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ABSTRACT 

 

The Concept of Virtual Arrays in Seismic Data Acquisition. (August 2012) 

Ibrahim Abdulaziz I Alhukail, B.S., University of Tulsa; 

M.S., King Fahd University of Petroleum and Mineral 

Chair of Advisory Committee: Dr. Luc T. Ikelle 

 

  

We are presenting a new way of improving seismic-array responses.  By analyzing 

the relationship between the covariance matrix forms from the real sensors of seismic arrays 

and the fourth-order crosscumulants from the same sensors, we find that artificial sensors 

can be constructed from the real sensors.  We have called these artificial sensors virtual 

sensors and the combination of real and virtual sensors a virtual seismic array.  For 

example, we can construct from an equally weighted linear array of five sensors, a weighted 

virtual array of nine sensors.  Basically, the virtual sensors allow us to introduce new 

sensors in the seismic arrays as well as new weightings of the existing real sensors. 

The key assumption behind this approach is that seismic data are considered nonGaussian; 

hence the fourth-order crosscumulants of the real sensor responses are nonzero. 
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CHAPTER I 

INTRODUCTION 

The goal of petroleum seismology is to image the subsurface geology for oil and 

gas exploration and production.  Petroleum seismology has two components: (1) seismic 

data acquisition, which aims to produce an earth response from manmade wave sources 

and (2) imaging of the recorded data, which aims to produce a model of the subsurface 

geology.  The focus of this thesis is on seismic data acquisition. 

In seismic data acquisition, receivers are used to record the earth response.  In 

practice, a receiver is an array of sensors whose number can vary between 6 and 24.  So, 

seismic responses are collected at each sensor of the array and then summed to produce 

the seismic response associated with one receiver (or seismic trace).  This summation is 

aimed to improve the signal-to-noise ratio (Ikelle and Amundsen, 2005).  Our objective 

in this thesis is to develop a concept that may further improve the signal-to-noise ratio of 

the array responses, reduce the number of sensors used in a seismic array or both, by 

constructing additional artificial sensors from the actual sensors (real sensors).  We have 

called these artificial sensors “virtual sensors.”  Moreover, we have called the 

combination of the real and virtual sensors a “virtual seismic array”. 

The basic idea behind the concept of a virtual seismic array, which will be described in 

 

___________ 
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this thesis, is that seismic data, like many real-life signals and processes, are non-

Gaussian rather than Gaussian.  In other words, the analyses of seismic responses in this 

thesis will not be limited to the classical second-order statistics tools like covariances.  

We will also consider higher-order statistics tools like crosscumulants and 

autocumulants.  In this thesis, we will carry out analyses of array responses based on 

fourth-order statistics.  By comparing the current analyses of array responses based on 

second-order statistics with new analyses based on fourth-order statistics, we will reveal 

the construction of the virtual sensors from the real sensors. 

The next step in my research is to numerically evaluate the concept of virtual 

seismic arrays.  I decided to use the finite-difference modeling tool, which is the most 

accurate way to generate seismic data (Ikelle and Amundsen, 2005).  The finite-

difference modeling tool allows us to model diffraction, reflection, multiple diffractions 

and reflections at the free surface and in the subsurface as well as surface waves, 

including groundroll, airwaves, etc.  In our group, we have a finite-difference modeling 

code, which works in the time-space (T-X) domain.  This code is based on a technique 

known as the staggered-grid finite-difference, initially developed by Raul Madariaga for 

modeling dynamic earthquake rapture, then Virieux used it for modeling seismic wave 

propagation due to a point source (Madariaga, 1976; Virieux, 1986).  However, this code 

approximates spatial derivative by a fourth-order difference operator, instead of a 

second-order difference operator, as in the case for Madariaga and Virieux.  

Approximating spatial derivative by a fourth-order difference operator provides more 

accuracy, efficiency and requires less computer memory than the second-order 
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differencing (Levander, 1988).  Previous theses in our group have demonstrated the 

effectiveness of this code in simulating seismic data (Singh, 2005; Wilson, 2002).  

However, there is one significant difference between data that I need to simulate in order 

to evaluate virtual seismic arrays and the ones simulated before.  I need to simulate data 

at the array level instead of the receiver level.  This requirement implies that the spacing 

between receivers is no longer 12.5 or 25 meters, as in previous simulations; rather it is 

on the order of 1 meter or less.  To illustrate the effects of generating seismic data at the 

array level on other finite-difference parameters imposed when the staggered-grid finite-

difference is used, I will consider the following example.  Suppose, for example, that we 

have a typical geology model with velocities ranging between 200     and 5000     

and a maximum frequency of 60     The staggered-grid finite-difference criteria for 

selecting the time interval between snapshots,    , and the grid spacing of the geology, 

  , (assuming square-gridding of the geology), are given by two formulas.  The first one 

is the grid-dispersion formula, which aims to reduce velocity dispersion that results 

when truncating the Taylor series that are used for approximating the spatial derivatives.  

The condition for avoiding the grid dispersion is related to the number of grid points per 

wavelength.  It requires     
    

      
 , where      is the minimum velocity traveling 

within the medium and      is the maximum source frequency (Ikelle and Amundsen, 

2005).  The second formula is referred to as the stability condition.  The staggered-grid 

finite-difference equations characterizing the wave motion are computed recursively, 

timestep by timestep. For example, computing the components of the particle velocity at 
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timestep    
 

 
  and at timestep       for the stress components requires the previous 

timestep    
 

 
  of the components of particle velocity and the timestep (   of the stress 

compoents.  However, this recursive computation (timestep by timestep) can be a source 

of numerical instability.  In fact, errors introduced by the numerical solution can 

propagate and be magnified during the timestepping of the finite-difference scheme, 

causing significant instabilities during the computation and artifacts in the resulting data.  

Such an instability is very unlikely to occur if the ratio between the temporal and spatial 

sampling interval is constrained as follows:         
  

    
, where      is the 

maximum wave speed in the 2D model (Ikelle and Amundsen, 2005).  These constrains 

make the staggered finite-difference not the best modeling tool for simulating seismic 

data at the array level, when the receiver spacing is on the order of 1 meter or less.  

Therefore, the objective of Chapter III of this thesis is to investigate an alternative finite-

difference technique that can be used to simulate seismic data with receiver spacing on 

the order of 1 meter or less and can be less sensitive to the grid spacing requirement.  

Such alternative finite-difference modeling tool could be the wavenumber-based finite 

difference known also as Pseudo-spectral method (Kosloff et al., 1984; Kosloff and 

Baysal, 1982).  This finite-difference technique uses a spatial numerical grid to compute 

the spatial derivatives using the fast Fourier transform instead of the fourth-order 

differencing as is the case for the staggered-grid finite-difference.  While time 

derivatives are still approximated by second-order differencing, just as in the case of the 

staggered-grid finite-difference.  Thus, this may make this finite-difference modeling 



 

 

 

5 

tool less sensitive to the grid dispersion imposed when the staggered-grid finite-

difference is used.  Therefore, maybe more suitable for modeling seismic data at the 

array level where spacing among sensors is on the order of one meter or less. 

The remaining of this thesis is organized into three chapters.  In Chapter II, I will 

derive the virtual seismic array concept and show, for various E&P array configurations, 

how the locations of virtual sensors can be predicted.  To further my study of virtual 

array so that it can, one day, be used in practice, I need to construct appropriate synthetic 

data.  In Chapter III, I describe possible choices of numerical modeling techniques,  mainly 

finite-difference techniques,  for generating synthetic seismic data at the array level. In 

Chapter IV, I will draw conclusions on the present state of my investigation and provide 

some recommendations for future work. 
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CHAPTER II 

VIRTUAL SEISMIC ARRAY 

INTRODUCTION 

A receiver is actually an array of sensors whose number can vary between 6 and 

24. So seismic responses are collected at sensors of the array and then summed to 

produce the seismic response associated with one receiver (or seismic trace). In a 

number of acquisition systems, the summation is hardwired in such a way that 

wavefronts recorded by sensors at time t are directly summed, irrespective of the data 

quality or some sensor malfunctioning. Although very efficient in terms of acquisition 

turnaround, these types of acquisition systems are prone to errors ranging from noise 

leakage due to aliasing to improper summation due to some malfunctinoning sensors. 

An alternative acquisition system, which is more and more commonly adopted 

today, is to record the whole array of sensors for a certain length of time, filter the noise 

and aliased data, and correct for any potential sensor malfunctinoning before summing 

the seismic sensors to produce seismic traces. 

We here present an additional processing step before forming the arrays. The 

basic idea is to construct additional sensors from the real sensors.  The ability to 

construct these additional sensors can help us to either improve the resolution of the 

array response, to reduce the number of sensors used in the seismic array, or both.  
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FORMULATION OF THE VIRTUAL SEISMIC ARRAY 

Suppose that we have   statistically independent signals impinging on an array of 

  sensors (also known as elements). The array response of this array can be written as 

follows: 

 

                

 

   

 (2.1)  

where       is the signal output of the       sensor of the array,        is the      signal 

response, and     is the propagation delay between the first sensor (that we here consider 

as the reference) and the       sensor for the       signal.  We are going to rewrite 

equation (2.1) in terms of the complex envelope of        and          If        and 

           are the complex envelopes of       and          , respectively, then (2.1) 

can be written: 

 

                        

 

   

 (2.2)  

Our next task is to recast equation (2.2) into a series of linear equations in which the 

linear coefficients are independent of time.  We found that we can do so by decomposing 

our seismic data        into a series of narrow-band signals by using, for example, the 

filter-bank technique (Harris, 2004).  A filter-bank is an array of band-pass filters that 

separates the input signal into several components, each one carrying a single-frequency 
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subband of the original signal.  It is desirable to design the filter-bank in such a way that 

subbands can be recombined to recover the original signal.  The first process is called 

analysis, and the second is called synthesis.  The filter-bank can be used to decompose a 

wideband signal into different narrow-band signals.  This decomposition is useful here 

because our derivations assume that the incoming signals to the sensors are narrow-band.  

So we can carry on our derivation with narrow-band signals and assume that this process 

is repeated for all the narrow-band components of the original signals. 

Using the fact that we are dealing with narrow-band signals, we can use the 

results, which say that             is a phase shift of       , to arrive at 

 

                                      

 

   

 (2.3)  

where        is the complex envelope of        and     is its central angular frequency.  

So we now have an expression for which the mixing coefficients are time-independent. 

We can write (2.3) in the standard form of linear mixtures as 

 

                 

 

   

 (2.4)  

     

 

              (2.5)  
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The result in (2.4) and (2.5) is only valid for narrow-band signals.  For wideband signals, 

we can use the filterbank to decompose        into narrowband signals with each 

narrowband signal having its own central frequency.  

To facilitate the discussion about    , we consider the case of a linear, uniform 

sensor array, which is the typical choice in modern seismic acquisition.  Because we are 

working at the array level, we can approximate the waves impinging on the array as 

plane waves.  Hence the propagation delays between the reference and the       sensor 

for signal     can be written as follows: 

 

    
            

 
 , (2.6)  

where    is the distance between two consecutive sensors in an array,    is the direction 

of waves associated with the single-shot response        , and     is the velocity of the 

medium in which sensors are located.  We will assume that this medium is homogeneous 

and acoustic.  It is customary to work with the intersensor phase-shift     which is 

 

     

            

 
   

            

  
 (2.7)  

where   =  /  , rather than the incidence angle   , because the wavelength has small 

variations around the central wavelength   =  / .  Using the intersensor phase-shift 

(2.3) becomes as: 
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 (2.8)  

which can be written  in the standard form of linear mixtures as 

 

                            

 

   

 (2.9)  

     

 

                     (2.10)  

or in the vector-matrix form as follows: 

 

             (2.11)  

      

 

                         (2.12)  
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where       describes an  -dimensional vector of the array responses,       represents a  -

dimensional vector of the signal responses, and   represents the mixing matrix, whose 

size is       where 

 

                                        (2.13)  

Let us now use the statistical formulation to derive our formulation of the virtual sensors.  

It is based on the linear relationship between the covariance matrix D and that S (Ikelle, 

2010) 

 

  
   

 
   

   
   

   
   

    
   

   

 
(2.14)  

where   
   

and   
   

are the covariance matrices of D and S, respectively, and 

     denotes the complex conjugate transpose.  Notice that   
   

is a       matrix, 

whereas   
   

 is a       matrix.  Alternatively, the covariance matrix and fourth-order 

cumulant tensor of D are related to those of S as  follows (Ikelle and Amundsen, 2005): 

 

  
   

    
                      

 

 

 (2.15)  

The fourth-order cross-cumulant is  



 

 

 

12 

 

  
   

    
                               

 

 

                (2.16)  

where   is the Kronecker product (see Appendix C).  Let us now use the statistical 

formulation to derive our virtual sensors.  The covariance matrix and fourth-order cross-

cumulant tensor of   are related to those of  , as follows (Ikelle and Amundsen, 2005): 

 

  
   

    
                      

 

 

 (2.17)  

The fourth-order crosscumulant is 

 

  
   

    
                               

 

 

                (2.18)  

where   is the Kronecker product and the subscript   denotes the Hermitian transpose.  

We can note that the       matrix   
   

 and the       matrix   
   

have the same algebraic 

structure.  The auto-cumulant   
             and the vector                play in 

  
   

 the roles that   
         and       play for   

   
, respectively.  Thus the   -vector 

               can be considered to be the equivalent or virtual steering vector for the 

    signal for a true array of   sensors with coordinates   .  So, there are actually    

sensors with   of them being real sensors and the others are virtual sensors. 
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THE CASE OF LINEAR ARRAY 

For a linear array, it is always possible to choose a coordinate system in which 

the      sensors has coordinates in the form          with      .  The vectors       

for a linear array are: 

 

           
  

 
           (2.19)  

Note that           , where        , The     component of the 

vector               , which is donated                 or                   can 

be written: 

 

                        
  

 
                    (2.20)  

Comparing (2.18) with (2.19), we deduce that the vector                can also be 

considered a true steering vector of the      signal for the equivalent or virtual array of 

  equivalent or virtual sensors with coordinates                      , which 

introduces the virtual array concept for the fourth-order direction finding problem.  

Thus, the virtual array of   identical sensors has         .  This result shows that 

the virtual array is also a linear array.   

For a uniformly spaced linear array,           , where      is the 

interelement spacing, the virtual array is composed of the sensors whose coordinates are 

given by                           .  This result shows that the virtual 
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array is also a uniformly spaced linear array.  Thus the virtual array of   identical 

sensors has           different sensors.  In other words, with a uniformly spaced 

linear array of   sensors, the fourth-order direction-finding methods are able to process 

              independent sources.  Figure 1 shows an illustration of this case 

for    . 

Notice that the sensor of the virtual array at the coordinate      has a multiplicity 

of order         , which is then equivalent to a sensor that is weighted in amplitude 

by a factor        .  Thus the virtual array of a uniformly spaced linear array with   

sensors is an amplitude-tapered uniformly spaced linear array of       sensors.  This 

amplitude tapering explains, in particular, the reason why the bandwidth of the virtual 

array is not twice as narrow as that of the real array, despite the fact that the physical size 

of the virtual array is two times greater than that of the real array.  Figure 2 provides an 

illustration of the virtual-array response of an initial array of five uniformly spaced 

sensors of equal weights.   

 

THE CASE OF AREAL ARRAY 

For an areal arrays, it is always possible to choose a coordinate system in which 

the      sensor has coordinates in this form           with      .  The vectors       

for an areal array are the following: 

 

           
  

 
                       (2.21)  
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The     component of the vector               , which is donated        

a   ,  for an areal array is obtained by the following: 

 

                 

       
  

 
     

                                  

(2.22)  

where               is the coordinates of the     sensor. 

Note that the   pairs     such that         , give the same virtual sensor of 

coordinates        .  We will say that this virtual sensor is of multiplicity  . 
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Figure 1. A virtual array obtained from a uniformly spaced linear array of five sensors.  Notice that the virtual array is 

now weighted in amplitude while the original array is not. 

 

 

 

 
Figure 2. A comparison of real and virtual array responses.  We have the linear array described in Figure-1 for this 

comparison.  Response of a real array of uniformly spaced five sensors (blue) and the response of the 

corresponding virtual array (red).  
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The example is for an areal array of 16 sensors as described in Figure 3.  By 

using the concept that we have just described, we can construct 256 virtual sensors from 

these 16 real sensors as shown in Figure 4.  By comparing these two figures, we can see 

that a number of virtual sensors share the same locations with the real sensors. Actually, 

only 33 new sensor locations are created in this case. The resulting virtual array has 49 

sensors (33 virtual sensors and 16 real sensors) as depicted in Figure 5.  The other 223 

virtual sensors affect the weights of sensors of the virtual array as illustrated in Figure 6 

and through the array responses in Figure 7.  

 

 

 

 
Figure 3. A real array of 16 sensors. 
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Figure 4.  The virtual array of the real array in Figure 3. 

 

 

 

 
Figure 5:  An areal virtual array: 49 sensors (33 virtual sensors and 16 real sensors). Notice that weights of sensors of 

the virtual array are not included here. 
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Figure 6.  The weights of the virtual array in Figure 5. 

 

 

 

 
Figure 7.  Array responses of the virtual array (red) versus the real array (blue).  The virtual array used here is shown 

in Figure 5 and the corresponding real array is shown in Figure 3. 
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CHAPTER III 

MODELING OF ARRAY DATA 

INTRODUCTION 

My objective in this chapter is to investigate a way of modeling seismic data, as 

accurately as possible, at the array level.  This implies that the sensor spacing is of 1 

meter or less.  I selected to work with the finite-difference modeling technique because it 

is, by far, the most accurate technique for modeling seismic data.  The classical 

formulation of the finite-difference modeling, known as the staggered-grid finite-

difference, is carried-out in the time-space (T-X) domain.  It basically consists of 

approximating the spatial derivatives of the partial differential of the wave equations by 

the first four terms of the Taylor series and the time derivative by the first two terms of 

the Taylor series.  The Taylor series terms used in these computations are chosen in the 

staggered-grid formulation as proposed by (Madariaga, 1976) to avoid differentiating the 

geological model.  

For modeling array data, with sensor spacing of 1 meter, the staggered-grid 

finite-difference becomes costly prohibitive because the grid-spacing of the geology 

model has to be four times, or more, smaller than the sensor-spacing.  Here, I investigate 

the use of the pseudo-spectral finite-difference (Kosloff and Baysal, 1982) as an 

alternative solution to model array data.  The pseudo-spectral finite-difference technique 

is carried-out in the time-wavenumber (T-K) domain.  We now compute the spatial 
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derivatives of the partial differential of the wave equations by using the Fourier 

transform. 

The organization of this chapter is as follows: in the second section, I will recall 

the partial differential equation that control wave propagation in the subsurface, known 

as the elastodynamic wave equation.  The finite-difference modeling tools are based on 

this equation.  In the third section, I will review the pseudo-spectral finite-difference 

formulation.  In the fourth section, I will provide a table, which is based on theoretical 

aspects of comparing the staggered-grid with the pseudo-spectral finite-difference 

techniques, in terms of their stability and grid dispersion conditions requirements.  Then, 

I will discuss the implications of having different elastic parameters on the finite-

difference parameters for both techniques.  In the last section, I will discuss a numerical 

example of using the pseudo-spectral finite-difference to model array data for land 

seismic. 

 

ELASTODYNAMIC WAVE EQUATION 

The elastodynamic wave equation, which governs wave propagation in the 

subsurface, is derived from Newton’s second law of motion and Hooke’s law.  Newton’s 

second law of motion, also known as the equation of conservation of momentum, states 

that force equals the product of mass and acceleration.  Hooke’s law states that the stress 

is linearly proportional to strain.  The components of force, on the other side, are derived 

from the components of the stress acting on particles treated as elemental volumes.  

Therefore, the stresses are described as a set of surface forces acting on faces of the 
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elemental volume.  Three-component surface stress or traction is required for each face 

of the elemental volume.  For instance, Figure-1 shows an example of an elemental 

volume centered in three dimensional Cartesian coordinates. The traction stress acting 

on the area element facing +x direction is given by                         
 
.  In 

these components, the second subscript refers to the direction of the normal vector of the 

surface, the traction is acting on.  Similarly, the traction stresses on unit-area elements 

facing the +y and +z directions are given by                  
 
 and    

             
 
 respectively.  The stress components in any given direction are those that 

are resolved from the different stress tractions.  Thus, in the  -direction for example, 

they are given by these components              .  So, in Figure 8, the stress component 

in the  -direction on the face a-b-c-d is    , and on its opposite face, e-f-g-h, it is      

    

  
        

    

  
  .  The resulting force is the stress multiplied by the surface area 

on which it acts on (    ).  Hence, the resulting force is  
    

  
      .  The stress 

component in the  -direction on the other faces are given by  
    

  
       

and 
    

  
      .  Therefore, the total force component in the  -direction is given 

by     
    

  
 

    

  
 

    

  
        .  Substituting    into Newton’s law of motion, 

where the mass is given by            and the acceleration in the  -direction is 

given by    
    

   , where    is the displacement in  -direction and   is time.  This 

yields to the first equation of motion in  -direction. 
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Figure 8.  Element volume and illustration of stress components in the x-direction, on opposite faces of the volume 

(Ikelle and Amundsen, 2005). 

 

 

 

 
    

   
  

    

  
 

    

  
 

    

  
          (3.1)  

Similarly, stresses in the  - and  -directions lead to force components in the y- 

and z-directions, which would produce two other equations of motion in  - and  -

directions respectively. 

 

 
    

   
  

    

  
 

    

  
 

    

  
          

(3.2)  
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In these equations,   is the mass per unit volume,               are the components 

of the particle displacement,                            are the components of the 

stress field and              are the components of the body force per unit volume.  

(3.1) and (3.2) state that spatially changing surface forces with or without the presence 

of the body force cause local forces in the medium that give rise to local particle 

accelerations.   

For a given point,   at time  , Hooke’s law states that stress is linearly 

proportional to strain.  This linear relationship is formulated as follow: 

 
                                                       

(3.3)  

The constant of proportionality,                , are known as “elastic moduli” or 

“stiffness constants”.  They define the elastic properties or resistance to deformation.  

The elastic moduli         may have up to 21 different parameters for anisotropic 

material, but for an isotropic material they reduce into two parameters known as the 

Lamé elastic coefficients.           represent the external stresses and           are the 

strain.  Strain is related to particle displacement by the following relationship: 
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(3.4)  

For the isotropic case, the elastic moduli        as function of the Lamé elastic 

coefficients is generalized as follow: 

 

                               
(3.5)  

 The Lamé elastic coefficients         measures a material’s resistance to shear (i.e. 

changes in shape without changes in volume) and        has no simple physical 

meaning, but simplifies Hooke’s law greatly and     is the Kronecker delta function 

defined as: 

 
     

         
         

            
(3.6)  

The relation between stress and strain for isotropic case produces the following 

equations. 

           
   

  
   

   

  
 

   

  
            

          
   

  
   

   

  
 

   

  
           

(3.7)  
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In these equations,               are the stress components,             are the 

displacement components,         are the positions and   and    are the Lamé elastic 

coefficients and                           are the components of the stress force.  By 

combining Hooke’s law and the equations of wave motion, we derive the elastodynamic 

wave equation that governs wave propagation in the subsurface. 

 

    
         

   
 

 

   
         

        

   
          

         

   
  (3.8)  
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          and            are the source terms and           is the particle 

displacements. 

 

PSEUDO-SPECTRAL FINITE-DIFFERENCE MODELING 

The pseudo-spectral finite-difference, also known as the wavenumber-based 

finite-difference, is an alternative method to numerically model seismic data.  In this 

scheme, the partial differential of the wave equations temporal derivatives are 

approximated by a second-order difference operator, similar to the staggered-grid finite-

difference.  However, derivatives with respect to the spatial coordinates are no longer 

approximated by differencing (Abramowitz and Stegun, 1972); rather computed by 

spatially Fourier-transforming the physical quantities, like the stresses and the 

components of the particles velocities, into the wavenumber domain.  The resulted 

spectrums are then multiplied by a complex wavenumber for a particular direction; 

depending on the direction of the spatial derivatives.  The spatial derivatives are then 

obtained by applying the inverse Fourier-transform to go back to the spatial domain.  

This process uses the fact that differentiation in the spatial domain is equivalent to 

multiplying the spectrum, in the wavenumber domain, with a complex wavenumber.  For 

instance, the Fourier-transform of any arbitrary function,     , in the spatial domain is 

defined as follows: 
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   (3.9)  

where       is the spectrum in the wavenumber domain with respect to the       , 

after it has been Fourier-transformed.  The inverse Fourier-transform is defined as 

follows: 

 

     
 

  
               

 

  

    (3.10)  

Rather than defining new symbols to express the functions after they have been Fourier-

transformed, the same symbols with different arguments were used, as the context 

unambiguously indicates the quantity currently under consideration.  Derivation in the 

spatial domain is equivalent in the wavenumber domain to the followings: 



 

 

 

29 

 

     

  
 

 

  
      

 

  
           

 

  

    

 
 

  
                  

 

  

    

 
 

  
                    

 

  

    

     

  
                

(3.11)  

Therefore, differentiation in the spatial domain is equivalent to taking the inverse 

Fourier-transform of the wavenumber spectrum,      , after it has been multiplied by 

the complex wavenumber,    .  

 

Time-wavenumber Formulation 

The first-order equations of conservation of momentum for 2D in the time-

wavenumber domain (T-K) are: 

 

                                                   

                                                   

(3.12)  
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In these equations,      is the density,           are the components of the particle 

velocity,    is the inverse Fourier-transformed,                  are the stress 

components,           are the components of the body force and           are the 

complex wavenumber in the         directions respectively.  The stress-strain relations 

for an isotropic elastic medium in the time-wavenumber domain (T-K) are: 

 

                                      

                              

                                      

                              

                                                        

(3.13)  

The density, the lamè coefficients and the physical quantities in the pseudo-spectral 

finite-difference are specified at each grid points; rather than staggered, as in the 

staggered-grid finite-difference.  For each timestep, the algorithm starts by computing 

the wavenumber in the         directions respectively and turning them into complex 

vectors.  Then, the values of the normal and shear stress fields in the   direction          

are extracted and Fourier-transformed to the wavenumber domain.  The same step is also 

repeated for the          in   direction.  The resulted spectrums are multiplied by their 

corresponding complex wavenumber vectors and Fourier-transformed back to the spatial 
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domain to obtain the spatial derivatives.  The components of the particle velocity are 

then updated by adding the particle velocity from the previous timestep to the spatially 

differentiated stresses.  Numerically, this step is formulated as follows: 

 

    
   

   
       

   

   
  

                                         
   

 
 

       
   

          
   

  

        
                                    

 
 

(3.14)  

where           stand for the Fourier transform and the inverse Fourier transform 

respectively.  Similarly, the stresses are numerically formulated as follow: 
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(3.15)  

In comparison of the above formulations (3.14) and (3.15), which outline the pseudo-

spectral finite-difference algorithm for each timestep, to the formulations of the 

staggered-grid finite-difference, (Ikelle and Amundsen, 2005), it is clear that now all 

spatial derivatives at each grid-point are computed independently from the neighboring 

grid-points.  This makes the derivatives more representative to their locations and 

eliminates the weight-averaging effect associated with the use of neighboring grid-points 

to approximate the derivatives by the differencing scheme for each grid-point.  The other 



 

 

 

33 

benefit of this scheme is that spatial derivatives are no longer estimated grid-point by 

grid-point; rather computed all in one single step.  All grid-points that pertain to a 

particular direction are extracted, transformed to the wavenumber domain, multiplied by 

a complex wavenumber vector for that direction and then transformed back to the spatial 

domain.  This makes algorithm more efficient and requires less computation to achieve 

comparable results. 

 

Numerical Example 

Here, I use the staggered-grid and the pseudo-spectral finite-difference 

techniques to simulate a seismic shot-record from the same model.  The objective is to 

show that the staggered-grid and the pseudo-spectra finite-difference techniques are both 

capable of modeling all type of seismic events that can be present in real seismic shot-

records.  This example is a one-dimensional heterogeneous model, where the elastic 

parameters change only along the  -axis, (Ikelle and Amundsen, 2005).  The model 

consists of homogenous medium, 500 meters thick, imbedded between two half-spaces.  

The top half-space represents an acoustic medium and the bottom half-space represents 

an elastic medium.  Absorbing boundary condition, (Cerjan et al., 1985) is applied on all 

sides and edges of the model, including the free-surface, in order to limit the number of 

reflections that can be modeled and interpreted.  An explosive source was placed in the 

center laterally and at 240 meters above the imbedded homogenous layer.  Two 

kilometers of offset along each side of the source were populated with pressure sensors, 

at 4 meters apart, and placed at the same depth as the source, Figure 9.  Two-second long 
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seismic shot-record, with sampling rate of 4.0 millisecond and 25 Hertz central 

frequency for the source, was generated.  The shot-record shows P-wave direct arrival, 

various P-wave primaries and internal multiple reflections from the imbedded medium 

top and bottom interfaces as well as refractions.  A sketch, which shows the seismic 

events that were generated from this model, is shown in Figure 10.  The seismic shot-

records are shown in Figure 11 and Figure 12 for the model in Figure 9, simulated by the 

staggered-grid and the pseudo-spectral finite-difference techniques, respectively.  

Observing the two shot-records shows hardly any difference between the two shot-

records, which reconfirm that the pseudo-spectral finite-difference is also very power 

numerical tool to model seismic data. 

 

 

 

 
Figure 9. A 2D geology model used to generate the seismic data in Figures 11 and 12. 
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Figure 10. Raypaths of the seismic events in Figures 11and 12.  

 

 

 

 
Figure 11.  A shot-gather generated with the staggered-grid finite-difference modeling.  The geology model is of the 

acquisition geometry associated with this shot-gather is described in Figure 9.  The nomenclature of the 

seismic events is this figure is also given in Figure 10. 
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Figure 12. A shot-gather generated with the pseudo-spectral finite-difference modeling.  The geology model is of the 

acquisition geometry associated with this shot-gather is described in Figure 9. 

 

 

 

COMPARISON OF STAGGERED-GRID AND PSEUDO-SPECTRAL FINITE-

DIFFERENCE MODELING TECHNIQUES 

In this section, I compare the staggered-grid and pseudo-spectral finite-difference 

techniques.  The key features of my comparison are summarized in Table 1.  Basically, 

my comparison is carried out with respect to errors associated with the timestepping 

process, which is known as the stability condition, and with respect to the errors 

associated with the Taylor series approximation, known as the grid-dispersion condition.  

Finite-difference parameters such as the size of the model in grid-points, grid-spacing, 

timesteps and the number of timesteps are key parameters that need to be carefully 

chosen, such that the stability and grid-dispersion conditions are satisfied. 
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Table 1.  A comparison of the staggered-grid and the pseudo-spectral finite-difference techniques, with respect 

to the stability and grid-dispersion conditions.     is the timestep of the finite-difference,    is the 

grid-spacing for the finite-difference,      is the maximum velocity of the medium,      is the 

minimum velocity of the medium, and      is the maximum frequency of the source. 

Theoretical comparison Staggered-grid finite-difference Pseudo-spectral finite-difference 

Spatial derivatives Fourth-order difference operator Fast Fourier-transform 

Temporal derivatives Second-order difference operator Second-order difference operator 

Stability condition 
        

  

    
          

  

    
 

Grid-dispersion 
    

    

     
     

    

     
 

 

 

 

The staggered-grid finite-difference is carried out in (T-X) domain, in which both 

the temporal and spatial partial derivatives are carried out with the Taylor series 

approximation,(Yang, 2008).  The pseudo-spectral finite-difference is carried-out in (T-

K) domain, in which the partial spatial derivatives are calculated by Fourier transforms 

while the temporal derivatives are carried out in with Taylor series approximation, just 

like the staggered-grid finite-difference, (Gazdag, 1981; Kosloff et al., 1984; Kosloff and 

Baysal, 1982).  In other words, the key difference between the two methods lies in the 

computation of the spatial derivatives.  Therefore, the grid-dispersion condition, which is 

associated with errors due to the truncation of the Taylor series in the computation of the 

spatial derivatives, is different between the two techniques, as described in Table 1. 

The grid-dispersion condition of the staggered-grid finite-difference, in this 

Table is based on a fourth-order difference operator, (Ikelle, 2005; Levander, 1988; 
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Virieux, 1986).  In contrast, by computing the spatial derivatives with Fourier 

transforms, as done in pseudo-spectral finite-difference, an infinite order of accuracy can 

be achieved.  More precisely, only two grid-points per wavelength are required in the 

pseudo-spectral finite-difference, to satisfy the grid-dispersion, whereas 5 grid-points per 

wavelength are required for the staggered-grid finite-difference, with a fourth-order 

difference operator.  The two grid-points per wavelength, required in the grid-dispersion 

condition for the pseudo-spectral finite-difference, results from the Nyquist sampling 

theorem, which is a seismic acquisition requirement, to avoid aliasing the wavefield, 

rather than a requirement of the pseudo-spectral finite-difference. 

On the other side, the staggered-grid and pseudo-spectral finite-difference 

techniques, both, use a second-order difference operator, which is only the first two 

terms of the Taylor series, to approximate the temporal derivatives.  Therefore, the 

stability conditions, which control the timestep of the finite-difference, for both finite-

difference techniques, are expected to be identical.  However, the stability condition of 

the staggered-grid finite-difference is different from the stability condition of the 

pseudo-spectral finite-difference, as described in Table 1.  Actually, the timestep, for the 

pseudo-spectral finite-difference, has to be smaller than the timestep, for the staggered-

grid finite-difference, for models with identical maximum velocities and grid-spacing, as 

can be noticed from their formulas in Table 1.  The difference between the two stability 

conditions comes from the fact that the stability condition is related the grid-dispersion 

condition.  This relation manifests itself from the fact that the stability condition is a 

function of the grid-spacing and the grid-spacing is obtained from the grid-dispersion 
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condition.  Therefore, in the staggered-grid finite-difference, when a second-order 

difference operator is used to approximate the spatial derivatives, the timestep obtained 

from the stability condition, which is given by          
  

    

  (Virieux, 1986), becomes 

even larger than the timestep resulting from the stability condition, when a fourth-order 

difference operator is used.  Therefore, when there are fewer terms of the Taylor series 

used, to approximate the spatial derivatives, the less accurate the spatial derivatives 

becomes, the larger the timesteps are that result from the stability conditions.  On other 

hand, when there are more terms of the Taylor series used, to approximate the spatial 

derivatives, the more accurate the spatial derivatives become, the smaller the timesteps 

are that results from the stability conditions.  Therefore, because the pseudo-spectral 

finite-difference uses the Fourier-transforms to compute the spatial derivatives, which 

has high order of accuracy, the spatial derivatives are very accurate, thus the stability 

condition is expected to be more constrained than the staggered-grid finite-difference, 

despite the fact that both finite-difference techniques use a second-order difference 

operator to approximate the time derivatives.  However, the difference between the two 

stability conditions is relatively small, when compared to the difference in the grid-

dispersion conditions, for both finite-difference techniques; the staggered-grid and 

pseudo-spectral finite-difference.   

Failing to satisfy the stability condition, for both the finite-difference techniques, 

is one of the most common sources of errors because the stability conditions described in 

Table 1, for the staggered-grid and pseudo-spectral finite-difference techniques, were 

derived for homogenous mediums,(Ikelle and Amundsen, 2005).  However, when 
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modeling heterogeneous mediums, I found that selecting timesteps, which are smaller 

than what the stability conditions required, can overcome errors that might be associated 

with the fact that the stability conditions, described in Table 1, were derived for 

homogenous models. 

 

Numerical Comparison 

As discussed in the previous section, the spatial derivatives computed in the 

pseudo-spectral finite-difference have high-order of accuracy, thus only two grid-points 

per wavelength is required for very accurate simulation.  On the other side, spatial 

derivatives computed in the staggered-grid finite-difference, which depends on the 

number of the Taylor series terms used by the difference operator, have limited order of 

accuracy, thus five or more grid-points per length may be required.  However, satisfying 

the grid-dispersion conditions, for the staggered-grid finite-difference, which was 

described in Table 1, was only for avoiding dispersion errors in the numerical results.  

Hence, satisfying the grid-dispersion condition, in the staggered-grid finite-difference, 

might not be enough, and may necessitate more grid-points per wavelength or in other 

words, smaller grid-spacing, to improve the accuracy of the spatial derivatives.  On the 

other side, spatial derivatives computed in the pseudo-spectral finite-difference are 

highly accurate by only satisfying the stability condition. 

In this section, my objective is to compare the staggered-grid and pseudo-spectral 

finite-difference techniques, with respect to their accuracy and efficiency to model 

seismic data, at the array level.  So, the accuracy aspect of this comparison is 
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investigated by simulating shot-records for the same model, by both finite-difference 

techniques, but with different grid-spacing.  Then their differences can be evaluated by 

comparing their correlation energy and time delays from their crosscorrelations.  On the 

other side, the efficiency aspect of this comparison is investigated by considering 

different medium elastic parameters and discussing their implications on selecting the 

staggered-grid and pseudo-spectral finite-difference parameters.  The objective is to 

highlight the benefits of the pseudo-spectral finite-difference in scenarios pertaining to 

modeling array data.   

In the process of evaluating the best approach to investigate the accuracy of both 

finite-difference techniques, I realized that using complex and heterogeneous models 

were very challenging, in cases where the shot-records needed to be regenerated with 

different grid-spacing, because their proportionalities were hard to maintain.  For 

example, I concluded that modeling wiggly interfaces with different grid-spacing 

generate differences in the shot-records, as a consequence of the wiggly interface 

becoming courser with larger grid-spacing and smoother with finer grid-spacing models.  

Therefore, the courser the grid-spacing, the more scattering and diffractions are 

introduced in the numerical results, and the finer the grid-spacing, the less scattering and 

diffractions are introduced in the numerical results.  Thus, numerical results would suffer 

from more differences that would affect the analysis.  Therefore, I found that analyzing a 

simple homogenous model, which can be simulated over various grid-spacing for both 

finite-difference techniques, is an effective and informal approach to analyze their 

differences.  Also, conclusions could be safely extended to more complex models. 
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Therefore, my analysis was conducted over a model, which was made of 

homogenous medium that had P- and S-wave velocities of 2700     and 1400     

respectively and density of 1600 kilograms/meter³.  A vertical seismic source, with 10 

Hertz central frequency placed in the center laterally and at a depth of 401 meters from 

the top of the model, was used to generate P- and S-wavefronts.  Sensors that recorded 

the vertical component of the particle-velocity field were placed at a depth of 405 meters 

from the top of the model with four-meter sensor-spacing.  Absorbing boundaries were 

applied over all edges of the model, including the free-surface to minimize artifact and 

free-surface reflections introduced into the simulations.  For each technique, the 

staggered-grid and the pseudo-spectral, three simulations of the same model but with 

different grid-spacing were generated; four- two- and one-meter.  Each time the grid-

spacing is decreased, the size of the model had to increase.  This was important so that 

the proportionality of the model’s physical size and all other parameters like the source 

and receivers’ physical locations were maintained.  The objective was to isolate all other 

changes in parameters except the way each finite-difference technique computed the 

spatial derivatives.  So, in the case of the two-meter grid-spacing, the model had to 

double and quadruple for the one-meter grid-spacing in relative to the four-meter grid-

spacing.  Also, the timestep had to decrease for each decrease in grid-spacing to ensure 

the stability condition is satisfied.  Table 2 summarizes the size of the mode, for each 

grid-spacing, and the other parameters effected as a result of changing the grid-spacing.  

For each simulation, the stability and grid-dispersion conditions (Table 1) were well 

satisfied.  The timesteps, for similar grid-spacing of both techniques, were kept the same 
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for consistency.  Seismic-records of one-second long for each grid-spacing and for each 

finite-difference technique were generated that showed a P- and S-waves arrival, Figure 

13. 

 

 

 
Table 2.  Finite-difference modeling parameters. 

Grid-spacing   meters   meters   meters 

Size of the model                                    

Timestep                            

Number of timesteps                 

Number of grid-points 

(absorbing boundaries) 
            

Total record time 1 second 1 second 1 second 

 

 

 

While these seismic records looked alike to some extent, posting the amplitude 

several times, showed that there were differences, Figure 14.  The seismic-records 

produced by the pseudo-spectral finite-difference looked superior over the ones 

produced by the staggered-grid finite-difference. They were not affected by any grid-

dispersion or scattering regardless of the high post in their amplitude.  On the other side, 

some grid-dispersion appeared in the coarser grid-spacing, for the shot-records produced 

by the staggered-grid finite-difference, even though, the grid-dispersion condition was 

satisfied, particularly for the S-wave because of its lower velocity.  Reducing the grid-

spacing had improved the quality of the seismic-records and reduced the grid-dispersion 

and that scattering that appeared in the coarser grid-spacing.  For the seismic-records 

produced by the pseudo-spectral finite-difference, there were some differences evident 
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among their shot-records and finer grid-spacing produced better quality.  However, this 

improvement was not resulting from finer grid-spacing but from finer timesteps; which 

were imposed by the stability condition as consequences of using finer grid-spacing.  I 

will provide more elaboration and discussion of my findings regarding the improvement 

that may be obtained from using finer timesteps in the section to follow. 

The analysis, aforementioned, relied only on visual observations and did not 

provide detailed and reliable explanation to these differences.  A more robust method 

that would allow to measure and quantify the differences was essential.  I found that 

using the normalized crosscorrelation as a tool to link the shot-records in a way that 

could reveal their differences was very useful.  The normalized crosscorrelation is 

defined as the ratio of the crosscorrelation between two fields over the autocorrelation of 

a reference field (Ikelle, 2005).  At each point of the seismic-record,       a portion of 

the data made of   times-samples and   traces around a point     , was extracted from 

one seismic record and crosscorrelated with its portion counterpart from another seismic 

record.  The numbers corresponding to the maximum value of the crosscorrelation and 

its correspondent time-lag were allocated at the same location as the original point       
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Figure 13.  Staggered-grid and pseudo-spectral finite-difference of 4-meter, 2-meter and 1-meter grid spacings for a homogenous model. The physical quaintly 

displayed here is the vertical component of the particle-velocity and the seismic source is a vertical force with 10 Hz central frequency.  
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Figure 14.  The same as Figure 13 with large scaling.  
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in an array.  Then, the process kept on repeating for other portions of the data, after 

incrementing one data-point each time, until the whole records were covered.  Finally, 

the maximum values of the crosscorrelation were normalized by the maximum values of 

autocorrelation and converted to decibels      scale.  For cases in which the 

crosscorrelation was too small or almost null, the process was voided, so that no “Nan” 

or “Infinity” introduced into the results.  Figure 15 shows the maximum values of the 

crosscorrelation for the similar grid-spacing from both techniques.  So, the one-meter 

grid-spacing from the pseudo-spectral was crosscorrelated with the one-meter grid-

spacing from the staggered-grid and so on for the two-meter and four-meter grid-

spacing.  The size of the windows used to compute the crosscorrelations were 60 

milliseconds by 10 traces.  Observing Figure 13, showed that the seismic-records were 

reproduced, but in terms of their maximum crosscorrelation values rather than their 
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Figure 15.  Crosscorrelation records for similar grid-spacing from both techniques.  The one-meter grid-spacing from the pseudo-spectral was crosscorrelated with the 

one-meter from the staggered-grid and so on for the two-meter and four-meter grid-spacing.  The size of the windows used to compute the crosscorrelations 

were 60 milliseconds by 10 traces.  The seismic-records were reproduced, but in terms of their maximum crosscorrelation values rather than their absolute 

amplitude.   

 



 

 

 

49 

49 

absolute amplitude values, thus they were connected in way that can help to compare 

them.  However, these crosscorrelation records ought to be normalized in order to post 

the details and show their differences.  Figure 16 showed the same crosscorrelation 

records as in Figure 15, but after they had been normalized, by the maximum values of 

the pseudo-spectral seismic-records autocorrelations, and converted to decibels     , 

thus revealing their correlation energy, along with their crosscorrelation time-lags.  Now, 

the normalized crosscorrelation records provided a mean to observe and analysis their 

differences.  I decided to limit the scale shown to be in the range of              , so 

that better observations could be made.      -   , at any point of the normalized 

crosscorrelation records, suggested no difference between the two seismic-records that 

were crosscorrelated.          -   suggested lower amplitude of the staggered-grid 

seismic-records in relative to the pseudo-spectral seismic-records and         -    

suggested higher amplitude of the staggered-grid seismic-records in relative the pseudo-

spectral seismic-records.  With that being said, observing the three records in Figure 16, 

showed that, as the grid-spacing became finer; from four-meter to two-meter to one-

meter grid-spacing; the difference between the pseudo-spectral seismic-records and the 

staggered-grid seismic-records was minimized.  This was evident from the decibel 

values going toward the     -   with finer grid-spacing.  In other words, as the grid-

spacing decreased, the difference between the two finite-difference techniques was 

reduced substantially.  Also, the crosscorrelation time-lags records showed that time-lags 

decreased with decreasing grid-spacing.  Another difference was the grid-dispersion, 
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which was still evident, particularly at the four-meter grid-spacing and disappeared as 

the grid-spacing became finer.  

In order to understand what attributed to these differences, I looked at the 

        -   values aside from the         -   values, Figure 17.  The top ones are 

the         -   records and the bottom ones are         -    records.          -    

values were indications of stronger anomalies in the pseudo-spectral seismic-records 

than the staggered-grid seismic records or totally existed in the pseudo-spectral seismic-

records and not in the staggered-grid seismic records while the         -   values were 

indications of the contraries.  Hence, it was easily observed that the         -    

records contained most of the differences, particularly for the P- and S-wave reflections, 

while the         -   records showed almost no difference for the two seismic events.  

Furthermore, the         -   records showed the grid-dispersion that the four-meter 

grid-spacing seismic record, generated by the staggered-grid finite-difference, suffered 

from.  These observations confirmed that the Pseudo-spectral finite-difference could 

achieve better seismic simulations even with larger grid-spacing while the staggered-grid 

finite-difference would need to have much smaller grid-spacing to start producing 

comparable simulations.  These were evident from the         -   records where the 

differences were diminishing as the grid-spacing decreased.  Due to the limitation in 

computing resources that deterred me from repeating these simulations with additional 

reduction in the grid-spacing, because of the exponential increase in the size of the  
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Figure 16.  The crosscorrelation records in Figure 15, after normalization.  The correlation energy (top) and the time-lags (bottom). 
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model and the associated decrease in the timesteps, which would make the simulations 

very costly prohibitive.  I believe there would be a threshold where further decrease in 

the grid-spacing would not produce anymore differences between the two finite-

difference numerical results, for my model here; with the assumed elastic parameters.  

Different models and different elastic parameters might produce different thresholds. 

As I have highlighted during the review on the staggered-grid finite-difference, 

the spatial derivatives are estimated by a fourth-order difference operator that uses the 

first four terms of the Taylor series approximation and truncate higher-orders.  As a 

result, the spatial derivatives are only approximated and never computed accurately, as 

in the case of the pseudo-spectral finite-difference; where the spatial derivatives are 

computed accurately by the method of the Fourier-transforms, thus having an infinite 

order of accuracy.  Improving the accuracy of approximating the spatial derivatives, in 

the staggered-grid finite-difference, would either requires adding more Taylor terms to 

the approximation, thus allowing the use of larger grid-spacing or decreasing the grid-

spacing substantially.  As more terms are added, the Taylor series approximation is 

improved along the function.  This would suggest that using a six-order difference 

operator, would definitely improve the accuracy of approximating the spatial derivatives 

with larger grid-spacing, which would help to reduce the size of the model and the 

timestep; resulting in cost effective simulation of the seismic data.  However, the 

staggered-grid finite-difference would become much more computationally intensive 

with very lengthy difference operators that might become complicated in its 

formulations.  Also, the free-surface boundary condition is much more difficult to 
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Figure 17.  The normalized crosscorrelation in Figure 16, with the         -   values (top) were analyzed aside from the         -  -value (bottom).  
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solve for long spatial difference operators.  Computing the spatial derivatives for any 

physical quantity, such as the particle velocity, with six-order difference operator, at any 

point in the model, would require using the stresses, from the previous timestep, for six 

neighboring points in each direction.  Alternatively, decreasing the grid-spacing 

substantially would improve the accuracy of approximating the spatial derivatives with 

fewer Taylor terms, but the simulations become costly prohibitive due to the significant 

increase in the size of the models and consequently the sharp decrease in the timestep.   

Before I proceed on discussing the implication of reducing the grid-spacing, in 

the staggered-grid finite-difference, on the cost of modeling array data, I will briefly 

highlight the improvement that maybe achieved by simulating seismic data with finer 

timesteps.  Here, I discuss an example of reproducing the same seismic shot-record, 

generated by the pseudo-spectral finite-difference for the 4.0 meter grid-spacing for the 

same model as above, but with finer timesteps.  Six different runs were reproduced with 

various timesteps ranging from 0.5-0.00625 milliseconds, which required number of 

timesteps ranging from 2000-180,000 to generate the one-second long seismic-records, 

Table 3.  Observing the shot-records showed substantial improvement in the P- and S-

wave events including the artifact reflections from the top air-filled and bottom layers of 

the model with finer timesteps.  These artifact reflections were due to the fact that the 

absorbing sponge that was applied along the edges of the model in order to eliminate 

reflections from the edges was not a perfect attenuator Also, the source outburst, which 

resulted from the source interacting with the surrounding medium, which had been 

observed after posting the amplitude in the pseudo-spectral shot-records, was reduced 
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Table 3:  Six runs of the same model generated by the pseudo-spectral finite-difference with the 4.0m grid-

spacing. 

Shot-record Timestep 

(millisecond) 

Number of timesteps Length of shot-

records 

1 0.5 2,000 One-second long 
2 0.1 10,000 One-second long 

3 0.05 20,000 One-second long 

4 0.025 40,000 One-second long 

5 0.0125 80,000 One-second long 

6 0.00625 160,000 One-second long 

 

 

 

substantially with finer timesteps, Figure 18.  These observations reconfirm that for the 

pseudo-spectral finite-difference, the grid-spacing has no impact on the quality of the 

simulated seismic data.  The differences were only due to the change in the timesteps.  

Therefore, the differences that were observed in Figure 14, for the pseudo-spectral shot-

records, were totally due to the finer timesteps, which were imposed as a consequence of 

reducing the grid-spacing. 
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Figure 18.  Six different runs generated by the pseudo-spectral finite-difference for the 4m grid-spacing of the same model, but with different timesteps ranging from 

0.5-0.00625ms. 
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Here, I compare the staggered-grid and the pseudo-spectral finite-difference 

techniques with respect to their efficiency to model three different examples.  Basically, I 

look at the implication of the model elastic parameters over the finite-difference 

parameters of both techniques.  Finite-difference Parameters, like grid-spacing and 

timestep, are selected based on the elastic parameters of the models like the minimum and 

maximum seismic velocities and the resolution bandwidth needed to model the seismic 

response.  Finite-difference parameter, like the model size and the total number of grid-

points are byproducts of the grid-spacing and the timestep.  Therefore, the model size is 

selected based on the number of grid-points needed to cover the physical size of the 

model and the total number of timesteps is selected based on the two-way propagation 

time needed to simulate the seismic response of the model.  These are two key parameters 

that control the efficiency of executing any finite-difference techniques.  The smaller the 

size of the finite-difference model and the fewer the required timesteps are, the faster the 

execution and the more efficient the finite-difference is. 

Table 4 describes the elastic parameters for three examples and the associated 

finite-difference parameters for the staggered-grid and pseudo-spectral and finite-

difference techniques.  While the finite-difference parameters for the pseudo-spectral 

finite-difference, in Table 4, were computed mostly based on the stability and grid-

dispersion conditions, described in Table 1, the grid-spacing for the staggered-grid 

finite-difference was computed based on 8 grid-points per wavelength because the  
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Table 4.  The implications of three different elastic model parameters on the parameters of both the finite-difference techniques.  In this Table, the finite-

difference parameters are   , which stands for the timestep of the finite-difference, and    , which stands for the grid-spacing for the finite-difference.  

The medium parameters are     , which stands for the maximum velocity of the medium,     , which stands for the minimum velocity of the 

medium and     , which stands for the maximum frequency of the source. 

 

 

Example I

Geology model (km) (2.5X2.5)

Examples

Number of timesteps

10 0.8 2,500

Staggered-grid finite-difference Pseudo-spectral finite-difference

Model size

(1000X1000)

Grid spacing (m)

2.5

Timestep (ms)

0.25

Number of timesteps

8,000 (250X250)

Model size Grid spacing (m) Timestep (ms)

Record length 2 seconds

Vmin 1200m/s

Vmax

Example II

Model size Grid spacing (m) Timestep (ms)

Fmax

5000m/s

Grid spacing (m) Timestep (ms) Number of timestepsGeology model (km) (2.5X2.5)

Record length 2 seconds

Model size

60 Hz

Number of timesteps

(1000X1000) 2.5 0.2 10,000Vmax 5000m/s

Fmax 60 Hz

Vmin 300m/s

(5,000X5,000) 0.5 0.05 40,000

Grid spacing (m) Timestep (ms) Number of timestepsGeology model (km) (2.5X2.5)

Record length 2 seconds

Example III

Model size Grid spacing (m) Timestep (ms) Number of timesteps Model size

(2000X2000) 1.25 0.1 20,000Vmax 5000m/s

Fmax 100 Hz

Vmin 300m/s

(10,000X10,000) 0.25 0.025 80,000
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objective is to compare their efficiency, when their accuracy are similar.  Also, in the 

three examples, the maximum velocity, the physical size of the model and total 

propagation time were kept constant because the comparison is about the efficiency of 

the both finite-difference techniques to model array data; where the minimum velocity 

can be very small.  So, in the three examples, the physical size of the model 

is            , maximum seismic velocity      
    and total propagation time 

is          . 

In the first example, the minimum velocity is      
   and the maximum 

source frequency is         .  Therefore, the grid-spacing and timestep in the pseudo-

spectral finite-difference are four times larger than the grid-spacing and the timestep of 

the staggered-grid finite-difference.  Thus, only       timesteps are required for a finite-

difference model that is four times smaller, in the pseudo-spectral finite-difference, 

opposed to       timesteps for a finite-difference model that is four time bigger, for the 

staggered-grid finite-difference.  Therefore, it is evident that the efficiency of the 

pseudo-spectral finite-difference in relative to the staggered-grid finite-difference is 

about 16 times, for the assumed elastic parameters.  However, despite the great 

difference in the efficiency between the two finite-difference techniques,       

timesteps for a model size of             is considered not very heavy in terms of the 

time to execute this model on average computing tool.    

However, in second example, the minimum velocity was reduced to     
  , 

while keeping all other elastic parameters constant in relative to the first example.  

Seismic events with these low velocities are typical, when modeling array data.  It is 
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evident the low velocity required very small grid-spacing and timestep, in the staggered-

grid finite-difference, which imposes very large finite-difference model and extremely 

big number of timesteps.  This lack of efficiency, for the staggered-grid finite-difference 

versus the pseudo-spectral finite-difference, is shown even more in the third example, 

where broader bandwidth is used.  Therefore, the staggered-grid finite-difference is 

extremely cost prohibitive when modeling seismic data at the array level.  On the other 

side, the pseudo-spectral finite-difference, which requires much smaller finite-difference 

model and very reasonable number of timesteps, appear to be cost effective alternative to 

the staggered-grid finite-difference, modeling seismic data at the array level. 

Another benefit that could be gained from the use of the pseudo-spectral finite-

difference in modeling seismic data is the frequency independence of the grid-spacing.  

From my analysis, I found that the pseudo-spectral finite-difference is not only a reliable 

modeling tool in cases where smaller grid-spacing is no longer affordable, but also in 

cases where the vertical resolution is not broad enough to resolve thin interfaces.  Unlike 

the staggered-grid finite-difference, the pseudo-spectral finite-difference has an infinite 

order of accuracy in computing the spatial derivatives, thus requires only two grid-points 

per wavelength opposed to eight or sixteen grid-points per wavelength for the same 

accuracy for the staggered-grid finite-difference.  Therefore, broader frequency 

bandwidth of the seismic source could be used, in the pseudo-spectral finite-difference; 

to resolve thin interfaces where otherwise would not possible by the staggered-grid 

finite-difference.  To illustrate this benefit, I discuss briefly an example where a thin 

layer of 60 meters thick was inserted in a homogenous medium, as shown in Figure 19.  
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With grid-spacing of 4 meters and a model minimum velocity of 1000 meter/second, the 

staggered-grid finite-difference requires source maximum frequency to be about 60 Hz, 

as imposed by the grid-dispersion condition; in order to avoid severe grid-dispersion 

affecting the modeled data.  With these assumed parameters, the top and bottom 

interfaces of the thin layer would not be resolved, thus appeared as one interface, as 

shown in Figure 20.  Broadening the source bandwidth with the assumed parameters 

 

 

 

 
Figure 19.  A thin layer of 60m thick imbedded in a homogenous medium. 
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Figure 20. A shot-record for the model in Figure 19, generated by the staggered-grid finite-difference.  With 4m grid 

spacing and minimum velocity of 1000m/s, the grid-dispersion condition imposed maximum source 

frequency of about  60 Hz, which was not broad enough to resolve the top and bottom interfaces. 

 

 

 

may resolve the top and bottom interfaces of the thin layer, but generate severe grid-

dispersion, Figure 21.  Alternatively, the pseudo-spectral finite-difference can be used  

 

 

 

 
Figure 21.  The same shot-record as in Figure 20, except the source bandwidth was broadened, which violated the 

grid-dispersion condition.  Sever grid-dispersion had resulted that effected the simulated data. 

 



63 

 

 

63 

with much broader seismic-source bandwidth to resolve the top and bottom interfaces of 

the thin layer with the assumed model parameters, Figure 22.  The pseudo-spectral 

finite-difference has no grid-dispersion condition that needs to be satisfied except the 

two grid-points per wavelength, which is a requirement of the Nyquist spatial sampling, 

rather than by the pseudo-spectral finite-difference.  Thus, allowing the use of a broader 

seismic source bandwidth with no extra cost.  Therefore, the pseudo-spectral finite-

difference is much reliable and cost effective modeling tool in cases where the higher 

seismic source bandwidth is desired to model thin interfaces. 

 

 

 

 
Figure 22.  A seismic shot-record, generated by the pseudo-spectral finite-difference, for the model in Figure 19.  

Unlike the staggered-grid finite-difference, the pseudo-spectral finite-difference has no restriction on the 

seismic-source maximum frequency; except the two grid-points per wavelength, therefore boarder 

bandwidth was used to resolve the top and bottom interfaces of the model. 
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NUMERICAL EXAMPLE (GROUNDROLL) 

In this section, I demonstrate the capability of the pseudo-spectral finite-

difference to model array data for land example.  In this model, I use a thin wiggly air-

filled layer as an artificial free-surface along with wiggle interfaces to simulate a real 

land free-surface.  I also use thin layered medium to excite dispersive Rayleigh-waves 

(ground roll) and backscattering, which are common seismic events in land seismic data.  

However, before I proceed on describing my model and the parameters of the elastic 

medium and finite-difference, I briefly review and show an air-filled layer can be used as 

an artificial free-surface in the finite-difference.   Then, I will also discuss briefly how 

dispersive ground roll are formed; because they are part of the elastic wavefield recorded 

in any land seismic experiment, (Ikelle and Amundsen, 2005). 

 

Air-filled layer 

The free-surface boundary condition can also be satisfied artificially by literally 

adding an air-filled layer as the first layer of the geological model.  It is an easy way to 

accommodate for more realistic models because the free-surface can be of any 

topography.  By applying an absorbing boundary at the top of the air-filled layer, which 

can eliminate reflections from the top of the model and by the acoustic impedance 

contrast between the air-filled layer and the first interface of the medium, an artificial 

free-surface can be created that can produce comparable modeling accuracy to that of 

satisfying the free-surface boundary condition. 
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To examine the ability of the air-filled layer to act as an artificial free-surface, 

two models where examined.  The first model was made of a 500 meter thick 

homogenous layer overlain by a 200 meter thick air-filled layer, Figures 23.  The second 

model was only made of the homogenous layer.  An explosive source and pressure 

sensors were used to record the pressure wavefield for both models.  In both models, the 

explosive source was placed in the center laterally.  However, in the air-filled layer 

model, the sensors where placed at 300 meters deep from the top of the air-filled layer 

and 100 meters deep inside the homogenous layer.  For the homogenous model, the 

sensors where placed at 100 meters deep inside the model.  Snapshots of both models 

were recorded at the same instant, 0.25 second, which show the P-wave direct arrival 

and the P-wave reflection from the air-filled layer interface, Figure 24 and from the free-

surface boundary, Figure 25.  Both snapshots show comparable results for modeling 

 

 

 

 
Figure 23.  Homogenous medium of 500m thick, overlain by 200m thick air-filled layer.  An explosive source was 

placed in the center of the model at a depth of 300m.  Pressure sensors were placed at 321m depth inside the 

homogenous medium. 

Source 

Receiver 
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both seismic events.  Seismic shot-records for one-second long, for both models, were 

also recorded.  Both seismic events have been modeled accurately, Figures 26 and 27. 

 

 

 

 
Figure 24.  A snapshot recorded at 0.25s for the air-filled layer model showing a P-wave direct arrival and a P-wave 

reflection of the air-filled layer, which acted as an artificial free-surface.  The physical quantities presented 

here are an explosive source placed at the center laterally and 300m. deep and pressure sensors placed at 

320m. deep. 

 

 

 

 
Figure 25.  A snapshot recorded at 0.25s for the homogenous layer model showing a P-wave direct arrival and a P-

wave reflection from the free-surface.  The physical quantities presented here are an explosive source 

placed at the center laterally and at 100m. deep and pressure sensors placed at 120m. deep 
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Figure 26.  Seismic shot-record of one-second long, showing a P-wave direct arrival and a P-wave reflection from the 

air-filled layer, which acted as an artificial free-surface. 

 

 

 

 
Figure 27.  Seismic shot-record of one-second long, showing a P-wave direct arrival and a P-wave reflection from the 

free-surface. 
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The numerical results of the previous two models, snapshots and shot-records, 

have shown that the air-filled layer can be used as an artificial free-surface.  It produces 

comparable modeling accuracy to that of satisfying the boundary condition for a planar 

free-surface.  However, by using the air-filled layer as an artificial free-surface, the 

constraint on having a planar free-surface is no longer required.  This would allow 

modeling more realistic complex models because the artificial free-surface can be, now, 

of any topography.  For example, Figure 28 shows a snapshot, recorded at 0.4 second, 

for homogenous medium overlain by an inclined air-filled layer.  It is evident that the 

inclined air-filled layer acted as an artificial free-surface that modeled reflected incident 

P-wave accurately.  Figure 29 is another example of a snapshot recorded at 0.32 second, 

where the air-filled layer is wiggly.  Here, the reflected P-wave is dissipated and 

scattered as a result of the wiggly air-filled layer.  All these models confirm that the air-

filled layer is a reliable choice as a free-surface, whenever modeling requires the free-

surface to be non-planar.  The air-filled layer or the artificial free-surface is used to 

model more examples in the subsequent sections. 
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Figure 28.  A snapshot recorded at 0.4s for homogenous medium overlain by an inclined air-filled layer that acted as 

an artificial free-surface. 

 

 

 

 
Figure 29.  A snapshot recorded at 0.32s for homogenous medium overlain by a wiggly air-filled layer that acted as an 

artificial free-surface.  The reflected P-wave is dissipated and scattered as a result of the wiggly free-

surface. 

 

 

 

While medium parameters of the air-filled layer such as the density and P-wave 

velocity are much lower than the rest of the medium, which would normally impose very 

fine grid-spacing and the timesteps, which are required by the stability and the grid-
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dispersion conditions of the finite-difference, errors introduced as results of violating 

these conditions would not affect the modeled data.  These errors would only occur in 

and near the air-filled layer interface.  Thus, as long as the sensors are not placed in or 

near the air-filled layer, no errors have been observed in the modeled data. 

 

Dispersive groundroll 

Ground roll are vertically polarized Rayleigh waves; named after (Rayleigh, 

1885).  Rayleigh showed that there exists a solution that satisfies the elastic equation of 

motion for a wave traveling along a free-surface, with retrograde to elliptical particle 

motion, and decays exponentially with depth.  The decay, in amplitude, is inversely 

proportional to the square-root of the distance from the source.  Thus, its amplitude 

decays more rapidly than a P- or S-wave, which their amplitudes decay inversely 

proportional to the distance from the source.  Its generation comes from diffracting an 

incoming P- or S-wavefront at the free-surface.  A condition necessary for generating 

high amplitude ground roll is that the source must be on or near the free-surface, so that 

the wavefront is strongly curved, (Ikelle and Amundsen, 2005).  Its velocity is slightly 

less than the S-wave velocity and only depends on the ratio of the P- and S-wave 

velocities, or equivalently on the Poisson’s ratio.  (Knopoff, 1952) derived the ratio of 

the Rayleigh- and S-wave velocities as a function of the Poisson’s ratio.  He showed that 

for typical values of Poisson’s ratio, in the range of     to    , the Rayleigh-wave 

velocity, as a function of the S-wave velocity, varies from       to       ,  
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To analyze how ground roll are formed, I created a simple model made of 

homogenous medium, below a free-surface.  A vertical source of 20 Hertz central 

frequency was placed in center laterally and at 6 meters below the free-surface.  The P- 

and S-waves velocities of the medium were         and         respectively.  These 

velocity values made the Poisson’s ratio to be about 0.2, which made the velocity of the 

ground roll, to be about      of the S-wave velocity.  A snapshot, recorded at one 

second, of the vertical component of the particle-velocity shows that a homogenous layer 

below a free-surface is enough to excite ground roll.  It also shows the rapid decay, in 

ground roll amplitude, with depth.  Ground roll are lacking behind S-wave is also 

evident, and it may require large offset to observe the separation between the two 

seismic events, Figure 30.  In this model, the ground roll is not dispersive, however in 

land; the near-surface, which is immediately below the free-surface, is unconsolidated to 

semi-consolidated and very heterogeneous in its elastic parameters and thickness, thus it 

is referred to in petroleum seismology, by the weathered zone or the low-velocity zone.  

It can cause ground roll to be dispersive.  The dispersion happens as a result of various 

wavelength components, or equivalently various frequency components, travel with 

different velocities.  Consequently, it may cover an envelope-cone instead of a straight 

line on a seismic shot-record.  To show how dispersive ground roll would look like on a 

snapshot and on a seismic shot-record, we used the same model as in Figure 28; with the 

exception of adding a second thin layer, right below the free-surface, with a thickness of 

10 meters.  The P- and S-wave velocities, for the thin layer, were          and 

        respectively.  Figures 31 and 32 show a snapshot, recorded at 0.8 second, and a  
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Figure 30.  A snapshot, recorded at one second, showing the vertical component of the particle-velocity for a 

homogenous layer below a free-surface.  A vertical source of 20 Hertz central frequency was placed in 

center laterally and at 6 meters below the free-surface. The P- and S-waves velocities of the medium are 

        and         respectively.  Non-dispersive ground roll is excited, which decays, in amplitude, 

with depth. 

 

 

 

shot-record, of one second long, for this model, for the vertical component of the particle 

velocity respectively.  Ground roll, now, is dispersive, as a result of the one-dimensional 

heterogeneity, below the free-surface.  As ground roll travels along the free-surface with 

its retrograde motion, it keeps striking and bouncing from the thin layer, which has 

different elastic parameters.  These cause different wavelengths to travel with different 

velocities, which generate several ground-roll modes that travel with different velocity.  

The same phenomena are observed for a partial part of the S-wave, which was trapped in 

the thin layer.  Because of the radiation pattern for the vertical component of the particle 

velocity, which decreases with wider angles, the trapped part of the P-wave would not 

show any dispersion. 
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Figure 31.  A snapshot, recorded at 0.8 second, showing the vertical component of the particle velocity, for the same 

model as in Figure 30, with the exception of adding a 10m thick layer below the free-surface.  The P- and 

S-wave velocities, for the thin layer, were          and         respectively.  Due to the different 

elastic parameters of the thin layer, ground roll become dispersive; where various wavelength components 

travel with different velocity. 

 

 

 
Figure 32.  A shot-record, of one-second long, showing the vertical component of the particle velocity, for the same 

model as in Figure 30, with the exception of adding a 10m thick layer below the free-surface.  The P- and 

S-wave velocities, for the thin layer, were          and         respectively.  Due to the different 

elastic parameters of the thin layer, ground roll become dispersive; where various wavelength components 

travel with different velocity. 
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After providing an overview of how ground roll are generated and how they can 

get dispersed, we can now proceed with our land data model example.  In order to create 

a realistic land model, we used the air-filled layer as an artificial free-surface, so that we 

have a choice on how wiggly our free-surface can be.  Generating high amplitude ground 

roll would also require placing the source immediately right below the free-surface, so 

that the curved wavefront can diffract off the free-surface and generates ground roll.  We 

use a randomly heterogeneous thin layer right below the air-filled layer to excite 

dispersive ground roll.  Because of the rapid decay in ground roll amplitude with depth, 

the sensors need to be placed right below the free-surface.  The elastic parameters of the 

heterogeneous thin layer are balanced so that the Poisson’s ratio that can show clear 

distinction between the S-wave and ground roll.  Finally, we also use wiggly interfaces 

to generate diffraction and backscattering events. 

This land model has a spatial cell dimension of            .  The air-filled 

layer occupied the first 400 cells from the top of the model vertically.  The interface of 

the air-filled layer was created by summing a group of sine waves of various frequencies 

and amplitudes, in order to make the interface randomly wiggly, so that it simulates an 

actual land surface.  The elastic parameters of the air-filled layer were 320m/s for the P-

wave and 10.3 Kg/m³ for the density.  The S-wave was null due to the fact that air is an 

acoustic medium that does not support S-wave propagation.  A thin layer of 10 meters, 

in thickness, was placed right below the air-filled layer, which consisted of two different 

elastic mediums, distributed randomly across this layer.  The objective was to make this 

layer heterogeneous, to simulate a weathered layer below a free-surface.  Four more 
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layers, of wiggly interfaces, of various thickness and elastic parameters were placed 

below the thin layer respectively, Figure 33.  A zoom-in of this model that shows the 

wiggly air-filled layer and the random distribution of the elastic parameters across the 

thin layer are shown in Figure 34.  The elastic parameters for this model have been 

overlain on the figures for simplicity. 

 
Figure 33.  A land model made of (4096X2048) spatial cells that consisted of 7 layers.  An air-filled layer was used to 

act as an artificial free-surface that occupied the first 400 cells from the top of the model vertically.  A 

heterogeneous thin layer of 10m thick was placed right below the air-filled layer with randomly distributed 

elastic parameters, to simulate a weathered layer. 
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Figure 34.  A zoom-in of the land model in Figure 33 that shows the random wiggles of the air-filled layer and the 

random distribution of the elastic parameters of the thin layer.  The elastic parameters of this model have 

been posted as a table on the model figure for simplicity. 

 

 

 

The pseudo-spectral finite-difference tool was used to model the seismic wave 

propagation through this model.  Due to the low elastic parameters of the thin layer and 

the heterogeneity of our land model, the stability and grid dispersion formulas, discussed 

and shown in the computational constrains section, would not be specific enough for 

accurate and stable result because they were derived for homogenous mediums.  

Therefore, the grid-spacing and the timestep of the finite-difference had to be chosen by 

trials and errors in a way that could lead to the best results.  After going through several 

iterations of different values, we found that 1 meter for the grid-spacing and           

for the timestep provided accurate and stable numerical results for our objective.  An 

absorbing boundary of 100 grid-points has been applied to all edges of the model, 

including the top edge, so that no artifact reflections would occur.  A vertical source of 
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20 Hertz central frequency was placed in the center laterally and at 6 meters deep below 

the air-filled layer.  Sensors, at 4 meters apart, which capture the vertical component of 

the particle velocity, were placed at 8 meters below the free-surface.  While outputting 

every 80
th

 timestep to the shot-record file, a total of 40,000 timesteps was executed. This 

produced a shot-record of 2 second long, with 4 millisecond sampling-rate.  Figure 35 

shows the shot-record for the land model.  At the far offset, we see that reflections have 

been masked by dispersive ground roll and the many refracted events.  At the near offset, 

reflections are hardly visible because of the backscattering, which are diffracted events 

from the wiggly interfaces. The shot-record of this model showed that the pseudo-

spectral finite-difference is a powerful tool for simulating complex land models.  The 

more attributes and parameters we account for in our models, the closer the finite-

difference simulation would be to the real seismic data.  While our land model was 

simplified, we observed that our simulation looked quite similar to a real land seismic 

shot-record. 
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Figure 35.  A seismic short-record, simulating seismic land data, of two-second long sampled at 4ms generated by the 

pseudo-spectral finite-difference. 

 

 

 

Another benefit of the pseudo-spectral finite-difference is in cases where large-

scale numerical modelings are desired.  Large scale numerical modelings are needed in 

cases like modeling of regional basins or when modeling is aimed beyond sediment 

columns such as to model faults or large-scale fractures that extend beyond basement.  

Again, since the pseudo-spectral finite-difference has no constrain on the size of the 

grid-spacing, except the two grid-points per wavelength, and since the spatial derivatives 

are computed locally, without the need to use adjacent grid-points, then large grid-points 

can be used to model large scale mediums.  For example, Figure 36 shows a model of 

several wiggly layers with normal model size of              along with the elastic 

parameters of its layers.  The minimum velocity of the model is         , thus with 

source maximum frequency of 50 Hz, grid-spacing of 12 meters can be easily used.  
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Figure 37 shows the seismic shot-record generated with the pseudo-spectral finite-

difference for this model.  While four-second long was simulated for the shot-record, 

only 12,000 timesteps were needed for a finite-difference model of normal size.  

Therefore, the pseudo-spectral finite-difference is an optimum modeling tool for large 

scale simulation. 

 

 

 

 
Figure 36.  A large-scale model of several wiggly layers, along with its elastic parameters to be used as the input 

model for the pseudo-spectral finite-difference.   
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Figure 37.  A seismic shot-record simulated with the pseudo-spectral finite-difference for the model in Figure 36.  

While the shot-record was simulated for 4 second, only 12,000 timesteps were needed for a model of 

2048X1024 grid-points. 

 

 

 

In conclusion, the pseudo-spectral finite-difference uses the fast Fourier 

transform, which has an infinite order of accuracy, to compute the spatial derivatives 

instead of finite differences.  As a result, the pseudo-spectral finite-difference only 

requires two grid-points per wavelength to sample the wavefields, versus 8 grid-points 

per wavelength for a fourth-order difference operator or 16 grid-points per wavelength 

for a second-order difference operator, in the staggered-grid finite-difference, to achieve 

comparable accuracy.  The two grid-points per wavelength is a seismic acquisition 

criteria to prevent aliasing the wavefield, rather than a requirement of the pseudo-

spectral finite-difference.  Therefore, the pseudo-spectral finite-difference is much more 

efficient than the staggered-grid finite-difference, particularly for numerical modeling of 

array data; where the grid-spacing is in the order of one meter or less.  Also, for 

numerical modeling of large inhomogeneities where the size of the grid-spacing is only 
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constrained by the Nyquist spatial sampling.  Also, the pseudo-spectral finite-difference 

is an optimum numerical modeling tool when broader vertical resolution is needed to 

resolve thin interfaces or smaller features. 

  



82 

 

 

82 

CHAPTER IV 

CONCLUSIONS AND RECOMMENDATIONS 

We have introduced a new concept that we called seismic virtual arrays.  By 

assuming that seismic data are nonGaussian, we can add to our real sensors, virtual 

sensors, which help us to improve array responses, to reduce the number of real sensors 

or both.  We are in the process of investigating how this new concept of virtual arrays 

can be integrated into the existing seismic acquisition technology. 

One of the key assumptions in the derivation of the virtual seismic array is that 

array responses are narrowband; that is, the bandwidth of these responses is about 5 Hz 

or less around central frequency.  We know that this assumption does not hold for 

seismic array responses because the bandwidth of seismic data is about 60 Hz around the 

central frequency.  In other words, seismic data are wideband signals.  The future plans, 

in this study, will include a description of how a wideband signal can be decomposed 

into narrowband signals, for which the concept of virtual seismic array can be applied.  

In particularly, we will focus on the filterbank technique for decomposing a wideband 

signal into a group of narrowband signals, and the reconstruction of the wideband signal 

after constructing the virtual sensors (Harris, 2004). 

I have been provided with two finite-difference codes; the staggered-grid and the 

wavenumber-based (pseudo-spectral) finite differences.  I have gained the experience on 

how to use both codes and made several runs for various geology models.  I described a 
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numbers of them in this thesis.  Both finite-difference techniques showed comparable 

result for modeling various seismic events including first-arrival, primaries, refractions, 

converted waves and internal multiples.  These results confirm that the wavenumber-

based finite-difference is also a reliable modeling tool for seismic data.  Moreover, I 

showed that the wavenumber-based finite-difference is more suitable for modeling data 

at the array level, compared to the staggered-grid finite difference, especially when 

dealing with land seismic data. 
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APPENDIX A 

NARROWBAND ARRAY RESPONSE 

In this Appendix, I define the complex envelop and show how the real original 

signal can be recovered.  Then, I will derive the array response of the complex envelop 

for a narrowband signal (Ikelle, 2010; Rice, 1982; Veen and Leus, 2005; Zatnab, 1998). 

Complex Envelop 

For example, if       is a narrow-band real signal, then the complex envelop for 

      with central frequency    (where         ) can be expressed as follow: 

 

                 
                       (A.1)  

where       is the complex envelope of       and   
     is an arbitrary function, which is 

in practice selected as the Hilbert transform of       (Bracewell, 2000).  For a 

function     , which is nonsingular at     for   0, then its Fourier transform, is 

given by                ; where   is the angular frequency, has the special 

property known as the Hilbert transform, which is defined as follow: 
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(A.2)  

Where   donates the Cauchy principle value at discontinuities.  If      vanishes for   

  , its Fourier transform            has               forming a Hilbert transform 

pair;               have the same amplitude spectrum but differ in phase by 90°.  

             is called the analytic signal belonging to     , and      is the quadrature 

signal corresponding to     .  So, from the complex envelop of   
    , the real signal can 

be reconstructed as: 

 

          
                             (A.3)  

where   stands for the real part. 
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Narrowband Array Response 

The objective, here, is to prove that the time delay for a narrowband complex 

enveloped signal is given by (2.3).  So the delayed narrowband signal in the time domain 

          is given by:  

 

                                                     (A.4)  

Where            is the delayed version in the complex envelop and   stands for the 

real part.  The Fourier transform of the complex envelop of the delayed narrowband 

signal is given by: 

 

                                 
 

  

   

                                           

(A.5)  

The inverse Fourier transform      of the complex envelop delayed narrowband signal is 

given by: 
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(A.6)  

Since the signal is a narrowband, then the variable   can be replaced with         

where   is the angular central angular frequency and    is a narrowband signal.  Then, 

(A.6) can be expresssed as: 

 

 
 

  
                  

  

   

                            (A.7)  

Assuming that       is sufficiently small, then            , therefore (A.7) is reduced 

to the followings: 

 

 
 

  
                      

 

  

                   (A.8)  

The well-known conclusion is that, for narrowband signals, time delays shorter than the 

inverse bandwidth can be represented as phase shift of the complex envelop of the 

signal. 
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APPENDIX B 

REVIEW ON SECOND- AND HIGHER-ORDER STATISTICS 

My objective is this Appendix is to provide a review and some background on 

statistical averages; mainly on second-order and higher-order statistics.  This background 

is essential to carry-out this research. 

I start by defining random variables and discuss an example of representing 

seismic data as random variable.  Then, I show how to statistically characterize random 

variables by some statistical averages tools such as moments and cumulants.  The 

definitions of these statistical averages tools are then extended to include joint moments 

and joint cumulants; because we often deal with a number of random variables, rather 

than a single random variable. 

REAL RANDOM VARIABLES 

Random Variables 

If the outcome from an experiment has multiple possibilities, then the proper 

description for the experiment is in terms of the different possible outcomes and the 

probability of each outcome.  For instance, suppose the experiment consists of tossing a 

coin, whose sides are marked as 1 and -1.  Then, the possible outcomes from the 

experiment form a random variable, which may take on either of these values with 

probability of 
 

 
 . 
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In seismic, for example, the different shot-receiver pairs that share the same 

reflection point, after normal-moveout correction, could be considered as   repeating 

experiments; where   represents the number of shot-receiver pairs or what is known as 

fold in seismic data acquisition.  Therefore, each timestep, in a common-midpoint 

gather, after correcting for the normal-moveout, is considered as a random variable that 

can be characterized by statistical averages, (Ikelle and Amundsen, 2005).  Therefore, 

we could consider the values corresponding to all traces at each timestep as a repeated 

experiment, or in other words as a random variable, that can be characterized by 

statistical averages  

One of the key statistical averages tools that can be used to characterize random 

variables is known as moments.  Moments are defined as the expectation of any random 

variable raised to some power.  The power depends on the order of moment being 

calculated.  The general formulation of moments is as follows: 

 

                   

 

  

 (B.1)  

where   is the     order moment and      is the probability density function, which 

is the frequency of samples appearing in a random variable.  A histogram is a graphical 

representation of a probability density function.  The      order moment is the expected 

value, where   stands for expectation of the random variable , raised to some power  .  

Moments, up to fourth-order, are computed as follow: 
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(B.2)  

For example, for a Gaussian random variable that has zero mean, moments, up to fourth-

order, are computed as follow: 

 

 First-order moment: 

          
 

     
     

    

   
    

 

  

   

Second-order moment:  

            
 

     
     

    

   
    

 

  

    

Third-order moment:  

(B.3)  
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Fourth-order moment:  

            
 

     
     

    

   
    

 

  

     

where   is the variance.  This example shows that for Gaussian random variables, first- 

and third-order moments are always zero, while second-order moment is non-zero and 

gives the variance.  The fourth-order moment is always a multiple of the second-order 

moment.  If we keep computing higher-order moments, we will find that for Gaussian 

random variables, an infinite number of moments exist.  Odd moments are always zero 

while even moments are always non-zero and are multiple of the second-order moments. 

Another useful key statistical averages tool is known as cumulants.  However, to 

define cumulants, I need to define other quantities known by first and second 

characteristic functions.  The first characteristic function       is the Fourier 

transformation of the probability density function     .  The second characteristic 

function       is the natural log of the first characteristic function.  Mathematically, 

they are expressed as follow: 
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 First characteristic function: 

                    
 

  

 

Second characteristic function: 

            

 

(B.4)  

Cumulants are found by differentiating the second characteristic function        with 

respect to   at the origin. 

 

  
       

      

   
 
   

 (B.5)  

Cumulants up to fourth-order are computed as follow: 

 

First-order cumulant:   
      

     

  
 
   

 

Second-order cumulant:   
             

   
 
   

 

Third-order cumulant:       
             

   
 
   

 

(B.6)  
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Fourth-order cumulant:     
             

   
 
   

 

It is important to mention that I am only discussing and showing moments and 

cumulants up to fourth-order because it is the highest order of moments and cumulants I 

would need to carry-out this research.  For example, for a random variable  , with 

Gaussian probability density function given by: 

 

     
 

     
     

      

   
             (B.7)  

The first characteristic function is: 

 

               
 

    
     

  

   
   

 

  

     
     

 
  (B.8)  

And the second characteristic function is: 

 

               
     

 
 
   

 (B.9)  

By differentiating (B.9) with respect to   at the origin, I can find various orders of 

cumulants of the random variable  . 

 

     (B.10)  
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This example shows, that for Gaussian random variables, cumulants up to second-order 

are equivalent to moments up to second-order.  However, cumulants higher than second-

order are always zero while moments higher than second-order are not necessary zero, as 

shown in (B.3).  It also shows how computing cumulants is effective in characterizing 

the non-Gaussianity of random variables than moments.  When cumulants higher than 

second-order are zero, the random variables are characterized as Gaussian and when they 

are not zero, they are characterized as non-Gaussian. 

Cumulants and moments are different, although clearly related.  Cumulants are 

not determined directly by integrative processes as are moments rather they are derived 

from the second characteristic function.  However, cumulants can also be found by first 

estimating moments and vice versa (Ikelle, 2010), according to the following two 

formulas: 

 

  
    

   
 

     
   

  
   

   

   

 (B.11)  

 

  
    

    
   

 
     

   
  

   

   

   

 (B.12)  
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where  
   

 
  is defined as 

      

            
.  

Actually, one of the classical ways of differentiating between Gaussian and non-

Gaussian random variables is to compute their third- or fourth-order cumulants.  When 

cumulants of third-order and higher are zero, the random variables are characterized as 

Gaussian and when they are nonzero, they are characterized as non-Gaussian random 

variables.  These facts promote the study of the third- and the fourth-order cumulants 

key roles in analyzing the non-Gaussianity of random variables.  In the following 

sections, I discuss their meaning and what they actually measure for single random 

variable and for joint random variables. 

Third-order cumulant for a single random variable is the skewness.  Skewness is 

a measure of the asymmetry of the distribution of random variables.  It can be positive, 

negative or zero.  A positive skew indicates that the tail, on the right-side of the 

probability density function, is longer than the left-side, which means that the mass of 

distribution is concentrated on the left-side.  On other hand, a negative skew indicates 

that the tail on the left-side of the probability density function is longer than the right-

side, which means that the mass of distribution is concentrated on the right-side.  A zero 

skew indicates that the values are relatively distributed evenly on both sides of the mean; 

implying a symmetric distribution.  Therefore, the third-order cumulant, for any 

symmetric probability density functions whether Gaussian or non-Gaussian, is null.  As 

a result, the third-order cumulant might not be reliable statistical tool that could evaluate 

the non-Gaussianity in random variables when the distribution is symmetric.  In such 

case, the fourth-order cumulant must be considered instead. 
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The fourth-order cumulant for a single random variable is the kurtosis.  It is a 

measure of peakedness of the probability density function.  Random variables that have 

negative kurtosis tend to have their distribution flatten in relative to Gaussian 

distributions.  These types of distributions are known as sub-Gaussian. The Uniform 

distribution is an example for this class of distributions. On the other hand, random 

variables that have positive kurtosis tend to have their distributions peaked more than 

Gaussian distributions.  These types of distributions are known as super-Gaussian.  The 

Laplace distribution is an example for this class of distributions.  By examining 

moments and cumulants of these different distributions, I could highlight the followings: 

o First of all, for distributions that are centered at the zero along the X-axis and 

symmetric, such as the Gaussian, the Laplace and the Uniform distributions, 

first-order moments and first-order cumulants are zero, while for the Rayleigh 

distribution, which is not centered at zero along the X-axis and is not symmetric, 

its first-order moment and its first-order cumulant is not zero.   

o Secondly, for distributions that are symmetric, such as the Gaussian, Laplace and 

Uniform, their third-order moment and their third-order cumulant are also zero, 

while for the Rayleigh distribution is not zero because of its asymmetry. 

o Third, for Gaussian distributions, cumulants higher than second order, is null 

while higher-order moments are not. 

o Fourth, for the Laplace distributions, fourth-order cumulant is positive.  This 

distribution is a type of the super-Gaussian.  However, for the Uniform 
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distribution, fourth-order cumulant is negative. This distribution is a type of the 

sub-Gaussian.   

o Finally, for zero mean distributions, such as the Gaussian, the Laplace and the 

Uniform, first- to third-order moments are equal to first- to third-order cumulant, 

only at the fourth-order, they become different.  While for the Rayleigh 

distribution, which are not zero mean, its moments and cumulants become 

different from the second-order. 

For zero mean random variables, cumulants are significantly simplified, as a 

result of the vanishing terms that contains the first-order moments.  Table 2.3 shows 

cumulants up to fourth-order, as functions of moments, for zero mean versus non-zero 

mean random variables.  For the zero mean, cumulants are equivalent to moments up to 

third-order.  Cumulants only begin to differ at the fourth-order. 

 

Joint Random Variables 

We often must deal with multiple random variables instead of only a single 

random variable.  Hence, it is useful to extend the definitions of moments and cumulants 

to a set of random variables. 

 

Joint moments 

Given a set of   real random variables             , their joint moments of 

order              are given by their joint expectation: 
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    (B.13)  

For instance, for two joint random variables,   , the joint moment is given by: 

 

                      

 

  

 

  

             (B.14)  

where   stands for their joint expectation and           is their joint probability density 

function.  A scatter plot is a graphical representation of a joint probability density 

function of two random variables. 

 

Joint cumulants 

As I had to introduce the first and second characteristic function in order to 

define cumulant for a single random variable.  I will also have to define the first and 

second joint characteristic functions to be able define joint cumulants.  So, the first joint 

characteristic function is the Fourier transform of the joint probability density function. 

 

                                          (B.15)  

We can expand (B.15) by expressing it as follow 

 

                     
  

                   (B.16)  
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where the frequencies    and values of random variable    are expressed in form of 

vectors:                ,               ,                and      is the 

n-variable joint probability density function of the random variables             .  So, 

the joint cumulant of order              is defined as the derivative of the 

second joint characteristic function at the origin. 

 

      
     

     
          

                 

   
     

      
  

 

           

 (B.17)  

For zero-mean random variables,               , the joint cumulants up to 

fourth-order are explicitly given by: 

 

                   

                        

                                            

                               

(B.18)  

When            , then (2.18) becomes as follow: 

 

                          (B.19)  
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Joint second-order statistics 

For two zero-mean random variables,          
 , the second-order joint 

cumulants are equal to the second-order joint moments. 

 

                              (B.20)  

In practice, for two random variables, there are four second-order joint cumulants; 

          ,           ,           , and           .  These second-order 

cumulants are normally grouped into 2X2 second-rank tensor or matrix, called the 

covariance matrix, and denoted   
   

.  The diagonals of the covariance matrix,   
   

, will 

give the variances,    

 and    

 , of the random variables   and   , since          

    
   and              

  , while the off-diagonals are symmetric, since          

        , and will give the second-order joint expectation of these two random 

variables.  Therefore, the covariance matrix,   
   

, for two random variables,   and   , is 

expressed as follow: 
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   (B.21)  

For   random variables, the covariance matrix,   
   

, is     matrix and expressed as 

follow: 

 

  
   

  
                 

   
                 

         

  

   

          

   
            

 
  

(B.22)  

 

Joint fourth-order cumulants 

For   random variables, the third-order joint cumulants will produce a third-rank 

tensor that will have       components.  However, for symmetric zero-mean 

distributions the third-order joint cumulants are always zero.  In such a case, the fourth-

order joint cumulant is the key statistical quantity for determining whether the random 

variables are Gaussian or non-Gaussian. 

Joint cumulants of fourth-order form a fourth-rank tensor, which is an array of 

four indices; denoted normally by   
   

.  The fourth-order joint cumulants are not equal 

to the fourth-order joint moments, as are the cases for second- and third-order joint 
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cumulants for zero-mean random variables.  For the random vector               
 , 

the scalar elements of the fourth-order joint cumulant tensor are  

 

                

                           

                               
(B.23)  

Where       and   vary from   to  .  Therefore, the fourth-order joint cumulant tensor is 

an array of    elements that can be organized into either        matrix or into    matrices 

of         elements for each matrix.  For instance, for two random variables, the fourth-

order joint cumulants will form a tensor of    elements, which can be grouped into 

either a matrix of       or into four matrices of       for each matrix. 

In this chapter, I have shown that for a Gaussian random variable, an infinite of moments 

exist, where the odd moments are zero and the even moments are multiple of the second 

moments.  However, for Gaussian random variable, cumulants higher than second order 

is zero.  Also, for symmetric zero-mean random variables, third-order cumulants is zero.  

Therefore, fourth-order cumulants is the key statistical tool that must be considered for 

non-Gaussian random variables.  I also have shown that for zero-mean random variables, 

cumulants and moments only begin to differ at the fourth-order.  Finally, I have also 

shown that for   random variables, the second-order joint cumulants can be grouped into 
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      matrix, where the diagonals give the variances for each random variable and the 

off-diagonals give the second-order joint expectations of the random variables. 

 

COMPLEX RANDOM VARIABLES 

A complex random variable   is defined by two real random variables 

          , such that           , where    represents the real part and    represent 

the imaginary part and       .  The possible outcomes, for a complex random 

variable  , are represented as          , where           are real numbers.  

Complex random variables are common in a number statistical variables and signal 

processing including the Hilbert transformation and the complex envelop domain, which 

is the domain used in the derivation of the virtual seismic array.  Thus, it is important 

that my review of second- and higher-order statistics include a review on complex 

random variables and their second- and higher-order statistics.  So, my objective, in this 

section, is to redefine moments and cumulants for complex-valued random variables or 

(complex random variables, for short), and extend these redefinitions to include joint 

moments and joint cumulants of complex random variables.   

There are two basic approaches in deriving moments and cumulants for complex 

random variables.  One approach is to consider the real and imaginary parts of the 

complex random variables as two-dimensional real random variables.  In such case, the 

formulas, shown and discussed in the previous section, could be easily used for the 

complex random variables by replacing each complex random variable with a two-
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dimensional real random vector.  The downside of this approach is that it produces 

complicated formulas, particularly when defining joint moments and joint cumulants for 

complex random variables.  The other approach is to derive formulas, which directly 

operate on complex random variables.  In such case, the separation between the real and 

imaginary parts of the complex random variables is avoided.  In this approach, formulas 

for moments, cumulants, joints moments and joint cumulants of complex random 

variables are much simplified in terms of taking their derivatives and the physical sense 

related to the complex nature of the data.  Here, I present this approach and follow 

(Amblard and M. Gaeta, 1996; Ikelle, 2010; Schreier and Scharf, 2006), who provided 

very unique and clear review on complex random variables. 

 

Circular complex random variables 

To define moments and cumulants for complex random variables, the probability 

density function and the first and second characteristic functions need to be defined, as 

was done for the moments and cumulants of the real random variables.  However, the 

shapes of distributions, for seismic random variables in the complex envelop domain, 

follow a class of complex random variables known as circular complex random 

variables.  Thus, the review of complex random variables, in this section, is limited to 

this class of complex random variables.  More discussion regarding the circularity of 

seismic data will follow in the next section. 

The probability density functions for circular complex random variables have 

special characteristics that make them unique.  So, my objective, here, is to highlight 
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these characteristics and show their distributions as 1D function, instead of functions of 

their real and imaginary parts.  Distributions of these two complex random variables are 

centered at           , which means that both          are zero-mean real random 

variables.  Therefore, circular complex random variables are also zero-mean,      

  implies            =0. 

Also, the distributions of circular complex random variables are radially isotropic.  They 

only depend on      
    

 .  In a general term, a complex random variable is 

considered circular if   and          have the same probability density function.  In 

other words, the distributions of circular complex random variables are invariant under 

complex rotation; they only depend on the modulus of  .  Because, the derivations are 

carried-out directly on complex random variables, then the samples of circular complex 

random variable   can be represented as: 

 

           (B.24)  

      

 

     
    

  (B.25)  

is the modulus and   is the phase, then the distribution of   is equivalent to the 

distribution of its modulus  .  The phase   is always uniformly distributed on  –     , 

thus has no contribution to the type of distribution.  Therefore, instead of representing 

the probability density function of a circular complex random variable as functions of it 
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its real and imaginary part (see Ikelle, 2010), it can be represented as a single function 

of  .  So, the probability density function for a circular Gaussian random variable, as a 

function of the modulus   , follows a Rayleigh function, instead of the Gaussian 

distribution for real random variables. 

Also, when operating directly on the complex random variables, the probability 

density function of   becomes a joint function of    and its complex conjugate   , which 

is defined as      
    

 .  Thus, for circular complex random variables, the probability 

density function is not a function of   and    , but a function of the product,          

  
    

 .  For example, the probability density function of circular Gaussian complex 

random variable is a product of its real part function    and its imaginary part 

function    , which is given by: 

 

          
 

    
     

  
 

   
      

  
 

   
   (B.26)  

However, operating directly on the complex random variables make the distribution a 

product of     only.  Hence, the probability density function becomes: 

 

            
 

    
     

   

   
  (B.27)  

In the circular Gaussian case, the probability density function is a product of the real 

function    and the imaginary function    , thus they are statistically independent; in 

accordance with the definition of statistical independence for real random variables.  
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However, for the non-Gaussian case, the two components     and    are not necessary 

statistically independent because    .is not necessary a product of a function of    and a 

function of    , as in the Gaussian case.  However, to derive the first and second 

characteristic functions for circular complex random variables, which are needed to 

compute moments and cumulants for circular complex random variables, an assumption 

of statistical independence is made for the variables   and   , which is solely for 

calculation purposes, (Ikelle, 2010).  So, to define the first characteristic function, two 

complex variables          are defined as        and        , where         

are real numbers.  Then, the first characteristic function is given by: 

 

                  
 

 
            

  
 
    

 

 
                            

(B.28)  

where             is the joint probability density function of         .  The argument of the 

exponential function can also be defined as follows: 

 

 

 
                  (B.29)  

Then, the first characteristic function can be expressed as: 



110 

 

 

110 

 

                               (B.30)  

The first characteristic function of the complex variables          is the extension to the 

two dimensional complex plane, of the characteristic function for the real random 

variables defined for the real variables.  Thus, the integral of the expectation is 

calculated on all subsets of   and    generated by    and   .  Also, when   is real, it is 

obvious that the first characteristic function for complex random variables (B.29) is 

reduced to the classical first characteristic function for real random variable (B.4).  The 

second characteristic function, which is used to compute cumulants, is the natural log of 

the first characteristic function, as for the real case. 

 

                          (B.31)  

For example, the first characteristics function for a circular Gaussian complex random 

variable, with a probability density function given by (B.25) (Ikelle, 2010), is as follow: 

 

                  
     

 
  (B.32)  

While the second characteristics function for the same distribution is as follow: 

 

                     
     

 
    

     

 
 (B.33)  
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For circular complex random variables, the first and second characteristic functions are 

functions of the product of    , as shown by the first and second characteristic functions 

for the circular Gaussian complex random variable (B.31 and B.32).  So, a general 

definition of circular complex random variables is that its probability density function is 

a function of a product of    , or alternatively, its first and second characteristic functions 

is a product of    . 

Similarly, as was for the real random variables, moments and cumulants, for the 

complex random variables, are defined as the coefficients of the Taylor expansion of the 

first and second characteristic functions respectively, with respect to its variables 

        .  Thus, any moments of order   is found by differentiating the first 

characteristic function   times and set        .  So, the     order moment for the 

complex random variable   is found by: 

 

      
   

                        

   
  

  
             

         
 
       

 
(B.34)  

The     order moment of a complex random variable does not only depend on  , but 

also on an arbitrary integer   that can take the value between 0 and  .  Thus, there are 

    different moments that need to be compute in order to describe a complex random 

variable completely.  This result comes from the fact that not only the complex random 

variable   is considered, but also its complex conjugate   .  For example at order 2, there 
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are three moments:     
   

       ,     
   

        and     
   

      .  For a real random 

variable, these three moments are the same, but they are different for a complex random 

variable.  However, for circular complex random variable all moments are null except 

the ones that have the same power in         .  Thus, the only non-null moments are the 

ones of the following form: 

 

    
   

                     (B.35)  

This results comes from the fact that the characteristic function of circular complex 

random variables is a product of    .  In other words, when all moments      with 

    are zero, the Taylor expansion for the characteristic function reduces to a function 

of.     only. 

Computing cumulants for complex random variables are done similarly, except 

the second characteristic function is used instead.  So, the Taylor expansion of 

            with respect to          lead to the followings: 

 

      
   

                
  

  
             

         
 
       

 (B.36)  

Similarly to moments for complex random variables, cumulants, at the     order, have 

    cumulants because the second characteristic function is a product of    .  

Considering circular complex random variables, then the only nonzero cumulants are the 

ones of the same power. 
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                     (B.37)  

For example, computing the second order cumulants from the second 

characteristic function, for the circular Gaussian complex random variable (B.32), show 

that     
   

     
   

  .  The only nonzero cumulant for circular Gaussian complex random 

variable is     
   

             .  Cumulants, for     , are always zero because of the 

Gaussianity, which is a result discussed and shown previously.  One important aspect of 

circular complex random variables is that the first- and third-order cumulants, which are 

equivalent to the mean and skewness respectively, are always zero.  The second- and 

fourth-order cumulants which are equivalent to the variance and kurtosis respectively are 

real numbers; despite the fact the random variables are complex-valued. 

 

Joint complex random variables 

In this section, I extend the definitions of moments and cumulants to joint 

moments and joint cumulants of complex random variables, just as was done for the real 

random variables.  I will particularly focus on the second- and fourth-order statistics for 

complex random variables. 
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Joint moments 

As shown previously, moments are derived from the first characteristic function.  

So, the first characteristic function for I joint complex random variables is defined as 

follow: 

 

                           

       
 

 
                           

                  

(B.38)  

Where            are complex variables.  So, the joint moment of order  

             for I joint complex random variables   .   ,…,    is defined as 

follows: 

 

      
     

       
     

 
        

 
          

 
      

     
     

       
     

 
        

 
          

 
      

   
  

  
                                 

    
      

       
     

        
         

     
 

                           

 
(B.39)  

Where   is an integer that can vary between 0 and   . 
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Joint cumulants 

Joint cumulants are derived similarly as joint moments except the second 

characteristic function is used instead. 

 

                           

                               (B.40)  

So, the joint cumulants of order              for I joint complex random 

variables   .   ,      are defined as follows: 

 

      
     

       
     

 
        

 
          

 
      

   
  

  
                             

    
      

       
     

        
         

     
 

                           

 (B.41)  

When              in (B.40) and (B.41), they reduce to the formulas of joint 

moments and joint cumulants for real random variables. 

 

Second-order joint cumulants 

The second-order cumulant is one of the tools used derive the virtual seismic 

array.  Therefore, I limit the formulas of joint cumulants (B.40) to the second-order joint 

cumulants      , and for the class of circular complex random variables, which are 

characterized as zero-mean.  If I consider a complex random vector made of two circular 
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complex random variables          .  The second-order joint cumulants are equal to 

the second-order joint moments. 

 

         
            

          
    

               
(B.42)  

The second-order joint cumulants for two circular complex random variables consist of 

four joint cumulants that can be grouped in a square matrix known as the covariance 

matrix denoted as   
   

and defined as follows: 

 

  
   

  
                  

                  
   

   

          

            

   (B.43)  

The covariance matrix   
   

is Hermitian, since the covariance matrix, in a general term, 

is symmetric as shown for the covariance matrix of real random variables.  A Hermitian 

matrix is symmetric and conjugated.  Also, the diagonal joint cumulants give the 

variances of the circular complex random variables, which are real numbers, and the off-

diagonal measure the correlation between the complex random variables.  Any other 

joint cumulants are null since the complex random variables are assumed to be circular.  

Actually, one of the classic ways to test for circularity is to examine that all other joint 

cumulants are null.  Extending the definition of the covariance matrix   
   

to a complex 

random vector made of   circular complex random variables                  
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produces a covariance matrix made of       joint cumulants, which they can be grouped 

as follows: 

 

  
   

         
                   

   
                   

          (B.44)  

Where    stands for the Hermitian vector  . 

In many situations the probability density function is not known, but samples are 

generally available.  Using the samples of          , the joint expectation of is estimated 

by averaging their samples using the following formula: 

 

        
 

 
     

 

 

   

                  (B.45)  

One of the properties, of the covariance matrices of complex random variable 

that is needed for the derivation of the virtual seismic array, is the multilinearity.  If a 

complex random vector   , made of I complex random variables, is linearly related to 

another complex random vector    by a matrix   made of I x I elements such that   

   .  Then, the second-order joint cumulants of   are related to second-order joint 

cumulants of   , as follows: 
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 (B.46)  

Where     are the elements of  .  In covariance notation, it is expressed as follows: 

 

  
   

   
  
   

   (B.47)  

 

Fourth-order joint cumulants 

For circular complex random variables, all joint moments and joint cumulants of 

the third-order are null as a result of the inequality between the conjugated and non-

conjugated terms.  Actually, the only nonzero terms for all even joint moments and joint 

cumulants are the ones that have equal terms of the conjugated and non-conjugated 

terms.  For example, the fourth-order joint cumulant                
   is null because 

the inequality of the conjugated and non-conjugated terms, while the joint cumulant 

            
    

   is not zero because the conjugated equal non-conjugated terms.  

Therefore, while the fourth-order joint cumulants can be grouped in a fourth-order 

tensor, which is an array of four indices, denoted by   
   

, the only nonzero terms for a 

complex random vector, which has I circular complex random variables, are the ones of 

the following form: 
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(B.48)  

      

                              

The fourth-order joint cumulant tensor is an array of    elements that can be 

grouped into       matrix or   matrices.  In other words, the fourth-order joint cumulant 

tensor can be rearranged into    matrices; similar to the covariance matrices.  This 

arrangement is a fundamental to deriving the virtual seismic array.  Another important 

property of the fourth-order joint cumulant tensor is the multilinearity property, which is 

similar to the multilinearity property of the covariance matrices.  Again, If a complex 

random vector   , made of I complex random variables, is linearly related to another 

complex random vector    by a matrix   made of I x I elements such that      .  Then, 

the fourth-order joint cumulants of   are related to fourth-order joint cumulants of   , as 

follows: 
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(B.49)  

In covariance notation, it is expressed as follows: 

 

  
   

        
  
           (B.50)  

Where   is the Kronecker product (see Appendix C).  
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APPENDIX C 

KRONECKER PRODUCT 

If   is an       matrix and   is a       matrix, then the Kronecker product     is 

the         block matrix, which has the following form: 

 

      
         

   
         

  (C.1)  

More explicitly, 

 

    

 

 

 
 
 
 
 
 
 
 

      

      

 
      

 
 

      

      

 
      

      

      

 
      

 
 

      

      

 
      

 
 
 
 

 
 
 
 

      

      

 
      

 
 

      

      

 
      

 
 

 
 

 
 

 

 
 

 

 
 
 

 

      

      

 
      

 
 

      

      

 
      

      

      

 
      

 
 

      

      

 
      

 
 
 
 
 
 
 
 
 
 

      

      

 
      

 
 

      

      

 
       

 
 
 
 
 
 
 
 

 (C.1)  

Here are two examples: 
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APPENDIX D 

FINAL EXAM PRESENTATION 
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