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ABSTRACT

Thread imbalance is inevitable for multithreaded applications due to the necessity of synchro-

nization primitives to coordinate access to memory and system resources. This imbalance leads to

a bounding of application performance, but, more importantly for mobile devices, this imbalance

also leads to energy inefficiencies. Recent works have begun to quantify this imbalance and look

to leverage it not only for performance improvements, but for energy savings as well. All these

works, though, test the theory through the use of simulators and power estimation tools. These

results may show that the theory is sound, but the complexities of how a real machine handles syn-

chronization may lead to diminished results by either having too large of a performance impact,

or too little energy savings. In this work, we implement one such algorithm, PCSLB, and improve

upon it in order to see if the results shown for this technique are feasible for use in real machines.

With the improved algorithm, PCSLB-Max, and the CritScale Linux kernel module, we show that,

in fact, there are energy saving available to us while mitigating the performance.
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NOMENCLATURE

CMP Chip Multi-Processor
MPSOC Multi-Processor System-On-Chip
DVFS Dynamic Voltage/Frequency Scaling
TLP Thread-Level Parrallelism
PCSLB Predicting thread Criticality and frequency Scalability for ac-

tive Load Balancing
HWP Hardware-coordinated P-States
V Voltage
F Frequency
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1. INTRODUCTION

Performance growth has been the focus for the industry for many years, mainly driven by tran-

sistor density improvements from generation to generation. Because of Dennard Scaling[7], per-

formance per watt improved alongside these process changes. As a result, for much of the 1990’s, a

processor frequency was the sole metric for performance. This was the beginning of the Megahertz

wars, where processors were evaluated solely on the frequency to determine the best computer sys-

tems. A worrying side-effect of this trend was that power dissipation was increased as well. By the

early 2000’s this trend became unsustainable, causing the paradigm shift to the Megawatts wars

where power became the primary constraint for designs. With caps set on frequency due to power

constraints, designers shifted to inclusion of multiple cores in a single package and eventually on

a single die. This began the modern Chip Multi-Processor (CMP) technology.

In these designs, rather than a single high performance, and high power draw, core, many lower

performance and power cores are paired together. Developers started using thread level parallelism

to exploit the new performance of CMP designs, but that required threads to be able to commu-

nicate when then needed exclusivity over memory, so synchronization frameworks were used to

synchronize threads and their access to shared resources. The downside to using synchronization

constructs, such as mutual exclusion constructs (mutex), is that when one thread is in a critical

section of code, any other thread that needs to access the shared resources being used must wait

for the current thread to finish and unlock the mutex before it can proceed. Normally this means a

thread that is blocked by a mutex must perform a no-op spin until the resource becomes available,

wasting energy in the process. Modern schedulers in operating systems can be leveraged to sched-

ule in other threads, or other processes while the blocked thread sleeps to ensure the machine is

always performing useful work. These critical sections create syntonization issues due to not all

threads being able to end at the same time, instead, barriers are used in the parent thread to prevent

progression until all child threads have finished their work. The result of using barriers is that

the program’s runtime is now bounded by the time it takes to complete the lowest thread. These
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bottleneck threads, as stated by Amdhal’s Law[28], determine the speedup that can be achieved, in

addition to being the largest contributor to wasted energy as the other threads spin at the barrier.

1.1 Predicting Thread Criticality

Load imbalances due to synchronization constructs can result in both loss of performance and

energy waste. The threads that cause this imbalance are termed critical threads. The goal of

predicting thread criticality is an attempt to identify the critical thread in a workflow and opening

up various optimization techniques for both power and performance. This critical thread can be

run on a core of a higher frequency[2], migrated to a high-performance core[33] in the case of a

heterogeneous architecture and providing it a prioritized resource allocation in a shared resource

environment[10]. The focus for this research is on implementation of a per-core DVFS scheme

to determine voltage/frequency operating points, as is a while held technique[16][32]. Identified

critical threads can be run a higher frequencies for performance increases, and non-critical threads

can be run at a lower frequency to conserve energy. Depending on program behavior, multiple

different threads can become critical over the course of a program‚s lifetime. Given this dynamic

nature of identifying a critical thread, a dynamic algorithm is required to correctly identify the

critical thread in a given time frame. DuBois, et. al., in [9], proposed a dynamic algorithms that

looks at the time spent on useful work by a thread and the number of threads that may be blocked

from completing work due to that thread to identify if that thread is critical or not. This method,

while successful in identifying a critical thread, does not account for how a thread‚s performance

is impacted by various voltage/frequency points.

1.2 Predicting Thread Scalability

Not all threads behave similarly to changes in frequency. A threads performance in relation to

the frequency of the core it is running on is referred to as that threads scalability. As identified by

David, et. al.[20], and other works[27],[6], the execution of a thread can be divided into scalable

(Tscalable) and non-scalable (Tnon_scalable) phases. The over all scalability of the thread can be defined
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as follows:

Scalability(S) =
T scalable

T scalable + T non_scalable
0 < S < 1 (1.1)

Scalable phases are denoted by the workload being CPU-bound, resulting in the change in

performance that is close to linear to the change in core frequency, while non-scalable phases

are denoted by a workload that is memory intensive behavior due to off-core accesses resulting

in changes in performance being independent of frequency changes. Due to this variability in

scalability over time, an accurate dynamic algorithm for predicting the scalability of a thread is

needed to ensure we aren’t wasting energy by increasing the frequency of a thread that cannot take

advantage of it.

Girdhar, et. al.[13], investigated this problem and was able to empirically derive a formula

tracking L1 Data and L2 cache misses as inputs for the following formula:

S = α1 + α2 ∗ L1DMPKI + α3 ∗ L2MPKI (1.2)

1.3 Motivation for Real Machine Testing

Up to this point, the focus of tests using Criticality-based DVFS has focused on simulations

and power estimation tools. With simulators, it is possible to tweak parameters that are not possi-

ble with a real machine. Few results for DVFS schemes, outside of posts and discussion on Linux

message boards, have been published using a real machine. Simulators, unlike real machines, exe-

cute code in a vacuum, letting the code run without any preemption from the scheduler, interrupts,

or based on the needs of other processes. While this may give ideal results to test the theory, they

may not represent what would happen in a real-world environment of modern computer systems.

Since version 2.5.7, the Linux kernel introduced "Fast User-space Mutex",futexes, which will sleep

a processes if it is unable to acquire the lock. This allows for the scheduler to schedule in a new

process that is needing to be executed while the locking processes waits a wakeup signal to reat-

tempt to acquire the lock[12]. If no process is available, the core will enter a sleep state to reduce

power consumption. This differs from a simulator where a blocked thread can be seen as only
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spinning, thus wasting energy while being blocked. This means what energy is ŞwastedŤ in a

simulator is actually not wasted in a real machine. Because of this important difference, the actual

energy savings of a DVFS method may not appear in the real world.

In this work we will investigate the feasibility of implementation of Girdhar’s PCSLB algorithm

as a DVFS module in the Linux operating system to look at how a real system would behave given

the overhead of the calculations need to perform the algorithms laid out by prior works. As such

the contributions of this work are as follows:

• We develop a module to implement Girdhar’s PCSLB algorithm for testing on a real ma-

chine.

• We investigate causes of any impact to performance

• We investigate methods for mitigating the impact of performance loss

• We present the performance, power and energy results and compare them with common

Linux frequency governors used today.

The rest of the thesis are outlined as follows. Chapter 2 will give a literature survey of prior

work on DVFS, thread criticality prediction, and scalability prediction. Chapter 3 will discuss the

methods of implementation of the PCSLB algorithm using a custom Linux kernel module. Chapter

4 will go over improvements to the PCSLB algorithm. In Chapter 5, we present the experimental

setup and results showing the performance and energy analysis of the CritScale module in com-

parison to prior work [13] and common Linux frequency governors in use today. At the end, in

Chapter 6, will present the Conclusion and future work possible.
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2. PRIOR WORK

Optimizing power and performance has been an important research topic for many years. Re-

searchers have attempted to use a variety of Dynamic Voltage Frequency Scaling methods to gain

performance while aiming to save power on chip. Thread criticality and scalability are two such

approaches for parallel workloads. This section will review prior works on DVFS followed by

research into methods of thread criticality prediction and scalability analysis.

2.1 Dynamic Voltage and Frequency Scaling on Chip Multi-Processors

During the mid-90’s, the height of the "Megahertz War", processor manufacturers pursued in-

creasing processor clock frequency in an attempt to gain performance improvements over rivals.

This increase in clock frequencies, along with increased transistor density unfortunately lead to

ever increasing power requirements as well. In an attempt to reign-in the ever increasing power en-

velopes of microprocessors, research began shifting away from single clocked global synchronous

systems and toward globally asynchronous, locally synchronous systems (GALS)[19]. On system

that uses GALS style clocking is Multiple Clock Domain (MCD) processors[31]. With this design,

each functional block of a microprocessor is clocked independently of each other. This technique

not only helped solve some of the clock routing issues that arose during the "Megahertz War",

but also introduced new option of having each block being able to operate at independent voltage

and frequency points. This design change allowed for the exploration of new dynamic voltage

and frequency scaling techniques with the goal of improving performance and save energy during

operation. As a result, researchers have been investigating a new problem of when and how to

change voltage and frequency operating points.

The focus was initially on offline techniques, such as those discussed by Semeraro et al. in [31].

Utilizing a trace of a program, they developed a directed acyclic graph (DAG) to identify critical

path and the paths that had "slack". They used this information to set operating frequency and volt-

age points to maximize performance and save energy. Magklis et al. [26] use profiling at compile
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time to inject reconfiguration instructions into the program to change the voltage/frequency levels

while the program at runtime. This process necessitated multiple "training runs" of the program

through the profiler in order to identify the optimal voltage/frequency settings during each phase.

While these offline techniques saved on hardware complexity, they ultimately were application

specific. The programs would need to be profiled on various hardware configurations, and be

compiled to include and hardware specific instructions for each every target platform. In contrast,

an online method would allow for the program to be optimized, dynamically, even if it had never

been run on that hardware configuration before. This was accomplished by looking at runtime

characteristics in order to make determinations as to any voltage or frequency changes for the

given hardware. In [30], the authors proposed using the processors queue utilization to develop an

online algorithm to determine the optimal frequency. Their "Attack/Decay" algorithm leveraged

the relation between the queue depth with the optimal frequency for that domain. The main idea of

this paper was to look at the issue queues, and based on that information determine an appropriate

frequency for each domain. If the queue was relatively unchanged, that indicated that the sender

and receiver were operating at optimal frequencies and no change was needed. If the queue was

increasing, the sender was performing operating faster than the receiver, and vice versa. In [36],

the authors asserted that this methodology was heuristic-based, it was based on selected rules and

specified threshold values, and as such, would be difficult to scale and improve upon according to

the dynamic behavior that exists at runtime. Because of this, they proposed a analytical approach

for modeling queues and domains. This model utilizes formulated linear equations relating to the

demand and frequency of a given domain and use a Proportion-Integral-Derivative (PID) controller

to solve them.

Grochowski et al. [14] decided to go a different direction, instead looking at the scalar and

parallel phases of a program and design a microprocessor that can adapt. They determined that

we can vary the energy expended on the execution of a process in relation to the parallelism that

section exhibits. They formalized this relations as:
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P = EPI ∗ IPS (2.1)

In this equation, EPI is the average energy spent on an instruction, IPS is average number of

executed instructions per second and P is the fixed power budget. With a scalar section of code, the

IPS will be low, indicating we can increase the EPI to improve performance without going over the

power budget. In a similar vein, parallel code segments have a high IPS value, and we can spend

less EPI to remain within power limits. This idea has lead to four different ideas to exploit this:

• Voltage frequency scaling

• Asymmetric cores

• Variable-size core

• Speculation control

This paper will look at an implementation the PCSLB algorithm[13] that uses DVFS to form

pseudo-asymmetric cores in an attempt to show if, in the complexities of a real machine running a

full operating system, the same level of performance and energy savings can be done. The method

utilizes the idea of criticality to make artificial asymmetric cores using DVFS. This means that

when in phases of lower parallelism, a large core is formed with high voltage and frequency, while

in phases of low parallelism, a small core is formed by lowering voltage and frequency.

Isci et al. [18] introduced the concept of global power manager on chip. This concept looks at

the power and performance of each core using feedback-control techniques. Through the evalua-

tion of several different global dynamic power management policies, they show that these policies

"perform better than static policies even if static scheduling is given oracular knowledge." Their

policies included per-core DVFS to assign each core a independent power mode. Their best per-

forming policy, MaxBIPS, works to find the optimal combination of DVFS for all core on the chip

using an exhaustive search that predicts the power and Billion Instructions Per Second (BIPS) val-

ues for all possible combinations of DVFS levels. This method helps to identify the best possible
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application performance while remaining within the power budget. Due to the exponential nature

of an exhaustive search, this method would work for a small number of cores, but as core counts

begin increasing, this method is unscalable as projected in [25]. Instead, they propose a three-

step scalable power control designed to handle both multithreaded and single threaded workloads

simultaneously:

• First, the "aggregated frequency quota", a summation of the DVFS levels of all the cores

normalized to the maximum DVFS level of a single core, is adjusted to maintain the chip

within the power budget, resulting in a "chip level frequency quota".

• Next, all the cores running same applications are grouped together and the "chip level fre-

quency quota" is divided among these groups.

• Lastly, the "group level frequency quota" is divided amongst the cores within a group ac-

cording to the measured thread criticality.

2.2 Thread Criticality Prediction

Thread criticality has been a open research topic since at least the early 2000’s. With multi-

threaded programing, load workload imbalances between threads has been leads to energy ineffi-

ciencies during runtime. During execution, threads can share information between them, leading

the need for synchronization methods to ensure only one thread can modify or utilize resources

at a time. These synchronization methods, such as mutual exclusion (mutex) structures and bar-

riers, lead to some threads becoming inactive, or not performing useful work, until it can "lock"

access to these resources. These periods of inactivity waste energy as well as cause the threads

to effectively run at different speeds, even if core frequencies are identical. The thread that runs

the slowest, and thus provides an upper bounds to the programs performance as a whole, is termed

the critical thread. Some of the first work in the area of identifying critical threads was done by

Li, et. al., [23] which looked at the time taken by threads to reach "thrifty barriers" in a parallel

program to calculate core frequencies. In their work, the last thread to reach this barrier was identi-

fied as the critical thread. Since the program could not continue execution until this critical thread
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reach the barrier, that meant they could safely reduce the frequency or even shutdown the cores for

non-critical threads to conserve energy. In [23], these non-critical threads’ cores were clock-gated

and put into lower sleep modes, while in [24] these cores’ frequencies were lowered using DVFS.

While these techniques did show energy savings, the prediction of the critical thread was done

using a "last-value predictor" which used the current barrier stall time to predict future times. This

means that all threads have to run at the normal frequency until the barrier is reached. In [5], the

authors attempt to resolve this by proposing to dynamically check running threads for imbalances

at checkpoints they termed "meeting points." This was accomplished by testing with parallel loops

with "meeting points" inserted at the end of the loops. These points allowed for the counting of

loop iterations completions that are then used as predictor values for criticality prior to any threads

reaching the barrier. With this technique, significant energy savings were achieved, but was lim-

ited to use on parallel loops. This lead to the generalize concept of thread criticality prediction by

Bhattacharjee, et. al.,[3]. Here they proposed the use of different architectural parameters while

can impact a thread’s criticality. They found that cache misses was the most effective metric for

predicting thread criticality due to the more cache misses a thread has, the slower it has to execute

while waiting for loads from memory. They designed "criticality counters" to keep track of L1 and

L2 cache misses for each thread, and, over each interval, these counters were used to determine

the critical thread. While they did provide a good insight as to what parameters to consider, these

cache based metrics could not be considered convincing since cache misses are mostly core fre-

quency invariant. In a followup work, DuBois, et. al.,[9] looked at a different approach looking at

a threads inactive periods due to blocking. In their work, they used an offline method of tracking

periods of thread inactivity by looking at which threads are blocked and which are active over a

given time interval and dividing that time interval amongst all active threads. This accumulated

value was used as the metric for determining thread criticality. After running the program to collect

this metric, the cores were then tuned prior to a second execution based on their criticality metric

and the program was run again. While they did achieve a good offline estimation for thread-level

load imbalance, this technique does not take into account the delays due to off-core accesses that
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result in a thread not being scalable and thus less sensitive to frequency changes.

2.3 Thread Scalability Prediction

Determining how a thread’s performance will scale with change to a scaling voltage/frequency

level is critical in order to energy efficient DVFS decisions. Increasing the frequency of thread, and

the corresponding voltage level, to a thread that cannot take advantage of that frequency increase

results in wasted energy, and the opposite can lead to a severe reduction in performance which can

lead to additional energy inefficiencies due to the impacted load balance between threads. Over

the years, there have been many works covering predicting the performance impact of frequency

scaling. Benjamin and David [22] did an extensive study looking at various micro-architectural

parameters which can impact and predict the performance for different applications. Through the

use of regression models, they validated the strengths of different predictors. In contrast to this

offline analysis, Kihwan Choi, et. al., [6] proposed a dynamic regression algorithm to model the

scalability of a chip by looking at the ratio of off-chip access time to on-chip computation time.

This method gave them a metric by which a thread can be deemed scalable or not. Another metric

than can be utilized to determine the scalability of a thread is to look at the commit bandwidth[11].

These stalls due to being unable to commit instructions can be one cause of a thread not being

scalable. These stalls can be related to outstanding memory instruction which are non-scalable due

the off-core accesses which are frequency invariant. While they may be a cause, they cannot accu-

rately predict as they may be independent instructions committing under an outstanding memory

access. In [11] [21] [29], the off-chip latency of the first load miss in a series of load instructions

are used to provide an abstract view of non-scalability periods. These latencies are accumulated

to predict the non-scaling period of time. For Rustam, et. al., [27], the leading load assume a

constant memory access time which can be inaccurate for real memories. Instead, the proposed

the CRIT algorithm, which accumulates the variable latencies of load misses along the critical

path of dependent memory instructions. All these techniques, though, have looked only at single

threaded applications. In the very recent work [1], Akram, et. al., extended the CIRT algorithm,

termed DEP+BURST, for use with multi-thread workloads taking inter-thread synchronization into
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account to determine system performance at different frequencies.

For PCSLB[13], Girdhar, developed a regression based scalability model similar to [22] for

use with multi-threaded workloads. This work models scalability as a linear function of various

architectural parameters and the the corresponding coefficients to represent their weights. Unlike

in [22], Girdhar found that L1 Data and L2 cache misses were the most important parameters for

predicting scalability of a thread. This work uses this linear model to determine a given thread’s

scalability value.
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3. DESIGN AND IMPLEMENTATION

The PCSLB Algorithm proposed in [13] is given in Algorithm 1. The algorithm depends on

calculating the lack of each thread relative to the critical thread, given by (3.1), then using that

information to calculate a target time for a thread using (3.2). Once a targeted execution time is

determined a frequency is determined that should result in that execution time using (3.3).

ExpectedGaini = ExpectedGaincritical − Slacki (3.1)

ExpectedGain% =
Tcurrent − Ttarget

Tcurrent

∗ 100 (3.2)

Ttarget = Tcurrent(S ∗ (
Fcurrent

Ftarget

− 1) + 1) (3.3)

Algorithm 1 Proactive load balancing
Require: End of Control Period ▷ Run the algorithm after every control period

1: for i:1 to N do
2: Slacki ← Ccritical−Ci

Ccritical
∗ 100 ▷ Calculate Slack for each thread

3: Scalabilityicurrent ← Calculate scalability for each thread using equation (1.2)
4: Scalabilityi ←

Scalabilityicurrent+Scalabilityi−1

2
▷ exponential moving average

5: end for
6: TFmax(critical)← Predicted execution time for critical thread at Fmax using equation (3.3)
7: ExpectedGaincritical ← Predicted ExpectedGain for critical thread when run at Fmax using

equation (3.2)
8: for i:1 to N do
9: ExpectedGaini ← ExpectedGaincritical − Slacki ▷ Calculate required ExpectedGain

for each thread
10: Ttargeti ← Calculate Target execution time based on ExpectedGaini using equation (3.2)
11: Ftargeti ← Calculate Target frequency using Ttargeti from equation (3.3)
12: end for
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This algorithm forms the basis of this work. It has been implemented in three stages, first with

a custom kernel module, second by modifying the futex_wait routine, and finally my modifying

the intel_pstate driver.

3.1 Creation of CritScale Module

The main core the work is the implementation of the PCSLB[13]. To accomplish this task a

custom kernel module was created called CritScale. This module was designed as a built-in module

due to it’s interaction with other modules within the Linux kernel. The main thread is designed

following the PCSLB algorithm. After creation, the thread will sleep for a specified interval, by

default 10 ms, then wake and check if there is a program registered with the module to be tracking

for DVFS calculations. If no processes is registered, or the previously registered process has exited,

the thread will then skip to the end of the main loop and return to sleep. If a process is registered

and active, the thread will then proceed to with the following steps:

• First, update the criticality for all threads.

• Second, update scalability values for all threads.

• Third, determine the critical thread by comparing criticality values for all threads.

• Fourth, assign the requested frequency for the core running critical thread to Fmax, and

calculate the requested frequencies for all other threads.

• Fifth, if multiple threads are running on the same core, set the requested frequency to the

maximum value.

• Sixth, bound all frequencies to a range between Fmax, and Fmin for the cores.

• Finally, write the the IA32_PERF_CTL register of the CPU the value stored as the requested

frequency.

For tracking Criticality of a thread, the idea of epochs are used as standard update periods.

These epochs begin and end whenever a thread in the thread group unable to acquire a lock and
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is blocked, or acquires a lock and is unblocked. The time of these epoch is then divided equally

amongst all thread active during the epoch and added to the criticality accumulator in the threads’

task_struct structure. After all the threads have had their criticality updated, the thread that is

transitioning is then flagged as active or inactive accordingly for the next epoch. This method is

derived from the proposed online criticality counters proposed by [9]. This method uses Equation

3.4 for updating criticality at the end of each epoch, where Ti is the length of the interval in time,

and N is the number of active threads during the epoch.

Criticalityicurrent =


Ti

N
, if Activei

0 ,Otherwise
(3.4)

As identified by [13], tracking of L1D and L2 cache misses are important for determining the

scalability of a thread. To implement this, the perf_events subsystem[34] was utilized. This system

call API allows for interaction with the core’s dedicated performance event counters. Whenever

a thread in the tracked thread group is created, the scalability_attach routine creates performance

counters for the retired instructions, L1D cache misses, and L2 cache misses. These events are then

attached to the thread and are set to update regardless of which core the process is running on so as

to make sure the performance counters follow the thread through any scheduler migrations. When

the new value for the scalability is needed, these performance counters are read and the difference

between the current values and the previous values are calculated. These new values represent are

then using the algorithm [INSERT ALGORITHM]. This scalability value represents the scalability

of the last evaluation interval. This new scalability and the old scalability algorithm is then used to

calculate the running average of scalability.

The requested frequencies for each thread is calculated using (3.2) and (3.3) from [13]. Over the

course of implementation, in order to reduce the number of calculations required to determine the

requested frequency, the formulas (3.2) and (3.3) were combined and reduced to a single equation

(3.5). This equation also shows that the requested frequency is not dependent on the time interval

for the evaluation.

14



Ftarget = Fcurrent ∗
S

S − ExpectedGain
(3.5)

With this simplified equation, the updated full algorithm for the main thread is given by 2. This

time to execute this algorithm will scale linearly with the number of thread in the thread group.

This is due to the O(n) complexity of each loop.

3.2 Modification of Futex

In order to track if a thread is blocked, modification of the futex_wait routine is needed. All

the benchmarks for evaluation utilizes the pthread library. In the library, the pthread_mutex_lock

and pthread_mutex_unlock call the futex_wait and futex_wake system-calls, respectively. Since

the futex_wait routine will determine if a thread is blocked or not, it was modified. If the thread

is blocked, it will enqueue the thread on the wait_queue which will indicate to the scheduler to

pre-empt it and unschedule it from the core. After another process calls futex_wake as part of

unlocking, the scheduler will then wake the thread and re-schedule in onto a core. In order to

accurately track the blocking epochs for criticality calculations, the sys_deactivate routine is called

upon entering futex_wait to update the criticality of the thread group. After the thread is woken

up by an unlock, the thread will resume execution inside futex_wait where it will be verified that

the wake signal was valid. If it is a valid wake signal, the sys_activate routine is called to update

criticality of the thread group before returning to normal execution.

3.3 Modification of Intel P-State Driver

In order to take advantage of the PCPS feature of Haswell-EP, we need to utilize the intel_pstate

driver. This driver will configure the microprocessor’s power management system to coordinate

with the driver to set frequencies. The only modification within the driver was removing the code

to set frequencies. This leaves our module as the only module in the kernel that can set frequencies

to the core, ensuring what frequencies we set are the frequencies the cores receive.
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Algorithm 2 Main thread using proactive load balancing
Require: End of Control Period and Registered Thread Group ▷ Run the algorithm after every

control period
1: for i:1 to M do
2: Rq_Freqi ← Fmin ▷ Set initial Requested Frequency for each core
3: end for
4: for i:1 to N do
5: if iActive then ▷ Only update for active threads
6: Criticalityi ← Criticalityilastperiod +

TimeDiff
NumActive

▷ Updated criticality based on 3.4
7: else
8: Criticalityi ← Criticalityilastperiod
9: end if

10: Criticalityilastperiod ← 0 ▷ Reset accumated criticality for next sampling interval
11: end for
12: for i:1 to N do
13: if Criticalityi > CriticalityCritical_thread then
14: Critical_Thread← Criticalityi
15: end if
16: end for
17: for i:1 to N do
18: Slacki ← Ccritical−Ci

Ccritical
∗ 1000 ▷ Calculate Slack for each thread

19: Scalabilityicurrent ← Calculate scalability for each thread using equation (1.2)
20: Scalabilityi ←

Scalabilityicurrent+Scalabilityi
2

▷ Exponential moving average
21: end for
22: TFmax(critical)← Predicted execution time for critical thread at Fmax using equation (3.3)
23: ExpectedGaincritical ← Predicted ExpectedGain for critical thread when run at Fmax using

equation (3.2)
24: for i:1 to N do
25: ExpectedGaini ← ExpectedGaincritical − Slacki ▷ Calculate required ExpectedGain

for each thread
26: Ftargeti ← Calculate Target frequency using ExpectedGaini and Scalabilityi from equa-

tion (3.5)
27: if Ftargeti > Rq_Freqicpu then
28: Rq_Freqicpu ← Ftargeti ▷ Ensures that the maximum requested frequency is set
29: end if
30: end for
31: for i:1 to M do
32: CPUmFreq

← Rq_Freqm ▷ Set the CPU Frequency to the Requested Frequency
33: FCurrentm ← Rq_Frqm ▷ Update Current Frequency data structure
34: end for

16



4. IMPROVEMENTS TO THE PCSLB ALGORITHM

4.1 Frequency Scaling

The PCSLB algorithm provides many insights into utilizing thread criticality, scalability, and

the concept of slack for a DVFS scheme. Through testing though, the issues became apparent in

it’s implementation.

First, due to the equations used to determine at target frequency for non-critical threads, there

were frequent cases where the thread was set to a target frequency of the minimum frequency

allowed by the processor. When plotting (3.5) as a function, Figure 4.1, of the non-critical threads

expected gain, with fixed current frequency and scalability, we see a vertical asymptote around

where expected gain equals scalability. As we approach this asymptote from the left, we scale

towards positive infinity, while approaching from the right scales towards negative infinity. This

asymptote indicates that as expected gain approaches scalability, the core frequency required goes

outside the available frequencies for that core. What lies beyond this barrier is information that

doesn’t carry any meaning, and due to the extremely negative values that are output by the equation,

the processor is set to it’s minimum frequency.

This is exhibited in blackscholes most clearly. As shown in Figure 4.2, the critical thread is

promoted to running at maximum frequency while all other threads run at minimum frequency

despite the fact that from sampling to sampling, the slack remains low. This initially occurs due to

a large expected gain for the critical thread (Steps 19 and 20 in Algorithm 2), in combination with

the low slack of the non critical threads. When this occurs, the threads have all started to processes

data on new cores, resulting in high miss rates and lowering their scalability values. As a result, the

critical thread is promoted to the maximum frequency, but all non-critical threads enter the highly

negative region of the graph because expected gain is greater than the current scalability.

The included heatmaps can be read as each column representing a core, and rows representing

a sampling interval with time progressing from top to bottom. The coloring ranges from green for
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Figure 4.1: Target Frequency vs Expected Gain for Fcurrent = 1200MHz and Scalability = 0.8

Figure 4.2: Core Frequencies running blackscholes using (3.5) (left) and (4.3) (right)
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low frequency cores to red for high frequency cores.

Additionally, the system is not given a chance to recover from this spurious result. In this case,

since the critical thread remains constant throughout the multi-threaded portion of the application,

the expected gain from steps 19 and 20 in Algorithm 2 is zero. Since there is very little blocking

between threads in blackscholes, the slack remains constantly low, if not zero. Because of this, for

a non-critical thread, the expected gain is zero, resulting in (3.5) outputting the target frequency is

the current frequency (the incorrect minimum frequency).

Another issue noted is the equations used are over-eager to continuously decrease the frequency

of a core if we are continuously correctly selecting the critical thread each interval. In these cases,

the resulting expected gain for the critical thread is zero, and for non-critical threads is −slack.

Because of this, we continue to decrease the frequency of the cores for non-critical threads, even-

tually resulting in them all running at or close to Fmin for extended periods of time. This can be

shown in the heat-map of facesim and resulting in loss of performance, Figure 4.3.

4.2 Modification of PCSLB

With the issues noted, we can look at ways to resolve them. For the issue with the spurious

region where expected gain is greater than scalability, a piecewise element was added to the equa-

tion. The purpose of this was to ensure that if we wandered into this region, the results would still

carry meaning. Since we’re cut off where exp_gain ≥ scalability since it results in a frequency

that is not achievable, we will select a frequency that is, Fmax.

In order to counter act the continuous push towards minimum frequencies, (3.5) will need to be

modified. Since the slack is a measure of load imbalance due to criticality, scaled to the criticality

of the critical thread, the frequencies selected should reflect that performance relative to the critical

thread. With this in mind that scaling of non-critical threads frequencies should be based on the

critical thread’s frequency, Fmax. This is derived by replacing Tcurrent with TFmax of the critical

thread in (3.2) and (3.3), and Fcurrent with Fmax in (3.3).
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Figure 4.3: Core Frequencies running facesim using Equation 3.5 (left) and Equation 4.3 (right)

ExpectedGain% =
TFmax − Ttarget

TFmax

∗ 100 (4.1)

Ttarget = TFmax(S ∗ (
Fmax

Ftarget

− 1) + 1) (4.2)

Thus, with this two modifications we arrive at the equations (4.1) and (4.2) which then simpli-

fies to (4.3) which replaces (3.5) in Algorithm 2.

Ftarget =


Fmax , if ExpGain ≥ Scalability

Fmax ∗ Scalability
Scalability−ExpGain

, otherwise
(4.3)

With this equation incorporated, we see improvements in both cases described above, as shown

by Figures 4.2 and 4.3.

4.3 Criticality History

Both [9], in their dynamic version, and [13] calculate criticality solely over a given sampling

interval and clear the counters for the next interval. This form of (almost) memoryless calculation

bases the decision on frequencies for the next interval solely based on information gathered in the

previous interval. As can be seen in Fig. 4.4, this value can he highly variable, and as such lead

to drastic shift in frequencies the cores are set to. As such, memoryless calculations can result in

inefficiencies and possibly introduce additional slack as a result of some cores being scaled back
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Figure 4.4: Value of Criticality during each Sampling Interval

too far for the next decision interval.

One way of resolving the high variability of criticality is to include some degree of history into

the criticality metric. The use of an exponential moving average would allow for "smoothing" of

short lived spikes and also allowing for sustained periods of high criticality to be carried through.

To incorporate the history, whenever the main thread updates criticality, rather than reading the

accumulated value and then clearing the counters, instead the accumulated value for that decision

interval is averaged using Equation 4.4. In this way, the current criticality is averaged with the his-

torical criticality. The weights for each value can be tuned in order to identify the best performance

for the application that is being tracked.

Criticalityihistorical =
W1 ∗ Criticalityihistorical +W2 ∗ Criticalityicurrent

W1 +W2

(4.4)
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5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

The machine we are using for all tests is a Dell workstation with the configuration given in

Table 5.1.

An Intel Xeon E5-2687W v4 was selected due to the energy features of the Haswell/Broadwell-

EP architecture, mainly the ability to set different P-States for each core independent of the other

cores’ settings. This ensured each core was operating at the specified voltage and frequency point

as requested by the CritScale module. Additionally, the 12 core setup allows us to execute up to

12 threads on separate cores, helping to reduce the thread contention for execution time on a single

core.

The kernel is configured to use the modified intel_pstate driver without hardware coordination

to ensure the only component making decisions on the target P-State for each core is the CritScale

module.

5.1.1 Energy Consumption Collection

Due to the complexities of measuring the power consumption for a CPU[15], there is no defini-

tive method for collection of CPU power metrics. The two commonly accepted way are through the

Intel Running Average Power Limit (RAPL) system built into modern Xeon processors, or mea-

ISA x86-64
# of Cores 12
Core Type 4-wide, out-of-order

L1D Cache Size 384KiB
L2 Cache Size 3 MiB

Frequency Range 1.2 - 3.0 GHz
Voltage Points 0.78 - 1.82 V
# of P-States 19

Table 5.1: Specifications for Intel Xeon E5-2687W v4
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Figure 5.1: Comparison of RAPL values vs. Measured values [8]

suring power consumption at points prior to the CPU’s voltage regulators (VRs)[17]. This method

though, runs the risk of over measuring CPU power due to inefficiencies in the VRs. The RAPL

system has been shown to be consistent in its readings, but with a small fixed offset from power

measured at the VRs[8], most likely due to the difference in energy from the VRs inefficiency. The

effects of this offset are shown in Figure 5.1. For our workstation setup, there are a total of 24

+12V lines for CPU power to both sockets. Due to the complexities of configuring 12 hall-effect

sensors to be spliced into the +12V lines for the CPU, difficulties in identifying which lines power

which sockets, and possibility of over measuring CPU power prior to the VRs, the simplicity of

the RAPL system allowed for quick integration of power measurements.

5.1.2 Benchmarks

The PARSEC benchmark suite [4] was selected to the large number of types of benchmarks

available. These benchmarks have a high variability in scalability and inter-thread communication

allowing them to test the module under a large selection of workload types. Additionally, the suite

includes the SPLASH-2 benchmarks [35]. The benchmarks generally fall into two categories for

how they utilize threads. Some are data parallel where the threads operate on independent chunks

of data with little communication between threads; providing the best-case scenario for the module.

The others are "data pipeline" where each thread will perform different actions on the same chunk

of data, similar to a pipelined processor, resulting in a high degree of inter-thread communications

and the worst-case scenario for our module. Table 5.2 outlines the benchmarks used and their type.

In order to indicate to the module which thread group to track, a syscall (sys_track_me) was

implemented in the CritScale module to get a pointer of the current task_struct of the calling
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Benchmark Parallel Model Parallel Granularity Thread Communication
blackscholes Parallel Coarse LOW

bodytrack Parallel Medium HIGH
canneal Unstructured Fine HIGH
facesim Parallel Coarse MEDIUM

fluidanimate Parallel Fine MEDIUM
ocean_ncp Parallel LOW

lu_ncb Parallel HIGH

Table 5.2: PARSEC Benchmarks

process and set the track_task to point to it. This syscall was then inserted as the first function the

benchmarks will execute in their main function to ensure we begin tracking as early as possible.

5.2 Evaluation

All results presented here are the geometric means of 10 runs of the given benchmark for the

labeled method. This was done to ensure variation due to outside influences such as other processes

sharing the system was minimized.

5.2.1 Results: PCSLB vs PCSLB-Max

In this section we will examine the impact of the improvements in frequency calculations made

to the PCSLB algorithm (termed PCSLB-Max). Both algorithms use a accumulative counter for

criticality as we will look at the impact of using various levels of history in the next section.

As expected, the initial results from the PCSLB algorithm are far from expected values. In

[13], bodytrack was demonstrated to consume 2% less energy while only suffering from a 2%

performance loss. When integrated as a full DVFS scheme on a real machine, it did consume

11% less energy, but was taking 11% longer to execute. Similar metrics can be seen from all the

benchmarks, with facesim, fluidanimate, and blackscholes actually consuming more energy due to

the drastically increased execution time. As stated in Chapter 4, this is due to how the PCSLB

algorithm scales back core frequencies to the minimum quite frequently. As a result, nearly all

cores run at the minimum frequency of 1.2GHz while only the critical thread runs at anything
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Figure 5.2: Performance Comparison of PCSLB to PCSLB-Max

Figure 5.3: Energy Comparison of PCSLB to PCSLB-Max

higher as shown in Figures 4.3 and 4.2. The impact to blackscholes is particularly important

due to it’s embarrassingly parallel nature and near perfect thread balance due to no inter-thread

communication. Ideally, any DVFS method applied to blackscholes will not negatively impact it.

When applying the modifications to PCSLB’s equations for finding the target frequency for

non-critical threads outlined in Chapter 4, the performance of each benchmark improves, but still is

able to show energy savings. With fluidanimate, the performance is within 1% while still managing

to save almost 12% in energy consumption. Most benchmarks show between 2-5% performance

degradation and 1-2% energy savings though, showing more room for refinement.
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Graph label W1 W2

(0 - 100) 0 100
(25 - 75) 25 75
(33 - 66) 33 66
(50 - 50) 50 50
(66 - 33) 66 33
(75 - 25) 75 25

Table 5.3: Weights Chosen for Exponential Moving Average

5.2.2 Results: Effects of History Weights

Next we will look at the the effect of various weights on the effectiveness of the PCSLB-Max

algorithm. The weights chosen for analysis are given by Table 5.3. These weight will bias the

calculations in favor of either the historical values or the current value for criticality. Additionally,

the results from using a pure accumulation of criticality, as used by [9] in their offline metric, is

included as well.

As we can see from Fig. 5.4, there are some benchmarks where the effect of the weights does

impact performance of the benchmark, such as facesim and fluidanimate. In this case, the more

we weight to the historical value, the worse the performance impact. Again, blackscholes shows

up as a cornerstone benchmark showing very little variation due to various weights. Additionally,

bodytrack shows very little change in performance due to the change in weights. While there is

a variation, all values are within 1% of each other, meaning the variation is likely due to outside

causes such as other processes on the system. On average we see that generally, there is a best

weight for the benchmarks in the around the (25 - 75) point. From Fig. 5.5, for all cases though,

we still see an energy savings that are relatively stable, within 3% of each other. Since we aiming

to minimize performance impact while reducing energy consumption, we should also look at the

trade off as "Performance/Joule" in Fig. 5.6. In this metric, the more we are greater than one,

the more we are saving in energy than we are losing in performance. In this case, we can see

that for some benchmarks, such as lu_ncb and blackscholes, the energy savings scale linearly with
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Figure 5.4: Performance Comparison of Different History Weights for PCSLB-Max

Figure 5.5: Energy Consumption Comparison of Different History Weights for PCSLB-Max

performance loss, indicating this technique might not be optimal for these sorts of applications.

Canneal stands out though as the worst case since in nearly all variants, our performance loss is

greater than the energy saving. Most applications though are good targets for this technique due to

non-linear energy savings with respect to any performance loss.

Looking at the mean of all the results, we can take the 25/75 weighting to provide the optimal

results of the variants we have tested.

5.2.3 Results: PCSLB-Max vs CPUFeq Governors

Now that we have determined the best history weighting system for PCSLB-Max, we now

compare it’s results to two commonly used frequency governors using the CPUFreq interface,

SchedUtil and OnDemand. OnDemand, introduced in 2006, is the simplest of the governors since it

will dynamically adjust core frequencies based on CPU load. SchedUtil, in addition to being more
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Figure 5.6: Performance per Joule Comparison of Different History Weights for PCSLB-Max

Figure 5.7: Performance Comparison of PCSLB-Max to CPUFreq Governors

recent (introduced in 2016), is more complicated, adjusting core frequencies based on scheduler

load based on the Per-Entity Load Tracking (PELT) mechanism that is part the Linux scheduler.

Looking at performance in Fig. 5.7, we are able to outperform SchedUtil in nearly all cases,

except canneal, with results that nearly meet, or in some cases exceed, those of OnDemand. The

notable exception to this is canneal where we actually have noticeably worse performance than

either.

Looking at energy consumption in Fig. 5.8, we are able to achieve more energy saving in

nearly all cases than SchedUtil and OnDemand. Again though, we have exceptions this time with

fluidanimate and facesim where we beat OnDemand, but lose out to SchedUtil, but in these cases

we were still able to beat SchedUtil in performance by a large margin.
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Figure 5.8: Energy Consumption Comparison of PCSLB-Max to CPUFreq Governors

Figure 5.9: Performance per Joule Comparison of PCSLB-Max to CPUFreq Governors
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Again, since we aim to minimize performance impact while maximizing energy savings, we

turn towards the metric of "Performance per Joule" in Fig. 5.9 where we see we are able to

increase our energy savings with less of a performance impact, on average, than both SchedUtil

and OnDemand. Again though we have the notable exception of canneal, where SchedUtil was

the best performing scheme for this benchmark.
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6. CONCLUSION AND FUTURE WORK

Thread imbalance is inevitable due to the necessity of synchronization mechanics to coordi-

nate threads. But this imbalance can can also be a useful tool to leverage for energy savings. As

shown in this work, using the criticality metric as define by [9] can lead to real world energy sav-

ings and while minimizing performance impact. With this metric, and the slack metric defined

by [13] be can begin to Despite initial reservations about the effectiveness of the PCSLB algo-

rithm to achieve energy savings on a real machine, with the PCSLSB-Max algorithm we were able

to achieve energy saving greater than the two commonly used Linux CPUFreq governors, while

achieving similar performance to OnDemand, and actually beating SchedUtil. There will always

be a trade off between energy and performance, but with an understanding of this thread imbalance

of an application, we can can make smart decisions so as to use that imbalance to our advantage.

Looking towards the future, there are still more areas of opportunity for PCSLB-Max. As

shown in the results, no history model will fit all programs, and as such the algorithm could be

further refined though investigation of identifying ways to make the weights dynamic, allowing

for the algorithm to adjust the weights to achieve optimal performance of the algorithm. As the

criticality model stands now, all locks are treated the same, so it is difficult to distinguish whether,

for example, two different threads are blocked by the same lock or by different locks. As such ad-

ditional work can be done on the model of criticality to identify with thread is specifically blocking

any given thread, allowing for more fine grained understanding of how blocking is causing thread

imbalance.
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