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ABSTRACT

High-throughput sequencing has become one of the most powerful tools for studies in

genomics, transcriptomics, epigenomics, and metagenomics. In recent years, HTS pro-

tocols for enhancing the understanding of the diverse cellular roles of RNA have been

designed, such as RNA-Seq, CLIP-Seq, and RIP-Seq. In this work, we explore the appli-

cations of HTS data analysis in transcriptional studies. First, the differential expression

analysis of RNA-Seq data is discussed and applied to a sheep RNA-Seq dataset to exam-

ine the biological mechanisms of the sheep resistance to worm infection. We develop an

automatic pipeline to analyze the RNA-Seq dataset, and use a negative binomial model

for gene expression analysis. Functional analysis is conducted over the differentially ex-

pressed genes, and a broad range of mechanisms providing protection against the parasite

are identified in the resistant sheep breed. This study provides insights into the underlying

biology of sheep host resistance. Then, a deep learning method is proposed to predict the

RNA binding protein binding preferences using CLIP-Seq data. The proposed method

uses a deep convolutional autoencoder to effectively learn the robust sequence features,

and a softmax classifier to predict the RBP binding sites. To demonstrate the efficacy of

the proposed method, we evaluate its performance over a dataset containing 31 CLIP-Seq

experiments. This benchmarking shows that the proposed method improves the prediction

performance in terms of AUC, compared with the existing methods. The analysis also

shows that the proposed method is able to provide insights to identify new RBP binding

motifs. Therefore, the proposed method will be of great help in understanding the dynamic

regulations of RBPs in various biological processes and diseases. Finally, a database is cre-

ated to facilitate the reuse of the public available mouse RNA-Seq dataset. The metadata

of the publicly available mouse RNA-Seq datasets is manually curated and is served by a
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well-designed website. The database can be scaled up in the future to serve more types of

HTS data.
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1. INTRODUCTION

1.1 DNA, RNA and Protein

Deoxyribonucleic acid (DNA) is the genomic material in cells that encodes the ge-

netic information used in development and functioning of all living organisms [1]. In

cells, DNA has two chains of monomers called nucleotides. A nucleotide is composed

of three subunits: a deoxyribose sugar, a phosphate group, and a nitrogenous base (one

from cytosine/C, guanine/G, adenine/A, or thymine/T). The nucleotide chain is formed by

connecting the deoxyribose sugar of one nucleotide with the phosphate group of the next

with phosphodiester bonds. This sugar-phosphate region is referred as the backbone of

the DNA molecule, which is on the outside of the double-stranded DNA. The nitrogenous

bases are on the inside of the double-stranded DNA, and the order of the bases encodes

the genetic information carried by DNA molecules. The two strands of a double-stranded

DNA molecule are held together by hydrogen bonds between complementary nitrogenous

bases of different strands to have a double helix structure. The base pairing strictly follows

the complementary rule: A pairs with T through a double intermolecular hydrogen bond,

and C pairs with G through a triple intermolecular hydrogen bond. This rule ensures the

strict alignment of the two strands of the DNA molecule. One strand contains the full

information encoded in the double-stranded DNA, and each strand can act as a template

for the other one during replication. Figure 1.1 shows the structure of a double-stranded

DNA and the base pairing rule. In eukaryotic cells, long double-stranded DNA molecules

are packaged into long structures called chromosomes. A chromosome is made up of a

single DNA molecule that is tightly coiled around specialized proteins called histones.

The chromosomes are stored in the nuclei of the cells, and they are duplicated and evenly

distributed into the two daughter cells during cell division.
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Figure 1.1: Double-stranded DNA and the base pairing rule. A, T, C, and G are adenine,
thymine, cytosine, and guanine, respectively. Blue squares represent deoxyribose sugars.
Gray diamond shapes represent phosphate groups. The backbone of double-stranded DNA
is formed by alternative deoxyribose sugars and phosphate groups connected by phospho-
diester bonds. The nitrogenous bases follow the base pairing rule: A vs. T, C vs. G.

The hereditary unit of the encoded genetic information in a DNA molecule is a gene

[1]. A gene occupies a particular locus on a chromosome and affects an organism’s traits

by either encoding instructions to produce functional products (e.g., proteins) or regulating

the production of them. Figure 1.2 shows the structure of a eukaryotic protein-coding

gene. It contains regulatory sequences, exons, and introns. Regulatory sequences, such

as promoters and enhancers, are required for a gene to express. They specify when and

how a gene is transcribed to RNA for protein production. Exons are coding regions which

encode the amino acid sequences of proteins. Introns are not translated into proteins.

2



In any organism, a vast amount of genetic information is encoded in very long DNA

sequences that contain thousands of genes. For example, the total length of the human

genome is approximately three billion base pairs. It is composed of 23 pairs of chromo-

somes which contain around 20,000 genes in total.

Figure 1.2: The structure of a gene. A gene consists of exons, introns and regulatory
sequences. Red rectangles represent exons, and grey rectangles represent introns. Blue
rectangles represent regulatory sequences.

Ribonucleic acid (RNA) is another kind of biological molecule that can carry genetic

information [1]. Similar to DNA, an RNA molecule is assembled as a chain of four types

of nucleotides linked by phosphodiester bonds. However, RNA differs from DNA in a

few ways. First, it uses ribose rather than deoxyribose in DNA. Second, it contains Uracil

(U) in place of Thymine (T) in DNA. Besides, it is usually single-stranded. The single-

stranded RNA can loop back on itself to produce more complex secondary and tertiary

structures. In living cells, RNA can be classified into many types according to their bi-

ological functions. For example, messenger RNA is the template for protein synthesis.

Ribosomal RNA is a component of the ribosome. Transfer RNA carries the amino acid to

the growing polypeptide during protein production.

Proteins are essential building blocks of organisms [1]. They are indispensable in

3



virtually all processes within cells. A protein consists of one or more long chains of amino

acids called polypeptides. These polypeptides, are composed of amino acids connected by

peptide bonds. In nature, there are in total 20 different amino acids for producing proteins

in organisms.

1.2 The Central Dogma of Molecular Biology

Table 1.1: Information transfers of the central dogma of molecular biology [2]. There are
in total nine transfers, which are classified into three categories.

General transfer Special transfer Unknown transfer
DNA → DNA RNA → DNA Protein → DNA
DNA → RNA RNA → RNA Protein → RNA
RNA → Protein RNA → Protein Protein → Protein

The central dogma of molecular biology [2], stated by Francis Crick in 1958, de-

scribes the flow of genetic information among DNA, RNA, and protein in biological sys-

tems. There are in total nine possible information transfers, which are classified into three

groups. Table 1.1 shows the nine transfers and their classifications.

General transfers are normal flows occur in cells. Special transfers are uncommon

flows occur only in some viruses or a laboratory. Unknown transfers are believed never to

occur. Here only the general transfers are discussed (Figure 1.3).

The three information flows in general transfers describe three primary biological pro-

cesses in living organisms: DNA replication, transcription, and translation.

1.2.1 DNA Replication

Genetic information transfers from DNA to DNA. In the process of DNA replication,

a DNA molecule is copied, and two DNA molecules identical to the original DNA are

produced. In living organisms, DNA replication occurs when cells divide. During cell

4



Figure 1.3: General transfers of the central dogma of molecular biology. Information can
flow from DNA to DNA (replication), DNA to RNA (transcription), and RNA to protein
(translation).

division, the complementary strands of DNA are separated and serve as the templates for

producing the new complementary strands. The new strands are synthesized according to

the base-pairing rule with nucleotides, and thus the two final products are identical to the

original DNA. The two copies of DNA will then be distributed into two daughter cells.

This process ensures the daughter cells contain identical copies of genetic information

of their parent cell. Therefore, it is required in cell division and serves as the basis of

inheritance. It is arguably considered as the fundamental step in the central dogma.

1.2.2 Transcription

Genetic information transfers from DNA to RNA. It is an essential step in gene ex-

pression. In the process of transcription, the sequence of a segment of DNA (for example

a gene) is copied into RNA (mostly mRNA). Since DNA and RNA are both nucleic acids,

the DNA serves as the template and the RNA is synthesized according to the base pairing

5



rule. The transcription is initiated by the binding of protein machinery consisting of RNA

polymerase and transcription factors to the promoter sequences of DNA. RNA polymerase

reads the DNA sequence and adds RNA nucleotides to produce a complementary RNA se-

quence. The produced RNA is call pre-mRNA, as it contains both exons and introns and

is not ready for translation. The pre-mRNA will then be processed by 5’ capping (adding

a 5’ cap), polyadenylation (adding a poly-A tail), and splicing (removing the introns) to

produce the mature mRNA.

1.2.3 Translation

Genetic information transfers from RNA to protein. Translation is a process in which

linear polypeptides of proteins are produced based on the RNA sequences. In eukaryotic

cells, the mature mRNA exported from the nucleus is translated in the ribosome. Each

time the ribosome will read three non-overlapping bases (a codon) and map them to a

particular amino acid, by base pairing the anticodon sequences of the tRNA carrying amino

acids. The amino acid is then linked to the growing peptide chain. There are in total 64

codons that can be formed by three bases, while there are only 20 amino acids. Therefore,

most amino acids can be encoded by more than one codon. Besides, several codons have

special meanings: UAA, UAG, and UGA are called stop codons as they are used to end

the polypeptide production; AUG is the start codon, and it also encodes the amino acid

methionine (Met). Table 1.2 shows all the codons and the amino acids they encode.

1.3 High-Throughput Sequencing

DNA sequencing [3] is a class of technologies for determining the precise order of

nucleotides that make up a DNA molecule. It was first developed by Sanger and Coulson

[4] and Maxam and Gilbert [5] in 1977. With the developments in the following years,

Sanger’s method gradually evolved into an automated DNA sequencing procedure referred

as "First Generation Sequencing." Sanger Sequencing was used to complete the human
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Table 1.2: Genetic codes for translation from nucleotide sequences to amino acids [1]. All
the three-nucleotide codons and the corresponding amino acids are listed. Most amino
acids are represented by more than one codon. There is also a start codon (annotated by a
star symbol) and three stop codons.

First Base
Second Base

Third Base
U C A G

U

UUU
Phe

UCU

Ser

UAU
Tyr

UGU
Cys

U
UUC UCC UAC UGC C
UUA

Leu
UCA UAA

STOP
UGA STOP A

UUG UCG UAG UGG Trp G

C

CUU

Leu

CCU

Pro

CAU
His

CGU

Arg

U
CUC CCC CAC CGC C
CUA CCA CAA

Gln
CGA A

CUG CCG CAG CGG G

A

AUU
Ile

ACU

Thr

AAU
Asn

AGU
Ser

U
AUC ACC AAC AGC C
AUA ACA AAA

Lys
AGA

Arg
A

AUG Met* ACG AAG AGG G

G

GUU

Val

GCU

Ala

GAU
Asp

GGU

Gly

U
GUC GCC GAC GGC C
GUA GCA GAA

Glu
GGA A

GUG GCG GAG GGG G

genome sequence draft in 2001 [6] and the genome sequences of several other model

organisms. However, Sanger sequencing has several limitations such as high cost and

low throughput, which greatly restrict the application of DNA sequencing in research and

clinics.

To overcome the limitations of Sanger Sequencing, cheaper and faster techniques were

developed. These methods are referred as High-Throughput Sequencing (HTS) [7], as they

can sequence a massive number of DNA sequences of a sample in parallel and produce

millions of sequences concurrently with low costs and in short time. The emerge of HTS

has enabled the broad application of sequencing. It has become an essential tool for re-

search in genomics, transcriptomics, epigenomics, and metagenomics. Currently, many
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HTS platforms are commercially available, such as Roche/454, Illumina, ABI SOLiD,

Pacific BioSciences and IonTorrent. These platforms have distinct read length, run time,

throughput and cost. Table 1.3 shows statistics of some platforms [8].

Table 1.3: Some HTS platforms and their statictics [8].

Platform Instrument Year Reads per run Read length Bases per run (GB)
454 GS Junior+ 2014 100000 700 0.07
IonTorrent Proton PI 2012 50000000 200 10
Illumina HiSeq 2000 2010 2000000000 100 200
Illumina HiSeq 2500 RR 2014 600000000 250 300
Illumina MiSeq 2013 30000000 300 15
SOLiD 5500xl W 2013 3000000000 75 320
PacBio RS II P6 C4 2014 660000 13500 9.000

In general, most HTS sequencing approaches share some commonalities in their pro-

cedures [9]. First, the DNA fragments are amplified on a solid surface to form thousands

of DNA colonies, each of which consists of identical copies of a single DNA fragment.

The DNA colonies are critical for the sequencing because a large amount of identical DNA

fragments in a restricted area ensure that the signal intensity is enough to be detected in

the following steps. Then the sequences of DNA colonies are read out by massive par-

allel sequencing with two different approaches depending on the platforms: sequencing

by ligation (SBL) or sequencing by synthesis (SBS). In SBL, probe sequences are labeled

with fluorescent dyes according to the bases to be sequenced. The labeled probes are lig-

ated to the anchor sequence when the bases of probe sequences match the unknown DNA.

Then the sequence at the position can be inferred from the fluorescence produced by the

molecule. In SBS, DNA polymerase is used for adding the bases complementary to the

unknown DNA. The sequences are determined by either the fluorescences produced by the

fluorophores attached to the added nucleotides or the ionic concentration changes gener-
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ated by adding the nucleotides. In both approaches, the sequencing machine can process

millions of these reactions simultaneously, and thus determine the sequence of millions of

DNA fragments in parallel.

Illumina HTS platforms [9] are the most commonly used ones among all HTS plat-

forms. Since the release of Illumina Genome Analyzer II in 2006, Illumina has developed

a series of platforms for different sequencing requirements and has tremendously increased

the sequencing throughput and reduced the costs. Currently, Illumina machines have dom-

inated the HTS market. Illumina’s sequencing starts with solid-phase bridge amplification,

which creates colonies of identical DNA fragments bound to the flow cell. Then the DNA

fragments are sequenced by reversible termination using reversible terminator (RT) nu-

cleotides (Figure 1.4). RT nucleotides are labeled with fluorescent dyes. DNA polymerase

incorporates one RT nucleotide into the synthesized strand per cycle. Then the flow cell is

imaged to read out the added nucleotides. Finally, the fluorescent dyes are removed, and

the RT nucleotides are de-protected to enable the next cycle of sequencing.

1.4 High-Throughput Sequencing for Transcriptomics

With the falling of sequencing costs, HTS has been widely applied in various ar-

eas for more comprehensive understanding of the landscapes of genomics, epigenomics,

transcriptomics, and metagenomics. To enhance the understanding of the diverse cellu-

lar roles of RNA, HTS technologies have been developed to characterize the expression

profile, RNA structure, RNA-protein interaction, and RNA localization [7, 9]. The HTS

technology that can directly sequence various RNA species, such as mRNA, microRNA,

snoRNA, is called RNA Sequencing (RNA-Seq). People have designed sophisticated tools

for RNA-Seq data alignment, transcriptome assembly, differential gene expression, and

alternative splicing analysis. These efforts together make RNA-Seq a powerful method

for profiling the RNA species of interest across the entire transcriptome. RNA-Seq for
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Figure 1.4: Illustration of Illumina sequencing by reversible termination. The squares rep-
resent the nucleotide bases. The circles represent the fluorescent dyes. A: RT-nucleotides
labeled by fluorescent dyes are added to the flow cell. One RT nucleotide is added to the
synthesizing strand of the DNA molecule. B: The added nucleotide is read by imaging. C:
The fluorescent dye is removed and the RT nucleotide is de-protected for the next cycle of
sequencing.

microRNA, snoRNA, and other RNA species provides a systematic method for studying

these RNA species, including expression measurement, and new variant detection. There

are some HTS variants that are applied to RNA sequences interacting with other biological

molecules, (e.g., proteins), for studying the interaction between RNA and those molecules.

For example, RNA Immunoprecipitation Sequencing (RIP-Seq) [10] uses immunoprecip-

itation of an RNA-binding protein (RBP) to detect the RNA fragments coupled with the

RBP, and then uses HTS to read out all those sequences. Similarly, high-throughput se-

quencing of RNA isolated by crosslinking immunoprecipitation (CLIP-Seq) [11] utilizes

UV cross-linking with immunoprecipitation to extract protein binding regions or RNA

modification regions of RNA sequences to sequence the RNA-protein interaction regions.
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These approaches enable the genome-wide studies of protein-RNA binding (binding sites

of RNA-binding proteins) and RNA modification (e.g., N6-Methyladenosine(m6A) in

mRNA). The use of HTS in transcriptomics has provided researchers powerful tools to

understand the gene expression, transcriptional regulation, and post-transcriptional regu-

lation in a comprehensive manner.

1.5 Dissertation Outline

The dissertation is organized as follows:

In chapter 2, the differential expression analysis of RNA-Seq data is discussed and

applied to a sheep RNA-Seq dataset to study the biological mechanisms of the sheep resis-

tance to worm infection. The differentially expressed genes are identified by the RNA-Seq

analysis workflow based on a negative binomial model. Gene Ontology analysis is per-

formed over the identified genes to reveal the biological pathways contributing to sheep

host resistance.

In chapter 3, a deep learning method to predict RBP binding sites is proposed. Deep

convolutional autoencoder model is used for robust extraction of the sequence features,

and the compact representation of the input data generated by the autoencoder is then

used for binding site prediction with a feed-forward neural network. The performance of

the method is evaluated on a benchmark dataset and compared with other state-of-the-art

methods. The proposed model yields better performance. The ability to discover binding

motifs using the convolutional kernels learned from the data is also investigated.

In chapter 4, a database for publicly available mouse RNA-Seq datasets is created.

The purpose of building the database is to facilitate more convenient data reuse, as the

amount of data generated by HTS technologies is growing incredibly fast. The metadata

of the publicly available mouse RNA-Seq datasets are manually curated and served by a

well-designed website. We believe that the website will be beneficial for the reuse of a
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significant number of RNA-Seq datasets in various research activities.

In chapter 5, conclusions and future work are discussed.
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2. COMPUTATIONAL DIFFERENTIAL EXPRESSION ANALYSIS FOR

UNDERSTANDING THE MOLECULAR BASIS OF SHEEP HOST

RESISTANCE⋆

2.1 Introduction

2.1.1 Sheep Host Resistance

The intestinal worm Haemonchus contortus is arguably the most economically impor-

tant helminth parasite for small ruminant production in many regions of the world. As

a voracious blood feeder residing in the mucosal layer of the abomasum, H. contortus

causes anemia and hyper-gastrinemia and alters abomasal secretion. H. contortus infec-

tion results in reduced growth, compromised reproduction, and elevated mortality, due to

its ubiquitous distribution and severe pathogenicity. Consequently, H. contortus parasitism

represents the primary constraint to profitable production of sheep and goats worldwide.

Over the past years, the rapid emergence of drug-resistant H. contortus strains and

increasing demands by consumers for inexpensive organic meat and milk products with

fewer drug residues have spurred research on the development of anthelmintic-independent

parasite control strategies, such as vaccines [12] and novel biologics, nutrient supplements

and bioactive compounds, and selective breeding. Among them, selectively breeding

sheep and goats with abilities to better resist parasitic infections appears to be a solution

to sustainable small ruminant production.

⋆Part of this chapter is reprinted from "Possible mechanisms of host resistance to Haemonchus contortus
infection in sheep breeds native to the Canary Islands," by Z. Guo, J. F. González, J. N. Hernandez, T.
N. McNeilly, Y. Corripio-Miyar, D. Frew, T. Morrison, P. Yu, and R. W. Li, Scientific reports, vol. 6,
2016, Copyright[2016] by Nature Publishing Group, licensed under a Creative Commons Attribution 4.0
International License.
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2.1.2 Comparative Analysis of Indigenous Sheep from Canary Islands

Differences in resistance and susceptibility to parasitic infections between sheep breeds

have been long documented [13]. Over the decades, comparative studies have identified

at least 19 sheep breeds displaying varying degrees of resistance to parasitic infections

[14]. For example, St. Croix lambs shed significantly fewer eggs and harbor 99% fewer

worms in the abomasum than the age-matched Dorset lambs during both natural and ex-

perimental infections [15]. Locally-adapted breeds such as Santa Ines sheep of Brazil

have significantly reduced worm burdens and fewer nodular lesions under natural infec-

tions than Suffolk and Ile de France lambs on the same pasture [16]. In Europe, resistance

against H. contortus is better developed in Merinoland sheep than in Rhon sheep [17].

Red Maasai sheep have been shown to be more resistant to Haemonchus infection than the

South African Dorper breed during natural exposure to parasites in Kenya [18]. Moreover,

resistance to parasite infection has a significant genetic component. The contribution of

the host genome and genetics has been estimated. For example, additive genetic varia-

tion accounts for approximately 30% of the overall variation for parasitic infection [19].

The resistance traits are often polygenic in nature and not influenced by genes with major

effects [20]. Nevertheless, estimates of heritability for parasite indicator traits in small

ruminants are phenotype-dependent, ranging from 0.11 to 0.40 for transformed fecal egg

counts (EPG) and 0.19 to 0.26 for packed cell volume (PCV) in German Rhon sheep

[21]. In addition, the host age plays a role. A good example is that in Scottish Blackface

lambs at the end of the first grazing season, the heritability of adult worm length is very

strong at 0.628. While many efforts have been made to identify genetic variants associated

with parasite resistance and tolerance in sheep breeds [22, 23, 24], molecular mechanisms

and biological pathways underlying host resistance to parasitic infections in sheep remain

largely unknown.
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Due to unique geographical characteristics of the Canary Islands, indigenous sheep

breeds have been exploited by local farmers for centuries. Among them, the Canaria Hair

Breed (CHB) and Canaria sheep (CS) are predominately raised for the production of meat

and milk, respectively. Previous studies demonstrate that CHB constantly displays bet-

ter resistance phenotypes to H. contortus infection than CS, including significantly lower

levels of fecal egg counts, fewer adult worm counts, lower number of eggs in utero and

female worm stunting [25]. Further studies [26] identified significant negative correla-

tions between two effector cells, eosinophils and γδ/WC1+ T cells, and parasite fecundity

in CHB, suggesting that inter-breed difference in regulating immune responses affects

Haemonchus infection. In this study, we conducted a RNA-seq based comparative tran-

scriptome analysis in the two indigenous breeds and attempted to understand the molecular

basis underlying host resistance.

2.2 Materials and Methods

2.2.1 RNA Extraction and Sequencing

Male lambs of CHB (11 animals) and CS breeds (12 animals) were obtained from local

farms in the Gran Canaria Island (Spain), weaned, and kept in pens at the Faculty of Vet-

erinary Science, University of Las Palmas de Gran Canaria until they were approximately

one year old. The animals were fed with a commercial pelleted sheep ration ad libitum and

had free access to water throughout the experimental period. The animals were drenched

upon arrival with levamisole (Cyber, Fort Dodge, Spain) at the recommended dose (1

ml/10 kg bodyweight) and remained free of parasites (as determined by fecal egg counts)

until experimental parasite inoculation. Seven CHB and eight CS animals were inoculated

intraruminally with 20,000 H. contortus infective L3 larvae. Four age-matched animals of

each breed remained uninfected and served as controls. The experimental infection was al-

lowed to progress for 20 dpi. The time point chosen for this study was based on the results
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from a previous report that the difference in resistance phenotypes, especially mean EPG

values, is most profound between the two breeds [25]. At 20 dpi, both infected and control

animals were sacrificed. The fundic abomasum tissue was then sampled and snap frozen in

liquid nitrogen prior to storage at −80 ◦C until total RNA was extracted. The Haemonchus

strain used in this trial was initially donated by Drs. Knox and Bartley (Moredun Research

Institute, Edinburgh, Scotland) and passaged through successive inoculations in sheep at

the premises of the Faculty of Veterinary Science, University of Las Palmas de Gran Ca-

naria (Spain). During the experiment, all animal protocols were approved by the Animal

Care and Use Committee of University of Las Palmas per the Institutional Animal Care

and Use Committee (IACUC) guidelines. All experimental procedures were carried out in

accordance with the approved protocols.

Total RNA from fundic abomasal samples of both CHS and CS sheep breeds was ex-

tracted using Trizol (Invitrogen, Carlsbad, CA, USA) followed by DNase digestion and Qi-

agen RNeasy column purification (Qiagen, Valencia, CA, USA), as previously described

[27, 28]. The RNA integrity was verified using an Agilent BioAnalyzer 2100 (Agilent,

Palo Alto, CA, USA). High-quality RNA (RNA integrity number or RIN > 7.5) was

processed using an Illumina TruSeq RNA sample prep kit following the manufacturer’s

instructions (Illumina, San Diego, CA, USA). Pooled RNAseq libraries were sequenced

at 2 × 101 bp / sequence read using an Illumina HiSeq 2000 sequencer, as described pre-

viously [29]. Approximately 56 million paired-end sequence reads per sample (mean ±

SD = 55, 945, 621 ± 41, 305, 493.24; N = 23) were generated. The metadata and raw

sequences files related to this project were deposited in the NCBI Sequence Read Archive

(Accession #SRP059627).
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2.2.2 Computational Analysis of Sheep Host Resistance RNA-Seq Data

The computational analysis pipeline is depicted in Figure 2.1. First, RNA-Seq data

will be preprocessed by the steps including quality control, read mapping, and feature

counting. We will trim off the low-quality nucleotides from all raw RNA-Seq reads and

then align the trimmed reads against the ovine reference genome Oar_v3.1. The uniquely

mapped read will be used to count against the Ensembl annotation Oar_v3.1 for calculating

the number of reads per gene. Then for the differential analysis, the RNA-Seq read counts

will be normalized to eliminate the variations resulting from different library sizes. The

normalized counts of each gene will then be used to estimate the expression level of the

gene and test the differential expression between conditions. With the list of differentially

expressed genes (DEGs), Gene Ontology (GO) analysis will be conducted to identify po-

tential functions of the DEGs for understanding the sheep host resistance mechanisms. As

the functional annotation of sheep genes is not available, we will first find the homologs of

all sheep genes in human using homology search and then perform the functional analysis

using human GO annotations. Finally, we will inspect the differential analysis results and

functional analysis results to explain the biological meanings in sheep host resistance.

2.2.3 Data Preprocessing and Alignment

The quality of raw sequence reads was first checked using FastQC (http://www.

bioinformatics.bbsrc.ac.uk/projects/fastqc/). The effect of trimming

of low-quality nucleotides on genome alignment was examined using sickle (https:

//github.com/najoshi/sickle) and STAR algorithm [30]. Raw sequence reads

(FASTQ files) of 23 samples were mapped against the ovine reference genome Oar_v3.1

using STAR (v2.3.1t) with default parameters. The uniquely mapped reads were used to

count against the Ensembl annotation Oar_v3.1 using customized program for calculating

the number of reads per gene. The counts of all samples were tabulated.

17

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
https://github.com/najoshi/sickle
https://github.com/najoshi/sickle


Figure 2.1: Analysis workflow of the sheep host resistance RNA-Seq dataset.

2.2.4 Differential Expression Analysis

2.2.4.1 Modeling

Differential expression analysis [31, 32] tests whether the observed read count dif-

ference between two biological groups is significantly larger than random variations for a

given gene. It is reasonable to assume that the sequenced reads are independently sampled.

As the compositions of genes are fixed, the read counts would follow a multinomial distri-

bution, which can be well approximated by a Poisson distribution for statistical simplicity.

Poisson distribution has been used to model the read counts in some studies [33, 34]. How-

ever, due to the sample heterogeneity and other technical and biological reasons, the read

counts of RNA-Seq samples usually show larger variations than what is predicted by the

Poisson distribution [35, 36, 37]. This phenomenon is widely noted as overdispersion. As

a result, using Poisson distribution for RNA-Seq differential expression analysis will not

control the type-I error well.
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In this study, the RNA-Seq read counts are modeled with the negative binomial (NB)

distribution, which has been proposed to resolve the overdispersion problem in RNA-Seq

count data[31, 32]. The read count of gene i in sample j, nij , is assumed to follow a

negative binomial distribution,

nij ∼ NB(µij, σ
2
ij), (2.1)

where µij is the mean and σ2
ij is the variance.

2.2.4.2 Nomalization

As the sequenced RNA fragments are uniformly sampled from a transcript pool, the

number of reads aligned to a particular gene is determined by

• The expression level of the gene.

• The length of the gene.

• The library size, or the number of mapped short reads obtained in sequencing a given

library.

Since the length of each gene is identical across samples, it is necessary to eliminate

the variation of the cDNA library size before comparing the gene expression between two

conditions. The raw read counts of each gene need to be scaled by sample-specific factors

to normalize the library size effects. This normalization procedure removes systematic

effects that are not associated with the biological differences and is crucial for proper

differential expression analysis of high-throughput sequencing data.

Different normalization methods have been proposed and evaluated[38, 39], such as

total count, upper quartile [36], median, DESeq normalization [31], trimmed mean of

M-values [40], quantile normalization [41] and RPKM [42]. All these methods behave
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differently in normalizing the high-throughput sequencing counts. It has been reported that

the DESeq normalization method and trimmed mean of M-values method perform better

in terms of robustness to the different library sizes and compositions, while the trimmed

mean of M-values method is more sensitive to the filtering strategy [38, 39]. Therefore,

the DESeq normalization method is chosen to normalize the RNA-Seq data in this study.

To incorporate the normalization, the parameter µij in Equation. 2.1, that is, the ex-

pected read count of gene i in sample j, is determined by

µij = qijsj, (2.2)

where qij is proportional to the true fraction of reads originated from gene i in sample j,

and sj is a normalization factor that represents the library size of sample j.

The nomalization factor sj can be estimated [31] by

ŝj = median
i

(
nij∏k=m
k=1 nik

) 1
m

. (2.3)

Equation 2.3 computes the median of ratios between read counts of all genes and a

reference count that is simulated by the geometric mean of counts of all genes. The as-

sumption of this normalization is that most genes are not differentially expressed and thus

should have similar read counts between samples. Therefore, the median of the ratios of

all genes estimates the sample-wise normalization factor to fulfill the hypothesis.
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2.2.4.3 Generalized Linear Model for Differential Expression Test

Based on Equation. 2.1 and Equation. 2.2, the read count nij can be modeled by a

negative binomial generalized linear model with a logarithmic link [31]:

nij ∼ NB(µij, σ
2
ij)

muij = sjqij (2.4)

log qij =
∑
r

xirβir,

where xjr is the design matrix element and βir is the coefficient.

2.2.5 Gene Ontology Analysis

Gene Ontology (GO) [43] provides evidence-supported annotations to associate genes

with biological terms and describe the functional roles of genes by classifying them us-

ing ontologies. The Gene Ontology consortium [44] has developed three structured on-

tologies, namely molecular functions, biological processes and cellular components for

different model organisms. It not only addresses the need for comprehensive coverage

and consistent description of the gene products but also provides community-wide agreed

annotation for the gene function descriptions across organisms.

The development of genome-wide or transcriptome-wide technologies has made GO

analysis an important analytical method for interpreting these large-scale analysis results

[45]. For example, the differential expression analysis of RNA-Seq data will produce a

set of DEGs whose biological functions can be difficult to interpret. GO analysis enables

the understanding of these large gene sets using the prior functional knowledge from the

GO annotations. It answers an important question: what molecular functions or biological

processes or cellular components are related with a set of genes.

The following method is adopted to identify GO terms statistically over-represented
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in a given gene set, compared to the reference gene set. Suppose for a given GO term, a

given gene set and reference gene set (for example, all the expressed genes in a dataset),

all genes can be classified into four categories:

• a genes in the set that are annotated by the GO term;

• b genes are not annotated by the GO term;

• c genes are not in the gene set but are annotated by the GO term;

• d genes are neither in the gene set nor annotated by the GO term.

Then X , the number of genes within the gene set and annotated by the GO term, follows

a hyper-geometric distribution.

Pr(X) =

(
a+b
a

)(
c+d
c

)(
a+b+c+d
a+c

) (2.5)

The significance of the enrichment of a given gene set in a GO term could be calculated

by Fisher’s exact test.

Figure 2.2: Differences in worm counts between resistant and susceptible sheep breeds un-
der experimental Haemonchus contortus infection. Boxes denote the inter-quartile range
between the 1st and 3rd quartiles (25 and 75%, respectively). Black line: mean; Yellow
line: median. CHB: Canaria Hair Breed (resistant). CS: Canaria sheep (susceptible).
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2.3 Results

2.3.1 Haemonchus Infection Induced Distinctly Different Transcriptome Patterns

in the Abomasal Mucosa of CHB and CS Breeds

The total worms recovered from the infected groups of CHB and CS were 1, 109.75

(±1, 547.73, SD) and 3, 280.50 (±2, 398.03, SD), respectively. The difference is statisti-

cally significant (P < 0.05, Figure 2.2). Neither Haemonchus worms nor fecal eggs were

recovered from the uninfected group of either breed, as expected. EPG values detected

from infected CS sheep were 262.50 ± 287.54 (mean ± SD) while no fecal eggs were

detectable in the infected group of CHB sheep at 20 days post infection (dpi). No parasite

eggs in either group prior to the experimental challenge were observed.
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Figure 2.3: Venn Diagram of differentially expressed genes and scatter plot of Log2 ratio
vs Mean. (A) Venn Diagram showing the number of genes with significant differences in
transcript abundance induced by infection in two sheep breeds compared to their respective
uninfected controls at a false discovery rate (FDR) cutoff < 0.05. (B,C) Scatter plot of
log2 ratio (fold change) vs mean. The red color indicates genes detected as differentially
expressed between the infected group and uninfected controls at a false discovery rate
(FDR < 0.05) in CHB (B) and CS (C).

In this study, approximately 79.91% of raw reads (±7.08%; SD) were uniquely mapped
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Figure 2.4: Differences in worm counts between resistant and susceptible sheep breeds
under experimental Haemonchus contortus infection. Nonlinear regression between worm
counts and normalized transcript abundance per million mapped reads of the gene cadherin
26 (CDH26) in susceptible Canaria Sheep (CS). Dotted lines: 95% confidence interval.

to the ovine genome. Compared to their respective uninfected controls, the numbers

of genes significantly impacted by infection in CHB and CS breeds at a stringent cut-

off value (false discovery rate or FDR < 0.05), were 711 and 49, respectively (Figure

2.3). The abundance of 27 genes was significantly changed by infection in both breeds

(Table 2.1). Among them, 25 genes, such as arachidonate 15-lipoxygenase (ALOX15),

collagen, type VI, α 5 (COL6A5), and serglycin (SRGN), were significantly upregulated

while the expression of transthyretin (TTC) was repressed by infection. Intriguingly, the

transcript abundance of cadherin 26 (CDH26) was significantly induced by infection in

both breeds (adjusted P value or FDR < 1.63 × 1010); and is strongly correlated with

worm counts only in CS (Figure 2.4). However, infection had a bidirectional impact

on the transcript abundance of a uncharacterized gene containing a unknown microRNA

(ENSOARG00000023771), which was significantly upregulated in CHB but downreg-

ulated in CS. The genes significantly impacted by infection only in CS included mast

cell proteinase-3, γ-glutamyltransferase 5 (GGT5), CD163 as well as those involved in
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smooth muscle contraction, such as tropomyosin (TPM2), myosin, light chain 9, regula-

tory (MYL9), and calponin 1, basic, smooth muscle (CNN1).

Table 2.1: Genes significantly impacted by Haemonchus contortus infection in both CHB
and CS breeds.

Gene ID Symbol
Fold Change FDR
CHB CS CHB CS

ENSOARG00000000338 ABCA2 2.86 2.40 2.28% 1.29%
ENSOARG00000008480 ALOX15 10.02 11.45 2.06% 0.00%
ENSOARG00000015249 CDH26 150.19 54.19 0.00% 0.00%
ENSOARG00000018133 CFTR 4.33 2.38 1.21% 3.67%
ENSOARG00000014842 COL6A5 20.79 6.28 1.67% 0.04%
ENSOARG00000007787 FCER1A 20.69 18.23 0.00% 0.00%
ENSOARG00000019163 HBBB 11.47 43.75 1.63% 0.00%
ENSOARG00000008994 IGHE 22.73 35.02 0.00% 0.00%
ENSOARG00000013111 IL1RL1 9.73 5.26 0.00% 0.00%
ENSOARG00000016842 MCTP1 3.89 2.95 1.26% 1.03%
ENSOARG00000002234 SLC2A3 4.39 3.06 0.00% 0.03%
ENSOARG00000005322 SRGN 4.25 3.60 0.45% 0.00%
ENSOARG00000012855 ST3GAL4 2.44 3.69 0.84% 0.94%
ENSOARG00000009990 SYNM 2.16 6.18 2.99% 0.09%
ENSOARG00000005941 TNC 3.00 4.01 2.80% 3.19%
ENSOARG00000014689 TPSAB1 6.96 9.43 0.00% 0.00%
ENSOARG00000006342 TTR 0.28 0.37 0.00% 3.17%
ENSOARG00000000857 8.41 7.84 0.00% 1.29%
ENSOARG00000002036 38.84 44.81 0.00% 0.00%
ENSOARG00000002629 13.34 23.51 0.00% 0.00%
ENSOARG00000002942 7.16 7.83 0.00% 0.00%
ENSOARG00000002964 12.61 29.65 0.01% 0.00%
ENSOARG00000006087 13.49 26.69 0.00% 0.00%
ENSOARG00000013005 3.00 3.53 4.13% 0.94%
ENSOARG00000013263 71.33 91.67 0.00% 0.01%
ENSOARG00000017398 5.73 7.34 2.15% 0.65%
ENSOARG00000023771 0.46 3.00 0.19% 1.55%

Among the genes significantly impacted by infection in CHB sheep, several cytokine
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receptors and chemokines were strongly upregulated. Notable, the transcript of IL17 re-

ceptor beta (IL17RB) was 14.4 fold higher in infected animals than uninfected controls in

CHB. IL2 receptor beta (IL2B) was also upregulated. Similarly, chemokine CXC ligand

12 (CXCL12) and chemokine (CXC motif) receptor 6 (CXCR6) were upregulated by in-

fection in CHB. Among the well-known Th2 cytokines, the expression of IL6, IL10 and

IL13 was upregulated by infection in both breeds. Moreover, while the extent of upreg-

ulation of IL6 by infection remained similar in both breeds (∼ 6.8 fold), overexpression

of both IL10 and IL13 mRNA molecules was more profound in the resistant breed (CHB)

than in CS. On the other hand, the IL5 mRNA was upregulated by infection in CS but

barely detectable in CHB at the sequencing depth in this study. The IL4 expression fol-

lowed the similar trend: it was upregulated approximately 9 fold by infection in CS but

was barely detectable in CHB. However, the IL9 mRNA level remained unchanged by

infection in both breeds.

Several genes involved in arachidonic acids metabolism, including eicosanoids metabo-

lism, were significantly impacted by infection, such as arachidonate 5-lipoxygenase (ALOX5)

and its activating protein (ALOX5P), prostaglandin-endoperoxide synthase 1 (prostaglandin

G/H synthase and cyclooxygenase) (PTGS1, COX1), prostaglandin reductase 1 (PTGR1),

and thromboxane A synthase 1 (TBXAS1), were all strongly upregulated by infection in

CHB. In addition, at least 11 genes implicated in complement activation were significantly

impacted by infection in CHB, such as complement factor properdin (CFP, 2.8 fold), com-

plement component 7 (C7, 4.2 fold), and complement factor I (CFI, 12.1 fold). Other

known genes involved in protective immunity to helminth infection strongly upregulated

by infection in CHB included amphiregulin (AREG, 2.2 fold), granzyme genes A and B

(GZMA and GZMB, 6.8 and 12.9 fold, respectively).

41 of the 711 genes significantly impacted by infection in CHB are related to extracel-

lular matrix (ECM, Table 2.2). Of them, fibronectin 1 (FN1) was strongly upregulated. At
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least ten collagen genes were significantly upregulated, such as those from Type I, Type III,

Type V, Type VI, and Type XII (Table 2.2). For example, the expression of collagen, type

VI, alpha 5 (COL6A5) and collagen, type XII, alpha 1 (COL12A1) was increased 20.8

and 2.4 fold, respectively in CHB, compared to the uninfected controls. Likewise, matrix

metallopeptidase 1 (MMP1), MMP2, and MMP14 were significantly up-regulated while

the transcript of MMP11 was repressed by infection. Furthermore, several cell adhesion

molecules, including integrins, lectins, and cadhesion, were strongly upregulated by infec-

tion in CHB, such as conglutinin-like (COLEC8, 451.7 fold), integrin, α 11 (ITGA11, 3.4

fold), and lectin, galactoside-binding, soluble, 15 (LGALS15, 340.1 fold).

Table 2.2: 41 extracellular matrix (ECM) related genes significantly affected by
Haemonchus contortus infection in the abomasal mucosa of the Canaria Hair Breed sheep.

GeneID Symbol Fold change P-value FDR
ENSOARG00000013782 ALB 0.20 0.0000 0.10%
ENSOARG00000008507 ALPL 10.59 0.0000 0.00%
ENSOARG00000005139 APLP1 0.54 0.0001 0.49%
ENSOARG00000018738 BMP2 1.87 0.0004 1.11%
ENSOARG00000012877 CFP 2.78 0.0000 0.19%
ENSOARG00000004871 COL1A1 2.18 0.0005 1.24%
ENSOARG00000001508 COL1A2 1.87 0.0029 4.42%
ENSOARG00000016476 COL3A1 2.09 0.0000 0.21%
ENSOARG00000002129 COL5A1 2.39 0.0002 0.55%
ENSOARG00000016440 COL5A2 1.93 0.0001 0.28%
ENSOARG00000012810 COL6A1 3.72 0.0000 0.00%
ENSOARG00000012880 COL6A2 3.25 0.0000 0.17%
ENSOARG00000019080 COL6A3 2.65 0.0003 0.83%
ENSOARG00000014842 COL6A5 20.79 0.0008 1.67%
ENSOARG00000006410 COL12A1 2.37 0.0005 1.26%
ENSOARG00000009670 CPXM2 2.10 0.0007 1.63%
ENSOARG00000017328 F3 3.03 0.0000 0.06%
ENSOARG00000019404 FBLN1 1.53 0.0022 3.54%
ENSOARG00000017189 FBN2 0.41 0.0000 0.01%
ENSOARG00000016733 FGA 0.38 0.0009 1.93%
ENSOARG00000019329 FN1 4.77 0.0000 0.07%
ENSOARG00000018483 ITGA11 3.37 0.0015 2.75%
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Table 2.2: Continued

GeneID Symbol Fold change P-value FDR
ENSOARG00000016642 ITGB7 1.93 0.0032 4.70%
ENSOARG00000010344 LTBP1 2.34 0.0000 0.16%
ENSOARG00000005315 MMP1 11.03 0.0001 0.47%
ENSOARG00000013161 MMP11 0.41 0.0000 0.21%
ENSOARG00000019414 MMP14 1.85 0.0001 0.25%
ENSOARG00000018035 MMP2 1.99 0.0000 0.12%
ENSOARG00000008537 NAV2 0.57 0.0022 3.52%
ENSOARG00000010519 OLFML2B 2.26 0.0004 1.03%
ENSOARG00000006153 PDGFA 0.51 0.0009 1.85%
ENSOARG00000005685 PLOD2 3.06 0.0011 2.15%
ENSOARG00000010041 POSTN 6.73 0.0000 0.00%
ENSOARG00000005275 PXDN 1.94 0.0010 1.98%
ENSOARG00000004813 SDC2 1.95 0.0006 1.39%
ENSOARG00000005209 SDC4 0.57 0.0009 1.93%
ENSOARG00000006391 SERPINB5 3.99 0.0000 0.00%
ENSOARG00000020413 SERPINE2 1.78 0.0003 0.80%
ENSOARG00000015081 TGFBI 3.12 0.0000 0.13%
ENSOARG00000005941 TNC 3.00 0.0016 2.80%
ENSOARG00000008334 VEGFA 0.44 0.0000 0.05%

Of note, approximately 15% of the genes significantly impacted by infection are cell-

cycle related. The expression of these cell cycle related genes was predominantly en-

hanced by Haemonchus infection in CHB. As Table 2.3 shows, at least 92 genes were

significantly upregulated by infection, such as cyclin A2 (CCNA2), cyclin B3 (CCNB3),

various centromere proteins (CENPL, CENPN, CENPT, and CENPW) and kinesin family

(KIF) members, and at least 5 minichromosome maintenance complex (MCM) compo-

nents (MCM3, MCM4, MCM5, MCM6, and MCM10). Nevertheless, the infection was

also able to repress cell cycle related genes, such as cyclin G1 (CCNG1), regulator of

cell cycle (RGCC), and synaptonemal complex protein 3 (SYCP3). Moreover, at least

five transcription factors, such as the oncogene MYB, SMAD family members 6 and 9

(SMAD6 and SMAD9), and histone decetylase 5 (HDAC5), were significantly affected by

28



infection in CHB.

Table 2.3: 100 cell-cycle related genes significantly affected by Haemonchus contortus
infection in the resistant breed. Fold is expressed as infected/uninfected controls. FDR:
false discovery rate.

Gene ID Locus (chr:start:end) Gene symbol Fold
change

FDR

ENSOARG00000004361 4:60803768:60856028 ANLN 5.01 0.0022
ENSOARG00000019052 11:27395740:27400878 AURKB 2.94 0.0031
ENSOARG00000012875 18:20942195:21007732 BLM 2.46 0.0185
ENSOARG00000018738 13:48462231:48472599 BMP2 1.87 0.0111
ENSOARG00000004835 11:42540868:42607539 BRCA1 3.09 0.0152
ENSOARG00000020126 7:32810618:32861855 BUB1B 3.38 0.0037
ENSOARG00000020247 7:33203355:33258031 CASC5 3.52 0.0442
ENSOARG00000014176 6:3657736:3663110 CCNA2 3.95 0.0000
ENSOARG00000009908 X:51894389:51938870 CCNB3 4.54 0.0269
ENSOARG00000010352 3:209738381:209761224 CCND2 2.44 0.0060
ENSOARG00000004318 25:16420008:16437119 CDC2 3.96 0.0089
ENSOARG00000020542 1:17815061:17818632 CDC20 3.07 0.0140
ENSOARG00000001274 13:50726485:50734786 CDC25B 1.82 0.0476
ENSOARG00000014063 11:40114667:40125179 CDC6 4.24 0.0000
ENSOARG00000009851 2:39869389:39909559 CDCA2 2.74 0.0218
ENSOARG00000005652 3:207550908:207552937 CDCA3 2.65 0.0015
ENSOARG00000019830 1:12275289:12289262 CDCA8 3.70 0.0029
ENSOARG00000011059 6:21798087:21861426 CENPE 3.68 0.0008
ENSOARG00000012529 12:53214185:53224480 CENPL 2.72 0.0158
ENSOARG00000008206 14:7100459:7127206 CENPN 3.59 0.0029
ENSOARG00000003186 14:34675201:34680944 CENPT 2.71 0.0276
ENSOARG00000007744 8:12047574:12055213 CENPW 3.21 0.0049
ENSOARG00000003158 22:14531509:14550251 CEP55 4.11 0.0002
ENSOARG00000009704 5:17254276:17278480 CHAF1A 2.25 0.0059
ENSOARG00000009289 10:21841538:21861932 CKAP2 3.27 0.0403
ENSOARG00000007721 2:23987476:23992086 CKS2 3.46 0.0001
ENSOARG00000019542 1:10450581:10480905 CLSPN 2.00 0.0269
ENSOARG00000021089 7:64546752:64587073 DLGAP5 3.93 0.0147
ENSOARG00000017620 1:186409:193575 DTYMK 1.92 0.0339
ENSOARG00000007334 2:242210461:242229702 E2F2 3.47 0.0019
ENSOARG00000008807 21:25034831:25052009 E2F8 4.39 0.0000
ENSOARG00000020622 3:199025742:199151626 EPS8 2.36 0.0025
ENSOARG00000005908 X:61406551:61410223 ERCC6L 4.54 0.0001
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Table 2.3: Continued

Gene ID Locus (chr:start:end) Gene symbol Fold
change

FDR

ENSOARG00000014845 2:100985329:101014711 ESCO2 3.40 0.0022
ENSOARG00000000644 13:67321805:67342479 FAM83D 3.04 0.0037
ENSOARG00000005211 19:16642527:16690458 FANCD2 2.84 0.0015
ENSOARG00000003968 8:76466657:76471151 FBXO5 3.65 0.0030
ENSOARG00000015633 21:39647404:39648523 FEN1 2.10 0.0191
ENSOARG00000011054 3:210883196:210893395 FOXM1 3.42 0.0158
ENSOARG00000007717 13:52921512:52934511 GINS1 3.70 0.0006
ENSOARG00000004495 22:15498816:15537211 HELLS 3.82 0.0000
ENSOARG00000019189 1:6959524:6970726 HJURP 3.11 0.0051
ENSOARG00000020743 7:42727941:42735567 KIAA0101 4.06 0.0001
ENSOARG00000004780 19:16405186:16463300 KIF15 3.29 0.0413
ENSOARG00000015211 15:56874125:56943420 KIF18A 2.92 0.0295
ENSOARG00000015873 5:46994289:47001867 KIF20A 3.56 0.0028
ENSOARG00000005591 24:26450684:26467845 KIF22 2.77 0.0030
ENSOARG00000018647 7:16078138:16122235 KIF23 2.92 0.0288
ENSOARG00000001102 1:19196065:19216520 KIF2C 3.45 0.0079
ENSOARG00000009637 20:7678567:7686289 KIFC1 2.48 0.0139
ENSOARG00000020216 7:33016321:33025738 KNSTRN 2.15 0.0292
ENSOARG00000009349 17:52444861:52510658 KNTC1 2.66 0.0208
ENSOARG00000015347 11:48337064:48345443 KPNA2 2.30 0.0044
ENSOARG00000015665 6:5610960:5622911 MAD2L1 2.76 0.0062
ENSOARG00000005416 13:26912745:26937031 MCM10 2.02 0.0487
ENSOARG00000014143 20:24477536:24494074 MCM3 2.06 0.0017
ENSOARG00000012797 9:32400919:32411149 MCM4 2.57 0.0001
ENSOARG00000018527 3:178690575:178707822 MCM5 2.32 0.0010
ENSOARG00000010614 2:173834090:173868287 MCM6 2.25 0.0019
ENSOARG00000011541 2:51686232:51755300 MELK 3.87 0.0002
ENSOARG00000009575 18:53870504:53915925 MIS18BP1 3.74 0.0499
ENSOARG00000014562 22:46439178:46468099 MKI67 3.15 0.0149
ENSOARG00000014901 8:60237288:60271515 MYB 3.06 0.0014
ENSOARG00000003547 13:71800636:71832436 MYBL2 3.10 0.0000
ENSOARG00000004016 6:37256547:37333851 NCAPG 3.36 0.0004
ENSOARG00000007995 4:118730937:118799615 NCAPG2 2.64 0.0025
ENSOARG00000009604 23:37208584:37244969 NDC80 3.71 0.0003
ENSOARG00000011466 12:69915815:69927483 NEK2 3.45 0.0019
ENSOARG00000011189 1:113098396:113135220 NUF2 2.47 0.0199
ENSOARG00000005282 1:26531082:26561083 ORC1 2.82 0.0021
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Table 2.3: Continued

Gene ID Locus (chr:start:end) Gene symbol Fold
change

FDR

ENSOARG00000014858 2:101015056:101043656 PBK 4.32 0.0008
ENSOARG00000017133 13:46615170:46619285 PCNA 2.05 0.0043
ENSOARG00000010890 12:52045755:52079590 PDPN 2.08 0.0264
ENSOARG00000015691 17:29540624:29557094 PLK4 1.97 0.0338
ENSOARG00000020607 7:39763421:39793166 POLE2 2.83 0.0096
ENSOARG00000012267 18:20787183:20802103 PRC1 3.88 0.0198
ENSOARG00000020254 7:33275919:33306843 RAD51 3.12 0.0031
ENSOARG00000010707 24:15349788:15350439 RAN 1.79 0.0300
ENSOARG00000017221 13:65583237:65642844 RBL1 2.12 0.0338
ENSOARG00000017883 13:58047850:58061508 RBM38 2.35 0.0464
ENSOARG00000015333 3:19185137:19191043 RRM2 5.12 0.0000
ENSOARG00000017493 6:91484955:91532036 SEPT11 2.18 0.0063
ENSOARG00000018302 2:239211366:239212113 SFN 2.06 0.0420
ENSOARG00000007399 2:18870299:18918858 SMC2 2.60 0.0324
ENSOARG00000001001 11:19659072:19677569 SPAG5 2.45 0.0058
ENSOARG00000017725 5:13248115:13254108 SPC24 2.98 0.0089
ENSOARG00000002888 16:1518544:1544794 SPDL1 1.95 0.0442
ENSOARG00000011578 18:20124947:20166662 TICRR 2.83 0.0286
ENSOARG00000001419 13:60597535:60651659 TPX2 2.52 0.0149
ENSOARG00000016302 7:3740229:3789354 TRIM36 10.24 0.0000
ENSOARG00000007151 8:6885831:6925302 TTK 3.59 0.0006
ENSOARG00000018884 3:136887716:136929972 TUBA4A 2.02 0.0042
ENSOARG00000006520 13:74125916:74129104 UBE2C 3.13 0.0008
ENSOARG00000008530 5:16805815:16842579 UHRF1 3.99 0.0000
ENSOARG00000004351 8:81449297:81450503 1.84 0.0185
ENSOARG00000006991 19:59822300:59844027 2.08 0.0084
ENSOARG00000005764 2:240064407:240068660 2.37 0.0015
ENSOARG00000006571 21:17310180:17310609 2.66 0.0003
ENSOARG00000005759 16:10486354:10496192 3.81 0.0058
ENSOARG00000000647 22:13731293:13771253 3.92 0.0106

Intriguingly, four genes known to regulate abomasal acid secretion and gastric function

[46] were downregulated by Haemonchus infection in CHB, including ATPase, H+ /K+

exchanging, alpha polypeptide (ATP4A), progastricsin (pepsinogen C, PGC), appetite-

regulating hormone precursor (GHRL), and forkhead box A2 (FOXA1). However, the
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transcript abundance of these four genes remained unchanged by infection in CS.

The RNAseq results of selected genes were validated by real-time RT-PCR (Figure

2.5). For example, the expression of CFI, CXCR6, LGALS15, and MMP1 was signifi-

cantly upregulated while TFF2 mRNA level was significantly repressed by infection only

in the resistant breed (CHB), in a good agreement with the RNAseq analysis. A strong cor-

relation in log2 transformed fold values between the two platforms, qPCR and RNAseq,

was evident (a correlation coefficient R = 0.946; Figure 2.6).

2.3.2 Gene Ontology Implicated in Host Resistance

Table 2.4: Gene Ontology (GO) biological processes (BP) significantly enriched in both
resistant (CHB) and susceptible (CS) breeds.

GO ID Description
Z Score P-value
CHB CS CHB CS

GO:0002250 adaptive immune re-
sponse

4.65 5.09 4.59× 10−05 7.37× 10−04

GO:0046456 eicosanoid biosynthetic
process

6.92 6.84 3.81× 10−07 6.59× 10−04

GO:0006691 leukotriene metabolic
process

7.22 9.67 9.37× 10−07 9.52× 10−05

GO:1901570 fatty acid derivative
biosynthetic process

6.92 6.84 3.81× 10−07 6.59× 10−04

GO:0006636 unsaturated fatty acid
biosynthetic process

7.02 6.43 2.12× 10−07 9.16× 10−04

Among 477 and 16 GO terms significantly enriched in CHB and CS at a P value cutoff

1.0×10−4, respectively, five were significantly enriched in both breeds (Table 2.4). Select

GO terms that may be implicated in the development of host resistance to Haemonchus

infection are listed in Table 2.5. Several GO related to complement activation (both classi-

cal and alternative pathways) and its regulation were significantly enriched only in CHB.

Numerous cell cycle related GO were significantly enriched as well (Figure 2.7). GO re-

lated to secretory granule and gastric acid secretion were also enriched, suggesting that
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Figure 2.5: Real-Time RT-PCR analysis (qPCR) of selected genes. Relative expression
levels calculated from standard curves were normalized to the endogenous control gene
RPL19. Numbers represent mean values plus standard error. Cont.: uninfected controls;
Inf.: 20 days post infection by Haemonchus contortus. CS: Canaria Sheep; CHB: Canaria
Hair Breed. CFI: Complement factor I; CXCR6: Chemokine (C-X-C motif) receptor
6; GHRL: Ghrelin/obestatin prepropeptide; LGALS15: Galectin 15; IL5: Interleukin 5.
MMP1: Matrix metallopeptidase 1; TFF2: Trefoil factor 2. **P < 0.001; ***P < 0.0001.
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Figure 2.6: Linear regression analysis of fold changes calculated from qPCR and RNA-
Seq analysis. Blue dots represent log2 transformed fold change values of a single gene in
an infected sample obtained from qPCR (X-axis) and RNAseq analysis (Y-axis). Dashed
lines: 99% Confidence Interval. R: correlation coefficient.

the ability to regulate secretory and gastric function of the host may be involved in the

development of host resistance. Furthermore, the regulation of inflammation at the site of

infection (mucosa), including arachidonic acid metabolism, cyclooxygenase pathway, and

positive regulation of MAPK cascade, as well as leukocyte migration were also implicated

in host resistance. On the other hand, four of the 11 GO unique to CS were related to

muscle contraction.

Table 2.5: Selected Gene Ontology (GO) terms significantly impacted by Haemonchus
contortus infection in the resistant breed (CHB). BP = Biological processes. MF = Molec-
ular functions. CC = Cellular components.

GO id Ontology Description Observed
/Total

Z Score P-Value

GO:0019369 BP arachidonic acid
metabolic process

10/36 4.95 1.13× 10−04

GO:0002673 BP regulation of acute
inflammatory
response

15/38 7.93 1.16× 10−08
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Table 2.5: Continued

GO id Ontology Description Observed
/Total

Z Score P-Value

GO:0002675 BP positive regulation
of acute
inflammatory
response

8/13 7.78 4.69× 10−07

GO:0050727 BP regulation of
inflammatory
response

24/135 5.01 1.53× 10−05

GO:0050900 BP leukocyte migration 30/183 5.11 7.54× 10−06

GO:0043410 BP positive regulation
of MAPK cascade

30/197 4.65 3.28× 10−05

GO:0006956 BP complement
activation

14/33 8.06 1.18× 10−08

GO:0030449 BP regulation of
complement
activation

11/23 7.75 9.91× 10−08

GO:0006957 BP complement
activation,
alternative pathway

7/10 7.87 7.26× 10−07

GO:0006958 BP complement
activation, classical
pathway

11/25 7.33 2.87× 10−07

GO:0031714 MF C5a anaphylatoxin
chemotactic
receptor binding

5/5 8.21 1.55× 10−06

GO:0031715 MF C5L2 anaphylatoxin
chemotactic
receptor binding

4/4 7.35 2.25× 10−05

GO:0007049 BP cell cycle 119/1137 5.00 1.53× 10−06

GO:0022402 BP cell cycle process 97/865 5.21 8.16× 10−07

GO:0008283 BP cell proliferation 111/1013 5.34 3.84× 10−07

GO:0051301 BP cell division 77/504 7.59 1.83× 10−11

GO:0051302 BP regulation of cell
division

23/140 4.47 8.26× 10−05

GO:0051321 BP meiotic cell cycle 15/87 3.82 8.23× 10−04

GO:0031577 BP spindle checkpoint 11/40 5.15 5.72× 10−05

GO:0007088 BP regulation of mitosis 15/80 4.20 3.26× 10−04

GO:0042555 CC MCM complex 5/11 5.05 5.03× 10−04
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Table 2.5: Continued

GO id Ontology Description Observed
/Total

Z Score P-Value

GO:0044818 BP mitotic G2/M
transition
checkpoint

6/11 6.24 3.63× 10−05

GO:0007186 BP G-protein coupled
receptor signaling
pathway

33/207 5.18 4.97× 10−06

GO:0043627 BP response to estrogen 16/83 4.46 1.48× 10−04

GO:0001676 BP long-chain fatty acid
metabolic process

11/53 3.99 8.27× 10−04

GO:0033500 BP carbohydrate
homeostasis

15/81 4.14 3.75× 10−04

GO:0006865 BP amino acid transport 14/71 4.27 2.97× 10−04

GO:0030141 CC secretory granule 28/172 4.89 1.72× 10−05

GO:0051048 BP negative regulation
of secretion

12/57 4.22 4.23× 10−04

GO:0071229 BP cellular response to
acid

19/96 5.00 2.49× 10−05

GO:0001696 BP gastric acid
secretion

6/7 8.23 7.00× 10−07

2.4 Discussion

Parasite resistance refers to the ability of the host to avert infection, resulting in re-

duced worm burden [47]. Numerous factors affect this trait. Among them, host genetics

play a predominant role in controlling the development of resistance while host sex, age,

and prior exposure are also important [48]. Differences in parasite resistance and sus-

ceptibility existing in various sheep breeds have been long recognized [14]. Moreover,

inter- and intra-host variations in resistance are evident in certain sheep populations [48].

Identifying genetics components controlling inter-, and intra-breed differences in parasite

resistance has both pragmatic and theoretical implications. Towards this end, numerous ef-

forts have been made over the decades to unravel genes and/or genetic variants responsible

for resistance, partially driven by strong desires to breed farm animals with strong resis-
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Figure 2.7: Gene Ontology lineage relations. The Cellular Component Ontology term
GO:0000940 (condensed chromosome outer kinetochore) significantly enriched in resis-
tant Canaria Hair Breed (CHB, P-value< 2.30× 104).
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tance traits. Traditional QTL analysis and Genome-wide Association Studies (GWAS)

have led to reports of dozens of QTL or markers on almost every ovine chromosome that

are associated with various resistance phenotypes, such as fecal egg counts, packed cell

volume, and parasite-specific antibody titers [20, 22, 24]. Nevertheless, the development

of parasite resistance relies upon the precise control of expression of the host genome. Un-

derstanding these regulatory elements will be crucial towards unraveling their functional

relevance. As a result, while much progress has been made to identify genes associated

with nematode resistance in sheep during the past few years [49, 50], an in-depth compar-

ison and characterization of transcriptome responses of various breeds and populations,

especially those local indigenous breeds harboring varying degrees of parasite resistance

and susceptibility, is urgently needed.

The two indigenous breeds of sheep native to the Canary Islands, CHB and CS, display

unique and distinct differences in parasite resistance and susceptibility. When co-grazing

together on the same pasture under natural infections, differences in fecal trichostrongylid

egg counts between CHB and CS are consistently observed [25]. Under experimental

infections with H. contortus, CHB has a significantly lower, by approximately 50%, worm

burden than CS, a undeniable trait of parasite resistance [25, 26], which is confirmed in

this study. Moreover, worms recovered in CHB tend to have significantly shorter body

length than those in CS. A significantly lower EPG value is consistently observed in the

feces of CHB sheep than those of CS animals during experimental infection. For example,

at 27dpi, the mean EPG in CS is 5 fold higher than in CHB [25]. CHB sheep not only

shed significantly fewer parasite eggs but also tend to have a delayed egg production,

indicating an anti-fecundity effect of the immune response in this breed. The results from

this study show that at 20 dpi, no parasite eggs were recovered in the feces of infected

CHB animals while EPG in the feces of infected CS sheep reached 262.50 (±287.54, SD).

This observation is in agreement with the previous findings [25]. Haemonchus contortus
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infection generally elicits a potent Th2 immune response in small ruminants. A strong

upregulation of several well-known Th2 cytokines by infection in CHB were observed in

this study. Previous studies in the Canary Island breeds suggest that divergence in immune

response mechanisms exist between CHB and CS. Among various immune cells, abomasal

eosinophil numbers are 2 fold higher in CHB than in CS, suggesting that CHB sheep may

have developed abilities for enhanced recruitment of eosinophils to the site of infection

(abomasal mucosa). Furthermore, CHB sheep have evolved mechanisms attacking the

adult stage of the Haemonchus parasite, especially its reproduction, as evidenced by the

fact that fecundity is negatively correlated with eosinophils and γδ T cells in the abomasal

mucosa [26]. However, the precise molecular mechanisms of the parasite resistance in

CHB breed remain largely unclear.

In this study, we identified a total of 477 and 16 Gene Ontology (GO) terms that are

significantly enriched in the transcriptome of resistant and susceptible sheep breeds in re-

sponses to Haemonchus infection, respectively. Among them, only five enriched GO were

shared by both breeds. These GO, including leukotriene metabolic process, eicosanoid

biosynthesis process, adaptive immune response, and unsaturated fatty acid biosynthesis,

likely represents the basic mechanisms of host immune responses to helminth infection

in sheep. Indeed, local inflammatory responses are known to be involved in the devel-

opment of host resistance [51]. The enriched GO unique to the susceptible CS breed

were predominantly muscle contraction-related. In cattle, our previous results suggest

that smooth muscle hypercontractility induced by primary infection of the intestinal worm

Cooperia oncophora represents an important aspect of host responses [27], as in several

other host-parasite systems [52]. In rodent models, helminth infection results in an in-

crease in thickness of jejunal smooth muscle layers. Other studies also support the idea

that enhanced muscle contractility appears to be associated with more rapid worm expul-

sion and stronger host immune responses [53]. In addition, granzyme-mediated apoptotic
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signaling pathway (GO:0008626) may play an important role in protecting the host from

H. contortus infection in the susceptible CS breed.

Complement activation as one of the earliest events in host immune responses to

helminth infection plays an important role in the development of host resistance [54].

At least 11 complement related genes, such as CFI and C7, were significantly impacted by

infection in the resistant CHB breed compared to uninfected controls while none of these

genes were affected by infection in the susceptible breed. As a result, both classical and

alternative complement pathways appeared to be activated in the resistant breed. Further-

more, two GO molecular functions related to C5a (GO:0031714) and C5L2 anaphylatoxin

chemotactic receptor binding (GO:0031715) were significantly enriched in the resistant

breed. It is conceivable that these peptides play a critical role in subsequent recruitment of

effector cells, such eosinophils and mast cells, to the site of infection.

Intriguingly, approximately 15% of the 711 genes whose transcript abundance were

significantly altered by infection in the resistant breed were cell cycle related. The vast

majority of these genes were significantly upregulated (Table 2.3). These genes included

several cyclins, minichromosome maintenance complex components, and various kinesin

family members (Table 2.3). In addition, a large class of genes significantly impacted in

the resistant breed was ECM related (Table 2.2). ECM related genes are required during

the classical stages of wound repair, inflammation, new tissue formation, and remodeling

[55]. Previous studies identified essential roles of Th2 cytokines in limiting tissue damage

during helminth infection in rodent models, especially the involvement of IL17 in the early

stage of tissue repair via its role in neutrophil recruitment [56]. In this study, the transcript

abundance of IL17RB was increased approximately 14 fold by Haemonchus infection only

in the resistant breed. Of note, upregulation of Th2 cytokines IL10 and IL13 by infection

was more profound in CHB than in CS. Together, our findings suggest that the accelerated

tissue repair ability, likely mediated by Th2 cytokines, has evolved in the resistant CHB
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breed.

Recently, a significant SNP marker on ovine chromosome (OAR) 6 was reported to

affect one of key resistant phenotypes in sheep, EPG [20]. This maker explains approx-

imately 4% of the variance observed for EPG. It is suggested that there may exist up to

3 QTL within the 5 Mb region of this locus (73.1 − 78.3 Mb), in addition to a fourth

QTL at 55.9 − 62.6 Mb on OAV6. Several earlier reports also indicate the presence of

the QTL lined to EPG in various sheep breeds [57, 58]. Among 21 DEGs located on

OAV6 identified in our study in CHB breeds, at least 5 genes are located within 15 Mb of

this marker. The expression of four genes were significantly induced whereas one, albu-

min, was repressed by infection. Of note, mast cell stem cell factor (SCF) receptor KIT

gene (chr6:70189728:70234612) is the closest to the SNP marker. Two major receptors,

KIT and the high affinity receptor for IgE, are responsible for regulating various mast cell

functions, including chemotaxis, proliferation, apoptosis, and cytokine releases [59]. The

critical roles of mast cells in host immune responses to helminth infection have long been

recognized [60]. Neutralization of KIT and its ligand, SCF, using monoclonal antibodies

completely abrogates the mast cell hyperplasia generated by T. spiralis infection in mice,

resulting in drastically delayed worm expulsion and a reduced mucosal eosinophilia [61].

This finding suggests that KIT plays an important in host-parasite interaction. In the past

few years, increasing evidence suggests that the epidermal growth factor like molecule,

amphiregulin (AREG), plays critical roles in regulating immunity and inflammation as

well as in enhancing host resistance to helminth parasites [62, 63]. In rodent models,

T. suis infection increases AREG expression, in parallel with the expression of Th2 cy-

tokines IL4 and IL1333. Furthermore, worm clearance is significantly delayed at 14 dpi

in AREG deficient mice, which correlates with reduced proliferation of colonic epithelial

cells. Recent studies show that AREG is critical for efficient regulatory T cell function

[64] and may play an important role in orchestrating immunity, inflammation, and tissue
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repair [63]. In this study, AREG transcript abundance was significantly enhanced by in-

fection only in the resistant breed, suggesting that this gene may play an important role in

the development of host resistance. It would be intriguing to identify SNPs in both coding

and promoter regions of the genes located within or closer to the QTL related to parasite

resistance on OAV6, including AREG, and correlate the observed genetic variations with

various resistant phenotypes. Moreover, dissecting mechanisms of transcriptional regula-

tion of AREG and understanding how it promotes epithelial cell proliferation and regulates

host immunity in the gastrointestinal tract warrant further investigation.

In conclusions, the two sheep breeds native to the Canaria Island displayed a distinct

difference in several Haemonchus contortus resistant phenotypes under both natural and

experimental infections. CHB tends to have significantly reduced worm burden, delayed

egg production, and decreased fecal egg yield (counts) than the susceptible Canaria Sheep.

A broad range of mechanisms have evolved in resistant CHB to provide protection against

H. contortus. Readily inducible acute inflammation responses, complement activation,

accelerated cell proliferation and subsequent tissue repair, and innate and acquired immu-

nity directly against worm fecundity are likely to contribute to the development of host

resistance to gastrointestinal nematode infection in the CHB breed.
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3. A CONVOLUTIONAL AUTOENCODER BASED METHOD FOR PREDICTING

RNA PROTEIN INTERACTIONS

3.1 Introduction

RNA binding proteins (RBPs) have been shown to play crucial roles in various bio-

logical processes, especially in the post-transcriptional regulation of RNAs. They are im-

portant regulators of RNA splicing, polyadenylation, and localization. Some RBPs have

been studied previously, such as splicing regulators SRSF1 [65], NOVA1 [66], PTBP2

[67], RBFOX1 [68], RBFOX2 [69] and ESRP1/ESRP2 [70], polyadenylation regulator

CPSF3 [71], and RNA localization regulator ZBP1 [72]. There are also studies showing

that the mutation of these RBPs can result in diseases such as cancers, muscular atrophies,

and neuropathies [73]. RBPs specifically recognize their binding targets by RNA-binding

domains. Most of the RBPs contain several RNA-binding domains, e.g., different types of

RNA-recognition motifs, double-stranded RNA-binding motifs or zinc-finger motifs [74].

These domains have high specificities in recognizing RNA sequences and structures to

facilitate the binding and functioning of RBPs. Therefore, studies of the RBP binding

specificities will be of great help in understanding the dynamic regulations of RBPs in

various biological processes and diseases.

Since RBPs function through the specific binding to RNA sequences, such regula-

tory relationships can be identified by methods designed for assaying protein-RNA in-

teractions, such as RNA immunoprecipitation (RIP) [75] and cross-linking immunopre-

cipitation (CLIP) [66]. With the development of high-throughput sequencing technolo-

gies, researchers have designed multiple sequencing protocols to study the RBP bind-

ing specificity on a transcriptome-wide scale, including RNA Immunoprecipitation with

high-throughput sequencing (RIP-Seq) [10] and cross-linking immunoprecipitation cou-
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pled with high-throughput sequencing (CLIP-Seq) [11]. Variants of CLIP-Seq with im-

proved resolution, signal-to-noise ratio and sequence yield, such as PAR-CLIP [76], iCLIP

[77], and eCLIP [78], are developed and widely used for the RBP research.

The wide application of HTS technologies in RNA-protein interaction identification

has produced a large amount of data, and the reliable RBP binding sites identified by the

HTS technologies have become invaluable resources for understanding the RBP binding

specificities [76, 77, 79]. However, CLIP-Seq-based methods also have some shortcom-

ings. One of the most severe ones is that the binding sites often have high false-negative

rates [80]. As CLIP-Seq sequences the RNA molecules that are bound by the RBPs, it is

highly sensitive to the gene expression level [81]. If a gene is not expressed in a sample,

there is no way for CLIP-Seq based methods to identify the potential binding sites within

that gene. Furthermore, the false negative rate it also inflated by the mapabilty difficulty of

the sequences spanning the splicing junctions [82]. These together prevent the CLIP-Seq

method from becoming an universal tool for identifying all possible RBP binding sites

across the transcriptome.

To overcome the shortcomings of CLIP-Seq, many computational methods have been

designed for predicting the RBP binding sites. These methods use RBP binding sites

identified by CLIP-Seq experiments as the training and testing data to build models for

predicting whether an unknown sequence in the transcriptome can be bound by RBPs.

For instance, RNAcontext [83] builds a model that is trained by primary sequences and

predicted secondary structural context features to predict the binding strength of RBPs.

GraphProt [80] uses a graph-kernel strategy to encode the sequence and structural features

of the binding preferences and trains a support vector machine (SVM) model to predict

RBP binding sites. Some methods not only use sequence and structural information but

also incorporate other data into the model to improve the prediction performances. For

example, iONMF [84] predicts RNA-protein interaction sites by training a multi-modal
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predictor using different types of data, such as kmer sequence, secondary structure, RBP

co-binding, Gene Ontology, and binding region type.

Recently, deep learning [85, 86] has become a powerful tool for analyzing complex

data. It has been used for various learning problems such as image classification, natural

language processing, audio recognition and machine translation. Studies have demon-

strated the superior performance of deep learning over the traditional machine learning

methods [87]. To address the problem of predicting DNA- and RNA-protein interactions,

researchers have designed multiple deep learning models and obtained promising results.

For example, DeepBind has been developed to learn the binding patterns from million

of reads produced by high-throughput technologies and predict the binding targets [88].

DeeperBind attempts to improve DeepBind by adding a recurrent layer after the convo-

lutional layers [89]. DeepMotif combines convolutional layers and a highway network

to learn and predict binding specificities, and uses input optimization to generate typical

binding motifs [90]. [91] evaluated the performances of different convolutional neural

network (CNN) based models and proposed a CNN architecture for predicting the pro-

tein binding specificities. [92] developed a deep learning model trained with the primary

sequence, secondary structure and tertiary structure features of the RBP binding sites to

predict the RNA binding specificities. iDeep uses a CNN and several deep belief networks

to build a multimodal deep learning model using various data resources for RBP binding

site predictions [93].

In this chapter, we propose a novel deep learning method for predicting the RBP bind-

ing sites and learning the RBP binding motifs. The method consists of a convolutional

autoencoder that learns the high-level sequence features of the RBP binding sites, and a

softmax classifier that uses the learned features to predict the RBP binding specificities

for given input sequences. To evaluate the proposed method, we compare our model with

existing methods and show that the performance of the proposed model surpasses the ex-
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isting methods as evaluated using the AUC metric. In addition, we investigate the motifs

captured by the convolutional autoencoder to prove the capability of the proposed method

for finding the motifs in an unsupervised manner.

The rest of this chapter is organized as follows: Section 3.2 describes the proposed

method. Section 3.3 evaluates the performance of the proposed method using the AUC

metric and discusses its motif discovery ability. Section 3.4 concludes the chapter.

3.2 Materials and Methods

3.2.1 Dataset

The dataset we used in this study is from iONMF [84] (available at https://github.

com/mstrazar/ionmf). It contains positive RBP binding sequences from CLIP-Seq

data and negative RBP binding sequences sampled from genomic regions with no RBP

binding in the CLIP-Seq experiments. This dataset is also used by iDeep [93] for bench-

marking. The negative sequences uniformly sampled from the non-interactive genomic

regions are more representative of the true sequence composition of the genome compared

with the randomly shuffled sequences used in some studies. Therefore, the model trained

on this dataset will likely provide better predictions of the RBP binding sites. The positive

sequences are binding sites with the highest cDNA counts in the CLIP-Seq experiments.

The dataset consists of 31 CLIP-Seq experiments for 19 RBPs, and we use all of the 31

experiments for benchmarking. For each experiment, 18,000 positive binding sequences

and 18,000 negative binding sequences are used in the performance evaluation.

3.2.2 RNA Sequence Encoding

In this study, similar to other methods [88, 93, 91], RNA sequences are one-hot en-

coded and fed into the proposed model. The one-hot encoding of a given RNA sequence
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s = (s1, s2, . . . , sl−1, sl) is a matrix S such that

Si,j =


1, if (si, j) ∈ {(A, 1), (U, 2), (C, 3), (G, 4)}

0, otherwise
, (3.1)

where L is the length of the RNA sequence and si ∈ {A,U,C,G,N}, 1 ≤ i ≤ L, is the

ith base of the sequence.

Therefore, each sequence in the input data is encoded as a L× 4 matrix, where length

L is 101 in our experiments. The encoding process is shown in Figure 3.1.

Figure 3.1: An example of convolutional network. The genomic sequence is one-hot
encoded. Then the encoded sequence is convolved with a convolutional kernel of size 3.
Finally, a max-pooling of size 2 is applied.

3.2.3 Convolutional Layers

Convolutional Neural Network (CNN) is a well-established deep learning architecture

inspired by the organization of the animal visual cortex. In recent years, many deep CNN
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architectures were designed, especially in the area of image classification, such as AlexNet

[94], VGGNet [95], GoogleNet [96] and ResNet [97]. The evolution of the state-of-the-art

CNN architectures reveals a trend that the networks are becoming deeper. For example,

ResNet, the champion of ILSVRC 2015, is about 20 times deeper than AlexNet and eight

times deeper than VGGNet. The increase in depth improves the ability of the network

to approximate the target function and produce better feature representations, and thus,

greatly enhances the performance of the network, compared with the shallow networks of

the same number of parameters. Currently, deep CNN has been widely applied to image

classification, video recognition, recommendation systems, natural language processing,

text classification, scene labeling, and speech recognition.

Typically, a CNN model consists of several different types of layers, i.e., convolutional

layers, activation function layers, and pooling layers. Different models will use different

numbers of these layers and stack them in different orders. Figure 3.1 shows a simple

CNN architecture with one convolutional layer, one activation layer, and one max pooling

layer.

The key component of a CNN is the convolutional layer [94], which applies convolu-

tion operation to the input of the layer and passes the convolved input to the next layer.

For RNA sequence data, each nucleotide is one-hot encoded as a vector of length four as

described in Section 3.2.2. Then a sequence of length L is encoded as a matrix S ∈ RL×4.

And a convolutional kernel can be defined as W ∈ Rl×4, where l is the length of the con-

volutional kernel. Then the convolution operation of W over the one-hot encoded RNA

sequence S is defined as

Sout(i) =
l∑

m=1

4∑
j=1

Si−m,jWm,j. (3.2)

The activation function layer applies activation function to its input. As the activation
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functions are usually non-linear, they introduce non-linearities to CNNs to detect non-

linear features. Assume a(·) denotes the activation function. The activation value Ai of

convolution feature Sout(i) is

Ai = a(Sout(i)). (3.3)

Typically in CNN, Rectified Linear Unit (ReLU) [98] is used as the activation function:

Relu(x) = max(0, x). (3.4)

In a pooling layer, for example, max pooling, the input is split into non-overlapping

subregions of a fixed length, and a max filter is applied to each of the subregions. Suppose

the input to the pooling layer is A and the output is O. Then we have

Ok = max{Aj,k, . . . , Aj+mp−1,k}, (3.5)

where k is the index of the pooling output, j is the start position of the kth pooling, and

the mp is the pooling size.

3.2.4 Model Architecture

Autoencoder [99] is an unsupervised neural network which aims to learn the efficient

representation of the input data. The simplest architecture of an autoencoder is a feed-

forward neural network with the output layer having the same dimension as the input

layer. It extracts hierarchical features and generates a compact representation of the input.

Using the compact representation, the decoder can reconstruct the input reliably.

An autoencoder contains an encoder ϕ and a decoder ψ, in which the encoder trans-

forms the input data x ∈ X into a compact representation ϕ(x) ∈ F and the decoder recon-

structs the input using the compact representation generated by the encoder ψ(ϕ(x)) ∈ X .
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ϕ : X → F

ψ : F → X (3.6)

ϕ, ψ = argmin
ϕ,ψ

∥X − (ψ ◦ ϕ)X∥2

Convolutional AutoEncoders (CAEs) [100] are autoencoders constructed using convo-

lutional layers. Compared with autoencoders with fully connected layers which force the

features to be global, it can extract localized features while capturing the original input

structure.

In this study, we propose to use convolutional autoencoder to learn the important fea-

tures of the RBP binding sites and use the compact representation which contains the most

important features of the input sequences to predict the RBP binding sites. Figure 3.2

shows the general architecture of the convolutional autoencoder and the softmax classifier

of the proposed model.

The input sequences are one-hot encoded as described in Section 3.2.2. Then three

Convolution-ReLU-Max-Pooling layers are applied to the encoded sequences to extract

the local sequence composition features as well as the high-level features. Then two fully

connected layers are used to transform the features into the compact representations of the

input sequences. The decoder reconstructs the input sequence by using fully connected

layers and Convolution-ReLU-Max-Pooling layers. The classification part of the model is

a two-layer feedforward neural network with softmax output. It takes the learned compact

representations of the input sequences to predict if the sequences are binding sites of a

particular RBP.
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Figure 3.2: Architecture of the proposed model. Input is one-hot encoded and fed into the
autoencoder. The encoder consists of three Convolution-Relu-MaxPooling layers and two
fully connected layers. The decoder takes the output of the encoder and reconstructs the
input by one fully connected layer and three Convolution-Relu-MaxPooling layers. The
softmax classifier takes the output the learned encoder to predict the RBP binding sites.
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3.2.5 Model Implementation

The proposed model is implemented using Keras with TensorFlow backend in Python.

In the autoencoder, the size of the convolutional kernels is set to 10 and the size of the

max-pooling is set to 2. The maximum number of epochs is set to 100, and the batch

size is set to 100. To control the over-fitting of the model, we use early stopping, which

monitors the validation loss and stops the training when the validation loss converges. The

early stopping tolerance is set to 5 epochs. Other techniques for controlling over-fitting

are also applied, such as batch normalization [101] and dropout [102]. The autoencoder

is trained by back-propagation to minimize the reconstruction loss, i.e., the mean squared

error for all bases, using RMSprop optimizer. The softmax classifier is trained by back-

propagation to minimized the binary cross-entropy loss for all sequences using RMSprop

optimizer. The implementation of the model is available at http://github.com/

zhengyuguo/deepclip.

3.3 Results

In this section, the performance of the proposed method for predicting RBP binding

sites using CLIP-Seq data is evaluated and compared with the performances of the state-

of-the-art methods [88, 93]. In addition, we discuss the ability of the proposed method to

discover the binding motifs of the RBPs.

3.3.1 Model Evaluation

We evaluate the performance of the proposed method and compare it with two baseline

models. One baseline model is iDeep [93], which is a multi-modal deep learning method

using both RBP binding sequence information and other information such as region type,

clip-cobinding, structure, and motif. It has been shown to have better performance com-

pared with methods such as GraphProt, iOMNF, etc. To facilitate a fair comparison, we
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compare the proposed method with the modal for primary sequence in iDeep, which is a

CNN with binding sequence input. Another is DeepBind [88], and it has been shown by

[88] that the model outperforms the traditional methods and some other CNN architec-

tures. We reimplement the model using the exact parameters provided by the author and

compare our proposed model with it.

We use five-fold cross-validation to accurately assess the performance of the models.

The data of each experiment is evenly divided into five subsets. For each fold, four subsets

are used as training set and one subset is held out for testing purposes. The performance

for each fold is measured using the area under the receiver operating characteristic curve

(AUC). For each experiment, we take the average AUC over all folds.

Figure 3.3: The AUC distribution of all experiments for the three methods.

Figure 3.3 shows the distributions of AUCs of the three methods for all 31 experiments.
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In general, our proposed method has better performance than both DeepBind and iDeep.

The proposed method achieves higher median, first quantile, and third quantile AUCs

compared with the other two methods. DeepBind slightly outperforms iDeep under the

experiment setup.

Table 3.1 lists the AUCs of the three methods for all experiments. For each method and

each experiment, the AUC value is the average AUC of all five folds of the cross-validation.

For each experiment, the highest AUC value is in bold. Among the 31 experiments, our

proposed method outperforms DeepBind over 20 experiments (our proposed method and

DeepBind have the same AUC over one of the experiments). Among all the experiments,

the proposed method outperforms DeepBind for at least 0.01 in terms of AUC in 17 ex-

periments, while DeepBind outperforms the proposed method for at least 0.01 in terms of

AUC in only two experiments. For some experiments, such as 18 HNRNPL, 19 HNRNPL,

20 HNRNPL, 22 NSUN2, and 30 U2AF2, the proposed method outperforms DeepBind

by at least 0.05 in terms of AUC. Therefore, the proposed method produces better pre-

dictions than DeepBind in general. We can draw the same conclusion from Figure 3.4a.

Similarly, the proposed method has superior performance compared with iDeep. Among

the 31 experiments, the proposed method gets higher AUC values in 28 of them (Figure

3.4b).

3.3.2 Insight in Motif Discovery

The convolutional kernels can be seen as feature extractors of the input. Especially for

the kernels of the first convolutional layer, they scan the input sequences and activate when

they detect some specific types of sequence patterns. By training the model, the convo-

lutional kernels will learn the enriched sequence patterns within the positive binding sites

compared with the background sequences with no binding signals. Therefore, the learned

convolutional kernels act as the motif detectors, which provide biological insights of the
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Table 3.1: Mean AUC of the three methods for all experiments.

ID RBP Proposed Method DeepBind iDeep
1 AGO/EIF 0.7984 0.7789 0.7774
2 AGO2 0.6203 0.6219 0.6046
3 AGO2 0.9251 0.9368 0.8895
4 AGO2 0.9220 0.9296 0.8866
5 AGO2 0.6319 0.6514 0.6330
6 EIF4A3 0.9804 0.9834 0.9574
7 EIF4A3 0.9836 0.9868 0.9631
8 ELAVL1 0.9268 0.9133 0.9169
9 ELAVL1 0.6272 0.6155 0.6085
10 ELAVL1A 0.9637 0.9637 0.9116
11 ELAVL1 0.9730 0.9749 0.9474
12 EWSR1 0.9353 0.9128 0.9219
13 FUS 0.9560 0.9214 0.9477
14 FUS 0.9700 0.9426 0.9559
15 IGF2BP1 0.7350 0.7388 0.7209
16 HNRNPC 0.9616 0.9463 0.9601
17 HNRNPC 0.9802 0.9692 0.9789
18 HNRNPL 0.8020 0.7371 0.7983
19 HNRNPL 0.7830 0.7173 0.7918
20 HNRNPL 0.7494 0.6923 0.7624
21 MOV10 0.8409 0.8523 0.8233
22 NSUN2 0.8835 0.8224 0.8783
23 PUM2 0.9730 0.9728 0.9606
24 QKI 0.9835 0.9846 0.9747
25 SFRS1 0.9173 0.9134 0.9042
26 TAF15 0.9824 0.9682 0.9670
27 TDP43 0.9315 0.9248 0.9293
28 TIA1 0.9366 0.9204 0.9313
29 TIAL1 0.9158 0.8991 0.9106
30 U2AF2 0.9632 0.9283 0.9564
31 U2AF2 0.9474 0.9266 0.9371

RBP binding preferences. The convolutional kernels of the higher layers will learn higher

level features of the input sequences. However, because of the difficulty in interpreting

those kernels in a biologically meaningful way, we will only focus on the kernels of the
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(a) Proposed Method v.s. DeepBind (b) Proposed Method v.s. iDeep

Figure 3.4: AUC comparison between the proposed method and the baseline methods.

first convolutional layer.

To investigate what motifs are learned from the data by the proposed model, we con-

struct the position weight matrices (PWM) for all the learned convolution kernels of the

first convolutional layer. The PWMs are aligned against a known human RBP motif

database cisBP-RNA [103] using Tomtom [104] from MEME Suite [105]. The database

contains 102 known motifs.

Figure 3.5 shows four RBPs for which the proposed method successfully learned their

known motifs in cisBP-RNA from the data. For HNRNPC, TIA1, and U2AF2, the output

of the proposed method resembles the U-rich consensus motifs that closely match the

known motifs in cisBP-RNA. For QKI, the output of the proposed method resembles the

UAAY motif that matches a known QKI motif in cisBP-RNA. Figure 3.6 shows four RBPs

for which the proposed method recovers motifs discovered by some other CLIP-Seq based

experiments. For example, TDP43 has been shown to bind to GU-rich sequnces [106],
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HNRNPC QKI

TIA1 U2AF2

Figure 3.5: The proposed method recovers the known motifs in cisBP-RNA. Four example
RBPs showing that the proposed method can successfully recover the known motifs in
cisBP-RNA.
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Figure 3.6: The proposed method recovers the known motifs in the literature. Four exam-
ple RBPs showing that the proposed method can successfully recovers the known motifs
in literature.

and the proposed method recovers the GU-rich binding motif of TDP43. The proposed

method also recovers the (A/G)GGUA motif for TAF15 [107], the GGUG motif for FUS

[107], and the GAAGA motif for EIF4A3 [108]. Besides motifs that match the currently

known ones, there are many new motifs that are identified by the proposed method. As the

RBP motif database is not complete and there are limitations in understanding the binding

mechanisms of the RBPs, these new motifs are likely to provide important information to

guide future directions.

3.4 Conclusion

The rapid development of HTS technologies has enabled the transcriptome-wide study

of the RBP binding preferences using CLIP-Seq and its variants. These experiments have

generated a huge amount of data from which a large amount of the reliable RBP binding

sites have been identified. Due to the intrinsic property of CLIP-Seq, the false negative

problem greatly limited the application of CLIP-Seq experiments in finding all possible
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RBP binding sites. Therefore, computational methods are increasingly important in un-

derstanding the RBP mechanism.

In this chapter, we propose an accurate deep learning method to predict the RBP bind-

ing preferences using CLIP-Seq data. The proposed method uses a convolutional autoen-

coder to learn the robust features from the data, and uses a softmax classifier for the pre-

diction. Our proposed model is able to learn the robust representations of the input data in

an unsupervised manner, and use the robust representations for accurate classification of

the RBP binding sites. We evaluate the performance of the proposed method over a large

CLIP-Seq dataset containing 31 experiments from [84]. Performance test over the bench-

marking dataset shows that the proposed method outperforms the state-of-the-art methods

in most of the experiments, and reaches comparable performance in the remaining ones.

In addition, the convolutional nature of the proposed method enables the interpretation

and visualization of the learned sequence motif features. The proposed method success-

fully recovers the known RBP motifs, while providing more candidate motifs that may be

important for future understanding of the RBP mechanisms.
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4. CREATION OF A DATABASE AND WEB-SERVER FOR METADATA OF

PUBLICLY AVAILABLE MOUSE RNA-SEQ DATA SETS⋆

4.1 Introduction

Gene targeting [109], a powerful technique used to manipulate a specific locus in the

genome of an organism, is an indispensable tool for assessing in vivo functions of specific

gene products. This technique provides great flexibility in manipulating the genome of an

organism since it can be used to delete a gene or an exon, to introduce an exogenous gene,

or to create point mutations. Moreover, gene targeting not only can introduce permanent

mutations but can also conditionally change targeted genes. Thousands of genetically

engineered mice have been generated using this technique. They provide valuable models

for studying mechanisms of human diseases.

RNA-Seq [110], a high-throughput sequencing (HTS) method for transcriptome anal-

ysis, has been successfully used on many of these mouse models, enabling global analyses

of specific genomic alterations at a high sequencing depth with a reasonable accuracy.

As RNA-Seq becomes increasingly popular, hundreds of RNA-Seq data sets have been

generated and have been released to the public. These data are currently available from

online repositories, such as, Gene Expression Omnibus (GEO) [111], ArrayExpress [112],

Sequence Read Archive (SRA) [113], and European Nucleotide Archive (ENA) [114],

whose primary purposes are to store raw and processed HTS data from a wide variety of

organisms. However, a data submitter typically provides only limited metadata for each

data set sufficient to get the data set accepted into the public repository. There is currently

no stringent and uniform quality check of submitted metadata. This results in inconsis-

⋆Part of this chapter is reprinted with permission from "RNASEQMETADB: a database and web server
for navigating metadata of publicly available mouse rna-seq datasets," by Z. Guo, B. Tzvetkova, J. M. Bassik,
T. Bodziak, B. M. Wojnar, W. Qiao, M. A. Obaida, S. B. Nelson, B. H. Hu, and P. Yu, Bioinformatics, vol.
31, no. 24, pp. 40384040, 2015, Copyright[2015] by Oxford University Press
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tency and ambiguity in data set annotation. For example, nonofficial gene symbols are

used in some of the data sets. Other public databases such as InSilico DB [115] also suffer

from the same problems, making searching for data sets in these databases inefficient.

The recent HTS data explosion has motivated researchers to create several metadata

databases. However, these databases, e.g., CistromeMap [116], focus primarily on ChIP-

Seq data. To fill the gap for RNA-Seq data, we collected RNA-seq metadata from all the

publicly available data sets that were generated using mouse models mostly with targeted

mutations and curated a database called RNASeqMetaDB. Haynes et al. recently sug-

gested that measuring transcription factor binding might not be the best way to decipher

transcriptional regulatory networks [117]. Instead, their work showed that gene expression

data could be of greater value in revealing functional gene regulatory relations. Therefore,

RNASeqMetaDB may be a helpful resource for researchers trying to build gene regulatory

networks.

We developed a web server to provide a user-friendly query interface for locating rel-

evant RNA-Seq data sets based on targeted gene names, disease names, tissue types, key-

words, publications, and accession IDs, etc. An ontological search function is also offered

that allows users to find the data sets related to, but not necessarily annotated to, the exact

search term. This helps ensure search sensitivity (see the help page on the website for

examples). This database can help biomedical scientists navigate the complex landscape

of mouse genetic experiments and can provide rich contexts for these data sets. Using this

database, users will be able to find related data sets for further analyses easily. For exam-

ple, RNA-Seq data can be used to infer splicing isoform functions [118] and information

extracted from existing RNA-Seq data can be used as prior knowledge for causal reasoning

on biological networks [119]. Moreover, RNA-Seq data can be integrated with sequence-

and structure-binding preferences of RNA-binding proteins (RBPs) learned with compu-

tational methods such as GraphProt [80], which can increase our understanding of the
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mechanisms of posttranscriptional regulation.

4.2 Methods

Figure 4.1: The database schema of RNASeqMetaDB. For each RNA-Seq data set, the
metadata of gene symbol, genotype, reference (including title, authors, abstract, PubMed
ID), disease, tissue type, corresponding author and authors website link are systematically
organized in a relational database.

We collected raw annotations of publicly available mouse RNA-Seq data sets from

high-throughput sequencing data repositories including GEO, ArrayExpress, and ENA.

At the time of writing, RNASeqMetaDB contains 306 experiments in total. The follow-

ing metadata were systematically annotated for each RNA-Seq data set: gene symbol,
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genotype, reference (including title, authors, abstract, PubMed ID), disease, tissue type,

corresponding author and author’s website link (Figure 4.1). Genotype and disease annota-

tions were manually curated and extracted from the original publications. For consistency,

genes, alleles, diseases and tissue types were annotated using official symbols or con-

trolled vocabularies from online resources including Mouse Genome Informatics (MGI)

[120], Medical Subject Headings (MeSH) [121] and BRENDA Tissue Ontology (BTO)

[122].

Figure 4.2: Basic searching functionality of RNASeqMetaDB. The database supports
searching by gene symbols, disease names, tissue types, or keywords.

To facilitate querying and data retrieval, we implemented a web server (http://

rnaseqmetadb.ece.tamu.edu). All search functionalities are integrated within a

single web interface (Figure 4.2). Users can search for one or multiple data sets using

gene symbols, disease names, tissue types, or keywords. The search generates a list of

matched data sets containing accession IDs, titles, mutated genes, related diseases and

tissue types. To support more general database queries, ambiguous keyword search is
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provided by the server. Users can type one or multiple terms that they are interested in

into the Keyword search box. Both the typed words and their synonyms defined by the

Experimental Factor Ontology (EFO) [123] will be searched in the database, and then the

query results will be displayed. If a more targeted search is needed, users are allowed to

use additional terms in the Search text box above the result table to refine the results. This

retrieves only the data sets whose titles match these additional terms. When the accession

ID of a data set is clicked, RNASeqMetaDB displays a summary table of all the metadata

available for that data set. The links to other databases and websites like ArrayExpress,

GEO, MGI, PubMed and MeSH, and the PIs’ lab websites are provided so that users can

easily obtain additional information related to the data sets. Users can also bulk download

data after registering an account on the website. To keep the data updated, the website

allows users to submit requests for adding data entries for newly published RNA-seq data

sets.

4.3 Results

RNASeqMetaDB permits efficient searching of its database containing comprehensive

information for all public RNA-Seq data sets on mice with genotype as a factor. It contains

metadata for a total of 306 experiments targeting 298 different genes. These experiments

are from 264 different research groups, among which 154 are from the United States, and

76 are from Europe (Figure 4.3A). For journals publishing the studies using these data sets,

Nature ranks at the top with the greatest number of studies, followed by Proceedings of the

National Academy of Sciences of the United States of America and Genes & Development

(Figure 4.3B). One interesting observation is that the number of publications on RNA-

Seq studies has been increasing exponentially since 2008 (Figure 4.3C). This indicates

that RNA-Seq experiments on gene-targeted mouse models have become more popular in

recent years. Summary statistics of the datasets is also available at the database website
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Figure 4.3: Some statistics of RNASeqMetaDB. A: Geographic locations of the research
groups generating mouse RNA-Seq datasets. B: The publication years of the papers based
on the mouse RNA-Seq datasets. C: The journals publishing the papers based on mouse
RNA-Seq datasets.
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4.4 Discussion

RNASeqMetaDB broadens the use of these data sets by providing well-curated meta-

data and efficient query functionalities. Scientists can easily find the data sets that they are

interested in and retrieve detailed information to enable more comprehensive understand-

ing of the experiments. In the future, we will develop additional functionality and import

more data sets into the database. We believe that RNASeqMetaDB will be a valuable tool

for the biomedical research community.
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5. CONCLUSIONS

With the development of technologies, high-throughput sequencing has become one

of the most powerful tools for studies in genomics, transcriptomics, epigenomics, and

metagenomics. Compared with the first generation sequencing technology called Sanger

sequencing, HTS technologies are much cheaper and faster: they have the ability to se-

quence a massive number of genomic reads in parallel and produce millions of sequences

concurrently with low costs and in a short time. In recent years, various HTS technolo-

gies for different purposes have been designed, such as RNA-Seq, Ribo-Seq, ChIP-Seq,

CLIP-Seq, and RIP-Seq. With the wide application of these technologies in various re-

search areas, thousands of HTS datasets have been generated and publicly deposited in

databases such as SRA, GEO, and ENA. These datasets provide invaluable resources for

more comprehensive understanding of the genomic landscapes.

HTS technologies have been designed for enhancing the understanding of the diverse

cellular roles of RNA. RNA-Seq is able to sequence various RNA species, such as mRNA,

microRNA, snoRNA, etc. It is a powerful method for precisely and comprehensively mea-

sure the gene expression level. Utilizing UV cross-linking with immunoprecipitation to

extract protein binding regions or RNA modification regions from RNA sequences, CLIP-

Seq is widely used for studying protein-RNA interactions and RNA modifications. These

HTS technologies have enabled researchers to understand the gene expression, transcrip-

tional regulation and post-transcriptional regulation in a comprehensive manner.

In this dissertation, we present HTS applications for transcriptional studies. First,

the differential expression analysis of RNA-Seq data is discussed and applied on a sheep

RNA-Seq dataset to study the biological mechanisms of the sheep resistance to worm

infection. The RNA-Seq dataset is analyzed with an automatic pipeline and the gene
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expression is modeled by a negative binomial distribution. The study provides insights into

the underlying biology of sheep host resistance. Then, the deep learning method is used

to model the RBP binding sites and predict the RBP binding preferences using CLIP-Seq

data. In the proposed method, deep convolutional autoencoder is used for robust feature

extraction, and a softmax classifier is used for binding site prediction. This method can be

used for studying the RBP regulations, and it can also provide insights for identifying the

RBP binding motifs. Finally, a database is created to facilitate the reuse of the publicly

available RNA-Seq dataset. The metadata of the publicly available RNA-Seq datasets are

manually curated and are served by a well-designed website. Furthermore, the database

can be scaled up in the future to serve more types of HTS data, such as CLIP-Seq data and

ChIP-Seq data.

In summary, this dissertation describes a set of HTS applications for gene expression

and post-transcriptional regulation. We believe this dissertation has reached the goal of im-

proving the HTS applications for transcriptional studies and provided some knowledge to

the research community. Along the lines of this dissertation, there are additional research

problems such as modeling differential alternative splicing and validating the predicted

RBP targets, and it is our hope that these problems will be addressed in the future.
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