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ABSTRACT 

Full aeromechanical validation and forced response analysis are becoming fundamental in the design process of centrifugal 

compressors, especially for high-speed and high-pressure ratio machines operating at variable speed. Synchronous excitations on 

impellers, mainly due to the unsteady interactions between structural deflections and stationary row wakes and potential fields, may 

lead, under critical conditions, to high-cycle fatigue failures. 

The present paper focuses on the predictive capability of vibratory response of impellers under resonant conditions. Starting from 

FE (Finite Element) analysis and CFD (Computational Fluid Dynamics) results, the modal force of impeller is computed and the 

dynamic stresses are properly scaled. Numerical results are validated against test data obtained through an aeromechanical test 

campaign performed on full-scale multistage centrifugal compressor equipped with transonic unshrouded impellers. Blade flexural 

modes and hub disk modes have been thoroughly analyzed both for design and off-design conditions and for different pressure levels. 

The good level of agreement obtained allows deriving, in a purely numerical way, a reliable representation of the Goodman diagrams 

for the selected mode shapes. 

This work confirms the level of maturity and accuracy of the prediction of forced response for open impellers, which is 

fundamental to ensure reliability and avoid mechanical failure. 
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INTRODUCTION 

This paper represents the follow-up and completion of the paper presented at the TPS2016 by Toni et al. (2016). The tested 

compressor, instrumentation setup and partial test results together with prediction of aerodynamic damping have been published 

therein. Here, a further step is presented and extensively discussed, namely the prediction of forced response. 

Due to the inherent complexity of the required calculation and the uncertainty connected to it, verification of forced response for a 

rotating turbomachinery component was usually considered only after a component test for verification, or within a classical root 

cause analysis (RCA). With this work, it will be shown that Forced Response Assessment (FRA) has reached a level of maturity at the 

authors’ company such that it can be used as a standard procedure during conceptual and detailed design phases of new centrifugal 

compressor components. This makes the whole process much more robust and effective. In this case, indeed, the analyst can foresee 

possible design robustness issues and introduce significant modifications with low impact on schedule and cost. In order to be 

effective, FRA procedure needs to be fully integrated in the design process, so that the designer is able to estimate component 

vibratory response levels for the different operating conditions and the entire speed range. In other words, through forced response 

assessment the analyst can virtually perform a comprehensive series of tests in the effort to limit as much as possible the real 

experimental test campaign needed to validate the design itself. 

A reliable prediction of vibratory stresses is fundamentally based on two parallel processes: 1) the calculation of damping 

characteristics associated with a specified component vibration shape at specified machine operating conditions; 2) the computation of 

the so called modal work by coupling of excitation forces (i.e. unsteady pressure fields) and structural deflections. 

The total damping of centrifugal compressor impellers is “practically” coincident with the aerodynamic damping due to the 

surrounding flow, and this parameter is extremely important. The approach and software tools used to evaluate the aerodynamic 

damping of open impellers and their related validation have already been illustrated by the authors in the afore-mentioned paper. 

Instead, this paper focuses on the whole FRA process which incorporates the aerodynamic damping computation as a crucial step.  

The exciting forces generated by upstream and downstream stator components are computed through Computational Fluid 

Dynamics (CFD) analysis: the outcome of this calculation consists of unsteady pressures defined as a function of frequency. In 

parallel, structural deflections are determined through a pre-stressed modal analysis. The structural mode shapes are then transferred 

from the Computational Structural Domain (CSD) onto the Computational Aerodynamic Domain (CAD) and combined with the 

pressure distribution over the entire aerodynamic surface in order to evaluate the modal work done on the rotating component. Modal 

work and damping values are then inserted in a classical single-degree-of-freedom (SDOF) formulation to estimate the stress level 

associated to a specific resonant condition and populate a classic Goodman diagram which allows the identification of the most 

stressed areas on the component under assessment.  

In the work described in this paper, the procedure is applied to an open impeller of a three-section full scale High Pressure Ratio 

Compressor (HPRC) designed at the authors’ company and fully validated through an extensive test campaign carried out in 2015. 

The FRA results obtained on two disk modes and one blade mode are presented and discussed in detail. The predicted response levels 

are close to experimental measurements. Moreover, stress level trends obtained as a function of inlet density are discussed, which are 

useful to extrapolate results at inlet pressures in operation much higher than those normally achievable in a test. Finally, both design 

and off-design operating conditions have been considered and the tested trends are correctly captured. The demonstrated good level of 

accuracy allowed deriving in a purely numerical way a reliable representation of the Goodman diagrams for the selected mode shapes. 
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NUMERICAL METHODOLOGY 

The CFD analysis has been performed using a proprietary Reynolds Averaged Navier-Stokes flow solver which is routinely used 

in performance predictions as part of the design process; a detailed description of the solver may be found in Holmes et al. (1997), 

whereas examples of its application and validation for centrifugal compressors are reported in Guidotti et al. (2011), Satish et al. 

(2013) and Guidotti et al. (2014).  

Damping Computation 

The numerical method for aerodynamic damping computation is described in Toni et al. (2016) and it will be briefly summarized 

here. A time-linearized Navier–Stokes method is used to predict the aerodynamic damping, where the perturbations to the steady base 

flow arising from the impeller blade and hub motion are assumed to be small. The steady flow around a periodic sector of the impeller 

is first modeled. Then, the modal displacements from a finite element model of the structure are mapped on to the CFD grid as a 

boundary condition to the linearized Navier-Stokes solver and the unsteady pressures resulting from the blade motion are used to 

compute an aerodynamic work per cycle on the vibrating airfoil. The aerodynamic work is defined as the work removed by the fluid 

from the vibrating impeller over a cycle of vibration: if the work is positive, the fluid is removing energy from the impeller motion, 

and it is considered stabilizing, on the contrary, if the work is negative, the fluid is adding energy to the motion and it is considered 

destabilizing.  The aerodynamic work may be converted into an equivalent aerodynamic damping, using the frequency and modal 

mass associated with the vibration mode. Phase lagged boundary conditions are applied on the periodic surfaces of the model and non-

reflecting boundary conditions are applied at the inlet and exit boundaries to minimize pressure wave reflections. 

Modal Force Computation 

The first step for modal force computation has been the analysis of the impeller aerodynamic response to the inlet distortions: an 

unsteady CFD analysis is then performed and the unsteady pressure fields at the desired frequencies are extracted. Based on the 

experience gained so far by the authors, see Toni et al. (2017), non-linear unsteady computations are preferred with respect to time-

linearized approaches. The analysis domain included a full annulus impeller and the vaneless diffuser; the upstream flow-path extends 

up to a surface where the inlet distortion boundary condition, coming from a separate analysis, is applied. 

The resulting unsteady pressure field at the frequency of interest is projected onto a basis of orthogonal vectors consisting of a set 

of natural mode shapes of the impeller. Like for the aerodynamic damping computation, the mode shapes are interpolated onto the 

CFD grid that is generally finer than the FEA grid on the impeller surface; see also Moyroud et al. (2000). 

For a given combination of an impeller mode shape and the unsteady pressure field at a given excitation frequency, the modal 

force is a complex valued scalar quantity defined as follows: 

FF t
modal  (1) 

Where Φt is the transpose of the mode shape vector and F represents the unsteady aerodynamic loads in complex form resulting 

from the surface integration of frequency domain unsteady pressure perturbations on the impeller walls at the excitation frequency of 

interest (or source of excitation). Generally, the mode shapes are mass normalized and therefore the corresponding modal response 

displacements or participation factors can be calculated as follows: 
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Where Qmodal=1/(2ζ) is the amplification factor calculated from the aero-mechanical modal damping ζ, and ωmodal is the natural 

angular frequency of the impeller mode. Under resonance conditions, the single degree of freedom modal participation factor may be 

computed: 
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It is worth highlighting that aero-mechanical damping includes all the source of damping: in general, it is considered as the sum of 

material, mechanical and aerodynamic damping. Mechanical damping (or friction damping) is commonly neglected for impellers; 

hence aeromechanical damping is expressed as the sum of pressure dependent (or better, density dependent) aerodynamic damping 

and the pressure independent, though mode shape related, material damping; see also Kammerer and Abhari (2009). 

)()(  aeromatmodal  (4) 

Then, using the modal participation factor to scale the modal stresses σmodal, the physical alternating stresses σphys at any node of the 

FE model can be expressed as: 

modalvmodalphys kd   (5) 

where kv is a factor introduced to take into account blade-to-blade or sector-to-sector variability due to the manufacturing and 

balancing processes, or other uncertainties in the prediction process. 

EXPERIMENTAL CAMPAIGN 

Test Bench and Instrumentation 

Test bench and instrumentation are deeply discussed in the cited work by Toni et al. (2016); some essential details are anyway 

given in the present chapter. 

The HPRC prototype test has been performed on a permanent test bench which consists of three independent gas loops, an 

auxiliary system (lube oil, DGS and cooling) and an electric motor driver; see also Falomi et al. (2016). The test bench is equipped 

with measurement stations at the inlet and delivery of each compression stage. Four temperature and four pressure measurements are 

performed in these locations. Being the three gas loops independent, mass flow measurements are performed at inlet and outlet of each 

compression stage. Regarding aeromechanics measurements, the strain gauges used for validation are positioned on the main walls of 

open impeller at main blades, splitter blades and disk; as shown in Figure 1.  Strain gauge signals are transmitted by a telemetry 

system that consists of a rotating unit and a stationary unit. The rotating unit is equipped with a miniaturized sensor signal amplifier, 

A/D conversion module and a radio transmitter, whereas the stationary unit includes an antenna and D/A conversion module. The 

telemetry output signal is then acquired by a NI PXI-1044 chassis equipped with NI PXI-4472 boards. The boards AC coupling was 

selected to filter out the low frequency component of the strain. The -3dB cutoff frequency for this filter is 3.4 Hz. The system is 

equipped with 16 channels used for monitoring the two impellers. A LabVIEW based software communicates to the NI PXI system to 

acquire and record data at high frequency. Each impeller is instrumented with 8 strain gages distributed in 4 locations for 2 different 

cyclic sectors. Two strain gages are positioned at main blade, one at splitter blades and one at disk.  

Strain gauge position and orientation are optimized by avoiding sensor placement in areas of high stress gradient. This 

arrangement allows good observability of the selected set of mode shapes as well as providing robustness of the measurements. The 

quality of strain gauge positioning is expressed in terms of mode sensitivity ratio and strain gradient. The mode sensitivity ratio is 

defined as the ratio of the strain measured at strain gauge position versus the maximum stress for an arbitrary scale factor of the mode 

shape. The strain gradient is defined as the ratio between the gradient of the strain in the direction of measurement versus the average 

strain. The best practice for strain gauge positioning requires a minimum value for sensitivity and a low local stress gradient to 

minimize the measurement error due to sensor position installation tolerances. 
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Figure 1 – Schematic of the Strain Gauges (Triangles) on the Open Impellers of Full Scale Compressor 

Test Methodology and Post-Processing 

During the aeromechanic test, the compressor speed is continuously ramped up from Minimum Operating Speed (MOS) to 

Maximum Continuous Speed (MCS) to cover the entire design space of the impellers. During a speed ramp, the impeller is subjected 

to a multi tone sine sweep excitation generated by the aerodynamic drivers existing in the machine.  

Impeller vibrations are continuously measured and recorded with a sampling rate of 51 kSample/s. The signals in time domain are 

divided into a sequence of windows and converted into the frequency domain through FFT analysis. The spectrum sequence is 

reported in cascade in a waterfall diagram. The vibration amplitudes at different engine orders are extracted and the experimental 

Campbell diagrams for all strain gauges are monitored. The acceleration ratio of the machine during each speed ramp is small enough 

to ensure a pseudo stationary signal with limited frequency variation inside each window. The time length of the windows used for the 

FFT analysis was optimized to be able to analyze all frequency responses with enough data points to accurately reconstruct the 

resonance in terms of amplitude, frequency and damping factor. 

Figure 2 shows the waterfall and the Campbell diagram for a typical speed ramp up: frequency is represented as a function of 

shaft rotational speed, whereas the fan lines are the so-called engine orders (EO), that is to say running frequency harmonics. The 

excitation of structural mode is highlighted by a frequency modulation of the synchronous forced response in the Campbell diagram 

and by the presence of random response not tracked with the speed in the waterfall diagram. The Campbell plot is experimentally 

obtained from the output of consecutive FFT computations. For this reason, the frequency of each Campbell point is associated to the 

discrete spectral lines. The distance in the frequency domain between consecutive spectral lines is fixed and defined by the frequency 

resolution of the FFT analysis. To improve the accuracy of the data, the frequency of the Campbell points is corrected, considering the 

instantaneous shaft speed and the EO at which the resonance is occurring. Figure 3a shows the Campbell Plot before the frequency 

correction. Each point is the result of the FFT analysis during the motor ramp up. The distance in the horizontal axis is given by the 

speed increase between consecutive FFT analyses. The distance on the frequency domain is determined by the resolution of FFT 

analysis. Figure 3b shows how the frequency of each Campbell Point is corrected. The corrected frequency will be the one of the EO 

of pertinence at the speed where the Campbell point was recorded. The result of the correction is shown in Figure 3c.  

The amplitude response of each strain gauge is then fitted with a Single Degree Of Freedom (SDOF) numerical model and the 

modal damping (aero + mechanical) is obtained. Figure 4 shows an example of curve fitting (red curve) applied to experimental data 

(yellow dots) for a specific resonant crossing.  
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Figure 2 – Waterfall Diagram and Experimental Campbell Diagram 

Figure 3 - Frequency Correction along the Engine Order Line 
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Figure 4 – SDOF Response Fitting at Strain Gauge Figure 5 – Matching Between Numerical and 

Experimental Mode Shape 

A simplified Modal Assurance Criterion (MAC) is used to identify the excited mode such that the contribution of the modes out 

of resonance is assumed negligible (SDOF approach). The amplitude ratio between different strain gauges calculated with Finite 

Element (FE) model is compared with the measured value and the match is evaluated. Figure 5 shows a comparison of numerical and 

experimental strain ratios for a pure blade bending mode.  

By means of the transfer functions derived from a finite element model, the strain measured at the SG location is related to the 

one at the impeller critical point on the Goodman diagram. 100% scope limit is obtained when the maximum allowable strain at the 

critical point in the Goodman diagram is reached: see Figure 6. When the measured strain gauge ratios and FE modal shapes are 

consistent, strain amplitudes at resonance can be used to scale the Goodman diagram and to perform a fatigue assessment of the 

impeller. 

Figure 6 – Scope Limit Definition at Strain Gauge Location 

Due to the low observability of the system imposed by available channels for SGs in the telemetry system (only two impellers 

sectors are instrumented) the measured response level is multiplied by a factor called “blade to blade variability”, here denoted with 

kv. The physics behind the use of this multiplying factor is that all the blades don’t show the same response level due to a partially 

break of impeller cyclic symmetry.  
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In principle in a perfect cyclic structure the modes appear in pairs as twin modes with the same frequency and shapes but rotated 

90 deg. Each mode or any linear combination of them represents a natural deflection of the structure for the given frequency.  

Therefore, a cyclic structure subjected to a travelling wave excitation (i.e. potential field in rotating frame) responds with a similar 

travelling wave and all sectors are subjected to the same vibration cycle. 

When the cyclic symmetry is broken the two modes become separate in frequency and the structure response subjected to a 

travelling wave tends to be a stationary wave with different amplitude among the sectors. The points with a maximum deflection and 

nodal diameters doesn’t travel anymore over the impeller during the rotation. The limit case of this situation is a heavily broken cyclic 

symmetry where more than two modes are present with associated mode shapes that involves only a portion of structure. Without 

entering in the details of this behavior called “mistuning”, a practical way to consider the different response of the blade is the use of 

kv. 

The proper value of kv to be used in the post processing of test data depends on the impeller manufacturing technology and the 

number of sensors installed. The lower the number of instrumented sectors is, the higher will be the kv to be used to capture the 

maximum response over the impeller. 

An alternative way to quantify the effect of blade to blade variability is the measure of different dynamic behavior before the test. 

Usually during the preparation of impeller aeromechanic test an experimental modal analysis test is performed to confirm the 

frequency position and shapes of modes under investigation. The position of measurement points and excitation locations are 

optimized to guarantee the observability of the structure with a minimum set of installed sensors. The test setup can be modified 

adding an excitation point per blade and measuring the response at same location. This procedure is very easy if the test is carried out 

with a roving hammer and a laser vibrometer to avoid errors introduced by mass modification due to sensor movements. A series of 

“collocated” transfer function is measured and the dynamic stiffness of each blade is referred to the one having an instrumented sector 

with gages, and the amplitude ratio is calculated. The kv is defined as the maximum of the blade amplitude ratio over all sectors. 

Figure 7 reports the dynamic stiffness of each main blade evaluated at the first flexural mode. A frequency difference of 2% between 

different blades is measured; a reasonable value of kv has been obtained and used in the following data reduction. The procedure is 

repeated also for first flexural mode of splitter blades.   

Figure 7 – Blade Dynamic Stiffness for First Flexural Mode 

46TH TURBOMACHINERY & 33RD PUMP SYMPOSIA 

HOUSTON, TEXAS I DECEMBER 11-14, 2017 

GEORGE R. BROWN CONVENTION CENTER 



10 Copyright© 2017 by Turbomachinery Laboratory, Texas A&M Engineering Experiment Station 

RESULTS AND DISCUSSION 

Excitation Source and Resonant Crossings 

Inlet distortions coming from the upstream plenum are considered capable of interacting with the downstream impeller up to 

medium-high order drivers (from 11/Rev to 16/Rev); indeed, see again Toni et al. (2016), inlet plenum flow field contains a wide 

range of circumferential harmonics that may generate unsteady loading variation though having low magnitude.  As an organic 

completion of previous work, we will focus on vibratory response levels for same mode shapes considered for aerodynamic damping 

analysis: two modes with high hub disk participation, having 7 and 8 nodal diameters respectively, and a blade first flexural mode 

(MB 1F), excited by the 14/Rev. These cases were numerically analyzed using the previous approach discussed. 

An FEA cyclic symmetric pre-stressed modal analysis was performed on the impeller to obtain impeller natural modes; these 

results were combined with the synchronous excitation lines to derive the SAFE diagram shown in Figure 8, together with the 

representation of the mode shapes of interest. Tested impeller has been designed with 22 blades, 11 main blades + 11 splitter blades, 

thus having 11 periodic sectors. For more details about SAFE diagram representation reader is addressed to Singh et al. (1988). 

Figure 8 – Interference Diagram 

Aerodynamic Damping 

Predicted and measured aeromechanic damping values for the resonance crossings analyzed in present paper have been widely 

discussed and analyzed in the paper by Toni et al. (2016); for readers’ convenience, the main results are summarized here. Only the 

results related to the impeller disk trailing edge mode with 8 nodal diameters are shown, since the general observations may be easily 

extended to the other ones. Figure 9, left, represents the measured damping values, normalized by an average value, as a function of 

gas density. As shown, a linear increase of aeromechanic damping with the increasing density has been experimentally verified, thus 

demonstrating the inertial nature of aerodynamic damping phenomenon; CFD predicts well both trends and absolute values. Figure 9, 

right, gives an overview, for all the modes that will be considered in present papers, of the measured damping and their respective 

predicted values for a normalized inlet density of ≈ 6.7-7.0, corresponding to the same gas density level that will be considered for 

modal force computation. As clearly depicted, a good agreement between test data and prediction has been found. 
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Figure 9 – Normalized Damping vs Density for 8 ND Mode (left); Normalized Damping Summary (right) 

Response Levels – CFD Predictions vs Test Measurements 

Using the single degree of freedom approach discussed in “Modal Force Computation” section, the alternating stress for each 

node of the impeller model used for finite element analysis may be expressed as:  

modalv

modal

modalmodal
phys k

QF



 

2
(6) 

Response levels, expressed as scope limit percentage; for each mode shape, response level have been normalized using an average 

value from all positions and operating conditions. 

This section represents a precious collection of the most relevant numerical and test data available at the authors’ company. The 

reader will find a considerable amount of data organized in a meaningful series of plots. In some cases, the presented diagrams are 

nearly self-explaining, nevertheless some comments and considerations are left here to help the reader at interpreting them more 

quickly. During prototype testing two disk modes (respectively characterized by 7 and 8 NDs) were found out vibrating at high speed 

along with a blade mode at lower speed, all excited by flow distortions coming from the inlet plenum. 

The first set of plots shows the normalized response level as function of a normalized flow coefficient, φ/φ*, for all mentioned 

modes. All the available data having a normalized inlet density ranging from approximately 6.7 to 8.4 have been considered: this 

range has been chosen, since, as it will be more clear later, starting from here the effect of density on response level starts to be less 

significant, thus meaning that the effects of density and flow rate can be decoupled. 

Figure 10 and Figure 11 represent the measured response level as a function of flow rate for disk modes having 7 and 8 NDs. It 

can be easily concluded that the bigger the flow coefficient is (i.e. the volumetric flow), the higher the response amplitude is and in 

particular when passing from design flow region to close to choke margin. Indeed, though some spread in data is present, alternating 

stresses increase by a factor of 2 for 7 ND mode and by a factor of 2 (or higher, since no data at design point are available) for 8 ND 

mode. Figure 12 shows the same quantities for main blade flexural mode, in this case response level in deep choke was not 

experimentally measured. 

On the same figures the predicted response levels close to design point (φ/φ*≈1.1) and close to choke (φ/φ*≈1.3) are represented 

in green symbols; a factor kv, coming from the previously discussed experimental modal analysis, has been used. Numerical 

predictions have been normalized through the same factor used for measurements. 

For both disk modes under analysis, the predicted response level is in a fair good agreement with test data: both absolute values 

and trends have been obtained. As far as main blade flexural mode is concerned, numerical outcomes may be compared to test data 

only in design flow region, where a good predictability is demonstrated. Like for the other mode shapes, flexural mode response level 

at φ/φ*≈1.3 has been computed: in this case, based on predictions, alternating stresses increase by a factor 2.  
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Figure 10 – Disk Mode 7ND: Response Level vs. Flow Coefficient 

Figure 11 – Disk Mode 8ND: Response Level vs. Flow Coefficient 
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Figure 12 – Blade First Flexural Mode: Response Level vs. Flow Coefficient 

Test Data Scaling 

The mechanical design of impellers is usually completed with the dynamic response scaling. Usually, due to test bench limitations 

or limited available power of driver, the aeromechanic test is performed at low inlet pressure and in full speed condition. Therefore, 

measured dynamic response is scaled with test conditions and generally extrapolated to worst operating conditions of that impeller to 

verify the structural integrity of the impeller.  

A practical parameter to scale the dynamic response is the average density elaborated by the impeller, here denoted with ρ.  

Without considering any modification generated by a coupling between gas surrounding the impeller and impeller itself, in equation 

(6), the dependent parameters with operating conditions are the modal force, Fmodal, and amplification factor, Qmodal.  

Toni et al. (2016) demonstrated that the modal damping linearly increases with the average gas density elaborated in the impeller. 

At the same time, the modal force, which is caused by unsteadiness of flow applied to impeller walls, is again proportional to the 

average gas density. Therefore, the response level can be expressed with a rational polynomial function of first order reported in 

equation (7). 

 









32

1

kk

k
%.L.R (7) 

Equation (7) is positive definite function, uniformly increasing, with an asymptotic value expressed by the ratio 
𝑘1

𝑘3
⁄ . The

coefficients k2 and k3 are calculated at first with the fitting of modal damping, then k1 is obtained through the fitting of measured 

dynamic response. 

An example of test data scaling is reported in Figure 13 for the two disk modes, where a clear asymptotic trend is discovered 

when the measured response amplitudes are plotted against the inlet density; the asymptotic response levels are obtained with an 

uncertainty, due to spread in test data, of approximately 5%. The mechanical design of impeller is verified using the asymptotic value 

of dynamic stress in the Goodman diagram.    
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Response Levels – CFD Predictions vs Test Measurements 

The outcome consists of a stress distribution map over the impeller surfaces through a Goodman diagram like the one represented 

in Figure 14 for disk mode 8ND. The FE model nodes have been divided in three different groups: hub-side, cavity-side and impeller 

OD nodes. On average, static stress levels on hub-side result sensibly higher than those on cavity-side. The points with highest 

dynamic stress levels belong to the external portion of the impeller. To be highlighted that the Goodman line (in black color) has been 

artificially shifted with respect to its original position to protect intellectual property.    

Figure 13 – Response Level vs. Inlet Density: Disk Mode 7ND (left), Disk Mode 8ND (left) 

Figure 14 – Numerical Goodman for Disk Mode 8 ND (Goodman Line only for Representation) 
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CONCLUSIONS 

In this paper the verification of forced response prediction vs test results on a full-scale centrifugal compressor impellers is 

reported and extensively discussed. The test setup included extensive instrumentation of the first two open impellers with strain 

gauges, allowing detailed measurement of vibratory response and stresses related to different vibration modes. The numerical 

prediction of the impeller behavior is thoroughly presented. Together with aerodynamic damping prediction, numerical forced 

response analysis allowed building a “numerical” Goodman diagram.  

Three impeller modes are taken into consideration, two disk modes characterized by different nodal diameters and one blade 

flexural mode. The predicted response matches remarkably well with the test data, demonstrating a significant progress in the 

prediction capability of aeromechanic phenomena. To this purpose both design and off-design operating conditions have been 

considered and the test trends are correctly captured. 

In summary, this work demonstrates that the predictive capability of forced response for centrifugal compressor impellers has 

reached a significant level of maturity, and represents today an enabler for mitigating and preventing aeromechanical risk. 

NOMENCLATURE 

D = Impeller External Diameter [m] 

F = Frequency [Hz] 

F = Aerodynamic Motion Independent Force [N] 

Faero = Aerodynamic Motion Dependent Force [N] 

Fmodal = Aerodynamic Modal Force (Motion Independent) depends on mode shape normalization 

kv = Blade to Blade Variability Factor [-] 

N = Number of Sectors [-] 

P = Pressure [Pa] 

Q = Damping Amplification Factor [-] 

Qvol = Volumetric Flow Rate [m3/s] 

U = Peripheral Speed [m/s] 

Greeks 

φ = Flow Coefficient 
uD

Qvol

2

4


[-] 

φ* = Design Flow Coefficient [-] 

 = Mode Shape depends on normalization 

ρ = Density [kg/m3] 

σ = Stress [MPa] 

ζ = Overall Critical Damping Ratio [-] 

ζaero = Aerodynamic Critical Damping Ratio [-] 

ζmat = Material Critical Damping Ratio [-] 

Ω = Frequency [rad/s] 

Acronyms 

CAD = Computational Aerodynamical Domain 

CFD = Computational Fluid Dynamics 

CSD = Computational Structural Domain 

EO = Engine Order 

FE = Finite Elements 

FRA = Forced Response Assessment 

IBPA = Inter Blade Phase Angle 

HI = Harmonic Index 

HPRC = High Pressure Ratio Compressor 

MAC = Modal Assurance Criterion 
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MCS = Maximum Continuous Speed 

MOS = Minimum Operating Speed 

Mol. Wt. = Molecular Weight 

ND = Nodal Diameter 

OEM = Original Equipment Manufacturer 

SDOF = Single Degree of Freedom 

SG = Strain Gauge 
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