 16), and Atterberg limits (ASTM D4318 − 17), as seen in table 5.1. All samples 

present a liquid limit larger than 50% and are positioned above the “A” line of the 

plasticity chart (see Fig. 5.5), meaning that are classified as high plasticity clays (CH).   

 

Table 5.1 Classification laboratory tests. 

Log 
Depth 

(m) 
PL 
(%) 

LL 
(%)  (%)

sub 
(kN/m3) 

Log
Depth 

(m) 
PL 
(%) 

LL 
(%)  (%) 

sub 
(kN/m3) 

1 

1 22 84 75 5

5 

0.75 22 60 80 6

2.75 22 82 70 -- 1.75 24 76 80 4.6

3.25 30 105 98 4 2 -- -- -- 5.5

4.5 25 92 90 4.5 2.75 24 80 80 5.2

2 

0.75 20 55 60 5 3.5 34 134 104 3

1.75 -- -- 75 4.25 4.5 29 100 86 3.4

2 24 75 75 4.5 4.75 -- -- -- 4

2.25 -- -- 75 4.75

6 

0.75 22 79 79 1.2

2.75 24 80 75 3.5 1 -- -- 73 2.2

3.5 26 105 90 3.5 1.75 28 84 117 1.7

4.5 -- -- 80 4 3 28 100 112 2.3

4.75 26 100 95 -- 4 22 69 77 3.75

5 -- -- -- 4.5 5 25 92 79 3.8

3 

0.75 20 58 58 5

7 

0.75 26 77 72 4.6
1.75 25 76 84 4.5 1 26 72 76 5.2
2.75 25 80 82 4 2 -- -- -- 5

3.5 27 88 88 4.25 3 28 128 118 3.1

4.5 -- -- -- 3.75

8 

0.75 22 64 61 6

4.75 27 100 95 4.75 1 -- -- -- 5.7

4 

0.75 20 56 63 5 2 -- -- -- 1.8

2 26 86 80 4.4 3 24 76 76 6

2.75 23 80 76 4.8 4 -- -- -- 7.2

3.75 23 80 76 4.8 4.25 -- -- -- 5

4.75 -- -- -- 5.2 5 24 97 92 4

5 23 86 76 5.4   
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Fig. 5.5 High plasticity clay samples on plasticity chart. 
 

Experimental Design 

To estimate the updated geotechnical parameters involved in the infinite slope model and 

the associated probability of failure through the Bayesian paradigm, the model was tested 

using two conditions: (1) limit state using a FS = 1, and (2) considering the FS as a random 

variable (ߤ ൌ 3, ߪ ൌ 1). With the purpose of quantifying the reduction of the uncertainty 

on the results given the amount of evidence presented to the model, the quantity of 

observations (݀௢௕௦) retrieved from the available Su dataset was also tested using 5 and 20 

samples. Ultimately, the dependency of the variables on changes of depth was tested 

considering the first 5 m of sediment as part of a single population, and other 5 cases with 

data retrieved from different ranges of depth, as described in Fig. 5.6. A total of 24 

experiments were conducted. 
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Fig. 5.6 Experimental Design. 
 

Definition of Prior Probability Distributions 

Height of Sediment (ܪ) 

The occurrence of landslides in the study area offers an important source of information 

that can be mined for making predictions about future mass movements. It is often 

necessary to estimate the volume of the displaced material during a landslide, which 

requires to evaluate the pre and post deformation surfaces of a slope. Völker’s (2010) 

describes a GIS tool that uses the bathymetric information adjacent to observed landslides 

to model the geometry of the slope prior to failure. The catalogued observed landslides 

served as a population for the definition of failure mechanisms and geometrical parameters 

such as height of mobilized sediment (ܪ) and slope angle (). However, eleven out of the 
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152 landslides were selected as suitable samples given that they satisfy the following 

criteria: (1) have a well delimited perimeter boundary that allows for sampling the non-

deformed bathymetry around the deformed zone, (2) the type of landslide is representative 

of the typical failure mechanism in the study area, (3) the landslide is not located in a 

submarine canyon, and (4) the ridge of the slope has a minimum curvature at least 200 m 

around the deformation zone. The position of these 11 samples is illustrated in Fig. 5.7. 

The position of these sampled landslides yielded a spatial distribution that is representative 

of the area of interest. 

 

Fig. 5.7 Landslide samples used for geometric analysis of deformation patterns. 
 

The methodology used to define the prior probability distribution of the sediment height 

consisted on the spatial analysis of the sample landslides and their surroundings, as seen 

in Fig.5.8. This method consists on the modeling of pre-deformation surfaces that were 

compared with the current bathymetric configuration to compute mobilized and 
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accumulated volumes (Völker 2010). Using ArcGIS, buffers of 100 m and 500 m from the 

polygons that define the boundaries of the sample landslides were used to extract the 

bathymetric information. These individual areas were posteriorly exported to a point 

format feature class. The points located outside the perimeter of the displaced sediment 

mass was used as training samples for a set of interpolated surfaces obtained from the 

ArcGIS toolbox to model the bathymetric conditions before the failure occurred. The 

interpolation models used in this stage were:  

 Inverse Distance Weighted (IDW): is a deterministic method that produces values 

according to a weighted average of values proportional to the distance between them 

(Mitchell 1999). 

 Kriging: is a method like IDW where the weights are not only based on the distance 

between the observations, but also on their overall arrangement using their 

autocorrelation structure and semivariograms (Mitchell 1999). 

 Bayesian Kriging: is a kriging interpolation that considers the semivariogram as a 

random variable, where the best estimate is determined by the use of a Bayesian 

paradigm (Mitchell 1999). 

 Spline: is a model that fits a mathematical function to a set of nearby samples that 

passes through the input points while minimizing the total curvature of the surface 

(Mitchell 1999). 

 Nearest Neighbor: is a method that measures the distance between each feature 

centroid and its nearest neighbor's centroid location. It then averages all these nearest 

neighbor distances (Mitchell 1999). 
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 Trend: is an interpolation method that uses a global polynomial interpolation that 

fits a smooth surface defined by a mathematical function (a polynomial) to the input 

sample points. A maximum of 12 bends (twelfth order) are allowed in the ArcGIS 

toolbox (Mitchell 1999). 

 

Fig. 5.8 Methodological sequence to obtain sediment height (ܪ) at failure. 
 

The six listed interpolation models used, including 9 variants of the “trend” method, 

yielded a total of 14 models for each of the eleven selected landslide samples. The 

sampling area serving as buffer distance from the perimeter of the landslide was also 

tested. The results using a buffer distance of 100 m were not significantly different than 

the results obtained using 500 m. This observation allows to infer that the quantity of 

samples on interpolation methods that touch the samples have little influence on the 

interpolated results, therefore, 100 m was used. A representative example of the results 

utilized to select the most suitable interpolation method to model the pre-deformation 

surface of the landslides is observed in Fig. 5.9.  

 

 



 

110 

 

 

Fig. 5.9 Modeled interpolation surfaces for representative landslide. 
 

From the top, front and side views shown in Fig. 5.9 it is observed that the IDW, Kriging 

and Bayesian Kriging methods interpolated points with respect to the closest value, 

creating an un-natural steep surface in the center of the interpolation zone that represents 

the most unlikely original configuration of the bathymetry before any displacement 

occurred. Spline returned wobbling features in the interpolation zone that respond to small 

irregular patterns in the sampling ring, which also produces an unlikely estimation of the 

original conditions of the slope. The nearest neighbor shows results that represent a 

qualitatively better approximation to the pre-slide surface since it can be observed a gap 

of volume on top of the slope (model on top of bathymetry suggesting a mobilized 
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material), and a small accretion of material at the toe of the landslide (bathymetry on top 

of model depicting accumulation of sediment). It is also observed that the model is 

touching the training points that are in the outer ring of the landslide. The trend 

interpolation series provide smooth surfaces without sharp changes, but does not touch the 

training points selected in the outside ring of the landslide. In all the front and side views 

of the trend series it is noticed that the model is beneath the bathymetry surface at the 

crown of the landslide, above the bathymetry at the middle, and beneath again at the toe. 

This behavior suggests an alternation pattern of (1) accumulation (top of landslide), (2) 

mobilization (middle of landslide) and (3) accumulation (toe of landslide), which is not 

consistent with the physical mechanism of landslides. Therefore, Nearest Neighbor 

interpolation method was selected to compute the heights of the sliding mass of sediment.  

As mentioned before, it is assumed that the depth of landslide failure can be captured 

by the difference between the original slope configuration (modeled surface) and the post-

failure surface (bathymetry) in the mobilized zone, where the volume of sediment is 

absent. A map algebra tool from ArcGIS was used to obtain this difference between the 

two raster surfaces, and a point feature class was used to extract the differential values, 

considered to contain the height of the landslide sediment mass. Fig. 5.10-A shows a 

relative frequency histogram of 60,559 points within the 11 sampled landslides retrieved 

using Natural Neighbor interpolation where the model rests above the bathymetry. The 

exponential shape of the relative histogram is naturally expected, since the depth distance 

between the model and the bathymetry is zero at the perimeter of the landslide, and it 

increases towards the center of the landslide, creating a higher frequency of zero height 
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differences in the samples. However, since the variable ܪ is modeled with the purpose of 

studying landslides, the probability of having a failure with zero depth should be zero. 

Given this constrain, Wang and Huang (2013) and Das (2016), used a lognormal 

distribution to describe the behavior of this variable. Hence, a lognormal probability 

distribution was selected to describe the estimated ܪ values, with a mean of 1.47 m, a 

standard deviation of 1.39 m, and 98.6% of values less or equal to 5 m. An empirical 

cumulative density function was also used to compare the behavior of the data and the 

lognormal model (Fig. 5.10-B). 

 

 

Fig. 5.10 (A) Relative frequency of H, lognormal PDF, (B) empirical and lognormal CDF of  H. 
 

For the section of the experimental design where the probability of failure is tested for 

different depths, the statistical descriptors of the variable ܪ were adjusted using the 

observed mean and standard deviation for each depth interval, as seen in table 5.2.  
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Table 5.2 First order statistics of ܪ for ranges of depth. 
Depth (m) Mean (m) Standard deviation (m) 

0 – 1 0.35 0.29 

1 – 2 1.49 0.09 

2 – 3 2.46 0.29 

3 – 4  3.45 0.30 

4 – 5  4.40 0.07 

 

Slope Angle (ߙ) 

The slope of the modelled surfaces of the selected eleven landslides was used to define 

the probability distribution of the slope angle. Fig. 5.11-A shows the relative frequency of 

the data, which is a unimodal asymmetric distribution skewed to the right, with 97% of 

slope angles between 0 and 10 degrees. The mean of the slope samples is 4.23° with a 

variance of 6.58°. A lognormal probability distribution was used to describe this dataset 

given the restriction that this parameter requires probability values to be larger than zero. 

This assumption is consistent with previously implemented approaches (Wang and Huang 

2013; Das 2016) for assessing the prior distribution of the slope angle ߙ. The lognormal 

CDF shows to be closely describing the shape of the empirical data (Fig. 5.11-B). 

 

Fig. 5.11 (A) Relative frequency of α, lognormal PDF, (B) empirical and lognormal CDF of  α. 
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Pseudo-static seismic coefficient (݇) 

The pseudo-static seismic coefficient was firstly proposed by Terzaghi in 1950 as a 

constant and permanent horizontal force in the failure direction to be included in the limit-

equilibrium slope stability analysis due to a potential seismic event (Jibson 2001). He 

defined ݇ as a horizontal seismic ground acceleration divided by earth’s gravity 

acceleration, ݃. Hynes-Griffin and Franklin (1984) suggested a conservative adaptation to 

Terzaghi’s method, expressed as ݇ ൌ 0.5 ൈ  where PGA is the peak ground ,݃/ܣܩܲ

acceleration. A more comprehensive method is described by Briaud (2013), which is an 

adaptation of a technique proposed by Kavazanjian et al. (2011). This method takes under 

consideration the type of soil, height of landslide and PGA, resulting in a more site-

oriented assessment of the seismic coefficient to use for slope stability analysis. Regional 

information about short and 1 second period spectral acceleration (Ss, S1), and peak ground 

accelerations reported in the area were collected from sources such as the Global Seismic 

Hazard Assessment Program (GSHAP) (Danciu and Giardini 2015), USGS-US 

Department of the Interior (Jenkins et al. 2010), and USGS (2016) Geologic Hazards 

Science Center (2016). The gathered information is summarized in table 5.3. 
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Table 5.3 Peak ground acceleration (PCA), short period spectral acceleration (Ss), and one 
second period spectral acceleration (Sl) data. 

Name and Title 
PGA 
(m/s2) 

PGA (g) Ss (g) S1 (g) 

Jenkins et al. 2010. USGS-Seismicity of 
the Earth 1900–2010 

1.6 0.16     

Danciu and Giardini 2015. Global 
Seismic Hazard Assessment Program-

GSHAP legacy 
2       

USGS 2016. Worldwide Seismic 
Design Tool (Beta) 

    1 0.47 
    0.95 0.38 
    0.86 0.35 
    1.44 0.68 
    1.37 0.55 

 

To obtain the estimated value of ݇ using the method described by Kavazanjian et al. 

(2011), the site was classified as type E due to (1) the high plasticity of the soils, (2) the 

water content is larger than 40%, and (3) the soil display values of undrained shear strength 

lower than 25 kPa. The pseudo-static seismic coefficient can then be expressed as ݇ ൌ

0.5ሾ1 ൅ 0.01݄ ቀ0.5 ிೡ	ௌభ
ிುಸಲൈ௉ீ஺

െ 1ቁሿ	ܨ௉ீ஺ ൈ  where ݄ is the height of the slope, ଵܵ is ,ܣܩܲ

the 1 second period spectral acceleration, PGA is the peak ground acceleration, and 

,௩ܨ  ௉ீ஺ are site factors (Kavazanjian et al. 2011). The mean values of PGA and ଵܵ, alongܨ

with the curves shown in Fig. 5.12 were used to calculate the site factors ܨ௉ீ஺ and ܨ௩. 
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Fig. 5.12 Site factors used on peak ground acceleration estimates for site type E. Adapted from 
Kavazanjian et al. 2011. 
 

The values of ݇ summarized in table 5.4 display the estimates of the pseudo-static 

coefficient using the three methods described above. The Kavazanjian method was 

computed using a variety of slope height ݄ values for every 20 cm up to 5 meters. 

Table 5.4 Prior estimated values of ݇. 
Method ࢎ (m) ࢑ 

Terzaghi (1950) NA 0.184 

Hynes-Griffin and Franklin 

(1984) 
NA 0.092 

Kavazanjian et al. 2011 

0-1 0.1599* 

1-2 0.1613* 

2-3 0.1626* 

3-4 0.1639* 

4-5 0.1653* 

*Averaged values within the interval ݄. 

 

These values provide a small set of evidence with mean value 0.16 and a standard 

deviation of 0.014. A lognormal distribution was used to model the prior distribution of 

this variable, as seen in Fig. 5.13.  
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Fig. 5.13 (A) Relative frequency of ݇, lognormal PDF, (B) empirical and lognormal CDF of  ݇. 
 

Unit Weight (ߛ௦௨௕,  (௦௔௧ߛ

Values of submerged unit weight (γୱ୳ୠ) are reported on the CPT logs at various depths. 

The samples used to define the prior distribution of this variable were collected from the 

top 5 m of sediment given that ~99% of the modeled failure depths occurred in such 

interval. A total of 47 observations were retrieved from the available dataset. The first 

approach to assess the behavior of this variable consisted on the examination of its 

dependency to the depth through the cross plot observed in Fig. 5.14. The response of the 

variable does not only lacks a trend with respect to the depth of the sediment, but also 

lacks a distinctive signature for different boreholes, suggesting that it is reasonable to 

assume that all the samples can be considered as part of the same population.  
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Fig. 5.14 Submerged unit weight (ߛ௦௨௕) with respect to depth retrieved from CPT logs 
 

The prior distribution of γୱ୳ୠ is illustrated in Fig. 5.15, where the relative frequency bar 

plot shows an asymmetric unimodal behavior with a mean value of 4.33 kN/m3 and a 

standard deviation of 1.20 kN/m3. A lognormal distribution was used to describe this 

variable given that the unit weight is always a positive value (Wang and Huang 2013; Das 

2016).  

 

Fig. 5.15 (A) Relative frequency of ߛ௦௨௕, lognormal PDF, (B) empirical and lognormal CDF of  
 .௦௨௕ߛ
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Since the submerged unit weight variable can be expressed as γୱ୳ୠ ൌ γୱୟ୲ െ γ୵, where 

γ୵ is the unit weight of water (Terzagui and Peck 1967), the prior probability distribution 

of the variable γୱୟ୲ was computed based on the available values of γୱ୳ୠ. The relative 

frequency and lognormal PDF describing this variable are the same as γୱ୳ୠ, but shifted 

9.8 units to the right, with mean 14.14 kN/m3, and standard deviation 1.20 kN/m3 (see Fig. 

5.16). 

 

Fig. 5.16 (A) Relative frequency of γୱୟ୲, lognormal PDF, (B) empirical and lognormal CDF of  
γୱୟ୲. 
 

Observations of Su 

A total of 72 laboratory results of the undrained shear strength were also retrieved from 

the first 5 m of the soil profile surveyed during the CPT testing, with mean 8.98 kPa and 

a variance of 12.86 kPa. A lognormal distribution was used to model the behavior of this 

variable given its non-negative nature (Griffiths and Fenton 2001; Wang and Huang 2013; 

Jiang et al. 2014, Das 2016). Under the experimental design’s assumption that all samples 

belong to one population, the relative frequency, PDF, and CDF plots observed in Fig. 

5.17 were used. 
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Fig. 5.17 (A) Relative frequency of one population of Su, lognormal PDF, (B) empirical and 
lognormal CDF of one population of Su. 
 

However, the qualitative description of the soil properties, the modeled Su curves 

observed in Fig. 5.4, and the laboratory test results suggest that the undrained shear 

strength of the surveyed soils increases with depth. Fig. 5.18 illustrates the effect of the 

vertical stress on the Su variable as the modes of the relative frequency and lognormal 

PDFs shift towards stronger resistance values as depth increases. 

 

 

Fig. 5.18 (A) Relative frequency of 5 populations of Su, lognormal PDF, (B) empirical and 
lognormal CDF of 5 populations of Su. 
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The parameters used to implement the Bayesian model calibration for 5 populations of Su 

are summarized in table 5.5.  

Table 5.5 First order statistics of Su at varying depths. 
Depth (m) Mean (kPa) Standard Deviation (kPa) 

0 – 1  6.81 1.69 

1 – 2  7.06 2.07 

2 – 3  9.46 3.30 

3 – 4  10.81 3.96 

4 – 5  11.27 4.10 

 

Results 

One Population 0 to 5 m 

A total of 300,000 iterations were required to conduct the Bayesian model calibration at 

the limit state condition (FS→LS), and 600,000 using the FS as a random variable 

(FS→RV). A CoV of 0.3 was used in both experiments, with 5 and 20 Su samples as 

observed in Fig. 5.19. The standard deviation of the 5 and 20 random samples is 3.06kPa 

and 3.15kPa, respectively. 
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Fig. 5.19 Sampling of measured Su values. (A) 5 ݀௢௕௦ and (B) 20 ݀௢௕௦. 
 

FS at Limit State (LS) 

As seen in Fig. 5.20, all the parameters of the infinite slope model reach uniform mean 

and variance values after 200,000 iterations (burn-in point). The proportion of accepted 

candidates was 20% and 13% for 5 and 20 samples, respectively.  
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Fig. 5.20 Convergence plots of parameters for a FS at LS between 0 and 5 m depth. 
 

The forward model using the prior set of parameters and the posterior estimates after the 

model calibration are compared with the experimental observations in Fig. 5.21. As 

aforementioned, these results are representative of the expected value of the physical 
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parameter Su estimated in the infinite slope model, and were used to model the prior and 

posterior populations of the forward model. The parameters using the initial state of 

evidence return lower values of undrained shear strength, while the results after the model 

calibration provide values closer to the observed experimental data retrieved from the 

laboratory tests. The mean Su sampled from the prior forward model is 3.8 kPa, while the 

posterior results have mean values of 6.7 kPa (5 samples) and 8.93 kPa (20 samples). 

Considering that the experimental observations yielded a mean value of 8.98 kPa, it is 

observed that the results obtained using 20 samples provide estimates closer to ݀௢௕௦	than 

the results obtained using 5 samples. Similarly, the standard deviation of the results from 

the calibrated model are 1.39 kPa and 0.71 kPa for 5 and 20 samples, respectively.  

 

 

Fig. 5.21 Forward modeling and experimental observations of Su for a FS at limit state between 
0 and 5 m depth. 
 

The resulting SM was modeled using a normal distribution to illustrate the behavior of the 

population before and after the Bayesian model calibration (see Fig. 5.22). In both tested 

cases using 5 and 20 samples, the posterior SM curve is shifted towards lower domains 
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yielding higher probabilities of failure than the estimations of the prior forward model 

(ܲ൫݂݈ܽ݅݁ݎݑ௣௥௜௢௥൯ ൌ 0.1ሻ. The results using 5 samples provide a posterior probability of 

failure of 0.33, while the estimations obtained using 20 samples return a probability of 

failure of 0.54.  

 

Fig. 5.22 PDF and CDF curves of SM from 0 to 5 m depth and a FS at limit state between 0 and 
5 m depth. 
 

Table 5.6 summarizes the first order statistics of the different states of evidence of Su. In 

both tested number of extracted observations, the results show a significant reduction of 

the uncertainty of the expected value of the modelled physical parameter with respect to 

the prior state of evidence without the Bayesian model calibration. The use of 20 samples 

produced an additional uncertainty reduction of almost half of the standard deviation of 
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the forward model of posterior Su obtained from taking 5 training points. This trend is not 

necessarily shown by the SM curves, given that they are extracted from the modelled 

population with the same standard deviation of the observations of Su.  

 

Table 5.6 States of evidence of Su from 0 to 5 m depth and a FS at limit state. 

Depth 
(m) 

State of Evidence 
5 Points 20 Points 

Mean 
Standard 
Deviation

Mean 
Standard 
Deviation

0-5 

Observations of Su 8.98 3.59 8.98 3.59 
Forward model of prior Su  3.80 3.66 3.80 3.69 

Population prior Su  3.80 3.59 3.80 3.59 
Forward model of posterior Su 6.70 1.39 8.93 0.71 

Population posterior Su  6.71 3.59 8.93 3.59 
Prior SM 5.86 5.76 5.87 5.79 

Posterior SM 1.93 4.85 -0.60 5.30 
 

The prior and posterior state of evidence of the physical parameters used on the inverse 

model can be seen in Fig. 5.23 to 5.27. In these figures, it is observed that the most 

sensitive parameters to the Bayesian model calibration are saturated unit weight and 

sediment height, since their posterior state of evidence is shifted with respect to their prior 

distributions. Both of these updated parameters show higher values than initially 

estimated, given the condition of a factor of safety at limit state. The results are 

summarized in table 5.7.  

 

 

 

 



 

127 

 

 

Fig. 5.23 PDF and CDF curves of submerged unit weight from 0 to 5 m depth and a FS at limit 
state. 
 

 

Fig. 5.24 PDF and CDF curves of saturated unit weight from 0 to 5 m depth and a FS at limit 
state. 
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Fig. 5.25 PDF and CDF curves of sediment heights from 0 to 5 m depth and a FS at limit state. 
 

 

Fig. 5.26 PDF and CDF curves of slope angle from 0 to 5 m depth and a FS at limit state. 
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Fig. 5.27 PDF and CDF curves of seismic coefficient from 0 to 5 m depth and a FS at limit state. 
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Table 5.7 States of evidence of model parameters for 5 and 20 samples using one population and 
a FS at limit state. 

Parameter # Samples Evidence Mean Standard Deviation 

sub 
5 points 

Prior 4.335 1.198 
Posterior 4.527 1.259 

20 Points 
Prior 4.329 1.195 

Posterior 4.586 1.279 

sat 
5 points 

Prior 14.142 1.198 
Posterior 14.334 1.259 

20 Points 
Prior 14.136 1.195 

Posterior 14.393 1.279 

H 
5 points 

Prior 1.476 1.393 
Posterior 2.584 0.638 

20 Points 
Prior 1.474 1.379 

Posterior 3.415 0.592 


5 points 

Prior 4.226 2.568 
Posterior 4.301 2.453 

20 Points 
Prior 4.235 2.577 

Posterior 4.475 2.788 

k 
5 points 

Prior 0.161 0.015 
Posterior 0.162 0.015 

20 Points 
Prior 0.161 0.014 

Posterior 0.163 0.015 
 

FS as a Random Variable (RV) 

The experiment considering the FS as a random variable was implemented using 800,000 

iterations and a CoV of 0.3, resulting in 9% of accepted candidates using 5 samples, and 

5% for 20 samples. In Fig. 5.28 is observed that the samples reach a homoscedastic state 

after 700,000 iterations.  
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Fig. 5.28 Convergence plots of physical parameters for a FS as a random variable between 0 and 
5 m depth. 
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The model calibration for this experiment shows that allowing the FS to behave as a 

random variable contributes with a substantial decrease of certainty on the prior’s expected 

value and population of the undrained shear strength (see Fig. 5.29). However, this 

behavior is not detected on the posterior state of evidence, where it is observed that the 

inferences are approaching the experimental observations of Su. The standard deviation 

of the posterior forward model is significantly reduced when 20 samples instead of 5 are 

used for the calibration, while its posterior population nearly merges with the population 

of observed Su values.  

 

Fig. 5.29 Forward modeling and experimental observations of Su for a FS as a random variable 
between 0 and 5 m depth. 
 

The increased variance of the expected value of Su before the model calibration returns a 

set of SM parameters with high levels of uncertainty with respect to the results obtained 

with the posterior forward model. The prior SM curves present outliers that skew the 

distribution towards large negative values, and its effect can be observed in the comparison 

between the empirical CPT curves and the normal distribution plots in Fig. 5.30. The 
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resulting probability of failure after the model calibration returns 0.37 and 0.55 for 5 and 

20 samples, respectively.  

 

Fig. 5.30 PDF and CDF curves of SM from 0 to 5 m depth and a FS as a random variable 
between 0 and 5 m depth. 
 

The contrasting behavior of uncertainty of the priors and posterior estimates are 

summarized in Table 5.8. 
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Table 5.8 States of evidence of Su from 0 to 5 m depth and a FS at limit state. 

Depth 
(m) 

State of Evidence 
5 Points 20 Points 

Mean 
Standard 
Deviation

Mean 
Standard 
Deviation

0-5 

Observations of Su 8.98 3.59 8.98 3.59 

Forward model of prior Su  11.37 12.17 11.40 12.24 

Population prior Su  11.35 3.59 11.39 3.59 

Forward model of posterior Su 7.12 1.35 9.02 0.72 

Population posterior Su  7.11 3.59 9.02 3.59 

Prior SM -0.12 15.28 -0.14 15.34 

Posterior SM 1.46 4.94 -0.69 5.33 
 

The initial and updated states of the model’s parameters are illustrated in Fig. 5.31 to 5.36, 

where it is noticed that the most sensitive variable to the model calibration is the sediment 

height, and to a lower degree, the saturated unit weight. The changes of the variable ܪ 

includes an updated mean of 1.04 m (5 samples) and 1.25 m (20 samples), which is lower 

than the prior’s estimation of 1.47 m, and an important reduction of the uncertainty of the 

variable, as seen in table 5.9. The random variable FS shows an updated condition without 

changes of mean, but with a slight reduction of its variance. The remaining variables show 

a minimum effect of the model calibration on their mean and standard deviation.  
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Fig. 5.31 PDF and CDF curves of submerged unit weight from 0 to 5 m depth and a FS as a 
random variable. 
 

 

Fig. 5.32 PDF and CDF curves of saturated unit weight from 0 to 5 m depth and a FS as a 
random variable. 
 



 

136 

 

 

Fig. 5.33 PDF and CDF curves of sediment height from 0 to 5 m depth and a FS as a random 
variable. 
 

 

Fig. 5.34 PDF and CDF curves of slope angle from 0 to 5 m depth and a FS as a random variable 
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Fig. 5.35 PDF and CDF curves of seismic coefficient from 0 to 5 m depth and a FS as a random 
variable. 
 

 

Fig. 5.36 PDF and CDF curves of factor of safety from 0 to 5 m dept. 
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Table 5.9. States of evidence of model parameters for 5 and 20 samples using one 

population and a FS as a random variable. 

 

Table 5.9 States of evidence of model parameters for 5 and 20 samples using one population and 
a FS as a random variable. 

Parameter # Samples Evidence Mean Standard Deviation 

sub 
5 points 

Prior 4.331 1.196 
Posterior 4.303 1.146 

20 Points 
Prior 4.332 1.195 

Posterior 4.377 1.205 

sat 
5 points 

Prior 14.138 1.196 
Posterior 14.110 1.146 

20 Points 
Prior 14.139 1.195 

Posterior 14.184 1.205 

H 
5 points 

Prior 1.474 1.381 
Posterior 1.038 0.382 

20 Points 
Prior 1.474 1.390 

Posterior 1.270 0.426 


5 points 

Prior 4.226 2.572 
Posterior 4.168 2.347 

20 Points 
Prior 4.225 2.556 

Posterior 4.280 2.642 

k 
5 points 

Prior 0.161 0.015 
Posterior 0.161 0.015 

20 Points 
Prior 0.161 0.015 

Posterior 0.161 0.015 

FS 
5 points 

Prior 2.998 0.998 
Posterior 2.948 0.886 

20 Points 
Prior 2.999 1.000 

Posterior 3.039 0.887 
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Five Populations 

The Bayesian model calibration was implemented at 5 ranges of depth considering the 

changes of the observed values of Su, using 5 and 20 samples from the prior distribution 

of the model’s parameters, and a CoV of 0.3. The standard deviation of the observations 

extracted from the Su distribution at each depth used for testing the FS at limit state and 

as a random variable are presented in table 5.10. The results of the posterior forward model 

using 20 samples consistently returned lower levels of uncertainty with respect to the 

results obtained using 5 samples in all the experiments conducted in this study. Hereafter, 

the results displayed in this section are referring to the experiment using 20 samples.  

 

Table 5.10 Standard deviation of samples extracted from 5 populations of Su. 

Depth (m) # Samples Standard deviation ࢙࢈࢕ࢊ 

0-1 
5 1.6108 
20 1.5305 

1-2 
5 1.9113 
20 1.8618 

2-3 
5 2.9198 
20 2.9303 

3-4 
5 3.4618 
20 3.508 

4-5 
5 3.587 
20 3.6293 
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FS at Limit State (LS) 

A total of 600,000 iterations were required to reach homoscedasticity, and a burn-in point 

of 400,000 was used to extract the updated state of evidence of the studied parameters for 

a FS =1. The forward model of the prior and posterior inferences of Su for each studied 

discrete range of depth (Fig. 5.37) present a systematic uncertainty rise of the model 

predictions and of the modelled populations as the depth increases.  The expected value 

of all the predictions also show an increase of the shear resistance with the depth 

increments. Yet, all the predictions of the posterior forward model stand out as the best 

estimates targeting the mean of the undrained shear strength, while the curves of the prior 

state of evidence flatten with larger depths. The modelled population of Su after the 

Bayesian model calibration overlaps the population of observed Su at all examined depth 

ranges.  
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Fig. 5.37 Forward modeling and experimental observations of Su for a FS at LS for 5 
populations of depth. 
 

As the resistance and the load increases, it is observed that the SM shifts towards more 

conservative scenarios where the probability of failure increases with depth. The SM 

curves depicted in Fig. 5.38 also show a decrease of the uncertainty on the prior and 

posterior estimations. The mode of the SM after the model calibration is consistently close 

to zero, while the prior SM presents a behavior that decreases as depth increases. The 

probabilities of failure returned by this set of experiments are: 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.11, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.48 between 0 and 1 m depth. 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.25, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.51 between 1 and 2 m depth. 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.30, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.52 between 2 and 3 m depth. 
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 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.37, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.53 between 3 and 4 m depth. 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.43, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.55 between 4 and 5 m depth. 

 

 

Fig. 5.38 PDF and CDF curves of SM for a FS at LS for 5 populations of depth 
 

A summary of these results are shown in table 5.11. 
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Table 5.11 States of evidence of Su for a FS at limit state for 5 populations of depth. 

Depth (m) State of Evidence 
20 Points 

Mean  Standard Deviation 

0-1 

Observations of Su 6.81 1.69 

Forward model of prior Su  0.86 0.75 

Population prior Su  0.86 1.69 

Forward model of posterior Su  6.53 0.34 

Population posterior Su  6.53 1.69 

Prior SM 6.12 1.89 

Posterior SM 0.09 2.40 

1-2 

Observations of Su 7.06 2.07 

Forward model of prior Su  3.66 3.61 

Population prior Su  3.65 2.07 

Forward model of posterior Su  6.87 0.41 

Population posterior Su  6.87 2.07 

Prior SM 4.17 4.56 

Posterior SM -0.08 2.98 

2-3 

Observations of Su 9.46 3.30 

Forward model of prior Su  6.16 1.49 

Population prior Su  6.16 3.30 

Forward model of posterior Su  9.16 0.64 

Population posterior Su  9.16 3.30 

Prior SM 3.12 4.32 

Posterior SM -0.22 4.77 

3-4 

Observations of Su 10.81 3.96 

Forward model of prior Su  8.66 1.84 

Population prior Su  8.66 3.96 

Forward model of posterior Su  10.58 0.75 

Population posterior Su  10.58 3.96 

Prior SM 1.80 5.59 

Posterior SM -0.43 5.78 

4-5 

Observations of Su 11.27 4.10 

Forward model of prior Su  11.11 2.43 

Population prior Su  11.11 4.10 

Forward model of posterior Su  11.31 0.77 

Population posterior Su  11.31 4.10 

Prior SM -0.28 6.51 

Posterior SM -0.74 6.05 
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The set of parameters retrieved during the Bayesian model inversion show consistently 

higher expected values than the parameters predicted by the priors. Fig. 5.39 to 5.43 

display the variability of these parameters with respect to depth, where it is observed that 

the priors show no sensitivity to the depth changes, while the updated distributions adjust 

to the evidence of depth and Su. This calibration process makes the predictions of the 

Bayesian inversion to match the prior state of evidence at larger depths. It is also noted 

that the uncertainty of the updated parameters consistently decreases with higher depths. 

 

Fig. 5.39 PDF and CDF curves of ߛ௦௨௕	for a FS at LS for 5 populations of depth 
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Fig. 5.40 PDF and CDF curves of ߛ௦௔௧	for a FS at LS for 5 populations of depth. 
 

 

Fig. 5.41 PDF and CDF curves of ܪ	for a FS at LS for 5 populations of depth. 
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Fig. 5.42 PDF and CDF curves of α for a FS at LS for 5 populations of depth. 
 

 

 

Fig. 5.43 PDF and CDF curves of k for a FS at LS for 5 populations of depth. 
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Tables 5.12 and 5.13 display a summary of the mean and standard deviation of the 

estimated parameters at different depth intervals. 

Table 5.12 States of evidence of ߛ௦௨௕,  for 20 samples using five populations and a FS ܪ ௦௔௧ andߛ
as at limit state. 

Parameter Depth (m) Evidence Mean Standard Deviation 

sub 

0-1 
Prior 4.330 1.196 

Posterior 7.298 1.942 

1-2 
Prior 4.332 1.192 

Posterior 5.154 1.371 

2-3 
Prior 4.332 1.199 

Posterior 4.693 1.230 

3-4 
Prior 4.332 1.195 

Posterior 4.336 1.105 

4-5 
Prior 4.332 1.198 

Posterior 3.995 0.981 

sat 

0-1 
Prior 14.137 1.196 

Posterior 17.105 1.942 

1-2 
Prior 14.139 1.192 

Posterior 14.961 1.371 

2-3 
Prior 14.139 1.199 

Posterior 14.500 1.230 

3-4 
Prior 14.139 1.195 

Posterior 14.143 1.105 

4-5 
Prior 14.139 1.198 

Posterior 13.802 0.981 

H 

0-1 
Prior 0.347 0.288 

Posterior 0.906 0.075 

1-2 
Prior 1.494 0.295 

Posterior 1.655 0.190 

2-3 
Prior 2.463 0.291 

Posterior 2.525 0.222 

3-4 
Prior 3.451 0.299 

Posterior 3.463 0.230 

4-5 
Prior 4.399 0.274 

Posterior 4.394 0.218 
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Table 5.13 States of evidence of α and k for 20 samples using five populations and a FS as at 
limit state. 

Parameter Depth (m) Evidence Mean 
Standard 
Deviation 



0-1 
Prior 4.227 2.569 

Posterior 8.717 5.752 

1-2 
Prior 4.224 2.571 

Posterior 5.252 3.219 

2-3 
Prior 4.231 2.572 

Posterior 4.715 2.894 

3-4 
Prior 4.225 2.557 

Posterior 4.264 2.533 

4-5 
Prior 4.223 2.565 

Posterior 3.775 2.043 

k 

0-1 
Prior 0.154 0.029 

Posterior 0.220 0.042 

1-2 
Prior 0.155 0.029 

Posterior 0.182 0.030 

2-3 
Prior 0.156 0.029 

Posterior 0.170 0.027 

3-4 
Prior 0.156 0.026 

Posterior 0.158 0.022 

4-5 
Prior 0.157 0.030 

Posterior 0.145 0.021 
 

FS as a Random Variable (RV) 

This experiment was conducted using 1,000,000 iterations and a CoV of 0.2. The selected 

burn-in point was 900,000. The results obtained from the forward model show that the 

certainty level achieved by the posterior state of evidence at all depths is significantly 

larger than the results retrieved from the priors, and that their mean trend increases with 

depth. The observations of Su are closely replicated by the modelled population of the 

posterior forward model. The distribution of the prior populations are shown to be highly 
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sensitive to the increase of uncertainty of the Su values derived from laboratory 

experiments. These remarks are illustrated in Fig. 5.44. 

 

Fig. 5.44 Forward modeling and experimental observations of Su for a FS as a RV for 5 
populations of depth and 20 samples. 
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The increased standard deviation of the estimated load populations is also captured by the 

SM curves shown in Fig. 5.45. In this figure, it is noted that the prior estimate of the 

forward model produces lower values of SM as the depth increases, while the posterior 

remains with a mode steadily close to zero. The probabilities of failure retrieved by these 

experiments are: 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.00, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.50 between 0 and 1 m depth. 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.00, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.51 between 1 and 2 m depth. 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.01, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.51 between 2 and 3 m depth. 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.02, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.51 between 3 and 4 m depth. 

 ܲ൫ ௣݂௥௜௢௥൯ ൌ 0.05, and ܲ൫ ௣݂௢௦௧௘௥௜௢௥൯ ൌ 0.52 between 4 and 5 m depth. 

 

Fig. 5.45 PDF and CDF curves of SM for a FS as a RV for 5 populations of depth using 20 
samples. 
 

The results obtained by the forward Bayesian model calibration are shown in Table 5.14. 
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Table 5.14 States of evidence of Su for a FS as a RV for 5 populations of depth. 

Depth 
(m) 

State of Evidence 
5 Points 20 Points 

Mean Standard 
Deviation Mean Standard 

Deviation

0-1 

Observations of Su 6.81 1.69 6.81 1.69 
Forward model of prior Su  0.32 0.31 0.32 0.32 

Population prior Su  0.32 1.69 0.32 1.69 
Forward model of posterior Su  4.53 0.80 6.62 0.35 

Population posterior Su  4.53 1.69 6.62 1.69 
Prior SM 6.56 1.72 6.56 1.73 

Posterior SM 2.21 2.21 -0.01 2.42 

1-2 

Observations of Su 7.06 2.07 7.06 2.07 
Forward model of prior Su  1.38 0.62 1.38 0.62 

Population prior Su  1.38 2.07 1.38 2.07 
Forward model of posterior Su  4.71 0.89 6.86 0.42 

Population posterior Su  4.71 2.07 6.86 2.07 
Prior SM 5.76 2.22 5.76 2.22 

Posterior SM 2.24 2.70 -0.08 2.98 

2-3 

Observations of Su 9.46 3.30 9.46 3.30 
Forward model of prior Su  2.28 0.96 2.28 0.95 

Population prior Su  2.28 3.30 2.28 3.30 
Forward model of posterior Su  5.76 1.31 9.11 0.67 

Population posterior Su  5.76 3.30 9.11 3.30 
Prior SM 7.25 3.57 7.25 3.57 

Posterior SM 3.53 4.17 -0.16 4.77 

3-4 

Observations of Su 10.81 3.96 10.81 3.96 
Forward model of prior Su  3.21 1.29 3.21 1.28 

Population prior Su  3.21 3.96 3.21 3.96 
Forward model of posterior Su  10.20 1.35 10.38 0.79 

Population posterior Su  10.20 3.96 10.38 3.96 
Prior SM 7.65 4.40 7.65 4.41 

Posterior SM 0.03 5.80 -0.21 5.74 

4-5 

Observations of Su 11.27 4.10 11.27 4.10 
Forward model of prior Su  4.12 1.67 4.12 1.66 

Population prior Su  4.11 4.10 4.12 4.10 
Forward model of posterior Su  7.60 1.53 10.93 0.80 

Population posterior Su  7.60 4.10 10.93 4.10 
Prior SM 7.23 4.77 7.23 4.79 

Posterior SM 3.34 5.31 -0.33 5.96 
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The results of the inverse modelling of the studied physical parameters with a FS set as a 

random variable are illustrated in Fig. 5.46 to 5.51.  In these figures it is observed that the 

domain of the  updated parameters shift from higher to lower values, and gain certainty as 

the sediment height increases. The FS random variable is among the most sensitive 

variables to the model inversion, shifting from values strictly larger than 1.5 at the top 

interval of sediment to a likelihood of approximately 2.3% below 1. The quantitative 

estimators of these results are summarized in tables 5.15 and 5.16. 

 

Fig. 5.46 PDF and CDF curves of ߛ௦௨௕	for a FS as a RV for 5 populations of depth using 20 
samples. 
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Fig. 5.47 PDF and CDF curves of ߛ௦௔௧ for a FS as a RV for 5 populations of depth using 20 
samples. 
 

 

Fig. 5.48 PDF and CDF curves of ܪ	for a FS as a RV for 5 populations of depth using 20 
samples. 
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Fig. 5.49 PDF and CDF curves of ߙ	for a FS as a RV for 5 populations of depth using 20 
samples. 
 

 

Fig. 5.50 PDF and CDF curves of ݇	for a FS as a RV for 5 populations of depth using 20 
samples. 
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Fig. 5.51 PDF and CDF curves of FS for 5 populations of depth using 20 samples. 
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Table 5.15 States of evidence of ߛ௦௨௕,  for 20 samples using five populations and a FS ܪ ௦௔௧ andߛ
as a RV. 

Parameter Depth (m) Evidence Mean Standard Deviation 

sub 

0-1 
Prior 4.334 1.198 

Posterior 4.643 1.260 

1-2 
Prior 4.333 1.198 

Posterior 4.095 1.068 

2-3 
Prior 4.332 1.195 

Posterior 3.924 1.021 

3-4 
Prior 4.333 1.198 

Posterior 3.781 1.004 

4-5 
Prior 4.331 1.197 

Posterior 3.629 0.889 

sat 

0-1 
Prior 14.141 1.198 

Posterior 14.450 1.260 

1-2 
Prior 14.140 1.198 

Posterior 13.902 1.068 

2-3 
Prior 14.139 1.195 

Posterior 13.731 1.021 

3-4 
Prior 14.140 1.198 

Posterior 13.588 1.004 

4-5 
Prior 14.138 1.197 

Posterior 13.436 0.889 

H 

0-1 
Prior 0.347 0.289 

Posterior 0.671 0.164 

1-2 
Prior 1.494 0.295 

Posterior 1.400 0.208 

2-3 
Prior 2.463 0.291 

Posterior 2.389 0.213 

3-4 
Prior 3.451 0.299 

Posterior 3.380 0.220 

4-5 
Prior 4.399 0.273 

Posterior 4.353 0.209 
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Table 5.16 States of evidence of ߙ, ݇ and FS for 20 samples using five populations and a FS as a 
RV. 

Parameter Depth (m) Evidence Mean Standard Deviation 



0-1 
Prior 4.222 2.565 

Posterior 4.835 2.964 

1-2 
Prior 4.224 2.560 

Posterior 4.034 2.535 

2-3 
Prior 4.228 2.567 

Posterior 3.471 1.797 

3-4 
Prior 4.225 2.560 

Posterior 3.520 1.918 

4-5 
Prior 4.223 2.562 

Posterior 3.283 1.736 

k 

0-1 
Prior 0.154 0.029 

Posterior 0.166 0.029 

1-2 
Prior 0.155 0.029 

Posterior 0.145 0.024 

2-3 
Prior 0.156 0.029 

Posterior 0.138 0.023 

3-4 
Prior 0.156 0.026 

Posterior 0.138 0.021 

4-5 
Prior 0.157 0.030 

Posterior 0.128 0.021 

FS 

0-1 
Prior 3.000 1.002 

Posterior 4.008 1.140 

1-2 
Prior 3.002 1.002 

Posterior 2.352 0.492 

2-3 
Prior 3.001 1.000 

Posterior 1.981 0.372 

3-4 
Prior 2.999 0.998 

Posterior 1.624 0.280 

4-5 
Prior 3.000 0.999 

Posterior 1.449 0.259 
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Analysis 

The use of lognormal distributions to model the behavior of the prior probability 

distributions of the physical parameters used in the slope stability analysis offered an 

acceptable description of their strictly positive domain, and of their lack of symmetry with 

respect to their mean value. However, the frequentist estimate of the modelled ܪ presented 

the largest differences with respect to the lognormal probability distribution fit, providing 

an estimate with the largest amount of uncertainty. Since this parameter was assessed 

using the differential between the bathymetry and the nearest neighbor interpolation 

method, this approach is capturing the depth at which displacement most frequently 

occurs. However, the conception of the infinite slope model does not account for the 

sediment wedge’s boundaries, and addresses an estimate of the depth of failure as a planar 

surface. The method of slices, which is a slightly more sophisticated commonly used 

approach to study landslides stability, takes under consideration the wedge ends of the 

sliding mass, and the slices where ܪ tends to zero are the sections that contribute the least 

to the global failure mechanism. Considering these observations, the estimation of failure 

depths close to zero is the least likely scenario for a submarine landslide to occur when an 

infinite slope model is used. Hence, the use of the lognormal distribution to describe the 

prior behavior of this variable is considered an assertive approach to counteract the 

exponential trend of the observations. 

The Bayesian model calibration conducted in this study is capable to accomplish two 

sets of results: (1) a forward model to estimate loading values of Su, SM and probability 

of failure, and (2) an inverse model yielding an updated state of the set of parameters ߠ 
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that fulfill a predefined condition of FS, and the observed values of the resistance. 

Comparing these calibrated results with the prior state of knowledge allows to draw 

conclusions about the strengths and limitations of each modeling approach. For instance, 

the capability of the Bayesian model calibration to reduce the uncertainty about the 

expected values of Su during the forward model (with 5 or 20 samples) consistently stands 

out compared with the prior’s predictions. However, the calibrated results are strongly 

influenced by ݀௢௕௦ which means that it is simulating the expected value of the resisting 

forces. Additionally, since the population of both forward models (prior and posterior) are 

modelled using the standard deviation of ݀௢௕௦, it is systematically observed that the 

modelled posterior population overlaps the observed Su population. Hence, the Bayesian 

forward model implemented in this study constantly predicts an expected value of the SM 

= 0 and a probability of failure close to 0.5. These results, although are not representative 

of the current state of the stability of the landslides, they are signaling that the calibration 

was achieved. The use of a FS at limit state or as a random variable has no effect on this 

observed behavior, since the posterior predictions are calibrated with respect to the same 

set of observations.  

These results are accomplished by the tests conducted using 20 samples, and not with 

5 samples. The posterior probability of failure using 5 samples returns an average of 0.3, 

and does not reach the anticipated value of 0.5 (e.g. see Fig. 5.22 and 5.30). Despite the 

fact that in some cases the level of uncertainty of ݀௢௕௦ for 5 samples is lower than for 20 

samples (see table 5.10), the prediction of the expected value of the posterior forward 

model using 20 samples have lower standard deviations than the results obtained using 5 
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samples for all studied cases. These observations lead to the interpretation that 20 samples 

are the appropriate amount of physical observations of Su required to minimize the amount 

of uncertainty from the modelled results.  

Assuming that the prior and posterior modelled populations of Su have the same 

standard deviation of the observations is not necessarily accurate. Yet, this approach is 

considered by the authors of this work as the most appropriate alternative given that those 

samples represent the only observed available evidence of the undrained shear strength.  

The SM predicted by the prior forward model is clearly adapting to the state of evidence 

provided by the changes of depth when 5 separate populations are tested. The prior 

forward model predicts higher probabilities of failure as depth increases, but at a cost of a 

significant rise of the uncertainty. These high levels of uncertainty are being influenced 

by the increased standard deviation of the ݀௢௕௦ at larger sediment heights. This trend is 

largely accentuated when a FS as a random variable is used. For these experiments, the 

confidence of the estimated SM is additionally attenuated by the contribution of the FS’s 

uncertainty.  

The results of the inverse problem are considered to be the most important contribution 

of the Bayesian model calibration approach proposed in this work. The updated set of 

parameters are interpreted as the physical conditions required to achieve the prescribed 

condition set upon the FS, given the observed evidence of Su. The results using one 

population (0 to 5 m of depth) and a FS at limit state show that the sediment height and 

the unit weight are most sensitive parameters to the calibration. The model predicts that 

the equilibrium state of the studied landslides is more likely to occur at 3.4 m of depth and 



 

161 

 

with slightly larger unit weights than suggested by the prior evidence. The prior 

distribution selected to model the FS returns a domain that is strictly larger than 1 (ߤ ൌ

3, ߪ ൌ 1), which theoretically, guarantees that the resistance is larger than the loads. 

Therefore, when a FS as a random variable is used, the prediction of the updated 1.3) ܪ 

m) is interpreted as the depth at which the FS is more likely to have a mean value of 3.  

The results of the inverse model in the experiment using 5 populations allow to observe 

more significant changes on the prior and updated distributions of the studied parameters. 

Using a FS=1, the model is returning the conditions required by the parameters to reach 

the limit state at each depth range. At all depths, it is observed that all the updated 

parameters present higher values than the prior estimations, and this difference is reduced 

as the sediment height increases. For instance, the observed resistance between 0 and 1 m 

is 6.81 kPa, and the Su load predicted by the prior estimator is 0.86 kPa. In order to reach 

the equilibrium state at a depth between 0 and 1m, the updated ߛ௦௨௕, ,௦௔௧ߛ  and ݇ should ,ߙ

be higher than predicted by the prior, since they contribute to the loading forces required 

to match the resistance at such depth. According to the experiments using FS at limit state, 

it is interpreted that it is more likely that the load and the resistance reach equilibrium 

between 4 and 5 m of depth, given that the prior and updated estimates tend to overlap.  

The use of FS as a random variable returns an updated distribution of the FS that increases 

with larger depth. It is observed that the overall behavior of the results obtained from the 

forward and inverse modelling using a FS as a random variable are noticeably more 

variable than the results obtained using the FS at limit state.  

 



 

162 

 

Conclusions 

The Bayesian model calibration conducted on an infinite slope model to study submarine 

landslides consisted on the use of observed evidence of undrained shear strength to update 

the state of knowledge of the model’s parameters. This slope stability model was selected 

as a simple approach to study the contributions of the Bayesian paradigm to improve the 

quality and the quantity of inferences derived from a limited amount of available data. 

Prior probability distributions of  ߛ௦௨௕, ,௦௔௧ߛ ,ߙ  and ݇ were used to predict the SM and ,ܪ

the probability of failure of the slopes in the selected study area, while the SM retrieved 

by the posterior forward model was used to monitor that the results were calibrated. From 

the analysis of the number of samples required to achieve the best estimates, it is 

concluded that 5 samples are not enough evidence to complete the model calibration, 

which was achieved using 20 samples.  

The updated estimations retrieved from the inverse model are considered to be a 

comprehensive assessment of the state of the parameters necessary to reach the prescribed 

conditions of FS given the available experimental observations of Su. The inferences 

derived from this type of analysis are heavily sensitive to the assumptions made about the 

FS. The experimental design utilized in this study sets the FS to be larger than or equal to 

one, which brings the necessity to highlight that the prior and posterior estimates are 

designed to respond under conservative circumstances. However, if the modeler selects 

any other value of FS, the forward and inverse prediction would respond accordingly. 

Therefore, the proposed methodology can be applied to test different desired scenarios to 

improve the estimations of the physical parameters to be used for the design of offshore 
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infrastructures. Nevertheless, if this work is replicated to minimize the uncertainty of the 

estimations, it is recommended to use a constant FS, or a random variable with a smaller 

standard deviation than the value used in these experiments.  

The implementation of this methodology permitted to observe the sequential change 

of the parameters as the depth of the sediment increases. The use of the proposed model 

calibration methodology allowed to estimate the most likely depth at which the loading 

and the resistant forces are at equilibrium, which is an inference that the prior state of 

evidence was not able to capture. It was also found that as the updated estimations of the 

parameters ߠ reach the depth at which the prescribed condition of FS is reached, the 

uncertainty of the predictions decreases with respect to the prior estimations. All these 

remarks lead to conclude that the Bayesian model calibration can be successfully 

implemented to increase the quantity of inferences and the confidence on the estimations 

using limited amounts of evidence.  

Future work to enhance the applicability of this method might include the modeling of 

individual landslides under different bathymetric conditions, along with the modeling of 

areas where no deformation is observed. This method could be used to map the updated 

estimations of the physical parameters and improve the decision-making process for 

pipeline routing or for the installation of any other type of infrastructure.  
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CHAPTER VI 

CONCLUSIONS 

Three different applications of the Bayesian paradigm were examined in this work, 

showing that the conditional probabilistic modeling is a versatile and valuable 

methodology to make predictions and to reduce the uncertainty. A simple conceptual 

Bayesian network within an environmental risk assessment framework was coupled with 

GIS to make predictions in a spatial domain. The set of random variables used in this 

model were designed to depict a state of hazard from a discrete number of threat intensity 

levels. The conditional probability of the consequences given the state of the hazard was 

considered as a vulnerability measurement. The join state of hazard and vulnerability 

allowed to assess a risk index defined as a symbolic quantification of the desirability of 

the consequences if a triggering event occurs. In chapter II, the spatial variability of the 

environmental risk upon aquifers, surface water bodies, ecoregions and land use/land 

cover was mapped across the Barnett Shale Play, given a potential accidental failure of 

the existent or projected oil and/or gas infrastructure. 

The same principle was implemented in the study case described in chapter III, and it 

was used to predict the state of risk of slope failure in a selected area of the Oregon Coast 

Range. In this case, it was emphasized the capability of BNs to integrate disparate model 

predictions in a joint state of evidence used to retrieve an inclusive assessment of the risk 

upon the existent infrastructure in the study area. The BN+GIS methodology illustrated 

through these applications proved to be a practical approach for spatial data synthesis, and 
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demonstrated to provide substantial contributions to improve the decision-making 

process. Moreover, as the availability of GIS and remote sensing datasets become more 

frequent, accurate, and precise, it is expected that the inferences derived from the use of 

the BN+GIS tool become more significant and reliable. 

The implementation of the forward model as described above, allowed to evaluate the 

prior state of threat intensity evidence to retrieve a posteriori assessment of the risk in a 

prognostic type of reasoning. This type of modeling can be applied during the early stages 

of a project development to design the necessary counter-measurements and reduce the 

vulnerability given the predicted potential consequences. Furthermore, the BN+GIS 

capability to perform an inverse type of modelling or diagnosis, allowed to study a 

mechanism that can be used for policy-making. The selection of a specific value of risk 

permitted to update the current state of evidence to a conjectural scenario that would be 

conditioned to a desired outcome. More specifically, the diagnostic tool described in this 

work allowed to map the threat intensity conditions required to achieve a prescribed value 

of risk. A potential application of this tool consists on identifying the most suitable areas 

to install monitoring stations to keep track of the potential hazards, and/or to design 

maintenance campaigns to reduce the vulnerability in the most sensitive regions. 

The parametrical sensitivity analysis conducted in chapter III examined the effect of 

the spatial sampling methodology on the resulting maps. It was concluded that the 

optimum sample size and interval is strongly dependent of the joint state of evidence 

displayed by the prognostic risk maps. Results with a fine resolution required to sample at 

small intervals, and returned a slightly broader range of risk values, but at the cost of larger 
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computational times. It was also concluded that the selection of an appropriate sample 

frequency and buffer radius can be reasonably estimated through the computation of the 

spatial autocorrelation structure of the risk maps. The diagnostic message propagated to 

the top of the model to update the state of the hazard resulted to have less impact on 

spatially clustered variables than on those displaying a spatially disperse behavior.  

The implementation of the Bayesian paradigm as part of a random process for 

continuous variables illustrated another application of conditional probabilities to improve 

the decision making process. Chapter V explored the use of forward and inverse modeling 

of failure mechanisms on submarine landslides using bathymetric and CPT data to 

calibrate the model predictions with the observations. It was concluded that the proposed 

methodology provide valuable information about the number of samples required to 

reduce the uncertainty about the estimated parameters, which can be used to plan further 

surveying efforts and the amount of resources necessary to acquire further data. The use 

of a fixed or variable factor of safety permitted to identify the most likely height of 

sediment at which failure occurs and the physical parameters of the sediments at such 

depth. These results included not only the expected value of such parameters, but also a 

quantification of their associated uncertainty that can also maximize the amount of 

inferences derived from the Bayesian model calibration process. 
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