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ABSTRACT 

 

 Bioenergy sorghum [Sorghum bicolor (L.) Moench.] is a promising biofuel crop 

to mitigate greenhouse gas (GHG) emissions. However, optimum field management 

practices for its production in different regions and the effects of its long-term 

production on overall soil-plant-atmosphere carbon (C) dynamics are unknown. Our 

objectives were to evaluate the long-term regional effects of its production on C 

dynamics and GHG emissions in Texas, and find the best field management practices for 

its production in order to maximize yield, sustain soil fertility, and minimize GHG 

emissions by using the process-based biogeochemical model, DAYCENT. 

The model was parameterized by using field measurements of soil temperature, 

soil water, aboveground biomass C, soil organic C (SOC), and GHG emissions including 

carbon dioxide (CO2) and nitrous oxide (N2O) from a 8-year field trial with treatments of 

residue return, nitrogen (N) fertilization, and tillage (6 combinations). The results 

showed an overall satisfactory fit when comparing simulated outputs to measured data, 

with an r2 range of 0.49-0.90. DAYCENT was able to simulate the pattern and 

magnitude of measurement variation caused by treatment and seasonal change. 

Life cycle analysis (LCA) of net GHG emissions in different treatments 

mentioned above (8 combinations) at our field trial site was conducted and accounted for 

main C sources and sinks. Of all C sinks, displaced fossil fuel during bioethanol 

conversion was the largest one, followed by SOC sequestration and methane (CH4) 

oxidation. Of all C sources, N2O emissions was the largest one, followed by energy 
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requirements for fertilizer N manufacture and field machinery operations. Most 

management combinations were able to sequester atmospheric CO2 except treatments 

with high N fertilization and residue return, mainly due to high N2O emissions and low 

displaced fossil fuel C emissions. 

County-level net GHG emissions using different irrigation availabilities and the 

management treatments mentioned above (135 combinations) were evaluated by 

integrating representative weather and soil conditions, field management schedules, and 

verified bioenergy sorghum growth parameters. As a result, 0% residue return, no-till, 

and 150 kg ha-1 of N fertilization under limited irrigation was the best consideration for 

optimum management of bioenergy sorghum production in most cases. 
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CHAPTER I  

INTRODUCTION 

The U.S. Energy Independence and Security Act (EISA) of 2007 mandated 

annual production of 36 billion liters of biofuels by the year 2022, approximately 20%-

25% of the U.S. transportation fuel requirement, with 16 billion liters from cellulosic 

ethanol, 15 billion liters from grain ethanol, and 5 billion liters from other advanced 

fuels. One important issue with large-scale biofuel production is whether high biomass 

yields can be achieved at limited cost to soil and environmental quality. Optimal balance 

between high biomass yields and agricultural and environmental sustainability must be 

attained for successful deployment of biofuel production. Biofuels represent a potential 

opportunity to provide renewable energy with relatively low greenhouse gas (GHG) 

emissions. However, land conversion to bioenergy crops may deplete soil fertility and 

increase soil GHG emissions, thereby offsetting the potential global warming benefits 

associated with biofuel production. The 2007 EISA enhanced research efforts related to 

cellulosic biofuel production, including various potential feedstocks. 

1.1 Literature Review 

Bioenergy sorghum [Sorghum bicolor (L.) Moench.] is different from grain, 

forage, and sweet sorghums, and along with switchgrass (Panicum virgatum L.), 

miscanthus (Miscanthus×giganteus), and sugarcane (Saccharum spp.), has been 

identified by the U.S. Department of Energy (DOE) as a promising bioenergy crop. This 

ranking is based on its high biomass yield potential, energy productivity, nitrogen (N) 

and water use efficiency, genetic tractability, and production adjustability. Dry biomass 
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yields of bioenergy sorghum ranging from 8.0-60.0 Mg ha-1 have been reported. 

Compared with grain sorghum, forage sorghum, and corn (Zea mays L.), higher biomass 

yields were observed in both bioenergy sorghum and sweet sorghum systems, which also 

performed better than switchgrass and miscanthus during first two years of production 

(Gill, et al., 2014, Propheter, et al., 2010, Rocateli, et al., 2012). The current genetic 

composition of bioenergy sorghum and associated agricultural production practices may 

only achieve 25% of its yield potential (Mullet, et al., 2014). A study of six ligno-

cellulosic crops [cardoon(Cynara cardunculus L.), giant reed (Arundo donax L.), 

switchgrass, miscanthus, bioenergy sorghum, and poplar (Populus spp. L.)] for biofuel 

production purposes showed that bioenergy sorghum, next to giant reed, ranked second 

for net energy yield (319 GJ ha-1) and following giant reed and miscanthus, ranked third 

for energy efficiency (16.4 GJ GJ-1)  (Fazio and Barbanti, 2014). Bioenergy sorghum for 

cellulosic ethanol production was able to offset 63%-78% of GHG emissions (Olson, et 

al., 2012). Compared with the other sorghum types and corn, bioenergy sorghum had 

higher N use efficiency, averaging 111-370 g DM g-1 N, comparable with sugarcane and 

miscanthus, mainly due to its long growth duration, high stem to leaf biomass ratio, and 

efficient N remobilization (Olson, et al., 2013). The epicuticular wax structure, osmotic 

adjustment, antioxidant capacity, and C4 photosynthetic pathway help bioenergy 

sorghum become adapted to hot dry environments (Sanchez, et al., 2002). Unlike other 

C4 crops, however, bioenergy sorghum has smaller genomes, which is conducive for 

genetic tracking and development, making it a genetic model for designing C4 grass 

bioenergy crops (Mullet, et al., 2014). Bioenergy sorghum production can also be 
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adjusted annually, reducing the risks associated with perennial crops that require longer-

term allocation of land to a crop that may take several years to reach optimal yield 

(Mullet, et al., 2014, Rocateli, et al., 2012). 

Different from traditional crops where only grain is removed, most aboveground 

biomass is harvested with biofuel crops. Little information is available as to whether all 

bioenergy sorghum biomass can be harvested for biofuel production without detrimental 

impacts on crop production, soil quality, and the environment. Crop residues serve as 

important sources of soil organic carbon (SOC) and various nutrients, protect topsoil 

from erosion, and modify soil water and temperature, thus offering potentially higher 

crop production (Wilhelm, et al., 1986). Research showed that excessive biomass 

removal in forage and grain sorghum production systems decreased subsequent biomass 

yield (Powell and Hons, 1992). However, excessive return of crop residue can also cause 

wetter and colder soils, poor seed placement, lowered plant populations, and N 

immobilization (Karlen, et al., 2014). Consequently, contradicting results have been 

observed on crop responses to residue return due to site-specific characteristics and 

differences in agricultural operations (Karlen, et al., 2014, Malhi and Lemke, 2007, 

Wilhelm, et al., 1986). Additionally, agricultural residues favor SOC through increased 

soil aggregation, which further improves soil structure, increases soil water holding 

capacity, and improves soil aeration as well (Wilhelm, et al., 2004). Higher total and 

active organic carbon (C) pools as well as improved soil aggregation were found at 

different residue return rates in various cropping systems (Malhi and Lemke, 2007, 

Osborne, et al., 2014, Saffigna, et al., 1989). In contrast, SOC and nutrients were 
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significantly decreased with all stover removed in grain and forage sorghum production 

systems (Powell and Hons, 1991). However, residue return will lessen the amount of 

biomass available for possible biofuel production and may potentially increase soil 

microbial activity and GHG emissions, thereby offsetting  the benefits associated with 

biofuel production (Saffigna, et al., 1989). Generally, GHG emissions of carbon dioxide 

(CO2) and nitrous oxide (N2O) have been increased with residue returned (Huang, et al., 

2004, Jin, et al., 2014, Saffigna, et al., 1989), with the magnitudes modified by residue 

C:N ratios, N fertilization, and tillage (Baggs, et al., 2000, Baggs, et al., 2003, Huang, et 

al., 2004), while exceptions existed where parallel or lower N2O emissions were 

observed with residue incorporated (Baker, et al., 2014, Hao, et al., 2001). Past studies 

were mainly focused on corn stover and cereal residues for biofuel production and their 

environmental impacts, and minimum return rates for corn stover were estimated to 

establish sustainable harvest criteria (Graham, et al., 2007, Johnson, et al., 2014). 

However, information is generally lacking on the impacts of bioenergy sorghum residue 

return on subsequent biomass yield, SOC, and GHG emissions. A sustainable harvest 

rate needs to be estimated for sustaining both soil and environmental quality and biofuel 

production. 

Additionally, other field management practices may also influence the 

production of bioenergy sorghum in various aspects including yield, soil fertility, and 

environmental quality of the agro-ecosystem. 

Nitrogen fertilization has a vital impact on C and nutrient cycling. As the main 

yield-determining macronutrient, N fertilization often improves the production of  
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various crops (Malhi and Lemke, 2007, Nyakatawa and Reddy, 2000, Sainju, et al., 

2006). Nitrogen fertilization also plays a significant role in soil organic matter (SOM) 

formation and stabilization due to higher biomass input. Nitrogen fertilization has also 

resulted in higher total and aggregate-associated SOC levels over time in different 

cropping systems (Dou and Hons, 2006, Malhi and Lemke, 2007). However, N 

fertilization is also typically one of the largest factors contributing to GHG emissions, 

especially N2O. Agricultural activities account for 20%-70% of anthropogenic N2O 

emissions (Mosier, et al., 1998), and fertilizer-induced N2O emissions account for about 

33% of the estimated total from cropland in North America (Snyder, et al., 2009). 

Nitrous oxide emissions from agriculture generally increase with increasing application 

of N fertilizers (Malhi and Lemke, 2007, Mosier, et al., 2006, Pelster, et al., 2011) and 

the positive role of N fertilization in facilitating production and sequestering C may be 

offset by N2O emissions (Snyder, et al., 2009). It was estimated by Han, et al. (2011) 

that if the U.S. is to meet its goal of replacing 30% of petroleum consumption with 

biofuels by 2030, 58.2 Tg of N fertilizers would theoretically be required for overall 

bioenergy-focused agriculture. However, it’s unclear how SOC and GHG as well will 

react to the fertilization other than the yield response. Systematic research has to be 

conducted to analyze the effects of N fertilization on C cycling and GHG emissions in 

bioenergy cropping systems such as bioenergy sorghum. It is necessary to determine 

bioenergy sorghum’s optimum N requirement in order to improve biomass yield and 

SOC while minimizing N losses as GHGs. 

Lower energy requirements and greater environmental benefits of reduced soil 



 

6 

 

 

erosion and N leaching make conservation tillage more promising for optimizing crop 

productivity than tilled systems (Sainju, et al., 2006). However, the effect of tillage on 

crop yields is variable. Increased soil moisture content with no till (NT) practice has 

been reported to increase seed germination and root growth, thus improving crop 

production (Nyakatawa and Reddy, 2000, Plaza-Bonilla, et al., 2014, Triplett, et al., 

1996). On the other hand, delayed emergence and maturity caused by decreased soil 

temperature, poor root penetration and difficulties in obtaining adequate stands and weed 

or pest control have also been observed in NT systems, thereby reducing crop yields 

(Stevens, et al., 1992, Triplett, et al., 1996, van Kessel, et al., 2013). Exposure of tilled 

soils to the air accelerates decomposition of previously sequestered organic C within the 

soil, releasing CO2 via microbial activity. Numerous studies have shown that 

conservation tillage systems, especially NT, increased both total SOC and labile SOC as 

well as soil aggregation in comparison with conventional tillage (Dou and Hons, 2006, 

Dou, et al., 2008, Wright and Hons, 2005). Use of conservation tillage practices has been 

acclaimed as one of the most important approaches to reducing the rate of increase of the 

atmospheric CO2 pool by decreasing disturbance and decomposition of organic C in the 

soil (Follett, 2001). However, it has been reported that the benefits obtained with the use 

of conservation tillage might be counterbalanced by an increase in N2O emissions due to 

lower air diffusion caused by higher bulk density and greater amounts of water and 

soluble forms of C in the soil (Aulakh, et al., 1984, Ball, et al., 1999). Nevertheless, Six, 

et al. (2004) and Plaza-Bonilla, et al. (2014) suggested that the emissions of N2O could 

be reduced when maintaining NT over time, possibly due to an improvement of soil 
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structure under long-term NT. This indication was in agreement with the meta-analysis 

conducted by van Kessel, et al. (2013). In contrast, parallel or lower N2O emissions were 

observed in short-term NT systems in some cases (Malhi and Lemke, 2007, Pelster, et 

al., 2011). Yet, information about how tillage affects C dynamics and GHG emissions in 

bioenergy sorghum cropping systems is still unavailable. Whether conservation tillage is 

needed in bioenergy sorghum production and to what extent it should be conducted to 

sustain production and SOC while minimizing GHG emissions needs to be determined. 

A few field studies on the effects of management practices on bioenergy 

sorghum production have been conducted in several places in Texas and other southern 

states (Gill, et al., 2014, Hao, et al., 2014, Rocateli, et al., 2012). However, due to 

environmental factor differences such as climate and soil properties, as well as field 

management differences, results from these studies are varied and hard to compare. 

Additionally, most studies only lasted for 2-3 years and yield was measured in finite 

treatments (usually N fertilization) due to labor and funding limitations (Olson, et al., 

2012, Propheter, et al., 2010), which were not enough to predict very long-term effects 

and generalize regional patterns. Alternatively, process-based biogeochemical models 

may be used to predict the overall performance of long-term bioenergy sorghum 

production in different regions and under more complex field management 

combinations, in order to provide regional estimations of planting feasibility and best 

soil and water management practices for bioenergy sorghum in different geographical 

areas. 

DAYCENT is a process-based biogeochemical model used to simulate 
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environmental factors such as soil temperature and water fluxes, plant and soil C and 

nutrient dynamics, and GHG fluxes (Del Grosso, et al., 2001, Parton, et al., 1998). It 

integrates weather, soil, and crop information along with field management practices 

such as planting, harvest, tillage, mineral and organic fertilization, irrigation, etc. 

(Campbell, et al., 2014, Chamberlain, et al., 2011, Chang, et al., 2013). This model has 

been tested in many ecosystems including cropland, grassland, and forest systems (Del 

Grosso, et al., 2006, Gathany and Burke, 2012, Parton, et al., 2001), and applied in 

varied spatial resolutions from site-related to national and even global scales (Chang, et 

al., 2013, Del Grosso, et al., 2005, Stehfest, et al., 2007). So far, DAYCENT has been 

widely employed and shown to be effective in many traditional agricultural systems 

(Cheng, et al., 2014, Del Grosso, et al., 2009, Hartman, et al., 2011). Few bioenergy crop 

production systems have been modeled to date. Grain yield, soil C, and N2O emission 

data were collected from three states in the U.S. to test DAYCENT performance for 

modelling the impacts of corn stover removal for bioenergy production. Overall, 

DAYCENT performed well in simulating stover yields (r2 = 0.53) and low N2O emission 

rates, reasonably well when simulating average SOC change (r2 = 0.54), and poorly 

when estimating high N2O emissions (Campbell, et al., 2014). The model matched 

observed switchgrass yields within 25% of the mean across South Carolina and 

explained 66%-90% of the observed yield variation in California, making further 

predictions reasonable (Chamberlain, et al., 2011, Lee, et al., 2012). Growth dynamics of 

miscanthus, switchgrass, and corn from Europe and Illinois were successfully simulated 

(r2 = 0.987) and biogeochemical cycling was evaluated (Davis, et al., 2010). Similar 
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studies were implemented in Pennsylvania for corn, soybean (Glycine max (L.) Merr.), 

alfalfa (Medicago sativa L.), hybrid poplar (Populus spp.), reed canarygrass (Phalaris 

arundinacea L.), and switchgrass (Adler, et al., 2007). However, no evaluations of 

DAYCENT performance in simulating C dynamics and GHG emissions in bioenergy 

sorghum production have been conducted. 

By verifying DAYCENT performance in bioenergy sorghum production systems, 

long-term regional effects of more complex field management practices can be projected 

using representative weather and soil conditions, field management operations, and 

bioenergy sorghum growth parameters. Best management practices can potentially be 

determined by evaluating the agricultural efficiency and environmental effects of long-

term production of bioenergy sorghum in different areas through various modeled 

outputs, such as biomass yield, SOC, and GHG emissions. As indicated above, however, 

evaluating the production efficiency and environmental effects of field management 

practices through separate measurements alone, such as yield, SOC, or GHG emissions, 

sometimes results in conflicting conclusions. For example, as the main yield-

determining macronutrient, N addition is able to increase crop yield and SOC (Dou and 

Hons, 2006, Franzluebbers, et al., 1995, Powell and Hons, 1992). However, N 

fertilization is also typically one of the largest factors contributing to GHG emissions, 

especially N2O (Snyder, et al., 2009). Evaluating individual parameters may give 

ambiguous results when considering agricultural productivity and effects on the 

environment. Conservation tillage has also been championed as an important approach 

for reducing the rate of increase of atmospheric CO2 by decreasing crop residue and 
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SOC decomposition (Follett, 2001). However, the benefits obtained with conservation 

tillage could potentially be counterbalanced by increased N2O emissions due to lower air 

diffusion caused by higher bulk density, and greater water and soluble forms of C in 

these soils (Aulakh, et al., 1984, Ball, et al., 1999, Plaza-Bonilla, et al., 2014). 

Additionally, different from more traditional crops where only grain is removed, most 

aboveground biomass will be harvested with biofuel crops. Little information is 

available as to the amount of bioenergy sorghum yield that can be harvested for biofuel 

production without detrimental impacts on crop production, soil quality, and the 

environment (Wang, et al., 2017). Meanwhile, additional factors, such as energy to 

manufacture and operate farm machinery and produce inputs such as fertilizer and 

herbicide, also contribute to net GHG gain or loss during the process from sorghum 

production to bioethanol conversion. 

To deal with this issue, life cycle analysis (LCA) of net GHG emissions may 

help. Life cycle analysis can serve a critical role in the development of advanced 

biofuels by determining the C intensity of new bioenergy crop systems and by linking 

particular environmental impacts to certain elements in the production cycle. Life cycle 

analysis also highlights areas of uncertainty within the production cycle and can inform 

design decisions (Murphy and Kendall, 2015). Life cycle analysis has been further used 

by many studies to quantify the GHG mitigation potential of bioenergy crop production 

systems using corn, soybean, sugarcane, alfalfa, hybrid poplar, swithgrass, and 

miscanthus (Adler, et al., 2007, Meyer, et al., 2016, Wang, et al., 2012). However, there 

is little reported research on LCA of net GHG emissions in bioenergy sorghum 
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production systems. Most previous studies analyzed the overall GHG mitigation 

potential of one or more bioenergy crops on a site or regional scale compared with fossil 

fuel uses (Cooper, et al., 2011, Zhao, et al., 2016). Few, however, compared how 

differences in field operations impacted LCA, and no optimum set of field practices was 

suggested. Additionally, most studies applied empirical models to estimate C 

sequestration and GHG emissions, which overlooked the impacts of climate and soil 

properties (Daylan and Ciliz, 2016, Murphy and Kendall, 2015). Biogeochemical 

models, like DAYCENT, have been shown to be more accurate when analyzing C cycles 

and GHG fluxes because of their accounting for both temporal and spatial variations 

(Del Grosso, et al., 2005).  

1.2 Objectives 

Our overall objectives were to: 1. Determine the best field management practices 

(residue return, N fertilization, tillage) under different irrigation systems for bioenergy 

sorghum production in order to maximize yield, sustain soil fertility, and minimize GHG 

emissions; and 2. Evaluate the long-term effects of bioenergy sorghum production 

systems on C dynamics and GHG emissions in each county in Texas. These objectives 

were achieved by conducing LCA of net GHG emissions using the verified process-

based biogeochemical model, DAYCENT. 

First of all, simulations of the influences of bioenergy sorghum residue return 

and N fertilization on the soil environment including soil temperature and volumetric 

water content, and aboveground biomass C, SOC, and GHG emissions including CO2 

and N2O were conducted using the DAYCENT model. The model test and mechanism 
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for residue return and N fertilization were examined separately in Chapters 2 and 3, 

respectively. Due to a limited variety of field measurements (only aboveground biomass 

C and SOC) compared to residue return and N fertilization, no separate chapter was 

written for tillage practice. However, model performance for all three practices was 

tabulated and summarized in Chapter 4 via LCA. Model performance and 

parameterization were progressively increased through simulations of treatments, field 

measurements, and experimental span. 

Secondly, LCA at our field trial scale was conducted using the optimized 

parameter values calibrated and validated in the first two chapters. Based upon the 

principle that above average yield and net SOC change above zero should be sustained 

and net GHG emissions minimized, optimum residue return rate, N fertilization rate, and 

tillage practice combinations at the experimental site were discussed in Chapter 4. 

Finally, long-term, regional changes in biomass C and SOC dynamics and GHG 

emissions after conversion of conventional crops to bioenergy sorghum as influenced by 

climate, soil properties, water availability, and different management practices in Texas 

were predicted. Best management practice combinations that sustain SOC and biomass 

yield while minimizing GHG emissions for each county and the state in general were 

discussed in Chapter 5. 
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CHAPTER II 

SIMULATING IMPACTS OF BIOENERGY SORGHUM RESIDUE RETURN ON 

SOIL ORGANIC CARBON AND GREENHOUSE GAS EMISSIONS USING THE 

DAYCENT MODEL 

2.1 Introduction 

Bioenergy sorghum [Sorghum bicolor (L.) Moench.] has been promoted as a 

next-generation biofuel crop due to its characteristics of high biomass yield and nutrient 

and water use efficiency. Biomass yields of bioenergy sorghum have been reported to 

range from 8.0 to 60.0 Mg ha-1 depending on management practices and environmental 

conditions (Hao, et al., 2014, Olson, et al., 2012, Wight, et al., 2012). Compared with 

grain sorghum, forage sorghum, or corn (Zea mays L.), higher biomass yields have been 

observed in bioenergy sorghum systems, which also performed better than switchgrass 

(Panicum virgatum L.) and miscanthus (Miscanthus x giganteus) during their 

establishment years (Gill, et al., 2014, Propheter, et al., 2010, Rocateli, et al., 2012). 

Compared with other sorghum types and corn, bioenergy sorghum exhibited higher 

nitrogen (N) use efficiency, which was comparable to sugarcane (Saccharum 

officinarum L.) and miscanthus (Olson, et al., 2013). The C4 photosynthetic pathway 

increases bioenergy sorghum’s adaption to hot dry environments, increasing its water 

use efficiency and drought tolerance. 

Agricultural residues increase soil organic carbon (SOC) sequestration through 

                                                 
Reprinted with permission of Springer Nature from Global Soil Security, Simulating Impacts of 

Bioenergy Sorghum Residue Return on Soil Organic Carbon and Greenhouse Gas Emissions Using the 

DAYCENT Model, 2017, 167-180, Yong Wang, Fugen Dou, Joseph O. Storlien, Jason P. Wight, Keith H. 

Paustian, Stephen J. Del Grosso, Frank M. Hons. Copyright (2017) by Springer. 
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enhanced aggregate formation. Higher SOC as well as improved soil aggregation have 

been reported at different residue return rates in various cropping systems (Malhi and 

Lemke, 2007, Osborne, et al., 2014, Saffigna, et al., 1989). Residue return, however, 

lowers the amount of available feedstock and may increase soil microbial activity and 

greenhouse gas (GHG) emissions, thereby offsetting benefits associated with biofuel 

production (Baker, et al., 2014, Jin, et al., 2014, Saffigna, et al., 1989). Previous studies 

have focused on corn stover and cereal residues for biofuel production and their 

environmental impacts, with minimum return rates being proposed for corn stover to 

establish sustainable harvest criteria (Johnson, et al., 2014, Karlen and Johnson, 2014). 

However, information is lacking on impacts of bioenergy sorghum residue return on the 

soil environment, SOC, and GHG emissions. Sustainable harvest rates need to be 

estimated in order to balance biofuel feedstock production, soil quality and 

environmental health. 

DAYCENT is a process-based biogeochemical model used to simulate soil 

environmental factors such as soil temperature and water fluxes, plant and soil carbon 

(C) and nutrient dynamics, and GHG fluxes (Parton, et al., 1998) and has been effective 

in simulating many traditional agricultural systems (Chang, et al., 2013, Del Grosso, et 

al., 2008). Few bioenergy crop production systems have been modeled to date. Corn, 

switchgrass, miscanthus, soybean [Glycine max (L.) Merr.], alfalfa (Medicago sativa L.), 

and hybrid poplar (Populus sp.) production systems have been simulated by DAYCENT, 

with observed crop yield, soil C, and nitrous oxide (N2O) emission data compared with 

simulated results (Adler, et al., 2007, Chamberlain, et al., 2011, Davis, et al., 2010). The 
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objective of this study was to parameterize and validate DAYCENT performance in 

simulating soil temperature and water content, SOC, and carbon dioxide (CO2) and N2O 

emissions in a bioenergy sorghum production system with variable biomass (residue) 

returns.  

2.2 Materials and Methods 

2.2.1 Site Description and Experimental Design 

The field study associated with this research was established at the Texas A&M 

AgriLife Research Farm near College Station, Texas (30°32’15’’N, 96°25’37’’W) in 

2008. This region has a mean annual temperature of 20°C and annual precipitation of 

1017 mm. Soil at the site is classified as a Westwood silty clay loam (fine, mixed, 

thermic Udifluventic Ustochrept) consisting of 100, 560, and 340 g kg-1 of sand, silt and 

clay, respectively, in the top 15 cm, as well as a mean bulk density of 1.36 g cm-3 in the 

top 20 cm. The soil has a pH of 8.2 (1:2 soil/water) and initial SOC was 8.0 g kg-1 in the 

top 15 cm. The field was previously in a cotton (Gossypium hirsutum L.) and corn 

rotation. 

The study used a randomized complete block design to study effects of bioenergy 

sorghum residue return: 0 or 50% of sorghum biomass yield return at harvest with each 

treatment replicated three times. Plots were 9.14 m long by 4.08 m wide, with four, 1.02-

m rows.  The bioenergy sorghum,  “4-Ever Green”, a photoperiod-sensitive, one-cross 

hybrid with high biomass yield and low lodging potential (Walter Moss Seed Co, Waco, 

Texas, U.S.) was planted annually at a seeding rate of 160,000 seed ha-1. A non-limiting 

N rate of 336 kg ha-1 as urea was side-dress applied 15 cm deep in 2008, with 280 kg ha-  
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1 applied annually thereafter. Each year, conventional disk tillage to a depth of 15-20 cm 

was conducted after harvest and prior to planting. Furrow irrigation was applied only as 

needed to prevent severe water stress. Specific field operation dates and irrigation 

amounts can be found in Table 2.1. Since data for 2010 and 2011 were used in this 

simulation, related field activities and irrigation amounts for these two years are shown. 

Additional detailed field setup and operation information was reported by Wight, et al. 

(2012) and Storlien, et al. (2014). 

2.2.2 Field Observations 

Soil temperature was measured hourly by type T thermocouples at 10-cm depth 

near gas sampling collars within each plot (Storlien, et al., 2014). Soil volumetric water 

content was determined every 6 h by time domain reflectometry at 15-cm depth in the 

vicinity of the temperature sensors. Both temperature and moisture data were collected 

within the field with a CR1000 data logger (Campbell Scientific, Inc., Logan, UT), with 

hourly data for each sensor aggregated into daily values. 

Composite soil samples from each experimental unit were collected from three, 

4-cm i.d. soil cores in March each year at depth increments of 0-5, 5-15, 15-30, 30-60, 

and 60-90 cm, and oven dried at 105 °C for 7 d. However, only SOC data in the 0-20 cm 

depth were used to compare with DAYCENT output due to the model limitation. Soil 

organic C content for 0-20 cm was computed by accumulating SOC contents from 0-5, 

5-15, 15-20 cm using SOC concentrations and bulk densities from 0-5, 5-15, 15-30 cm. 

Soil organic C were measured using an Elementar Americas Inc, VarioMAX CN 

analyzer (Mt. Laurel, NJ, U.S.). 
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Table 2.1 Field operation dates and irrigation amounts at College Station, Texas 

Operation 2010  Amount 2011  Amount 

Soil sampling 17th March   14th March  

Preplant cultivation 17th March   24th March   

Planting 13th April   25th March   

Fertilization 22nd May   5th May   

Inter-row cultivation 22nd May   5th May   

Irrigation 31st May 11 cm 12th April 11 cm 

  -   9th May 9 cm 

  -   14th July 11 cm 

  -   4th August 11 cm 

Harvest 7th October   1st September   

Bedding 12th October   5th September   

 

Soil GHG (CO2, N2O) fluxes were measured by integrating a Li-Cor 20-cm 

survey chamber (model 8100-103, Li-Cor Inc., Lincoln, NE) with an INNOVA 1412 

photoacoustic gas analyzer (Innova AirTech Instruments A/S, Denmark) (Storlien, et al., 

2014). Soil collars were installed near the middle of each plot to a depth of 

approximately 12 cm no less than 24 h before the initial gas sampling for each growing 

or fallow season and remained in place throughout the entire phase. Soil gas 

measurements were performed approximately weekly through the growing season and 

less intensively during the fallow period. More detailed observation and measurement 

information was included in previous publications (Storlien, et al., 2014, Wight, et al., 

2012). 

2.2.3 Model Description and Modification 

The DAYCENT model runs on a daily time step and the key drivers include 

maximum and minimum daily air temperature, daily precipitation, soil properties, land 

management, and crop characteristics. The model simulation requires initializing the 
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model based on the native ecosystem type at the site and using the best available 

information about land management during agricultural use.  

Weather data from 1952 to 2012 at College Station Easterwood Field Climate 

Station used to drive model simulations for this study were obtained from the National 

Oceanic and Atmospheric Administration website (https://www.ncdc.noaa.gov/cdo-

web/). Soil properties were described previously in Site Description and Experimental 

Design. Land management is given in Table 2.1, and other important site specific 

parameter modifications are presented in Table 2.2. 

The model was started with a 5000-year equilibrium simulation to obtain the 

native vegetation SOC level, followed by a baseline simulation accompanied by 

agriculture initialization after the 1830’s with increasing fertilization according to the 

land use change described by the Burleson county soil survey 

(https://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey). Given the planting 

history before our field experiment, cotton and corn were chosen to run the baseline 

simulations and default parameterizations. Soil organic C contents were adapted from 

Potter and Derner (2006) as well as field observations before the study was initiated. 

Before biomass sorghum production simulation was initiated, cultivation and 

crop parameters were modified accordingly. Cropping and cultivation practices were 

parameterized based on the field management schedule (Table 2.1). Field cultivators and 

tandem disk, row cultivator, and field cultivators and tandem disk functions in 

DAYCENT were applied to represent preplanting cultivation, inter-row cultivation, and 

bedding, respectively, in the study. 
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Table 2.2 Site parameters for DAYCENT 

Site parameter Unit Value 

Field capacity Volumetric 0.2907 

Wilting point Volumetric 0.0578 

Damping factor for calculating soil temperature - 0.005 

N2/N2O ratio adjustment coefficient - 1.0 

Proportion of nitrified N that is lost as N2O - 0.9 

Maximum daily nitrification amount g N m-2 0.7 

Fraction of new net mineralization that goes to NO3 - 0.8 

 

Other than climate, site, and management parameterization, each crop to be 

simulated had a set of specific parameters representing its own characteristics. Carbon 

partitioning between shoots and roots, C:N ratio and lignin concentration in biomass of 

the crop compartments, and coefficients affecting plant growth and senescence were  

modified through other study results, our own measurements, and default values before 

simulation (Rocateli, et al., 2012, Rooney, et al., 2007). Key relevant parameters are 

included in Table 2.3. Lignin concentrations of shoots and roots were set to 8% and 6-

10%, respectively. Ranges of C:N ratios for shoots and roots were set to 20-90 and 40-

60, respectively. Data for soil temperature, soil water content, SOC, and daily CO2 and 

N2O fluxes in the control treatment (0% residue return) were used for model calibration, 

while data in the 50% residue return treatment were used for model validation. 

2.2.4 Statistical Analyses 

Statistical analyses were completed using the PROC GLIMMIX procedure of 

SAS 9.3 (SAS Institute Inc, 2013). The two-year combined data set was analyzed to test 

year and residue return effects for SOC and GHG annual emissions. Measurements with 

different residue return rates in the same year were compared first, followed by the  
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Table 2.3 Crop parameters for DAYCENT 

Parameter Definition Value Default 

PRDX(1) Coefficient for calculating potential production 0.625 0.5 

PPDF(1) Optimum temperature for production 35 30 

PPDF(2) Maximum temperature for production 50 45 

FRTC(2) Fraction of C allocated to roots in mature plants 0.3 0.1 

CKMRSPMX(2) Maximum fraction of juvenile live fine root C 

that goes to maintenance respiration for crops 1.0 0.5 

CKMRSPMX(3) Maximum fraction of mature live fine root C 

that goes to maintenance respiration for crops 1.0 0.5 

CGRESP(2) Maximum fraction of juvenile fine root live C 

that goes to growth respiration for crops 1.0 0.5 

CGRESP(3) Maximum fraction of mature fine root live C 

that goes to growth respiration for crops 1.0 0.5 

 

measurement comparisons in different years with the same return rate. Return rate and 

year were taken as fixed factors, and block as a random factor. Means separation was at 

P < 0.05 level using Tukey’s test. Linear regression analyses were used to compare 

measured vs. modeled soil temperature, soil water content, SOC, and annual GHG 

emissions, with coefficient of determinations (r2) computed. 

2.3 Results and Discussion 

2.3.1 Soil Temperature and Soil Water Content 

Crop residues have the capability of increasing soil water content and mitigating 

soil temperature fluctuations. The 50% residue return treatment increased soil water 

content by 23.13% during the 2011 growing season and decreased soil temperature by 

0.73% across the 2010 and 2011 growing seasons (Figures 2.1 and 2.2). 

Soil moisture dynamics and soil temperature profiles are major drivers of C 

flows and nutrient cycles in the DAYCENT model, thus potentially affecting plant  
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Figure 2.1 Observed and simulated soil temperature under 0% and 50% residue returns 

from the beginning of the 2010 growing season through the end of the 2011 growing 

season 

 

growth and trace gas fluxes. Across the different return rates, r2 values between observed 

and simulated soil temperature and soil water content were 0.94 and 0.81, respectively, 

indicating that the model adequately captured the patterns of soil temperature and water 

fluxes for the residue return treatments. However, the simulated control (0% residue 

return) and the simulated 50% residue return treatment showed little difference in soil 

water content and temperature if taken separately (Figures 2.1 and 2.2), implying that 

DAYCENT might underestimate the effects of residues in water holding capacity and 

temperature flux mitigation.  

The reason little difference in soil water content between 0% and 50% residue 
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Figure 2.2 Observed and simulated soil water content under 0% and 50% residue returns 

during the 2011 growing season 

 

returns was observed for the simulated output could possibly be associated with 

decreased bare soil evaporation in the 50% return treatment being offset by increased 

transpiration and intercepted water loss. Better model performance might be achieved by 

taking into account increased water holding capacity and reduced evaporation by litter, 

which was returned biomass in this study. The soil temperature submodel in DAYCENT 

is a function of air temperature and plant biomass (Parton, et al., 1998). Smaller live 

biomass difference between the two return rates from the simulated output than for field 

observations or a less sensitive temperature mitigation coefficient for litter effect in the  

submodel could be reasons for similar simulated soil temperatures between the two 
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residue return rates. 

2.3.2 Soil Organic Carbon (SOC) 

Residue return increased SOC in both years (Figure 2.3). Soil organic C with 50% 

residue return was 7.77% greater than that under the control across both years. Similar 

results have been reported by other studies (Malhi and Lemke, 2007, Powell and Hons, 

1991, Saffigna, et al., 1989). For example, Saffigna, et al. (1989) reported that SOC in 

the surface layer was 8% greater in the sorghum residue-retained than in the residue-

removed treatment. Powell and Hons (1991) reported that removing all sorghum stover 

significantly decreased SOC. 

Compared with 2010, SOC in 2011 was greater regardless of residue return, 

indicating that root biomass and root exudates may contribute to a significant increase in 

SOC. Our result was consistent with those reported by others (Johnson, et al., 2006, 

Menichetti, et al., 2015, Zhao, et al., 2014) who reported that belowground C inputs play 

a critical role in building and maintaining SOC. 

Simulated SOC increased as bioenergy sorghum residue return increased in both 

years. Modeled SOC in 2011 was higher than that in 2010, regardless of the rate of 

residue return. Residue return and temporal effects on SOC were favorably modeled 

with an r2 value of 0.75. The DAYCENT model has previously been shown by 

numerous studies to be effective at modelling SOC dynamics for conventional crops 

(Del Grosso, et al., 2002, Smith, et al., 2012). In this study, the results simulated by 

DAYCENT matched well with the observed changes in SOC for both different residue  

return rates and years. Campbell, et al. (2014) also reported similar effects of differential 
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Figure 2.3 Observed and simulated SOC at 0-20 cm depth under 0% and 50% residue 

returns in 2010 and 2011 

 

residue removal on SOC.  

2.3.3 Carbon Dioxide (CO2) 

During most gas sampling events, higher daily CO2 fluxes were observed for 

50% compared with 0% residue return, though differences weren’t always significant 

(Figure 2.4). Compared with the 2010 growing season, higher daily CO2 fluxes occurred 

during the 2011 growing season for both return rates. Average measured soil 

temperatures for June, July and August 2011 vs. 2010 were +1.4, +1.2 and -0.4oC, 

respectively, for 2011. Daily peak fluxes were observed after irrigation, precipitation, 

and fertilization when soil moisture was relatively high (Figure 2.4).  
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Figure 2.4 Observed and simulated CO2-C fluxes under 0% and 50% residue returns 

during growing seasons and fallows in 2010 and 2011 

 

Higher cumulative CO2 emission for the 50% residue return treatment was found 

when combined across years, though results were not significantly different compared 

with 0% residue return in either year (data not shown). Compared with 2010, higher 

annual CO2 losses were measured in 2011 for both return rates, indicating that conditions 

in 2011 were more favorable for decomposition. Jin, et al. (2014) summarized static 

chamber estimates of GHG emissions from nine corn production systems under various 

crop residue and tillage management practices across the U.S. Corn Belt and found that 

stove harvest generally reduced total soil CO2 emissions by 4%. Baker, et al. (2014) 

summarized automated continuous chamber CO2 data collected between spring 2010 and 
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spring 2012 for three levels of stover harvest and found that CO2 loss from plots with 

complete stover removal was lower than from plots with zero removal. 

Similar daily flux patterns generally existed in the measured and simulated 

results (Figure 2.4), though annual cumulative CO2 emissions were underestimated by 

the model. Like observed results, modeled outputs also indicated that 50% residue return 

increased CO2 emissions in both years and showed higher CO2 emissions in 2011 than in 

2010 for both residue returns. DAYCENT performed very well in simulating annual 

cumulative CO2 emissions with an r2 value of 0.97. 

2.3.4 Nitrous Oxide (N2O) 

Fluxes of N2O were highly variable compared with CO2, especially in 2011 when 

more irrigation was required because of the hot dry conditions (Storlien, et al., 2014) 

(Figure 2.5). During 2010, daily N2O fluxes were mostly higher with the 50% residue 

return treatment, while in 2011, the situation was the opposite, with 0% residue return 

exhibiting more high daily N2O fluxes, maybe due to more frequent water addition. 

Higher and more variable daily N2O fluxes were observed for the 2011 compared to the 

2010 growing season for both return rates. Peak daily N2O fluxes were generally 

observed following fertilization and water addition from irrigation and precipitation 

(Figure 2.5).  

Annual cumulative N2O emissions showed the same pattern as daily N2O fluxes, 

with 50% residue return having greater annual cumulative emission in 2010 and 0% 

residue return having higher annual cumulative emission in 2011, but no significant 

difference was found in either case (data not shown). When averaged over the 2 years,  
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Figure 2.5 Observed and simulated N2O-N fluxes under 0% and 50% residue returns 

during growing seasons and fallows in 2010 and 2011 

 

higher N2O loss was measured with 50% compared with 0% residue return, though the 

difference was not significant. This effect might be associated with enhanced microbial 

activity and C and N cycling due to the additional organic matter added. Annual 

cumulative N2O emission was higher in 2011 than in 2010 for the control treatment (0% 

residue return), but the reverse pattern was found for the 50% residue return treatment. 

Similar to the simulated annual cumulative CO2 emissions, lower annual 

cumulative N2O losses than measured were produced by the model. Simulated daily N2O 

fluxes underestimated the observed results during the growing seasons, while 

overestimating fluxes during the fallow periods. Simulated results also showed higher  
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N2O emissions with the return of 50% of the aboveground biomass after harvest. 

DAYCENT, however, did not accurately simulate annual N2O losses (r2=0.0057). 

Due to both the transience and the magnitude of N2O flux changes across 

growing and fallow seasons, continuously measured N2O data would be of great value 

for comparison against DAYCENT model results, especially after rainfall or irrigation 

and N fertilization. Continuous monitoring would provide better information for 

simulating the magnitude and timing of peak flux events as well as more accurately 

estimating annual emissions. When using DAYCENT to evaluate N2O emissions from 

different production practices, care should be taken not to underestimate emissions in 

systems of potentially high flux (Campbell, et al., 2014). Trace gas fluxes can also only 

be modeled well on the premise of accurate simulation of nutrient uptake and 

mineralization and soil water and temperature dynamics (Parton, et al., 1998). 

2.4 Conclusions 

The DAYCENT model simulated soil temperature, soil water content, SOC, and 

CO2 very well, with corresponding r2 values of 0.94, 0.81, 0.75 and 0.97, but was much 

less accurate in estimating N2O emissions (r2=0.0057). For both greenhouse gases, 

DAYCENT produced lower annual cumulative emissions than measured, especially for 

N2O. These biases should be considered when DAYCENT is used as a decision support 

tool for recommending sustainable sorghum stover removal practices for bioenergy 

production. 
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CHAPTER III 

DAYCENT SIMULATIONS OF THE IMPACTS OF NITROGEN FERTILIZATION 

IN BIOENERGY SORGHUM PRODUCTION 

3.1 Introduction 

Bioenergy sorghum [Sorghum bicolor (L.) Moench.] is a promising bioenergy 

crop due to its high biomass yield potential, drought tolerance, and genetic tractability 

(Mullet, et al., 2014, Rooney, et al., 2007, Wight, et al., 2012). Nutrient management is 

important to improve biomass yield and nitrogen (N) use efficiency for this emerging 

sorghum type. As a main yield-determining macronutrient, N application can increase 

bioenergy sorghum yields (Hao, et al., 2014, Olson, et al., 2013), and also plays a 

significant role in soil organic matter (SOM) stabilization due to greater input of plant 

residue and root exudates (Wilhelm, et al., 2004). Nitrogen fertilization has resulted in 

higher soil organic carbon (SOC) levels over time (Dou and Hons, 2006), but typically is 

also one of the largest factors causing greenhouse (GHG) emissions, especially nitrous 

oxide (N2O) (Snyder, et al., 2009). Nitrous oxide emissions from agriculture generally 

increase with greater N fertilization (Johnson, et al., 2005, Mosier, et al., 2006, Pelster, 

et al., 2011)  and its emission from bioenergy cropping systems has the potential to 

undermine the strategy of producing biofuels to reduce net GHG emission. However, 

little research has been done to establish the effects of N fertilization on both carbon (C) 

cycling and GHG emissions in bioenergy sorghum production. Determination of an 

optimal N application rate is necessary for increasing biomass yield and SOC, while 

minimizing GHG losses. 
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Field experiments generally reveal short-term results with limited factor levels 

due to labor and time constraints. Process-based models, however, are able to predict 

longer-term effects by integrating weather, soil, and crop information along with 

additional management practices. DAYCENT is a process-based biogeochemical model 

used to simulate environmental factors such as soil temperature and water fluxes, plant 

and soil C and nutrient dynamics, and GHG emissions (Del Grosso, et al., 2001, Parton, 

et al., 1998). This model has been widely verified and applied to many traditional 

agricultural systems (Cheng, et al., 2014, Del Grosso, et al., 2006, Stehfest, et al., 2007) 

and some bioenergy cropping systems (Campbell, et al., 2014, Chamberlain, et al., 2011, 

Lee, et al., 2012). However, evaluations of DAYCENT performance in simulating C 

dynamics and GHG emissions in bioenergy sorghum production are limited. Model fit 

using a site experiment can help determine proper N fertilization rates for maintaining 

yield and soil productivity, while mitigating GHG emissions. Based on the calibrated 

and validated model, additional regional predictions may also be realized by 

incorporating climate, soil parameters, and field management practices at the appropriate 

resolution needed for the intended generality. The objective of this study was to 

determine DAYCENT model performance in simulating the effects of N fertilization on 

soil N2O fluxes and biogeochemical C cycling in soil and biomass under bioenergy 

sorghum production. 

3.2 Materials and Methods 

3.2.1 Site Description and Experimental Design 

The field study associated with this research was established at the Texas A&M 
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AgriLife Research Farm near College Station, Texas (30°32’15’’N, 96°25’37’’W) in 

2008. The region has a mean annual temperature of 20°C and annual precipitation of 

1017 mm. Soil at the site is classified as Weswood silty clay loam consisting of 100, 

560, and 340 g kg-1 of sand, silt and clay, respectively, in the top 15 cm, as well as a 

mean bulk density of 1.36 g cm-3 in the top 20 cm. The soil has a pH of 8.2 (1:2 

soil/water) and initial SOC concentration was 8.0 g kg-1 in the top 15 cm. Before the 

start of the bioenergy sorghum study in 2008, the field was in cotton (Gossypium 

hirsutum L.) in 2007, and rotated annually with corn (Zea mays L.) under conventional 

disk tillage for the previous 10 yr. Soil nutrient properties at the initiation of the study 

were reported by Wight, et al. (2012). 

Data for modelling were taken from the randomized complete block field 

experiment with three replications of all combinations of N rates of 0 and 280 kg N ha-1, 

sorghum biomass removal rates of 100, 75, and 50%, and either continuous sorghum or a 

biannual rotation of corn and sorghum that was conducted in 2008-2015. For the purpose 

of this study, the two N rates in continuous sorghum with 100% biomass removal were 

used. Biomass yield was estimated for each plot in 2008-2014. Samples for SOC at 0-90 

cm depth were collected in late February-early April in 2008-2015. Soil temperature, 

moisture, and GHG emissions were measured during the 2010 and 2011 growing 

seasons and in following fallow periods which spanned from May to the next March. All 

plots were 9.14 m long by 4.08 m wide, with four, 1.02-m rows. The bioenergy sorghum 

variety, “4Ever Green”, used within the study was a photoperiod-sensitive, one-cross 

hybrid with high biomass and low lodging potential (Walter Moss Seed Co, Waco, 
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Texas, U.S.). Plots were disked to a depth of 15-20 cm and bedded into rows after 

harvest and prior to planting, with additional inter-row cultivation in the spring. Nitrogen 

was applied in a subsurface band at about 15-cm depth as urea and approximately 15 cm 

from plant rows at the 4-leaf stage for sorghum. Limited furrow irrigation was 

performed as needed to prevent severe water stress. After biomass yield weights were 

collected, remaining biomass was removed from plots. Additional detailed field setup 

and operation information were included in Wight, et al. (2012) and Storlien, et al. 

(2014). 

3.2.2 Field Observations 

Biomass yield was estimated from the entire length of the middle two rows of 

each plot using a mechanical harvester with a load cell. Weights of biomass subsamples 

from plots were determined before and following oven-drying at 60°C for 7 d to 

determine moisture content. Oven-dried plant tissue samples were ground in a ring and 

puck mill for elemental C determination via combustion analysis with an Elementar 

Americas Inc., VarioMAX CN analyzer (Mt. Laurel, NJ). Aboveground biomass C was 

calculated by multiplying biomass dry weight by elemental C concentration. 

Results of SOC at the 0-20 cm depth were used to calibrate and validate the 

performance of DAYCENT. Three composited 4-cm diameter soil cores were collected 

annually from each plot, oven-dried (105°C) for 7 d and weighed to determine bulk 

density. A subsample of each composite sample was finely ground and analyzed for 

organic C via combustion analysis with the same equipment used to measure C 

concentration in plant tissue. Differential heating was used to separate inorganic and 
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organic C. For organic C, the primary furnace was set at 650 0C and a 2 L min-1 O2 flow 

rate. Total C was analyzed with the same instrument at 900 0C. Soil organic C content (g 

C m-2) for 0-20 cm was calculated using the determined SOC concentrations (g C kg-1 

soil) and corresponding bulk densities (g cm-3) from 0-5, 5-15, and 15-30 cm. 

Soil GHG emissions including carbon dioxide (CO2) and N2O were directly 

measured by integrating a Li-Cor 20-cm survey chamber (model 8100-103, Li-Cor Inc., 

Lincoln, NE) with an INNOVA 1412 Photoacoustic gas analyzer (Innova AirTech 

Instruments A/S, Denmark). Polyvinyl chloride soil collars with 20-cm diameter were 

installed near the middle of each plot to a depth of approximately 12 cm no less than 24 

h before the initial gas sampling for each growing or fallow season and remained in 

place throughout the entire season. Soil gas flux measurements were performed 

approximately weekly through the growing season and less intensively during the fallow 

period. Measurements for year 1 (2010) occurred from May 27, 2010 through March 3, 

2011 and for year 2 (2011) from May 6, 2011 to March 1, 2012.  

Soil temperature was measured hourly by type T thermocouples at 10-cm depth 

near gas sampling collars within each plot. Soil volumetric water content was 

determined every 6 h by time domain reflectometry (TDR) (model TDR100, Campbell 

Scientific, Inc., Logan, UT) at 15-cm depth in the vicinity of the temperature sensors. 

Both temperature and moisture data were collected within the field with a CR1000 data 

logger (Campbell Scientific, Inc., Logan, UT), with hourly data for each sensor 

aggregated into daily values. More detailed observation and measurement information 

was reported in previous publications (Storlien, et al., 2014, Wight, et al., 2012). 
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3.2.3 Model Description and Parameterization 

DAYCENT is the daily time step version of the CENTURY biogeochemical 

model (Parton, et al., 1987, Parton, et al., 1988). Key submodels include plant 

production, organic matter decomposition, soil water and temperature flows, and trace 

gas fluxes. Major model inputs are daily weather data, soil properties, best available 

information about native vegetation and historical agricultural use, as well as current 

land management and crop characteristics.  

Weather data including daily maximum and minimum air temperature and 

precipitation during 1952-2015 were downloaded from College Station’s Easterwood 

Field Climate Station (https://www.ncdc.noaa.gov/cdo-web/). Soil properties were 

described previously.  

Modelling was initiated with a 5000-year equilibrium simulation to obtain the 

native SOC level, followed by a baseline simulation accompanied by agricultural 

initialization after the 1830’s with increasing fertilization and residue return, and less 

intensive cultivation according to the land use change described by the Burleson county 

soil survey (https://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey). Given 

the planting history before our field experiment, cotton and corn with a two-year rotation 

cycle were chosen to run the baseline simulations, and default parameterizations for 

these two crops were adopted. Soil organic C contents were adapted from Potter and 

Derner (2006), as well as our field observations. 

Current land management information including field operation dates and 

irrigation amounts is given in Table 3.1, and other important site specific parameters are  

https://www.ncdc.noaa.gov/cdo-web/
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Table 3.1 Information for main field operation practices in bioenergy sorghum production during 2008 to 2015 

Operation 2008 2009 2010 2011 

Soil sampling 24th March 6th April 5th April 14th March 

Preplant cultivation 25th March 6th April 17th March 24th March 

Planting 26th March 7th April 13th April 25th March 

Inter-row cultivation 24th April 5th May 22nd May 5th May 

Fertilization 1st May 20th May 22nd May 5th May 

Irrigation 10th June (9 cm) 16th July (6 cm) 31st May (11 cm) 12th April (11 cm) 

  10th July (9 cm) 24th August (6 cm) - 9th May (9 cm) 

  - - - 14th July (11 cm) 

  - - - 4th August (11 cm) 

Harvest 14th October 5th November 7th October 1st September 

Bedding 15th October 6th November 12th October 5th September 

     

 
2012 2013 2014 2015 

Soil sampling 7th March 27th March 28th February 11th March 

Preplant cultivation 8th March 27th March 23rd March   

Planting 19th March 28th March 30th March   

Inter-row cultivation 19th May 21st May 11th May   

Fertilization 26th April  21st May 11th May   

Irrigation - 13th June (9 cm) 10th July (11 cm)   

  - 26th June (11 cm) -   

  - 10th July (9 cm) -   

  - 31st July (11 cm) -   

Harvest 13th August 3rd September 23rd September   

Bedding 20th August 5th September 26th September   
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presented in Table 3.2. Carbon partitioning between shoots and roots, C:N ratio and 

lignin concentration in biomass of the crop compartments, and coefficients affecting  

plant growth and senescence were modified against other published results (Olson, et al., 

2012, Rocateli, et al., 2012, Rooney, et al., 2007), our own measurements, and default 

values. Key relevant crop parameters and defaults used are included in Table 3.3. Lignin 

concentrations of shoots and roots were set to 7.6% and 6-10%, respectively. Ranges of 

C:N ratios for shoots and roots were set to 20-100 and 30-70, respectively, according to 

our field measurements. 

3.2.4 Model Calibration and Validation 

For the soil environmental factors and GHG emissions, soil temperature at 10-cm 

depth, soil volumetric water content at 15-cm depth, and daily GHG emissions in 2010 

were used for DAYCENT model calibration. The same measurements in 2011 were then 

used for model validation. For aboveground biomass C and SOC, data from 2008-2011 

(half of the project period) were selected for model calibration, while data from the 

remaining years were used for validation.  

3.2.5 Model Projection 

Based on model performance, projection was conducted with N rates ranging 

from 0 to 350 kg ha-1 in increments of 70 kg ha-1. Model projection to the middle of this 

century (2008-2050) was implemented to determine the long-term effects of different N 

rates on C dynamics and GHG emissions in bioenergy sorghum production. In the model 

projection, sorghum growth parameter values calibrated and validated in our field trials 

were adopted. Field operation dates in the projection process were set from the average
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Table 3.2 Selected site parameters for DAYCENT simulation 

Site parameter Unit Value 

Field capacity Volumetric 0.2869 

Wilting point Volumetric 0.0426 

Damping factor for calculating soil temperature - 0.005 

Minimum water/temperature limitation coefficient for nitrify - 0 

Proportion of nitrified N that is lost as N2O - 1 

Maximum daily nitrification amount g N m-2 1 

Fraction of new net N mineralization nitrified to NO3 - 1 

Adjustment on inflection point for water filled pore space effect on denitrification - 0.8 

N2/N2O ratio adjustment coefficient - 1 

 

Table 3.3 Selected crop parameters for DAYCENT simulation 

Parameter Definition Value Default 

PRDX(1) Coefficient for calculating potential production 0.8 0.5 

PPDF(1) Optimum temperature for production 35 30 

PPDF(2) Maximum temperature for production 50 45 

FRTC(2) Fraction of C allocated to roots in mature plants 0.35 0.1 

CKMRSPMX(2) Maximum fraction of juvenile live fine root C that goes to 

maintenance respiration for crops 1.0 0.5 

CKMRSPMX(3) Maximum fraction of mature live fine root C that goes to 

maintenance respiration for crops 1.0 0.5 

CGRESP(2) Maximum fraction of juvenile fine root live C that goes to growth 

respiration for crops 1.0 0.5 

CGRESP(3) Maximum fraction of mature fine root live C that goes to growth 

respiration for crops 1.0 0.5 
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dates in the 2008-2015 period including soil sampling, preplant cultivation, planting, 

inter-row cultivation, fertilization at each supposed rate, harvest, and post-harvest 

cultivation. We assumed that averages from 8 years of field trials were adequate to 

represent the custom field operation dates for bioenergy sorghum production. Historical 

weather data from 1981-2015 were used to represent future weather data in 2016-2050. 

No irrigation was scheduled in projected simulations. After projection, annual 

aboveground biomass C, SOC change, N2O emission, and methane (CH4) uptake in 

2008-2050 were calculated to determine N fertilization effects. Annual net GHG 

emission was then determined by combing annual SOC change, N2O emission, and CH4 

uptake (Sainju, 2016). Results were presented as CO2-C equivalents by assuming 296 

and 23 times the global warming potential (GWP) for N2O and CH4 compared to CO2, 

respectively.  

3.2.6 Statistical Analysis 

Statistical analyses were completed using the PROC GLIMMIX procedure of 

SAS 9.3 (SAS Institute Inc, 2013). The data set was analyzed to test N effects and yearly 

variation on aboveground sorghum biomass C, SOC, and annual GHG emissions. 

Nitrogen fertilization rate and year were taken as fixed factors, and block as a random 

factor. When factors were significant at P < 0.05, mean separation was conducted at P < 

0.05 using Tukey’s test.  

Linear regression analyses were used to compare observed vs. modeled soil 

temperature, soil water content, aboveground biomass C, SOC, daily GHG fluxes, and 

annual GHG emissions, with coefficient of determinations (r2), slope, intercept, and root 
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mean square error (RMSE) computed in calibration and validation processes, and over 

all study years (Table 3.4). 

 

Table 3.4 Statistical tests between simulated and observed values of aboveground 

biomass C, SOC, daily CO2-C fluxes, daily N2O-N fluxes, annual CO2-C emissions, and 

annual N2O-N emissions 

Measurement r2 Slope Intercept RMSE* 

Calibration 

Soil temperature 0.87 0.72 8.31 3.14 

Soil moisture 0.91 1.13 -0.03 0.03 

Aboveground biomass C 0.62 0.69 112.34 152.71 

SOC 0.68 0.72 723.50 100.80 

Daily CO2 0.64 0.70 0.44 1.50 

Daily N2O 0.61 0.60 0.47 32.94 

Validation 

Soil temperature 0.91 0.77 6.75 3.68 

Soil moisture 0.77 0.86 0.04 0.04 

Aboveground biomass C 0.75 1.42 -210.62 113.42 

SOC 0.36 0.58 1136.20 201.88 

Daily CO2 0.57 0.39 0.85 2.94 

Daily N2O 0.10 0.14 11.91 49.21 

Overall 

Soil temperature 0.90 0.77 7.24 3.43 

Soil moisture 0.78 0.96 0.01 0.03 

Aboveground biomass C 0.57 0.78 80.25 137.26 

SOC 0.47 0.64 952.94 159.56 

Daily CO2 0.55 0.48 0.89 2.32 

Daily N2O 0.34 0.36 6.86 41.98 

Annual CO2 0.49 1.14 -354.73 254.37 

Annual N2O 0.97 1.11 -2888.60 2200.78 

* RMSE indicates root mean square error 
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3.3 Results and Discussion 

3.3.1 Soil Temperature and Moisture 

For both observed and simulated data, higher average soil temperature was 

observed in the 0 N control treatment compared with the fertilized treatment during the 

whole study period (Figure 3.1). This difference might be attributed to greater shading 

due to the increased biomass and plant canopy in the fertilized treatment. Soil without N 

application and less sorghum growth likely received more solar radiation due to a sparser 

canopy (Nyakatawa and Reddy, 2000). 

The model was capable of simulating the observed soil moisture peaks caused by 

precipitation and irrigation events (Figure 3.2). Compared with the 0 N treatment, 

slightly higher soil water content was observed in the N fertilized treatment. The 

difference might be attributed to higher belowground litter associated with greater 

biomass from N application. However, this difference was not reproduced by the model. 

A similar scenario for observed soil water content differences caused by residue return 

effects in bioenergy sorghum production was also not captured by the model in the study 

of Wang, et al. (2017). 

Across the different N fertilization rates, r2 values between observed and 

simulated soil temperature and soil water content were 0.90 and 0.78 (Table 3.4), 

respectively, indicating that the model could adequately capture the observed patterns of 

soil temperature and water fluxes. 

3.3.2 Aboveground Biomass Carbon (C) 

The observed aboveground biomass C provided with N fertilization was higher 
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Figure 3.1 Observed (point) and simulated (line) soil temperature under 0 kg N ha-1 

(upper panel) and 280 kg N ha-1 (lower panel) fertilization rates during 2010 and 2011 

 

than that for the control in all study years (Figure 3.3). Annual variation of aboveground 

biomass C for the two N fertilization rates both demonstrated a pattern of higher yields 

the first two study years, lower yields during the middle years, and slightly increased 

yields toward the end of the study. A portion of the yield decline with time might be 

attributed to continuous sorghum production plus drought experienced in 2010-2012, 

which reduced the water input and growing season durations in those years. The growing 

days, average daily temperature and total water input (precipitation and irrigation) in the 

2008-2014 growing seasons were 288, 309, 280, 244, 226, 246, 266 days, 26.24, 26.46, 

27.71, 28.43, 26.65, 26.39, 25.95 0C, and 65, 78, 63, 59, 36, 70, 76 cm, respectively. 
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Figure 3.2 Observed (point) and simulated (line) soil volumetric water content under 0 

kg N ha-1 (upper panel) and 280 kg N ha-1 (lower panel) fertilization rates during 2010 

and 2011. * signs indicate irrigation operations. Lines on the top horizontal lines of the 

graph represent precipitation and irrigations amounts 

 

Simulated aboveground biomass C was increased by applied N in all years 

(Figure 3.3), with results showing the same patterns as field observations. Within the 

same N treatment, simulated aboveground biomass C was higher at the beginning and 

end of the modelling period and lower in the middle, and were consistent with field 

observations.  

To test the model’s performance stability, the observed aboveground biomass C 

yields for 2008-2011 were selected to calibrate the model, while data from 2012-2014 

were used for validation. As a result, the validation process presented parallel 
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Figure 3.3 Observed (black bar) and simulated (gray bar) aboveground biomass C under 

0 kg N ha-1 (upper panel) and 280 kg N ha-1 (lower panel) fertilization rates in 2008-

2014 

 

performance (r2 = 0.75, slope = 1.42, intercept = -210.62, RMSE = 113.42) compared 

with the calibration process (r2 = 0.62, slope = 0.69, intercept = 112.34, RMSE = 152.71) 

(Table 3.4). Overall, the model was able to simulate aboveground biomass C reasonably 

well (r2 = 0.57, slope = 0.78, intercept = 80.25, RMSE = 137.26). 

Sorghum yields in this study (7.0-27.0 Mg ha-1) were within the range reported 

by several studies utilizing bioenergy sorghum (2.8-41.1 Mg ha-1) (Gill, et al., 2014, 

Hao, et al., 2014, Propheter, et al., 2010). Lower yields in 2010-2012 might have been 

due to increased water stress and shorter growing seasons. Lower bioenergy sorghum 

water use efficiency was also observed in the Texas High Plains in 2010 and 2011, with 
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lower yields compared with 2009 (Hao, et al., 2014). Nitrogen fertilization increased 

biomass yield compared to the treatment without N. Many other studies have 

demonstrated that N fertilization positively influenced soil N availability and thus 

sorghum yields (Hao, et al., 2014, Powell and Hons, 1992, Sainju, et al., 2006). 

In the DAYCENT model, net primary productivity (NPP) is a function of 

nutrient availability, soil water and temperature, shading, vegetation type, and plant 

phenology. As anticipated, N fertilization increased biomass C assimilation over the 

unfertilized treatment in all study years, illustrating the need for N fertilization to sustain 

high yields across years. Our results were consistent with those of Meki, et al. (2013) 

who did long-term modelling of bioenergy sorghum production in the U.S. and also 

showed that N addition was required to sustain high yield over time. Input data on a 

daily basis, including weather and field operations, helps the model successfully 

reproduce observed annual variation (Kelly, et al., 2000). However, larger yield 

differences due to N fertilization were indicated by our model results compared with the 

actual measured data. One reason may be that simulated mineralized N was limited to 

only the 0-20 cm depth, likely underestimating the total N supply for plant growth from 

the deeper soil profile. In our study, only 30.80% of SOC content to a 90-cm depth was 

stored at 0-20 cm. Mineralized N from deeper soil profile could potentially supply 

bioenergy sorghum growth needs, even though the mineralization rate of deeper SOM 

may be lower. The DAYCENT model also underestimated soil mineral N concentration 

from five different short grass steppe sites in northeastern Colorado, except for a silty 

loam soil with N fertilization (Parton, et al., 2001). In our study, total simulated soil 
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NO3
--N content in the 0 N control treatment at soil sampling dates was 13.11% lower 

compared to that from measured data at a 90-cm depth and it was the dominant available 

N form in the soil. 

3.3.3 Soil Organic Carbon (SOC) 

Soil organic C in the treatment receiving N fertilization was higher than that in 

the 0 N control in all study years (Figure 3.4). On average, SOC with N fertilization was 

5.93% greater than that of the control when considered across all study years. Soil 

organic C with both N fertilization rates increased from the initial year until 2012, then 

dropped in 2013 and 2014, followed by an increase in the last study year. 

Simulated SOC increased with applied N in all the years when compared to the 

simulated 0 N control. Modeled SOC also captured the annual variation as observed in 

the field (Figure 3.4). However, the variation of modeled results was conservative 

compared with actual observations, especially for decreases after year 2012. 

Model performance in the calibration process was satisfactory (r2 = 0.68, slope = 

0.72, intercept = 723.50, RMSE = 100.80) (Table 3.4). During validation, however, the 

model was not able to adequately represent the SOC decline observed in 2013 and 2014. 

As a result, the model didn’t perform adequately in the validation process (r2 = 0.36, 

slope = 0.58, intercept = 1136.20, RMSE = 201.88). Over the course of the entire study, 

field observations and modeled results showed similar patterns for SOC for the different 

N rates and years, with both showing higher SOC content in the added N treatment 

compared with the control and the variation caused by seasonal change (r2 = 0.47, slope 

= 0.64, intercept = 952.94, RMSE = 159.56).  



 

46 

 

 

Figure 3.4 Observed (black bar) and simulated (gray bar) SOC at 0-20 cm depth under 0 

kg N ha-1 (upper panel) and 280 kg N ha-1 (lower panel) fertilization rates in 2008-2015 

 

Nitrogen fertilization increased SOC, which may result mainly from increased 

NPP. Both field trials and model simulation showed greater aboveground biomass with 

N application. Nitrogen fertilization increased biomass C assimilation, which often 

translates to more crop residues returned to the soil, including both aboveground dead 

material and root systems left after harvest (Wilhelm, et al., 2004).  

Nitrogen fertilization may have stimulated greater root activity compared with 

the control. The greater mass of root-C or greater density of roots may have directly 

contributed to increased SOC. The bioenergy sorghum crop likely had an extensive root 

system that was distributed deep within the soil profile (Ferchaud, et al., 2015, Monti 
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and Zatta, 2009). A crop with high aboveground biomass also usually produces 

comparably high belowground biomass. The DAYCENT model outputs the total 

biomass (above plus belowground) first, and then allocates the root/shoot ratio. The 

development of aboveground and belowground biomass are correlated and ratios can be 

modified with time, water, nutrient availability, and additional factors (Del Grosso, et 

al., 2001). Unfortunately, few studies are available that use sorghum root-to-shoot ratios 

to estimate the potential mass of belowground C based upon known aboveground C 

quantities. Preliminary data on shoot to root biomass ratios of bioenergy sorghum 

TX08001 obtained in 2011 showed the root biomass was 20% of the total biomass 

accumulated (Olson, et al., 2012). Samples collected from the fertilized treatment in our 

field study in 2013 indicated root biomass to be as high as 30% of the total biomass (data 

not shown). 

Additionally, dead plant material falling from aboveground biomass during the 

growing season might be another contributor to SOC. Bioenergy sorghum is a photo-

period sensitive C4 plant with high aboveground productivity, large leaves and a tall, 

dense canopy (Mullet, et al., 2014, Rooney, et al., 2007). Throughout the growing 

season, as the crop develops, older leaves periodically senesce from the plant and fall 

onto the soil, of which the cumulative mass across the entire growing season may have 

been substantial enough to increase SOC near the surface of the soil, particularly 

considering the relatively high C:N of sorghum plant tissue. In DAYCENT, the death 

rate of plant compartments is controlled by soil water, temperature, season, and plant-

specific senescence parameters. Due to the severe drought and high biomass  
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parameterization, dead biomass during the growing season could also be a significant 

contributor to SOC, especially for those plots with N fertilization. 

Another possible reason for greater SOC with N fertilization was that bioenergy 

sorghum can provide a large shaded canopy over the soil surface throughout much of the 

middle and later portions of the growing season. With less probable shading from the 

crop canopy in 0 N control plots, the soil surface may have received greater solar 

radiation and became warmer than that under the shaded canopy. Both higher observed 

and simulated soil temperatures in the 0 N control treatment in our study may have 

enhanced the heterotrophic decomposition of organic C and soil respiration 

(Kirschbaum, 1995, Pietikainen, et al., 2005).  

Temporal changes in SOC observed in the field were overall captured by the 

model, except that simulated results were too conservative compared to observations, 

especially for the observed declines in 2013 and 2014. The declines might be attributed 

to relatively early harvests followed by high intensity precipitation which provided 

favorable conditions for soil microorganisms to decompose unstable stored SOC from 

previous years. The weather record showed average air temperature in August, 

September, and October during 1952-2015 to be 29.27, 26.34, and 21.13 0C, 

respectively. According to the temperature effect on decomposition rate, the later harvest 

is conducted, the lower risk that SOC will be decomposed, especially for fresh residue 

and unstable SOC, because of lower temperatures. Biomass was harvested prior to 

October in 2011, 2012, and 2013 (Table 3.1). In these years, post-harvest precipitation 

before the end of October was 8.14, 17.3, 36.31 cm, respectively, indicating potentially 
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greater decomposition, especially in 2012 and 2013. The reason DAYCENT didn’t 

capture the SOC reductions well might be due to poorer model sensitivity for the effect 

of soil moisture on SOC decomposition rate (Campbell, et al., 2014, Paustian, et al., 

1992). 

3.3.4 Carbon Dioxide (CO2) 

During most gas sampling events, higher daily CO2 fluxes were observed from 

plots receiving N fertilization compared with the control (Figure 3.5). Higher daily CO2 

fluxes generally occurred during the 2011 compared with the 2010 growing season 

regardless of N application, possibly because of higher daily temperatures and more 

frequent irrigations in 2011.  

Greater annual CO2 emission was observed with N fertilization compared with 0 

N control in both years (Figure 3.6). Additionally, higher annual CO2 loss was observed 

in 2011 compared with 2010 for both fertilization rates.  

DAYCENT performed favorably in simulating both daily and annual CO2 

emissions, and demonstrated similar model fit for daily fluxes (r2 = 0.55, slope = 0.48, 

intercept = 0.89, RMSE = 2.32) and annual emissions (r2 = 0.49, slope = 1.14, intercept 

= -354.73, RMSE = 254.37) (Table 3.4). Similar daily flux patterns generally occurred 

for both observed and simulated results (Figure 3.5), though annual CO2 emissions were 

underestimated by the model (Figure 3.6). Like observed results, modeled outputs also 

indicated that N fertilization increased CO2 emission in both years and showed higher 

CO2 emissions in 2011 than in 2010 for both N fertilization rates. 

The treatment receiving N fertilization produced greater biomass, and likely both 
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Figure 3.5 Observed (point) and simulated (line) daily CO2-C fluxes under 0 kg N ha-1 

(upper panel) and 280 kg N ha-1 (lower panel) fertilization rates during growing and 

fallow seasons in 2010 and 2011. # represents fertilization, * represents irrigation, and $ 

represents harvest. Lines on the top horizontal lines of the graph represent precipitation 

and irrigations amounts 

 

autotrophic and heterotrophic respiration. Enhanced SOM mineralization (heterotrophic 

respiration) due to N fertilization has been reported for other cropping systems (Follett, 

2001, Mosier, et al., 2006).  

In the DAYCENT model, the potential decomposition rate is influenced by 

multiplicative functions of soil moisture and soil temperature. Microbial activity 

increases with increasing temperature which directly influences soil respiration 

(Franzluebbers, et al., 2001, Kirschbaum, 1995, Pietikainen, et al., 2005). Carbon  

dioxide emissions in 2011 were larger than those from 2010. Higher temperatures 
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Figure 3.6 Observed (black bar) and simulated (gray bar) annual CO2-C emissions under 

0 kg N ha-1 (upper panel) and 280 kg N ha-1 (lower panel) fertilization rates in 2010 and 

2011 

 

throughout 2011 may partially explain this difference. Mean growing season and annual 

temperatures in 2010 and 2011 were 27.71 0C vs. 28.43 0C and 20.72 0C vs. 22.07 0C, 

respectively. In addition, more frequent irrigation events in the severe drought year of 

2011 might also have contributed to higher CO2 fluxes. Even though total water input 

(precipitation plus irrigation) in the growing season was slightly lower in 2011 compared 

to that in 2010 (58.71 cm vs. 63.18 cm), single water input events greater than 5 cm were 

6 in 2011 compared to 2 in 2010, and annual water input amounts were 92.61 cm in 

2011 compared to 88.87 cm in 2010. A long-term study on the effects of irrigation on 

 CO2 emissions in soybean [Glycine max (L.) Merr.] production systems showed higher 
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growing season CO2 emissions under irrigated than under dryland management, 

especially during dry growing seasons (Smith and Brye, 2014). 

Based on favorable simulations of soil environmental factors and sorghum 

biomass yield, DAYCENT successfully reflected the daily CO2 fluxes and annual 

emissions in the different N fertilization treatments and growing seasons observed in our 

field trial. The highest CO2 fluxes were generally observed during the growing season, 

particularly after tillage, N fertilization, and precipitation/irrigation events. However, the 

model missed some high fluxes during growing seasons, in particular those after higher 

water input either by precipitation or irrigation. The model underestimation of those high 

fluxes and annual emissions might be the combined effect of not accounting for SOC 

decomposition at deeper depths and inadequate sensitivity for the effect of soil moisture 

on SOC decomposition rate. 

3.3.5 Nitrous Oxide (N2O) 

In both 2010 and 2011, daily N2O fluxes were mostly higher from the added N 

fertilizer treatment (Figure 3.7). Compared with the 2010 growing season, higher daily 

N2O fluxes occurred during the 2011 growing season regardless of N application 

treatment. 

Annual N2O emissions showed the same pattern as daily N2O fluxes, with N 

application exhibiting greater annual emissions in both years (Figure 3.8). This effect 

might be associated with enhanced microbial activity, nitrification, and C and N cycling 

due to the additional mineral N added. Annual N2O emissions were also higher in 2011 

than in 2010 for both fertilization rates. 
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Figure 3.7 Observed (point) and simulated (line) daily N2O-N fluxes under 0 kg N ha-1 

(upper panel) and 280 kg N ha-1 (lower panel) fertilization rates during growing and 

fallow seasons in 2010 and 2011. # represents fertilization, * represents irrigation, and $ 

represents harvest. Lines on the top horizontal lines of the graph represent precipitation 

and irrigations amounts 

 

Similar to the actual observations, lower daily fluxes and annual N2O emissions 

were produced by the model in the control as opposed to the fertilizer added treatment in 

both years (Figures 3.7, 3.8). Additionally, simulated results also showed higher N2O 

emission in 2011 with both N fertilization rates, which matched the observed tendency 

very well. Though model performance in simulating daily N2O fluxes was not as 

satisfactory as it was for daily CO2 fluxes due to several zero N2O flux values (r2 = 0.34, 

slope = 0.36, intercept = 6.86, RMSE = 41.98), DAYCENT accurately simulated annual  

N2O losses under different N application rates (r2 = 0.97, slope = 1.11, intercept = - 
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Figure 3.8 Observed (black bar) and simulated (gray bar) annual N2O-N emissions 

under 0 kg N ha-1 (upper panel) and 280 kg N ha-1 (lower panel) fertilization rates in 

2010 and 2011 

 

2888.60, RMSE = 2200.78) (Table 3.4). 

Increased N availability from fertilization often increases N2O emissions and has 

been widely observed (Pelster, et al., 2011, Plaza-Bonilla, et al., 2014, Snyder, et al., 

2009). Higher observed and simulated N2O daily fluxes and annual emissions with 

added N might be associated with greater SOC and heterotrophic activity. Since urea 

was the fertilizer source, the added urea N was first hydrolyzed to NH4
+ and then 

nitrified to NO3
-, with N2O being a potential byproduct of this conversion. Same as CO2, 

increased SOC decomposition facilitated by favorable temperature and moisture 

conditions in 2011 resulted in more mineralized N for higher N2O emissions compared 
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to 2010. 

Similar to CO2 simulations, the model was able to capture N2O emission pattern 

in different N fertilization treatments and its inter-annual variation, as well as flux 

patterns caused by field operations including tillage, N fertilization, and irrigation 

events, and intra-annual differences between growing seasons and fallows. Additionally, 

the model might underestimate high N2O fluxes and annual emissions due to 

insufficiently reflecting N mineralization from SOC decomposition deeper in the soil 

profile and under higher water input conditions. 

Generally, greater variation was observed in N2O flux measurements. Growing 

season fluxes were particularly variable, ranging from no detectable flux to a maximum 

of approximately 225 g N2O-N ha-1 day-1, while the maximum flux during fallow 

seasons only reached 13 g N2O-N ha-1 day-1 (Figure 3.7).  This range might be attributed 

to the rather complex mechanisms of N2O production from soil. Emissions of N2O from 

soils are most often a byproduct of nitrification or denitrification (Del Grosso, et al., 

2000, Parton, et al., 2001, Parton, et al., 1996). In DAYCENT, N gas flux from 

nitrification is assumed to be a function of soil NH4
+ concentration, soil water content, 

temperature, and pH. Denitrification is a function of soil NO3
− (e− acceptor) 

concentration, labile C (e− donor) availability, water-filled pore space (WFPS), and soil 

physical properties related to texture that influence gas diffusivity. Denitrification 

prevails under anaerobic conditions, commonly associated with excessively wet soils, 

although very high CO2 concentrations in microsites within the soil may be conducive to 

denitrification on a small scale. When WFPS in soil reaches more than 80%, 
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denitrification is anticipated to be the dominant N2O-producing process, while lower soil 

moisture levels would be more conducive to nitrification (Del Grosso, et al., 2011). 

Since the WFPS in our study only peaked near a maximum of 56% in 2010 and 62% in 

2011, we believe soil conditions were generally more conducive to nitrification being the 

dominant source of N2O. This conclusion also aligns with our observation of higher 

fluxes shortly following fertilizer N application and with a number of studies which 

reported nitrification as the dominant mechanism producing N2O, due to relatively low 

WFPS (Pelster, et al., 2011, Snyder, et al., 2009). The model also had a higher N2O 

portion from nitrification (81%) compared with that from denitrification, which also has 

been reported in other studies (Parton, et al., 2001). 

3.3.6 Model Projection 

After model verification, projections (2008-2050) with N rates ranging from 0 to 

350 kg ha-1 in 70 kg ha-1 increments were conducted. The results indicated that 

increasing N fertilization would increase aboveground biomass C, with projected 

aboveground biomass C yields being 307, 531, 646, 671, 678, and 682 g C m-2 for 0, 70, 

140, 210, 280, and 350 kg N ha-1, respectively. However, as expected, the N fertilizer 

productivity (biomass C divided by corresponding N fertilization rate) declined as N rate 

increased. All N fertilized treatments increased SOC, even though fluctuations existed 

over the course of the projection due to yearly weather variation (Figure 3.9). However, 

SOC content was potentially reduced when no N fertilizer was applied. When all GHG 

emissions (SOC change representing CO2 emission, N2O emission, and CH4 uptake) 

were combined to quantify the net GHG emission for each N treatment, net GHG 
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Figure 3.9 Projected SOC change under different N fertilization rates during 2008-2050 

 

emissions increased as N fertilization rate increased, mainly due to greater N2O 

emissions which exceeded the corresponding gain in SOC sequestration and soil CH4 

uptake (Table 3.5). 

The projection results indicated that increasing N fertilization would increase  

aboveground biomass C. Average aboveground biomass C yields were 307, 531, 646, 

671, 678, and 682 g m-2 when N rates increased from 0 to 350 kg N ha-1 in increments of 

70 kg ha-1. If the average C concentration in bioenergy sorghum (0.45 g C g-1 biomass) 

were used, then actual bioenergy sorghum dry matter yields ranged from 6.82 to 15.16 

Mg ha-1 over the N fertilization range. The projected results agreed with several previous  

field trial results. Hao, et al. (2014) reported photoperiod-sensitive sorghum yields 
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Table 3.5 Projected GHG emissions (2008-2050) at different N fertilization rates 

N rate (kg N ha-1) 

SOC  

change 

N2O 

emission 

CH4  

uptake 

Net GHG 

emission 

                            Unit (g C m-2) 

0 4.90 29.61 -1.50 33.00 

70 -9.59 67.87 -1.49 56.79 

140 -15.89 110.02 -1.48 92.65 

210 -17.04 140.17 -1.48 121.65 

280 -17.55 163.14 -1.48 144.11 

350 -17.81 184.40 -1.48 165.11 

Positive values mean C source, negative values represent C sink 

 

ranging from 12 to 18 Mg ha-1 planted near Amarillo, Texas with N rates of 0 to 344 kg 

ha-1. The higher yields were attributed to full irrigation in both years. When the study 

was conducted by the same group in 2009-2011 with an N rate of 252 kg ha-1, yields 

from 8 to 13 Mg ha-1 under dryland conditions were observed. Gill, et al. (2014) reported 

a broader range of biomass sorghum yield without irrigation in Texas, ranging from 4.3 

to 20.9 Mg ha-1 in 2009-2012. Nitrogen fertilizer productivity (biomass C divided by 

corresponding N fertilization rate) in our study declined as N rates increased, which was 

caused by non-proportional increases in yield as N fertilization rate increased. Field 

trials of N use efficiency conducted by Hao, et al. (2014) also found a similar pattern, 

with greater yield increase with lower N rates and stabilizing at higher rates. All added N 

treatments were projected to raise the SOC level, even though yearly fluctuations were 

observed. However, long-term SOC content was potentially depleted when no N 

fertilization was applied (Figure 3.9). In this portion of our study, all aboveground 

biomass except plant crowns was removed at harvest, which resulted in roots likely 

being the major C input into the production system. Root biomass input without N 
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fertilization apparently would not be sufficient to offset microbial decomposition 

according to the projected results. Chamberlain, et al. (2011) also found decreasing SOC 

stock without N fertilization and increasing SOC stocks at increasing N fertilization rates 

for a 30-year projection following the conversion of cotton or grass systems to 

switchgrass production. When all GHG emissions (SOC change representing CO2 

emission, N2O emission, and CH4 uptake) were combined to determine net GHG 

emissions, for all the N fertilized treatments, increasing net GHG emissions were 

observed as N fertilization rate increased, mainly attributed to higher N2O emissions 

which offset the C sequestered by SOM and soil CH4 uptake (Table 3.5). Similar results 

were observed in Colorado when conventional-till continuous corn was planted in 2002-

2004 with N fertilizer rates ranging from 0 to 224 kg N ha-1 (Mosier, et al., 2006). 

Nitrous oxide fluxes increased linearly with increasing N fertilizer rate each year and 

offset the SOC sequestration and CH4 uptake, thereby resulting in positive net GHG 

emissions and increased GWP. However, a corn–soybean field trial studying the 

interaction of N fertilization and tillage and a global scale DAYCENT model analysis of 

GHG emissions and mitigation strategies for corn, wheat (Triticum aestivum L.), and 

soybean systems demonstrated possible increased SOC storage and N2O reduction by 

combining no tillage with a nitrification inhibitor or lower N rate (Del Grosso, et al., 

2009, Pelster, et al., 2011). According to our model projections and other field trials or 

model projections, N fertilization between 140 and 210 kg N ha-1 may be optimal to 

maximize N use efficiency, sustain SOC content, and minimize net GHG emissions 

(Hao, et al., 2014, Pelster, et al., 2011). 
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3.4 Conclusions 

Compared with the 0 N control, N fertilization in both field trial and model 

simulations resulted in greater aboveground sorghum biomass C, SOC, and annual CO2 

and N2O emissions across the eight study years. Though the performance of the model in 

simulating aboveground biomass C was reasonably accurate, DAYCENT tended to 

underestimate crop yield when no N fertilization was applied. The model estimations of 

SOC were acceptable. However, simulated SOC variation caused by seasonal changes 

was smaller compared to field observations. DAYCENT also successfully reflected the 

daily GHG flux variation affected by fertilization treatments, other field operations, and 

seasonal changes. Although annual emissions were underestimated by the model, 

treatment effects and yearly variations were simulated fairly well for both CO2 and N2O 

emissions. The highest fluxes of CO2 and N2O were observed during the growing season 

and frequently followed tillage, N fertilization and/or precipitation or irrigation events. 

Addition of N fertilizer consistently increased GHG emissions each year of the study. 

Nitrogen fertilization was necessary for sustaining high yield and maintaining SOC, 

which will be vital to the feasibility and sustainability of the studied bioenergy cropping 

system. However, N fertilizer productivity decreased as N application rate increased, and 

potentially increased net GHG emissions also need attention. Our model projection 

results indicated that N fertilization between 140 and 210 kg N ha-1 may be optimal for 

maximizing N use efficiency and sustaining SOC content, while minimizing net GHG 

emissions. 
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CHAPTER IV 

LIFE CYCLE ANALYSIS OF NET GREENHOUSE GAS EMISSIONS FOR 

DIFFERENT BIOENERGY SORGHUM MANAGEMENT PRACTICES 

4.1 Introduction 

Bioenergy sorghum [Sorghum bicolor (L.) Moench.] is a second-generation 

bioenergy crop with high biomass yield potential and nitrogen (N) and water use 

efficiency (Hao, et al., 2014, Olson, et al., 2013, Rocateli, et al., 2012). Bioenergy 

sorghum will potentially offset greenhouse gas (GHG) emissions by converting 

atmospheric carbon dioxide (CO2) to crop biomass that may be used for bioethanol 

production to substitute for traditional fossil fuels. However, as an emerging hybrid crop 

to be used as a biofuel feedstock, bioenergy sorghum has received only limited research 

(Mullet, et al., 2014, Rooney, et al., 2007).  Bioenergy sorghum yield is greatly affected 

by field management practices such as residue management, N fertilization, and 

cultivation intensity, and its production efficiency and environmental effects are largely 

unknown.  

Evaluating the production efficiency and environmental effects of field 

management practices through separate measurements, such as yield, soil organic carbon 

(SOC), or GHG emissions, sometimes results in conflicting conclusions. For example, as 

the main yield-determining macronutrient, N addition is able to increase crop yield and 

SOC (Dou and Hons, 2006, Franzluebbers, et al., 1995, Powell and Hons, 1992). 

However, N fertilization is also typically one of the largest factors contributing to GHG 

emissions, especially nitrous oxide (N2O) (Snyder, et al., 2009). Evaluating individual 
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parameters may give ambiguous results when considering agricultural productivity and 

effects on the environment. Conservation tillage has also been championed as an 

important approach for reducing the rate of increase of atmospheric CO2 by decreasing  

crop residue and SOC decomposition (Follett, 2001). However, the benefits obtained 

with conservation tillage could potentially be counterbalanced by increased N2O 

emissions due to lower soil air diffusion caused by higher bulk density, and greater water 

soluble forms of carbon (C) in these soils (Aulakh, et al., 1984, Ball, et al., 1999, Plaza-

Bonilla, et al., 2014). Additionally, different from more traditional crops where only 

grain is removed, most aboveground biomass will be harvested with biofuel crops. Little 

information is available as to the amount of bioenergy sorghum yield that can be 

harvested for biofuel production without detrimental impacts on crop production, soil 

quality, and the environment (Wang, et al., 2017). Meanwhile, additional factors, such as 

energy to manufacture and operate farm machinery and produce inputs such as fertilizer 

and herbicide, also contribute to net GHG gain or loss during the process from sorghum 

production to bioethanol conversion.  

The objective of this study was to determine the effect of bioenergy sorghum 

production under different management practices on various C sinks and sources and net 

GHG emissions. The biogeochemical model DAYCENT was used to assess soil GHG 

fluxes, SOC change, and biomass yields for bioenergy sorghum. DAYCENT results 

were combined with estimates of fossil fuels used to provide farm inputs and operate 

agricultural machinery in order to calculate net GHG fluxes for the different practices 

considered. Net GHG fluxes represented by CO2 equivalent C (CO2e-C) were calculated 
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by life cycle analysis (LCA), a technique to assess environmental impacts associated 

with all the stages of a product’s life from raw material extraction through processing to 

disposal or recycling.  

Life cycle analysis can serve a critical role in the development of advanced 

biofuels by determining the C intensity of a new bioenergy crop system and by linking 

particular environmental impacts to certain elements in the production cycle. Life cycle 

analysis also highlights areas of uncertainty within the production cycle steps and can 

inform design decisions (Murphy and Kendall, 2015). Life cycle analysis has been used 

by many studies to quantify the GHG mitigation potential of bioenergy crop production 

systems using corn (Zea mays L.), soybean [Glycine max (L.) Merr.], sugarcane 

(Saccharum officinarum L.), alfalfa (Medicago sativa L.), hybrid poplar (Populus sp.), 

swithgrass (Panicum virgatum L.), and miscanthus (Miscanthus giganteus) (Adler, et al., 

2007, Meyer, et al., 2016, Wang, et al., 2012). However, there is little reported research 

on LCA of net GHG emissions in bioenergy sorghum production systems. Most previous 

studies analyzed the overall GHG mitigation potential of one or more bioenergy crops on 

a site or regional scale compared with fossil fuel uses (Cooper, et al., 2011, Zhao, et al., 

2016). Few, however, compared how differences in field operations impacted LCA, and 

no optimum field management practice was suggested. Additionally, most studies 

applied empirical models to estimate C sequestration and GHG emissions, which often 

overlooked the impacts of climate and soil properties (Daylan and Ciliz, 2016, Murphy 

and Kendall, 2015). Biogeochemical models, like DAYCENT, have been shown to be 

more accurate when characterizing C cycles and GHG fluxes because of their accounting 

https://en.wikipedia.org/wiki/Miscanthus_giganteus
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for temporal and spatial variations (Del Grosso, et al., 2005). In our study, a LCA 

including DAYCENT was used to evaluate the GHG mitigation potential of various 

bioenergy sorghum production systems and determine optimum field management 

practices. 

4.2 Materials and Methods 

4.2.1 Site Description 

Field studies associated with this research were established at the Texas A&M 

AgriLife Research Farm near College Station, Texas (30°32’15’’N, 96°25’37’’W) in 

2008 and 2009. The region has a mean annual temperature of 20°C and annual 

precipitation of 1017 mm. Soil at the site is classified as a Weswood silty clay loam 

(fine, mixed, thermic Udifluventic Ustochrept) consisting of 100, 560, and 340 g kg-1 of 

sand, silt and clay, respectively, in the top 15 cm, as well as a mean bulk density of 1.36 

Mg m-3 in the top 20 cm. The soil has a pH of 8.2 (1:2 soil/water) in the top 15 cm, and 

the field was in a cotton [Gossypium hirsutum (L.)] and corn rotation prior to this study. 

4.2.2 Experimental Design 

Modelling data were taken from two experiments: one study used a randomized 

complete block design (RCBD) with four replications to compare effects of N 

fertilization (0 vs. 280 kg N ha-1) and residue return (0% vs. 50% aboveground biomass 

return) under conventional tillage, and a second study utilized a completely randomized 

design (CRD) with five replications to compare the effects of tillage (conventional vs. 

reduced tillage) receiving 280 kg N ha-1 without residue return. The first study was 

conducted from 2008-2015 and the second was conducted from 2009-2015 adjacent to 
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the first experiment. Initial SOC samples were collected in 2008 and 2009 before the 

field trials were started and thereafter samples were taken each spring before sorghum 

was planted. The final soil samples were gathered in 2015 and no sorghum was planted 

in this year. All plots were 9.14 m long by 4.08 m wide, with four 1.02-m rows. The 

bioenergy sorghum variety, “4Ever Green”, used within the study was a photoperiod-

sensitive, one-cross hybrid with high biomass and low lodging potential (Walter Moss 

Seed Co, Waco, Texas, U.S.). Annual planting at a seeding rate of 160,000 seed ha-1 was 

scheduled to occur after March 15th each year with harvest occurring between August 

and November. Conventionally tilled plots were disked to a depth of 15-20 cm and 

bedded into rows after harvest and prior to planting, with additional inter-row cultivation 

in the spring. Plots under reduced tillage received only spring inter-row cultivation to 

maintain rows. Nitrogen as urea was applied in fertilized treatments in a subsurface band 

about 7.5 cm deep and approximately 15 cm from plant rows at the 4-leaf stage for 

bioenergy sorghum. Limited furrow irrigation was performed as needed to prevent 

severe water stress. Weeds were controlled by minimal application of herbicides. 

Biomass was harvested from the entire length of the middle two rows of each plot. After 

biomass yield weights were collected, all the aboveground biomass was removed from 

plots having the 0% residue return treatment. To physically simulate harvest that would 

return 50% of the sorghum crop residue, biomass harvested from the middle two rows 

was collected and evenly distributed across the area of the entire plot following removal 

of biomass from the two outside rows. Field operations, dates and irrigation amounts are 

included in Table 4.1.
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Table 4.1 Field operation dates in bioenergy sorghum production in College Station, Texas 

Operation 2008 2009 2010 2011 

Soil sampling 24th March 6th April 5th April 14th March 

Preplant cultivation 25th March 6th April 17th March 24th March 

Planting 26th March 7th April 13th April 25th March 

Inter-row cultivation 24th April 5th May 22nd May 5th May 

Fertilization 1st May 20th May 22nd May 5th May 

Irrigation 10th June (9 cm) 16th July (6 cm) 31st May (11 cm) 12th April (11 cm) 

  10th July (9 cm) 24th August (6 cm) - 9th May (9 cm) 

  - - - 14th July (11 cm) 

  - - - 4th August (11 cm) 

Harvest 14th October 5th November 7th October 1st September 

Bedding 15th October 6th November 12th October 5th September 

 
2012 2013 2014 2015 

Soil sampling 7th March 27th March 28th February 11th March 

Preplant cultivation 8th March 27th March 23rd March   

Planting 19th March 28th March 30th March   

Inter-row cultivation 19th May 21st May 11th May   

Fertilization 26th April  21st May 11th May   

Irrigation - 13th June (9 cm) 10th July (11 cm)   

  - 26th June (11 cm) -   

  - 10th July (9 cm) -   

  - 31st July (11 cm) -   

Harvest 13th August 3rd September 23rd September   

Bedding 20th August 5th September 26th September   
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4.2.3 Field Observations 

For both field experiments, biomass yield, biomass C concentrations and SOC 

were measured for all replications during all study years. Soil temperature, soil 

volumetric water content, and GHG emissions were measured in three replications of the 

first experiment in 2010 and 2011 (Storlien, et al., 2014).  

Total aboveground biomass yield was determined at harvest using a tractor-

mounted mechanical harvester equipped with a catch compartment and load cell. 

Moisture content of aboveground biomass was determined from an approximately 600-g 

subsample taken from 5 randomly sampled plants within each plot which were mulched 

with a commercial chipper/shredder into approximately 0.04-m by 0.04-m pieces. 

Weights of subsamples were determined before and following oven-drying at 60°C for 7 

d to determine moisture content. Oven-dried plant tissue samples were coarse ground in 

a large Wiley mill to pass a 1-mm sieve, then fine ground to pass a 0.5-mm sieve using a 

puck-and-ring mill in preparation for elemental C determination via combustion analysis 

with an Elementar Americas Inc., VarioMAX CN analyzer (Mt. Laurel, NJ). 

Aboveground biomass C was estimated by multiplying biomass dry weight by elemental 

C concentration. 

Composite soil samples from each experimental unit were formed from three, 4-

cm i.d. soil cores taken annually at depth increments of 0-5, 5-15, 15-30, 30-60, and 60-

90 cm. However, only SOC data at 0-20 cm depth were used to compare with 

DAYCENT output due to model constraints. Samples were oven-dried (105°C) for 7 d, 

weighed to determine bulk density, coarse ground with a flail grinder, and sieved to pass 
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1.75 mm. A subsample of each composite sample was finely ground with a puck-and-

ring mill and analyzed for organic C via combustion analysis as described previously. 

Soil organic C content for 0-20 cm was computed by accumulating SOC contents from 

0-5, 5-15, 15-20 cm using SOC concentrations and bulk densities from 0-5, 5-15, 15-30 

cm. 

Soil GHG (CO2, N2O) emissions were directly measured in the first experiment 

by integrating a Li-Cor 20-cm survey chamber (model 8100-103, Li-Cor Inc., Lincoln, 

NE) with an INNOVA 1412 Photoacoustic gas analyzer (Innova AirTech Instruments 

A/S, Denmark) (Storlien, et al., 2014). A PVC flux chamber soil collar (20-cm diameter) 

was installed near the middle of each plot to a depth of approximately 12 cm no less than 

24 h before the initial gas sampling for each growing or fallow season and remained in 

place throughout the entire phase. Soil gas flux measurements were performed 

approximately weekly through the growing season and less intensively during the fallow 

period. Measurements for year 1 (2010) occurred from May 26, 2010 through March 4, 

2011 and for year 2 (2011) from May 5, 2011 to March 1, 2012. 

Soil temperature and moisture data were collected during GHG sampling years 

(Storlien, et al., 2014). Soil temperature was measured hourly by type T thermocouples 

at 10-cm depth near gas sampling collars within each plot. Soil volumetric water content 

was determined every 6 hours by time domain reflectometry (TDR) at 15-cm depth in 

the vicinity of the temperature sensors. Both temperature and moisture data were 

collected within the field with a CR1000 data logger (Campbell Scientific, Inc., Logan, 

UT), with hourly data for each sensor aggregated into daily values. More detailed 
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observation and measurement information was included in previous publications 

(Storlien, et al., 2014, Wight, et al., 2012). 

4.2.4 Model Calibration, Validation, and Projection 

The DAYCENT model runs on a daily time step and model inputs can be divided 

into four categories: weather data, soil properties, crop characteristics, and land 

management. The model simulation requires initializing the model based on the native 

ecosystem type at the site and using the best available information about land 

management during agricultural use.  

Weather data, including daily maximum and minimum temperatures and daily 

precipitation from 1952 to 2015 used to drive site-scaled model simulations, was derived 

from the National Oceanic and Atmospheric Administration website 

(https://www.ncdc.noaa.gov/cdo-web/). Other weather statistics required were created by 

the file100 utility from the model.  

Properties including latitude and longitude of the site, soil sand, silt, and clay 

contents, bulk density, pH, and other important site specific parameters were obtained 

either from preliminary field measurements or created by the file100 utility from the 

model. 

Other than climate and soil data, the crop to be simulated (i.e. bioenergy 

sorghum) had a set of specific parameters representing its own characteristics. Carbon 

partitioning between shoots and roots, C:N ratio and lignin concentration in biomass of 

the crop compartments, and coefficients affecting plant germination, growth, senescence, 

and death were modified through our own measurements, published results, or default 

https://www.ncdc.noaa.gov/cdo-web/
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values before simulation (Olson, et al., 2012, Rocateli, et al., 2012, Rooney, et al., 2007). 

Important modified weather, soil, and crop parameters are included in Table 4.2. 

Before a simulation was initiated, historic and current field management 

information was collected and edited, including grazing and fire in native vegetation, 

planting, harvesting, tillage, N fertilization and irrigation of past and current cropping 

systems.  

The model started with a 5000-year equilibrium simulation to obtain the native 

vegetation SOC level, followed by a baseline simulation accompanied by agricultural 

initialization after the 1830’s with increasing fertilization and residue and less intensity 

tillage according to the land use change described by the Burleson county soil survey 

(https://www.nrcs.usda.gov/wps/portal/nrcs/surveylist/soils/survey). Given the planting 

history before our field experiment, a two-year cotton and corn rotation system was 

chosen to run the baseline simulation and default parameterizations for these two crops 

were adopted. Soil organic C contents under native vegetation and initial status before 

the study began were from published data and field observations (Potter and Derner, 

2006). Half the experimental data in chronological sequence for the measured bioenergy 

sorghum aboveground biomass C, SOC, GHG emissions, soil temperature and moisture 

were used for model calibration and corresponding data in the remaining half were used 

for validation. 

 Statistical analyses were completed using the PROC GLIMMIX procedure of 

SAS 9.3 (SAS Institute Inc, 2013). The data set was analyzed to test residue return, N 

fertilization, and tillage effects on aboveground biomass C yields, SOC, and annual
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Table 4.2 Key parameters modified in DAYCENT model for bioenergy sorghum study 

Parameter Definition Value Default 

DMPST Damping factor for calculating soil temperature by layer 0.005 0.003 

PMXTMP Effect of biomass on maximum surface temperature -0.0048 -0.0032 

PRDX(1) Coefficient for calculating potential production 0.8 0.5 

PPDF(1) Optimum temperature for production (℃) 35 30 

PPDF(2) Maximum temperature for production (℃) 50 45 

FRTC(2) Fraction of C allocated to roots in mature plants 0.3 0.1 

CKMRSPMX(2) Maximum fraction of juvenile live fine root C that goes to maintenance 

respiration for crops 1.0 0.5 

CKMRSPMX(3) Maximum fraction of mature live fine root C that goes to maintenance 

respiration for crops 1.0 0.5 

CGRESP(2) Maximum fraction of juvenile fine root live C that goes to growth 

respiration for crops 1.0 0.5 

CGRESP(3) Maximum fraction of mature fine root live C that goes to growth 

respiration for crops 1.0 0.5 
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GHG emissions. During analyses, residue return, N fertilization, and tillage were taken 

as fixed factors, and block and year as random factors. Mean separation was at P < 0.05 

level using Tukey’s test.  

Linear regression analyses were used to compare observed vs. modeled soil 

temperature, soil water content, aboveground biomass C, SOC, daily GHG fluxes, and 

annual GHG emissions, with coefficient of determinations (r2), slope, intercept, and root 

mean square error (RMSE) computed in calibration and validation processes, and over 

the whole duration (Table 4.3). At the same time, magnitude comparison of annual 

average values of observations and simulations was included in Table 4.4.  

After model calibration and validation, projection from 2008 to the end of this 

century (2099) was conducted using updated parameters assuming there was a tillage x 

fertilization x residue return experiment initiated in 2008 on typical farming land [all the 

combinations of N fertilization, residue return, and tillage with levels of 0 vs. 280 kg N 

ha-1 (N0 vs. N280), 0% vs. 50% aboveground biomass return (R0 vs. R50), and 

conventional till vs. reduced till (CT vs. RT), respectively]. Weather data used for 

projection from 2016 was a circulation of historical data from 1952-2015. Field 

management dates for projection from 2015 was an average of corresponding dates from 

2008-2015. According to SOC change characteristics, with most treatments showing 

relatively small SOC change after 30 years of simulation, all model outputs needed for  

LCA were calculated on an annual basis for three periods, 2008-2038, 2039-2099, and 

2008-2099, in order to assess short-term, long-term, and average impacts. 
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Table 4.3 Statistical tests between simulated and measured values of aboveground 

biomass C, SOC, daily CO2-C fluxes and N2O-N fluxes, and annual CO2-C and N2O-N 

emissions 

Measurements r2 Slope Intercept RMSE* 

Calibration 

Soil temperature 0.88 0.72 8.34 3.12 

Soil moisture 0.87 1.12 -0.01 0.03 

Aboveground biomass C 0.58 0.80 27.94 165.63 

SOC 0.67 0.75 639.95 130.46 

Daily CO2 0.53 0.43 1.08 2.63 

Daily N2O 0.73 0.55 -0.23 38.70 

Annual CO2 0.28 0.72 -22.36 347.81 

Annual N2O 0.93 0.80 -1529.00 3145.58 

Validation 

Soil temperature 0.91 0.78 6.61 3.64 

Soil moisture 0.73 0.88 0.02 0.04 

Aboveground biomass C 0.72 1.11 -36.66 118.92 

SOC 0.43 0.76 601.79 242.11 

Daily CO2 0.57 0.34 0.95 3.16 

Daily N2O 0.36 0.19 10.42 61.60 

Annual CO2 0.76 1.51 -822.88 312.93 

Annual N2O 0.92 1.35 -4084.60 1984.52 

Overall 

Soil temperature 0.90 0.76 7.17 3.40 

Soil moisture 0.80 1.01 0.01 0.03 

Aboveground biomass C 0.56 0.81 60.26 147.44 

SOC 0.51 0.75 639.20 145.64 

Daily CO2 0.53 0.38 1.03 2.91 

Daily N2O 0.51 0.35 6.48 51.51 

Annual CO2 0.49 1.08 -371.47 330.83 

Annual N2O 0.81 1.04 -2508.90 2629.92 

* RMSE indicates root mean square error 

 

4.2.5 Life Cycle Analysis (LCA) 

The protocol used by Adler, et al. (2007) for LCA of net GHG emissions in 

different bioenergy cropping treatments was followed in this study. Net GHG emissions 

were calculated as the total of C sinks (negative) and C sources (positive), where the  
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Table 4.4 Comparison of observed (Obs) and simulated (Sim) annual soil temperature, 

soil volumetric water content, aboveground biomass C, SOC, CO2-C, and N2O-N 

emissions among treatments from CRBD and RCD field trials 

Field data 

source 
Treatment 

Soil 

temperature 

Soil  

moisture 

Aboveground 

biomass C 

(oC) - (g m-2) 

Obs Sim Obs Sim Obs Sim 

RCBD 

CT-N0-R0 24.17 25.74 0.1122 0.1303 487 347 

CT-N0-R50 24.34 25.70 0.1226 0.1304 489 376 

CT-N250-R0 23.44 24.95 0.1135 0.1273 654 726 

CT-N250-R50 23.34 24.95 0.1256 0.1271 747 728 

        

CRD 
CT-N250-R0 - - - - 582 684 

RT-N250-R0 - - - - 589 682 

        
Field data 

source 
Treatment 

SOC CO2 N2O 

(g m-2) (g C m-2) (g N ha-1) 

Obs Sim Obs Sim Obs Sim 

RCBD 

CT-N0-R0 2433 2289 884 486 4597 2107 

CT-N0-R50 2511 2477 1027 596 5249 2510 

CT-N250-R0 2555 2555 1023 835 9636 7702 

CT-N250-R50 2742 2889 1187 1030 10878 9177 

        

CRD 
CT-N250-R0 2233 2288 - - - - 

RT-N250-R0 2377 2315 - - - - 

CT, RT, N0, N280, R0 and R50 represent conventional and reduced tillage, 0 and 280 kg 

N ha-1, and no or 50% biomass return, respectively 

 

sinks were (a) the amount of C released from fossil fuel combustion replaced by 

bioethanol, (b) the change in SOC and belowground biomass C (this can be negative or 

positive depending on specific field management practices), (c) the amount of C emitted 

from fossil fuels used in feedstock transport to biorefinery, conversion to bioethanol, and 

subsequent distribution (this can also be negative or positive depending on the size of the 

electricity credit from combustion of the coproduct lignin at the biorefinery during 
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production of ethanol from biomass), and (d) C from CH4 uptake by the soil; sources 

were (e) C from direct N2O emissions including nitrification and denitrification, (f) C 

from indirect N2O emissions including offsite denitrification of leached NO3 and 

volatilized N (NOX + NH3), (g) C emitted from manufacture of chemical inputs, and (h) 

C emission from fuel used by agricultural machinery for tillage, planting, fertilizer 

application, and harvesting. The ethanol yield for cellulosic biomass crops was 

determined by multiplying the harvested aboveground biomass by 90% of the theoretical 

ethanol yield from U.S. Department of Energy theoretical ethanol yield calculator and 

biomass feedstock composition and property database 

(https://www.afdc.energy.gov/fuels/ethanol_feedstocks.html), with ethanol yield being 

381 L Mg-1 dry matter as corn stover. The quantity of fossil fuel displaced by bioethanol 

was calculated from the product of bioethanol yield and the fuel economy ratio of fossil 

fuel to biofuel, which was 6.75 km L-1 ethanol divided by 10.3 km L-1 gasoline 

(Sheehan, et al., 2004). The quantity of GHGs from the life cycle of fossil fuel displaced 

by bioethanol was calculated from the product of the quantity of fossil fuel displaced by 

bioethanol (aforementioned) and the total C emission during the fossil fuel life cycle. 

Based on Sheehan, et al. (2004), approximately 671.3 g CO2e-C will be emitted per liter 

of gasoline consumed. Due to the simulated output unit being g C m-2, a coefficient 0.45 

was used to convert from biomass C to biomass yield, assuming 1 g C per 2.2 g dry 

matter (Hartman, et al., 2011). So sink (a) was calculated as harvested biomass 

C/0.45/1,000,000*90%*381*6.75/10.3*671.3, where 1,000,000 was yield unit 

conversion from g to Mg. Soil organic C change, sink (b), was collected from 

https://www.afdc.energy.gov/fuels/ethanol_feedstocks.html
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DAYCENT output. The conversion factor was calculated to be -135.2 g CO2e-C L-1 

ethanol produced from corn stover at the biorefinery, because various coproducts are 

also generated during the production of ethanol from biomass (Sheehan, et al., 2004). 

Coproducts such as lignin from biomass converted to ethanol were factored into the 

conversion factor for biomass and was the reason it was negative. The negative value 

results from an electricity credit at the conversion facility from combustion of the lignin 

fraction of biomass (Sheehan, et al., 2004). The lignin fraction of biomass was not 

converted to ethanol, but to electricity when combusted. Thus, sink (c) was calculated as 

harvested biomass C/0.45/1,000,000*90%*381*135.2. Methane uptake, sink (d), was 

determined from DAYCENT simulation, and converted to CO2e-C by assuming its 

global warming potential (GWP) is 23 times that of CO2 on a mass basis (IPCC 2001). 

Two ways in which N fertilizer contributes to GHG emissions, sources (e) and (f), were 

modeled by DAYCENT: direct N2O emissions from the soil (e) and indirect N2O 

emissions from offsite denitrification of NO3 and volatilized N that is deposited offsite 

and converted to N2O (f). The direct N2O emissions were from DAYCENT output. To 

calculate indirect N2O, DAYCENT output and IPCC methodology (IPCC, 2000) were 

combined. IPCC assumes that 2.5% of NO3 leached is eventually denitrified to N2O in 

water ways and that 1% of volatilized N (NOX + NH3) is deposited on soil and converted 

to N2O. Nitrous oxide emissions were converted to CO2e-C by assuming its GWP is 296 

times that of CO2 on a mass basis (IPCC, 2001). The CO2 emissions associated with the 

manufacture of chemical farm inputs (fertilizers, herbicides, insecticides), source (g), 

were from West and Marland (2002). Fuel usage by agricultural machinery, source (h), 
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was organized by Adler, et al. (2007) using agricultural machinery management data 

documented in the American Society of Agricultural Engineers (ASAE) machinery 

management standards (Table 4.5).  

4.3 Results and Discussion 

4.3.1 Model Performance 

Soil temperature and moisture data are major drivers of ecosystem processes in 

the DAYCENT model. Plant productivity, decomposition of dead plant material and 

SOC, nutrient uptake and leaching, and trace gas fluxes can only be modeled well on the 

premise of accurate simulation of soil water and temperature dynamics (Del Grosso, et 

al., 2001, Parton, et al., 1998). In the model output, sorghum biomass, SOC change, and 

CH4 uptake were used for C sinks in LCA, and direct and indirect N2O emissions were 

used for C sources in LCA. Thus, the modelling performance of all these measurements 

was based on how well the model simulated soil water and temperature. The model 

simulated soil temperature satisfactorily well, reflecting the temperature difference 

caused by residue return and N fertilization, with both observed and simulated results 

showing higher average soil temperature in treatments with lower fertilization and 

residue return, and lower average soil temperature in treatments with higher fertilization 

and residue return (Table 4.4). The model simulated soil moisture peaks caused by 

precipitation and irrigation events quite well (Chapters 2 and 3). However, simulated soil 

water differences among treatments were minute. This might be the reason the model 

underestimated biomass differences caused by the residue return treatment (Table 4.4).  

DAYCENT does not reflect the improvement of water holding capacity by soil 
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Table 4.5 Fossil-fuel energy requirements and CO2 emissions from agricultural 

machinery 

Operation 
Fuel usage  

(L ha-1) 

Energy  

(GJ ha-1) 

CO2 emissions  

(kg C ha-1) 

Tillage 5.12 0.20 4.34 

Planting 4.64 0.18 3.94 

Fertilization 1.58 0.06 1.34 

Harvesting 8.80 0.34 7.47 

 

incorporated litter, which could have been another reason why biomass produced in the  

50% residue return treatment was higher than that with 0% residue return, besides the 

higher nutrient level in the 50% residue return treatment. DAYCENT performed fairly 

well in simulating aboveground biomass C when enough N fertilization was applied 

(Chapters 2 and 3). However, the model tended to underestimate yield when N 

fertilization was insufficient (Table 4.4). Both observed and simulated results indicated 

higher SOC with higher N fertilization and residue return and lower SOC with lower 

fertilization and residue return (Table 4.4). However, the model was not sensitive 

enough in simulating yearly SOC changes, especially when severe drought existed 

(Chapters 2 and 3). The model performance in simulating GHG fluxes demonstrated a 

similar pattern as with aboveground biomass C, with better performance when sufficient 

N was applied and a less accurate fit when more N was required in the system (Chapters 

2 and 3). DAYCENT only simulates SOC at 0-20 cm depth, which neglects SOC 

mineralization and N availability in deeper soil layers and thus may underestimate crop 

yield and GHG fluxes when insufficient fertilizer N was applied. Overall, DAYCENT 

was able to simulate observations of soil temperature, soil water content, aboveground 
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biomass C, SOC, daily GHG fluxes, and annual GHG emissions reasonably well and 

captured variations caused by field management and seasonal changes (Table 4.3). Thus, 

model outputs were reliable for LCA of net GHG emissions under different field 

management practices when considering all C inputs and outputs from bioenergy 

sorghum production to bioethanol combustion. 

4.3.2 Greenhouse Gas (GHG) Sinks 

4.3.2.1 Displaced Fossil Fuel by Biofuel 

Bioenergy sorghum yield was mainly determined by N fertilization (Figure 4.1a). 

On average, aboveground biomass C produced was 740 g m-2 in treatments receiving 280 

kg N ha-1 and only 227 g m-2 without N application as predicted by the model. Though 

the model tended to underestimate yield when mineral N was insufficient as also shown 

in other studies (Parton and Rasmussen, 1994, Paustian, et al., 1992), dry matter yields 

were still in the range reported for similar field management practices (coefficient 0.45 

was used to represent the average C concentration in the sorghum biomass, resulting in 

5.04-16.44 Mg ha-1 dry matter yield) (Gill, et al., 2014, Hao, et al., 2014).  Under the 

same N fertilization rate, higher yields were indicated by the model with 50% residue 

return compared with 0% return, particularly where no N was applied. Similar results 

were also observed and modeled by Campbell, et al. (2014) who assessed the biomass 

production impact of corn stover management by assembling a series of data from 

published literature evaluating two sites in Rosemount and Morris, MN. Powell and 

Hons (1992) also found that sorghum stover removal adversely affected yields during a 

two-year study. Given the same N fertilization and residue return rates, reduced till  
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Figure 4.1 Annual aboveground biomass C (a) and displaced fossil fuel C (b) under 

different management practices during 2008-2038, 2039-2099, and 2008-2099. CT, RT, 

N0, N280, R0 and R50 represent conventional tillage, reduced tillage, no fertilizer N, 

280 kg ha-1 fertilizer N, no residue return and 50% residue return, respectively 

 

yielded slightly less biomass than conventional tillage (Fig. 4.1a), which might be 

caused by lower mineral N available for sorghum growth due to less intensive 

cultivation and slower mineralization in reduced tillage. 

As mentioned in the LCA protocol, biofuel production was directly and linearly 

related to crop yield because the same C composition and conversion efficiency were 

used for sorghum in different treatments in this study. Thus, differences in displaced 

fossil fuel as affected by management practices can be explained by variation in biomass 

yield between different treatments, except those with 50% residue return which 
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exhibited higher biomass yield yet had lower displaced fossil fuel since only 50% of the 

biomass was removed for conversion to bioethanol. As with biomass yield, displaced 

fossil fuel was impacted the most by N fertilization (Figure 4.1b). Treatments receiving 

280 kg N ha-1 had the highest displaced fossil fuel, irrespective of residue return and 

tillage. Under the same N fertilization level, 0% residue return was able to displace more 

fossil fuel than 50% return since it used all aboveground biomass for bioethanol 

production. Reduced till had slightly lower displaced fossil fuel compared with 

conventional till under the circumstance of the same N fertilization and residue return 

levels. 

For all C sinks, displaced fossil fuel was the largest GHG sink (Table 4.6). Since 

the composition between non-grain biomass sources is somewhat similar and ethanol 

yield differences per unit mass are generally small (Adler, et al., 2007, Rocateli, et al., 

2012, Wang, et al., 2012), biomass yield is usually the most important factor 

determining biofuel production. As expected, the crop with the highest biomass yield is 

generally the one with the highest biofuel yield. Thus, bioenergy sorghum has an 

advantage in this respect. Compared with grain sorghum, forage sorghum, and corn, 

higher biomass yields have been observed with bioenergy sorghum, which also 

performed better than switchgrass and miscanthus during the first two years of 

production (Gill, et al., 2014, Propheter, et al., 2010, Rocateli, et al., 2012). Based on the 

current genetic composition of bioenergy sorghum and associated agricultural 

production practices, only 25% of its yield potential is being achieved (Mullet, et al., 

2014). Thus, bioenergy sorghum is a promising crop for biofuel production in the future. 



 

82 

 

 

Table 4.6 Carbon sinks under different management practices during 2008-2038, 2039-

2099, and 2008-2099. CT, RT, N0, N280, R0 and R50 represent conventional tillage, 

reduced tillage, no fertilizer N, 280 kg ha-1 fertilizer N, no residue return and 50% 

residue return, respectively 

Treatment Duration 

C sinks (g CO2e-C m-2 year-1) 

Displaced 

fossil fuel 

Feedstock 

conversion 

SOC 

change 

CH4 

uptake 

CT-N0-R0 

2008-2038 -92.64 -28.47 13.27 -1.48 

2039-2099 -80.59 -24.77 5.31 -1.47 

2008-2099 -84.65 -26.02 7.95 -1.47 

  
    

CT-N0-R50 

2008-2038 -58.21 -17.89 -5.22 -1.47 

2039-2099 -57.59 -17.70 3.64 -1.46 

2008-2099 -57.80 -17.76 0.33 -1.46 

  
    

CT-N280-R0 

2008-2038 -238.01 -73.15 -16.22 -1.45 

2039-2099 -232.97 -71.60 1.49 -1.44 

2008-2099 -234.67 -72.12 -4.65 -1.44 

  
    

CT-N280-R50 

2008-2038 -120.14 -36.92 -43.78 -1.45 

2039-2099 -117.55 -36.13 -0.86 -1.44 

2008-2099 -118.42 -36.39 -15.75 -1.44 

  
    

RT-N0-R0 

2008-2038 -91.57 -28.14 10.35 -1.49 

2039-2099 -80.67 -24.79 4.62 -1.48 

2008-2099 -84.34 -25.92 6.47 -1.48 

  
    

RT-N0-R50 

2008-2038 -57.71 -17.74 -8.39 -1.47 

2039-2099 -57.95 -17.81 3.17 -1.46 

2008-2099 -57.87 -17.79 -1.21 -1.46 

  
    

RT-N280-R0 

2008-2038 -237.78 -73.07 -21.72 -1.46 

2039-2099 -232.67 -71.50 0.78 -1.44 

2008-2099 -234.39 -72.03 -7.01 -1.45 

  
    

RT-N280-R50 

2008-2038 -121.99 -37.49 -48.01 -1.41 

2039-2099 -119.56 -36.74 -0.63 -1.39 

2008-2099 -120.38 -36.99 -16.94 -1.40 
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Nitrogen fertilization was a major contributor to high biomass production, as 

demonstrated by higher average aboveground biomass C in 280 kg N ha-1 treatments 

regardless of residue return rate and tillage practice (Figure 4.1a). Since only 50% of the 

aboveground biomass was used for bioethanol production in treatments with 50% 

residue return, higher fossil fuel replacement was observed with 0% residue return when 

N fertilization and tillage practices were fixed (Figure 4.1b). According to the displaced 

fossil fuel pattern affected by these management practices, high N fertilization and low 

residue return rate seemed to be most favorable for bioethanol production, while the 

effect of tillage appeared to be minimal. 

4.3.2.2 Soil Organic Carbon (SOC) Sequestration 

Changes in SOC were variable and dependent on treatment (Figure 4.2a). All 

treatments exhibited increased SOC for the first two years after the study initiation, but 

treatments without added N and no residue return declined with time after that. 

Treatments receiving no N, but 50% residue return had elevated SOC levels compared to 

no N and no residue return, but then also declined with time. Treatments with N but no 

residue return had much greater SOC than the similar treatment without N, but the 

concentration stabilized after approximately 30 years. Greatest SOC was observed with 

added N and 50% residue return, with values increasing very slightly with time, but 

again generally stabilizing after 25-30 years. This prediction was consistent with the 

inference drawn by Lal (2004) that soil sink capacity will be filled in 20 to 50 years if 

recommended best management practices are conducted. Reduced tillage typically 

resulted in greater SOC compared to conventional, especially where N was added. Soil 
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Figure 4.2 Projected SOC content at 0-20 cm under different management practices in 

2008-2099 (a) and annual SOC change at 0-20 cm under different management practices 

during 2008-2038, 2009-2099, and 2008-2099 (b). As a sink, negative values in (b) 

indicate sequestration. CT, RT, N0, N280, R0 and R50 represent conventional tillage, 

reduced tillage, no fertilizer N, 280 kg ha-1 fertilizer N, no residue return and 50% 

residue return, respectively 
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organic C increase was mainly attributed to N fertilization, followed by residue return 

and reduced tillage, respectively. Nitrogen fertilization has been reported to result in 

higher total and aggregate-associated SOC levels over time in different cropping systems 

(Dou and Hons, 2006, Malhi and Lemke, 2007), mainly being attributed to higher yields 

in fertilized treatments. Higher total and active organic C pools as well as improved soil 

aggregation were also found with residue return in various cropping systems (Malhi and 

Lemke, 2007, Osborne, et al., 2014, Saffigna, et al., 1989). In contrast, SOC and 

available nutrients were significantly decreased when all stover was removed in both 

grain and forage sorghum production systems (Powell and Hons, 1991). Declines of 

SOC were also simulated when residues were removed from 14 residue removal 

experiments within temperate climatic areas of Canada and the Midwestern U.S. (Kim, 

et al., 2009). Numerous studies have shown that conservation tillage systems, especially 

no-tillage, increased both total SOC and labile SOC as well as soil aggregation in 

comparison with conventional tillage (Dou and Hons, 2006, Dou, et al., 2008, Wright 

and Hons, 2005). Reported model results also have shown that dryland soils that were 

depleted of C due to conventional till can store additional C upon conversion to no till 

(Del Grosso, et al., 2002).  

Of all C sinks, SOC sequestration was the second largest sink. Treatments 

without N fertilization, however, were at most risk of losing SOC unless using residue 

return and reduced tillage practices to partially compensate for low C input and high 

tillage disturbance (Figure 4.2b). The change in SOC and belowground biomass C (root 

biomass) will approach zero with time as soil C levels reach equilibrium for a given 



 

86 

 

 

quantity of C inputs and C losses from decomposition (Paustian, et al., 2000). However, 

even though changes in soil C will approach zero, some cropping systems will still have 

higher long-term SOC storage due to higher inputs and/or reduced decomposition. 

According to Figure 4.2, treatments with N fertilization appeared to better sustain SOC, 

even with 100% aboveground biomass removal and conventional tillage. 

4.3.2.3 Methane (CH4) Uptake 

In DAYCENT, CH4 oxidation is a function of soil water content, temperature, 

porosity, and field capacity. Soil water content and physical properties are the primary 

controls on CH4 uptake, and the potential for soil temperature to affect CH4 uptake rate 

increases as soils becomes less limited by gas diffusivity (Del Grosso, et al., 2000). In 

our study, soil water content differences among treatments were minimal, and higher soil 

temperatures were indicated in treatments with lower N fertilization and residue return 

rates, causing slightly higher CH4 uptake in these treatments (Figure 4.3). Overall, 

however, annual CH4 uptake was similar among different management practices, 

ranging from around 1.43 to 1.5 g C m-2, with results being comparable with other 

studies for upland crops (Adler, et al., 2007, Del Grosso, et al., 2009).  

4.3.3 Greenhouse Gas (GHG) Sources 

4.3.3.1 Nitrous Oxide (N2O) Emissions 

As expected, both direct and indirect N2O emissions were higher in treatments 

with 280 kg N ha-1 than those with none (Figure 4.4a, b), irrespective of residue return 

and tillage intensity. A similar pattern of total N2O emissions influenced by field 

management practices can also be found in other field and modelling studies. Fertilizer- 
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Figure 4.3 Annual soil CH4 uptake under different management practices during 2008-

2038, 2039-2099, and 2008-2099. CT, RT, N0, N280, R0 and R50 represent 

conventional tillage, reduced tillage, no fertilizer N, 280 kg ha-1 fertilizer N, no residue 

return and 50% residue return, respectively 

 

induced N2O emissions account for about 33% of the estimated total N2O emitted from 

cropland in North America (Snyder, et al., 2009), and N2O emissions from agriculture 

generally increase with increasing application of N fertilizer (Malhi and Lemke, 2007, 

Mosier, et al., 2006, Pelster, et al., 2011). Higher total N2O emissions resulted from 

higher N fertilization rates in both conventional crop systems and bioenergy crop 

systems when DAYCENT was used for the simulations (Chamberlain, et al., 2011, Del 

Grosso, et al., 2009). In addition, higher total N2O emissions were also indicated by the 

model in our treatments with 50% residue return (Figure 4.4a, b). Finally, higher total  
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Figure 4.4 Annual direct (a) and indirect (b) soil N2O emissions under different 

management practices during 2008-2038, 2039-2099, and 2008-2099. CT, RT, N0, 

N280, R0 and R50 represent conventional tillage, reduced tillage, no fertilizer N, 280 kg 

ha-1 fertilizer N, no residue return and 50% residue return, respectively 

 

N2O emissions were also observed for conventional compared with reduced till.  It has 

often been observed that N2O emissions increase with conversion of conventional tillage 

land to no-till. However, Six, et al. (2004) found that while N2O emissions were higher 

the first 10 years after conversion to no-till from conventional tillage, after 20 years after 

no-till adoption, N2O emissions were higher in conventional tillage systems as was 

observed in this study. Our simulations were for almost a century and estimating higher 

N2O emissions with conventional tillage would be consistent with what has been  

observed in other studies (Six, et al., 2004). Less N2O emissions were also indicated  
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after converting to no till from conventional till in a 100-year simulation of corn 

production in the U.S. Corn Belt  (Kim, et al., 2009). 

Indirect N2O emissions from NO3 leaching and volatilization, like direct soil N2O 

emissions, varied the same way across treatments as a function of N inputs from 

fertilizer and other sources (Figure 4.4b). This result was because other factors that 

influence N losses (soil texture, weather, etc.) were considered constant for this study.  

As the biggest contributor of C sources, N2O emissions offset quite a portion of 

the C which could have been sequestered by fossil fuel replacement, especially in the 

treatments with N fertilization and 50% residue return (Table 4.7). According to the N2O 

emission patterns among different treatments, total emissions were most determined by 

N fertilization, followed by residue return, and tillage, respectively. Although treatments 

releasing as little gaseous N emissions as possible would be favorable, biomass yield and 

SOC should also be taken into account when selecting the best management practice 

combinations. 

4.3.3.2 Nitrogen (N) Fertilization and Machinery 

Only treatments receiving 280 kg N ha-1 had N fertilizer manufacture as a C 

source. The CO2 emissions associated with the manufacture of chemical farm inputs 

(fertilizers, limestone, herbicides, insecticides) were taken from West and Marland 

(2002). The CO2 emissions associated with the manufacture of chemical farm inputs 

were the same, with 24.01 g C m-2 for all fertilized treatments. 

Agricultural machinery used in our study included those used for tillage, 

planting, fertilization and herbicide application, and harvesting operations. Fuel used by 
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Table 4.7 Carbon sources under different management practices during 2008-2038, 

2039-2099, and 2008-2099. CT, RT, N0, N280, R0 and R50 represent conventional 

tillage, reduced tillage, no fertilizer N, 280 kg ha-1 fertilizer N, no residue return and 

50% residue return, respectively 

Treatment Duration 

C sources (g CO2e-C m-2 year-1) 

Direct N2O 

emission 

Indirect N2O 

emission 

N Fertilizer 

manufacture 

Field 

operations 

CT-N0-R0 

2008-2060 27.30 4.46 0.00 2.44 

2061-2099 22.69 3.39 0.00 2.44 

2008-2099 24.24 3.75 0.00 2.44 

  
    

CT-N0-R50 

2008-2060 42.79 4.99 0.00 2.44 

2061-2099 42.38 4.53 0.00 2.44 

2008-2099 42.52 4.69 0.00 2.44 

  
    

CT-N280-R0 

2008-2060 152.75 42.92 24.01 2.58 

2061-2099 157.03 47.60 24.01 2.58 

2008-2099 155.59 46.02 24.01 2.58 

  
    

CT-N280-R50 

2008-2060 228.40 54.49 24.01 2.58 

2061-2099 240.22 65.79 24.01 2.58 

2008-2099 236.23 61.98 24.01 2.58 

  
    

RT-N0-R0 

2008-2060 25.81 4.08 0.00 1.58 

2061-2099 21.99 3.19 0.00 1.58 

2008-2099 23.28 3.49 0.00 1.58 

  
    

RT-N0-R50 

2008-2060 37.38 4.88 0.00 1.58 

2061-2099 38.36 4.64 0.00 1.58 

2008-2099 38.03 4.72 0.00 1.58 

  
    

RT-N280-R0 

2008-2060 141.38 41.88 24.01 1.71 

2061-2099 148.16 47.74 24.01 1.71 

2008-2099 145.88 45.77 24.01 1.71 

  
    

RT-N280-R50 

2008-2060 187.47 55.53 24.01 1.71 

2061-2099 204.87 67.54 24.01 1.71 

2008-2099 199.01 63.49 24.01 1.71 
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agricultural machinery for these same operations were determined by using agricultural  

machinery management data documented in the ASAE machinery management 

standards and compiled by Adler, et al. (2007). The CO2 emissions associated with each 

operation were 0.43, 0.39, 0.13, and 0.75 g C m-2, respectively (Table 4.5). The 

machinery use difference was caused by differences in fertilization and tillage in various 

treatments, with two diskings before planting and after harvest, and one in-season 

cultivation for conventional tillage, while reduced tillage only received in-season 

cultivation. Treatments with both 280 kg N ha-1 and conventional tillage had the highest 

machinery emissions, and treatments with neither had the lowest emissions. 

 The C emissions from farm operations were similar to the compilation 

conducted by Lal (2004). The CO2 costs of chemical inputs were mainly due to fertilizer 

production, followed by limestone, herbicides, and insecticides (West and Marland, 

2002). Nitrogen fertilizer production was responsible for most of the CO2 costs from 

fertilizer input for all studied cropping systems reported by Adler, et al. (2007), and it 

ranked in second place for GHG sources in our study. Kim, et al. (2009) also found the 

primary source of total fossil energy associated with crop biomass production was N 

fertilizer production and application. Thus, reducing synthetic N use is important for 

decreasing GHG emissions, especially N2O, from cropping systems through use of more 

efficient N-use strategies (Del Grosso, et al., 2009). 

4.3.4 Net Greenhouse gas (GHG) Emissions 

The LCA integrated all GHG sinks and sources evaluated in this study, and 

considered how using biofuels would reduce net GHG emissions compared to continued 
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fossil fuel use. Three sources of GHG emissions were quantified in this study, soil N2O 

emissions, CO2 emissions from manufacture of fertilizer, and CO2 from fuel used by 

agricultural machinery for tillage, planting, fertilizer application, and harvesting. Three 

sinks for GHG emissions were also evaluated, the amount of C released from fossil fuel 

combustion replaced by ethanol production and conversion, the change in SOC and 

belowground biomass C, and C from CH4 uptake by the soil. All sources and sinks were 

ordered in their contribution to C losses or gains. 

Projections to the end of this century were conducted to undertake a LCA of net 

GHG emissions under eight management practices [all the combinations of N 

fertilization, residue return, and tillage with levels of 0 vs. 280 kg N ha-1 (N0 vs. N280), 

0% vs. 50% aboveground biomass return (R0 vs. R50), and conventional vs. reduced till 

(CT vs. RT), respectively]. Since SOC reached equilibrium after approximately 30 years 

according to simulation, all model outputs needed for LCA were calculated on an annual 

basis for three periods, 2008-2038, 2039-2099, and 2008-2099, in order to assess short-

term, long-term, and average impacts (Tables 4.6 and Table 4.7). 

For both short-term and long-term scenarios, all treatments were promising for 

mitigating GHG emissions, except treatments with both 280 kg N ha-1 and 50% residue 

return, mainly due to higher N2O emissions and lower displaced fossil fuel C emissions 

(Figure 4.5). Biofuels have been considered to have a near-zero net emission of GHGs 

since CO2 released from bioethanol combustion will be reabsorbed through 

photosynthesis and fixed in the plant and soil again. Additionally, coproducts such as 

lignin and protein can also reduce net GHG emissions, making these system sinks  
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Figure 4.5 Annual net GHG emission under different management practices during 

2008-2038, 2039-2099, and 2008-2099. CT, RT, N0, N280, R0 and R50 represent 

conventional tillage, reduced tillage, no fertilizer N, 280 kg ha-1 fertilizer N, no residue 

return and 50% residue return, respectively 

 

(Adler, et al., 2007, Murphy and Kendall, 2015). When compared with the life-cycle 

GHG emissions of the displaced fossil fuel, our analysis also showed biofuels had net 

GHG benefits. Similar results were shown in other studies on LCA of net GHG for other 

bioenergy crops. Meyer, et al. (2016) did a LCA of GHG for seven biomass feedstocks 

[pine (Pinus sp.), tulip poplar (Liriodendron tulipifera), hybrid poplar, switchgrass, corn 

stover, and two blends consisting of either equal weights of pine, tulip poplar, and 

switchgrass, or two thirds of pine and one third of hybrid poplar] and found that the 

estimated GHG reduction compared to petroleum fuel was 60% or greater in all cases 
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(27.8-38.7 g CO2e MJ-1 compared to 93.08 g CO2e MJ-1 for fossil fuel). A study 

conducted by Murphy and Kendall (2015) for corn stover and switchgrass as feedstocks 

indicated that most of the conservative scenarios estimated GHG emissions of 

approximately 45-60 g CO2 equivalent per MJ of delivered fuel without credit for 

coproducts, and 20-30 g CO2e MJ-1 when coproducts were considered, reducing GHG 

emissions by 36%-79%. However, our study indicated a range of from 103% GHG 

reduction to 144% GHG addition compared to fossil fuel combustion depending on 

different field management practices, indicating the significance of selecting appropriate 

management practices for biofuel feedstock production. Adler, et al. (2007) used the 

same protocol to assess GHG fluxes for corn, soybean, alfalfa, hybrid poplar, reed 

canarygrass (Phalaris arundinacea L.), and switchgrass as bioenergy crops, and found 

that compared with the life cycle of fossil fuel, ethanol and biodiesel from corn reduced 

GHG emissions by ~40%, reed canarygrass by ~85%, and switchgrass and hybrid poplar 

by ~115%. The difference in Adler’s and our study compared with the other two studies 

was that in our study DAYCENT was used to account for SOC sequestration and CH4 

uptake, both C sinks in the LCA, while the other two excluded these portions. The 

discrepancy between our study and Adler’s was that Adler’s work focused on LCAs for 

different bioenergy crops, while our work focused only on bioenergy sorghum but with 

different management scenarios in order to determine the optimum combination. It’s 

also worth noting that Adler’s study ran the model for only 30 years and the GHG 

reduction percentage aforementioned was based on a long-term estimation which 

assumed SOC was at equilibrium. The short term simulation actually indicated a ~155% 
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GHG reduction for switchgrass and hybrid poplar. Other factors such as differences in 

biomass yield and fertilization rate also contributed to differences in GHG reduction 

rate. The assumptive unlimited N fertilizer application in our study (28.3 g N m-2) was 

much higher than the amount used in Adler’s study, in which N fertilizer application 

rates were 12.7 g N m-2 for corn, 5.6 g N m-2 for switchgrass and 15.4 g N m-2 for reed 

canarygrass with half applied in the spring and the other after harvest. This might be the 

reason for much higher N2O emissions in our study, which offset some benefit of C 

mitigation potential. 

Overall, all our studied management combinations were able to sequester 

atmospheric C, except the treatment with 280 kg N ha-1 and 50% residue return under 

both conventional and reduced tillage. Taking into considerations all C sinks and 

sources, 280 kg N ha-1 with 0% residue return under reduced tillage produced the highest 

biomass yield for biofuel production, sustained adequate SOC, and sequestered the most 

atmospheric C among the eight management treatments, resulting in a net GHG emission 

reduction of approximately 150 g CO2e-C m-2 yr-1 in the short term and 80 g CO2e-C m-2 

yr-1 in the long term. (Figure 4.5). 

It has been demonstrated in previous studies that cellulosic crops had higher 

biofuel yield and lower GHG emissions per unit land area than grain crops (Adler, et al., 

2007, Daylan and Ciliz, 2016, Murphy and Kendall, 2015). Cellulosic crops also had a 

greater reduction in GHG emissions per unit biofuel produced than grain crops, resulting 

in greater reductions in GHG emissions associated with energy use compared with fossil 

fuels. Currently, only a portion of total biomass C is convertible to ethanol due to 
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technical obstacles. In an ethanol conversion facility for corn stover, for example, only 

about one third of the biomass C is converted to ethanol, with the remainder of biomass 

C being emitted as combustion exhaust and fermentation-generated CO2 (Sheehan, et al., 

2004). Capture of CO2 from fuel production and energy generation using biomass would 

further increase the capacity of bioenergy crops for reducing net GHG emissions as 

refining techniques advance and optimum field management practices are adopted. 

4.4 Conclusions 

The DAYCENT model was able to simulate soil temperature, soil moisture, 

aboveground biomass C yield, SOC, and GHG emissions under different residue return 

rates, N fertilization rates, and tillage practices, enabling a reliable LCA of net GHG 

emissions under different field management practices in bioenergy sorghum production. 

Of all C sinks, displaced fossil fuel was the largest GHG sink, followed by SOC 

sequestration and CH4 oxidation. For all C sources, N2O emissions were the largest GHG 

source, followed by energy requirements for N fertilizer manufacture and field 

machinery operations. All management combinations were able to sequester atmospheric 

C, except the treatment receiving 280 kg N ha-1 fertilization and 50% residue return 

under both conventional and reduced tillage. Zero residue return with N fertilization 

under reduced tillage was able to yield highest biomass for biofuel production, sustain 

adequate SOC, and sequester the most atmospheric C among the eight management 

practice combinations studied. 

 



 

97 

 

 

CHAPTER V 

BEST SOIL AND WATER MANAGEMENT PRACTICE FOR BIOENERGY 

SORGHUM PRODUCTION IN TEXAS 

5.1 Introduction 

Biofuel production must increase to 36 billion gallons by the year 2022 in order 

to meet U.S. government mandates, with the majority of this fuel to be produced from 

advanced or second-generation biofuel feedstocks after 2015 (U.S. Congress, 2007). 

Despite this mandate, the current production of biofuels from advanced feedstocks, 

including crop residue from annual crops such as sorghum [Sorghum bicolor (L.) 

Moench.] and corn (Zea mays L.), has been very low (Williams, et al., 2016). As 2022 

draws closer, the urgency of establishing a lignocellulosic biofuel industry becomes 

more pressing. Many questions still remain as to the viability of the industry, including 

farm-level biomass production. 

Bioenergy sorghum is a second generation biofuel crop with attributes of high 

biomass yield potential, drought tolerance and genetic tractability. As a C4 crop 

originally from Africa, it has potential to be successfully grown in the southern U.S. 

Texas is geographically located in the south central part of the U.S. and leads the nation 

in agricultural land and associated commodity production. Sorghum is well-adapted to 

Texas, and its ability to yield consistently in harsh environments makes it popular with 

growers. However, inappropriate crop management may occur due to the lack of 

information of the production efficiency and environmental effects, such as greenhouse 

gas (GHG) emissions, of this emerging crop, with merely 14 years since the 
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development of hybrid sorghum for bioenergy at Texas A&M University in 2003 

(Rooney, et al., 2007). Meanwhile, Texas has a wide diversity of climate and soils due to 

its large geographical area, second in size among the U.S. states. Thus, it is meaningful 

to explore suitable production areas and field management practices for bioenergy 

sorghum production in Texas, in order to maximize the crop productivity, effectively 

conserve and utilize soil and water resources, and mitigate GHG emissions. 

A few field studies on the effects of management practices on bioenergy 

sorghum production have been conducted in several places in Texas and other southern 

states (Gill, et al., 2014, Hao, et al., 2014, Rocateli, et al., 2012). However, due to 

environmental factor differences such as climate and soil properties, as well as field 

management differences, results from these studies are varied and hard to compare. 

Additionally, most studies only lasted for 2-3 years and yield was measured in finite 

treatments due to labor and funding limitations (Olson, et al., 2012, Propheter, et al., 

2010). One of the most systematic studies was conducted near College Station, Texas 

(Shahandeh, et al., 2016, Storlien, et al., 2014, Wight, et al., 2012). This study measured 

soil temperature, soil moisture, aboveground sorghum biomass and biomass carbon (C) 

and nutrient concentrations, soil organic carbon (SOC) and soil nutrient contents, and 

soil GHG fluxes including carbon dioxide (CO2) and nitrogen oxide (N2O) over 8 years. 

However, even 8 years of field data are still not enough to predict very long-term effects 

and generalize regional patterns. Process-based biogeochemical models can be used to 

predict the overall performance of long-term bioenergy sorghum production in different 

regions and under more complex field management combinations. These models 



 

99 

 

 

potentially can provide regional estimations of planting feasibility and best soil and 

water management practices for bioenergy sorghum in different geographical areas.  

DAYCENT, the daily time step version of the CENTURY biogeochemical model 

(Parton, et al., 1987, Parton, et al., 1988), simulates C and nitrogen (N) dynamics among 

atmosphere, vegetation, and soil (Del Grosso, et al., 2001, Parton, et al., 1998). Key 

submodels include plant production, organic matter decomposition, soil water and 

temperature flows, and trace gas fluxes. Plant production is a function of genetic 

potential, phenology, nutrient availability, water and temperature stress, and solar 

radiation. Decomposition of litter and SOC and nutrient mineralization are functions of 

substrate availability and quality, and water and temperature stress. Nitrogen gas fluxes 

from nitrification and denitrification are driven by soil ammonium (NH4
+) and nitrate 

(NO3
-) concentrations, water content, temperature, texture, and labile C availability. 

Major model inputs are daily weather data, soil properties, best available information 

about native vegetation and historical agricultural use, as well as current land 

management and crop characteristics. Major model outputs are soil water and 

temperature by soil layers, aboveground and belowground crop biomass, soil organic C 

and N to 20-cm depth, soil mineral N by soil layer, as well as soil CO2 and N gas 

emissions. The DAYCENT model has been extensively tested at different resolutions 

and has been shown to be effective in simulating C and N dynamics in different 

ecosystems (Del Grosso, et al., 2009, Parton, et al., 2015, Zhang, et al., 2013). 

The objective of this study was to conduct simulations of bioenergy sorghum 

production for each county in Texas under 45 residue return, N fertilization, and tillage 
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management combinations under 3 different irrigation regimes. The process-based 

biogeochemical model DAYCENT integrated GIS-based county level representative 

weather, soil, and growing season information and predicted long-term sorghum biomass 

yield, SOC change, and soil N2O emission potential in order to determine the suitability 

of each county for bioenergy sorghum production and to assess best management 

practices. 

5.2 Materials and Methods 

County level simulations were carried out for the state of Texas to predict C 

dynamics and GHG emissions following the conversion of conventional crops to 

bioenergy sorghum in the period of 2016-2050. The focus of simulations for all Texas 

counties during this period included: (1) annual aboveground biomass C of bioenergy 

sorghum under 45 management practices including all combinations of residue return 

(0%, 25%, and 50% of aboveground biomass return represented by RR0, RR25, and 

RR50, respectively), N fertilization (0 kg N ha-1, 75 kg N ha-1, 150 kg N ha-1, 225 kg N 

ha-1, and 300 kg N ha-1 represented by N0, N75, N150, N225, and N300, respectively), 

and tillage (conventional tillage, reduced tillage, and no till represented by CT, RT, and 

NT, respectively) under 3 different irrigation regimes (no irrigation, irrigation to field 

capacity when soil water content drops to wilting point, and irrigation to field capacity 

when soil water content drops to 50% available soil water content represented by non-

irrigation, limited-irrigation, and full-irrigation, respectively); (2) annual SOC change in 

respective cropping treatments, and (3) annual net GHG budget for each cropping  

system, including crop/soil system CO2 flux and direct N2O emissions calculated both 
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with and without GHG mitigation by harvested biomass conversion.  

Simulations were divided into three major steps: 1) acquisition and formatting of 

model input data required to run DAYCENT, 2) modelling of native vegetation and 

conventional cropping systems to adjust SOC close to the initial value when projection 

was started, and 3) simulations of bioenergy sorghum cropping systems under different 

management practice and irrigation regime combinations. 

5.2.1 Input data collection 

Weather, soil properties, representative native vegetation and conventional crop 

data were collected in each county to initialize SOC to the closest to current value when 

each prediction was initiated. Plow-out time of native vegetation and progressive field 

management practices for conventional crop agricultural systems were estimated. 

Meteorological data required to drive DAYCENT were acquired from DAYMET 

(https://daymet.ornl.gov/), a dataset that provides gridded estimates of daily time step, 1-

km2 spatial resolution weather data. DAYMET daily weather data are available for the 

continental U.S. for 1980 through the latest calendar year. In this study DAYMET data 

in 1982-2016 were selected to represent future weather data in 2016-2050. Soil data 

were acquired from the web soil survey 

(https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm). Representative native 

vegetation was identified from Major Land Resource Areas Dataset maps from the 

Geospatial Data Gateway (https://gdg.sc.egov.usda.gov/) and described in Land 

Resource Regions and Major Land Resource Areas of the U.S., the Caribbean, and the 

Pacific Basin (USDA NRCS, 2006). Representative conventional crops were identified 

https://daymet.ornl.gov/
https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm
https://gdg.sc.egov.usda.gov/
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from Cropland Data Layer Dataset maps from the Geospatial Data Gateway 

(https://gdg.sc.egov.usda.gov/). The latitude and longitude of the center of the largest 

cluster of cropped land in each county were identified based on National Land Cover 

Dataset maps from the Geospatial Data Gateway (https://gdg.sc.egov.usda.gov/). For 

each county, soil data, climate data, the highest percentage of land use in major land 

resource areas, and crops planted in 2011-2015 of the area weighted geographic center 

of cropped land were used to drive DAYCENT. County-specific soil property data were 

acquired including percent sand, silt, and clay, bulk density, and pH. DAYMET climate 

data from the 1-km2 cell that was closest to the geographic center were collected 

including daily maximum and minimum temperatures and precipitation. Approximate 

plow-out year of native vegetation and consequent management practices were derived 

from archived county soil surveys (http://www.nrcs.usda.gov/

wps/portal/nrcs/soilsurvey/soils/survey/state/). Initial SOC data at the 0-20 cm depth 

when projections were started were obtained from Soil Survey Geographic Database 

(SSURGO) (https://gdg.sc.egov.usda.gov/). 

5.2.2 Native vegetation and historical agriculture simulation 

Two sets of simulations were performed for each county: one for native 

vegetation (year 1 to around 1850) and the other to represent conventional crop 

agricultural practices (around 1851 to 2015). Collected information and historical data 

including weather, soil, native vegetation, and conventional cropping systems were 

summarized into a set of 254 * 2 schedule files representing native vegetation and a full 

range of agricultural practices for conventional crops in each county. Simulation of 

https://gdg.sc.egov.usda.gov/
https://gdg.sc.egov.usda.gov/
http://www.nrcs.usda.gov/wps/portal/nrcs/soilsurvey/soils/survey/state/
http://www.nrcs.usda.gov/wps/portal/nrcs/soilsurvey/soils/survey/state/
https://gdg.sc.egov.usda.gov/
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about 1850 years of native vegetation was needed to ensure that SOM pools in the model 

were at steady state. Simulations of initial plow-out and conventional crop agricultural 

practices assumed conventional to less intensive tillage, gradual increases in synthetic 

fertilizer application and residue return, and progressively higher yielding crop cultivars, 

in order to approach as closes as possible to current SOC values before projections were 

started. 

DAYCENT was calibrated by fitting final SOC values in conventional crop 

simulations to the SOC values collected from SSURGO, in order to develop initial soil 

fertility parameters for model projections. Discrepancies between modeled and observed 

SOC values at this stage provided more information about historical changes in crop 

varieties, fertilization and residue return levels, and tillage practices for each county, 

indicating how to adjust the model’s parameters and inputs to improve the accuracy of 

schedule files at each point in time. For example, if actual SOC was greater than 

simulated SOC for a given county, more fertilizer (within historically realistic limits) 

could be applied, or a higher yielding variety could be chosen (Hartman, et al., 2011).  

5.2.3 Projection of bioenergy sorghum production 

The DAYCENT model was used to estimate bioenergy sorghum yields, SOC 

levels, and N2O emissions for each county for 45 different management practice 

combinations under three irrigation regimes. Five N fertilization levels (N0, N75, N150, 

N225, and N300), three levels of residue return (RR0, RR25, and RR50), three tillage 

levels (CT, RT, and NT), as well as three irrigation regimes (non-irrigation, limited-

irrigation, and full-irrigation) were assembled into 135 different scenarios (5*3*3*3) for 
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analysis for bioenergy sorghum production in each one of 254 counties. The model was 

repeatedly run 34290 times (135*254) by programming using C language. Model 

parameters were adopted from the calibration and validation process by utilizing field 

aboveground biomass C, SOC, and GHG data under different N fertilization, residue 

return, and tillage practices for bioenergy sorghum production in 2008-2015 that were 

collected at the Texas A&M AgriLife Research Farm near College Station (Shahandeh, 

et al., 2016, Storlien, et al., 2014, Wight, et al., 2012). Key parameters are included in 

Table 5.1, and statistics about model performance in our verified simulations are 

included in Table 5.2. 

According to our earlier work on life cycle analysis (LCA) of net GHG emissions 

in bioenergy sorghum production systems, major C sinks and sources were selected for 

county net GHG emission calculations. Net GHG budgets were calculated by accounting 

for crop/soil system CO2 flux, direct N2O emissions, and with or without C emissions 

replaced by harvested biomass conversion. It was assumed that net change in system C 

was due to the sequestration of CO2 by plants and the release of CO2 from heterotrophic 

respiration. Thus, crop/soil system CO2 flux was calculated through system C change in 

the soil including SOC and residual C. 

DAYCENT model outputs included system plant and soil C amounts in g C m-2 

and N2O flux in g N2O-N m-2. The units of these two variables were converted to CO2-C 

equivalents so they could be added together to compute net GHG emissions. It was 

assumed that a kilogram of N2O has 298 times the 100 year horizon global warming 

potential (GWP) of a kilogram of CO2 (Forster, et al., 2007). As to C emissions replaced 
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Table 5.1 Selected key parameters modified in DAYCENT model for bioenergy sorghum study 

Parameter Definition Value Default 

DMPST Damping factor for calculating soil temperature by layer 0.005 0.003 

PMXTMP Effect of biomass on maximum surface temperature -0.0048 -0.0032 

PRDX(1) Coefficient for calculating potential production 0.8 0.5 

PPDF(1) Optimum temperature for production (oC) 35 30 

PPDF(2) Maximum temperature for production (oC) 50 45 

FRTC(2) Fraction of C allocated to roots in mature plants 0.3 0.1 

CKMRSPMX(2) Maximum fraction of juvenile live fine root C that goes to 

maintenance respiration for crops 1.0 0.5 

CKMRSPMX(3) Maximum fraction of mature live fine root C that goes to 

maintenance respiration for crops 1.0 0.5 

CGRESP(2) Maximum fraction of juvenile fine root live C that goes to growth 

respiration for crops 1.0 0.5 

CGRESP(3) Maximum fraction of mature fine root live C that goes to growth 

respiration for crops 1.0 0.5 
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Table 5.2 Statistical tests between simulated and measured values of soil temperature, 

soil water content, aboveground biomass C, SOC, daily CO2-C fluxes, daily N2O-N 

fluxes, annual CO2-C, and annual N2O-N emissions for bioenergy sorghum study 

Measurements r2 Slope Intercept RMSE* 

Calibration 

Soil temperature 0.88 0.72 8.34 3.12 

Soil moisture 0.87 1.12 -0.01 0.03 

Aboveground biomass C 0.58 0.80 27.94 165.63 

SOC 0.67 0.75 639.95 130.46 

Daily CO2 0.53 0.43 1.08 2.63 

Daily N2O 0.73 0.55 -0.23 38.70 

Annual CO2 0.28 0.72 -22.36 347.81 

Annual N2O 0.93 0.80 -1529.00 3145.58 

Validation 

Soil temperature 0.91 0.78 6.61 3.64 

Soil moisture 0.73 0.88 0.02 0.04 

Aboveground biomass C 0.72 1.11 -36.66 118.92 

SOC 0.43 0.76 601.79 242.11 

Daily CO2 0.57 0.34 0.95 3.16 

Daily N2O 0.36 0.19 10.42 61.60 

Annual CO2 0.76 1.51 -822.88 312.93 

Annual N2O 0.92 1.35 -4084.60 1984.52 

Overall 

Soil temperature 0.90 0.76 7.17 3.40 

Soil moisture 0.80 1.01 0.01 0.03 

Aboveground biomass C 0.56 0.81 60.26 147.44 

SOC 0.51 0.75 639.20 145.64 

Daily CO2 0.53 0.38 1.03 2.91 

Daily N2O 0.51 0.35 6.48 51.51 

Annual CO2 0.49 1.08 -371.47 330.83 

Annual N2O 0.81 1.04 -2508.90 2629.92 

* RMSE indicates root mean square error 

 

by harvested biomass conversion, the protocol used by Adler, et al. (2007) was adopted, 

which was calculated using harvested biomass 

C/0.45/1,000,000*90%*381*6.75/10.3*671.3, where 0.45 was used to convert from C to 

yield, assuming 1 g C per 2.2 g dry matter (Hartman, et al., 2011), 1,000,000 was yield 
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unit conversion from g to Mg, 90% was harvested biomass use ratio, 381 was theoretical 

ethanol yield per Mg of dry matter as corn stover, 6.75 and 10.3 were fuel economy 

ratios of fossil fuel to biofuel, which was 6.75 km L-1 ethanol divided by 10.3 km L-1 

gasoline (Sheehan, et al., 2004), and 671.3 was CO2e-C emission per liter of gasoline 

consumed. 

5.3 Results and Discussion 

5.3.1 Treatment Differences 

Results showed higher irrigation increased biomass C yield, SOC, and N2O 

emissions, with limited irrigation seeming to have advantages over non-irrigation and 

full-irrigation mainly due to its significant increase in sorghum yield and SOC compared 

to dryland and lower N2O and only slightly lower yield compared to full-irrigation 

(Figure 5.1). Limited irrigation was shown to be the most effective irrigation strategy for 

bioenergy sorghum yield by Hao, et al. (2014) in a three-year study in the Texas High 

Plains. Biomass yields in their study ranged from 15 Mg ha-1 to 23 Mg ha-1, 11 Mg ha-1 

to 18 Mg ha-1, and 8 Mg ha-1 to 13 Mg ha-1 at full and limited irrigation, and under 

dryland, respectively. Our simulations indicated average yields for full, limited, and non-

irrigation were 14, 12, and 7 Mg ha-1. Reasons why our data were at the lower ends of 

their ranges might be that averages in our study were taken from all management 

practices and counties. Low fertilization treatments and counties not suitable for 

bioenergy sorghum production lowered average yields compared with yields under 

adequate fertilization in their study which was located in a traditional high fertility 

production area of the High Plains. Another two-year field trial conducted in Alabama  
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Figure 5.1 Annual aboveground biomass C (a), SOC change (b), and N2O emission (c) 

under different residue return, N fertilization, and tillage intensity under three irrigation 

systems in 2016-2050 with bioenergy sorghum. RR, N, CT, RT, and NT represent the 

percentage of biomass returned, the amounts of fertilizer N added in kg ha-1, 

conventional tillage, reduced tillage, and no-till, respectively 

 

also demonstrated higher sorghum biomass with irrigation compared with dryland 

(Rocateli, et al., 2012).  

The model also indicated that SOC increased as irrigation increased (Figure 

5.1b). However, the rate of increase was not as high as that demonstrated for yield. One 

reason might be that increased yield from higher irrigation may have been more quickly 

decomposed under more favorable soil water conditions with greater irrigation. 

Irrigation increased biomass C assimilation, which often translates to more crop residues 

returned to the soil, including both aboveground dead material and root systems left after 
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harvest (Wilhelm, et al., 2004). On the other hand, more belowground C allocation as a 

microbial energy source and more favorable soil moisture may have facilitated microbial 

decomposition, causing C loss as CO2. A long-term study on the effects of irrigation on 

CO2 emissions in soybean [Glycine max (L.) Merr.] production systems showed higher 

growing season CO2 emissions under irrigated than under dryland management, 

especially during dry growing seasons (Smith and Brye, 2014). In the DAYCENT 

model, the potential decomposition rate is influenced by multiplicative functions of soil 

moisture and soil temperature. Microbial activity increases up to a point with increasing 

soil water content, which directly influences soil respiration (Franzluebbers, et al., 

2001). 

Higher N2O emission with greater irrigation might be attributed to more 

beneficial soil water conditions for either nitrification or denitrification. Emissions of 

N2O from cropped soils are most often a byproduct of nitrification or denitrification (Del 

Grosso, et al., 2000, Parton, et al., 2001, Parton, et al., 1996). In DAYCENT, N gas flux 

from nitrification is assumed to be a function of soil NH4
+ concentration, soil water 

content, temperature, and pH. Denitrification is a function of soil NO3
− (e− acceptor) 

concentration, labile C (e− donor) availability, water-filled pore space (WFPS), and soil 

physical properties related to texture that influence gas diffusivity. Denitrification 

prevails under anaerobic conditions, commonly associated with excessively wet soils, 

although very high CO2 concentrations in microsites within the soil may be conducive to 

denitrification on a small scale. When WFPS in soil reaches more than 80%, 

denitrification is anticipated to be the dominant N2O-producing process, while lower soil 
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moisture levels would be more conducive to nitrification (Del Grosso, et al., 2011). In 

either case, increased soil water content could accelerate N gas fluxes. 

Within an irrigation level, higher residue return and N fertilization increased all 

the selected indices (Figure 5.1a, b, c). Crop residues serve as important sources of SOC 

and various nutrients, protect topsoil from erosion, and modify soil water and 

temperature, thus offering potentially higher crop production (Wilhelm, et al., 1986). 

Research has shown that excessive biomass removal in forage and grain sorghum 

production systems decreased subsequent biomass yield (Powell and Hons, 1992). 

Additionally, agricultural residues favor SOC through increased soil aggregation, which 

further improves soil structure, increases soil water holding capacity, and improves soil 

aeration as well (Wilhelm, et al., 2004). Higher total and active organic C pools, as well 

as improved soil aggregation, were found at higher residue return rates in various 

cropping systems (Malhi and Lemke, 2007, Osborne, et al., 2014, Saffigna, et al., 1989). 

In contrast, SOC and nutrients were significantly decreased when all stover was removed 

in grain and forage sorghum production systems (Powell and Hons, 1991). As indicated 

by our simulations, residue return may also potentially increase soil microbial activity 

and GHG emissions (Saffigna, et al., 1989). Generally, CO2 and N2O were increased 

with residue returned because of enhanced microbial activity, nutrient cycling, and 

nitrification/denitrification (Huang, et al., 2004, Jin, et al., 2014, Saffigna, et al., 1989),  

Nitrogen fertilization has a vital impact on C and nutrient cycling. As the main 

yield-determining macronutrient, N fertilizer is able to increase the production of various 

crops (Malhi and Lemke, 2007, Nyakatawa and Reddy, 2000, Sainju, et al., 2006). 
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Nitrogen fertilization increased SOC (Figure 5.1b), which may result mainly from 

increased net primary productivity (NPP). Nitrogen fertilization has been reported to 

result in higher total and aggregate-associated SOC levels over time in different 

cropping systems (Dou and Hons, 2006, Malhi and Lemke, 2007). However, N 

fertilization is also typically one of the largest factors contributing to GHG emissions, 

especially N2O (Figure 5.1c). N2O emissions from agriculture generally increase with 

increasing application of N fertilizers (Malhi and Lemke, 2007, Mosier, et al., 2006, 

Pelster, et al., 2011) and the positive role of N fertilization in facilitating production and 

sequestering C may be offset by N2O emissions (Snyder, et al., 2009).  

Lower tillage intensity lowered yield slightly, but significantly increased SOC 

and reduced N2O emissions, which has also been demonstrated by other studies. Tillage 

destroys macroaggregates, exposing previously sequestered organic C to microbial 

activity. Numerous studies have shown that conservation tillage systems, especially NT, 

increased both total SOC and labile SOC as well as soil aggregation in comparison with 

conventional tillage (Dou and Hons, 2006, Dou, et al., 2008, Wright and Hons, 2005). 

Use of conservation tillage practices has been claimed as one of the most important 

approaches to reducing the rate of increase of atmospheric CO2 by decreasing 

disturbance and decomposition of organic C in the soil (Follett, 2001). Additionally, 

parallel or lower N2O emissions were observed in some cases in short-term NT systems 

(Malhi and Lemke, 2007, Pelster, et al., 2011). Six, et al. (2004) and Plaza-Bonilla, et al. 

(2014) suggested that N2O emissions could be reduced by long-term NT, possibly due to 

an improvement of soil structure. This indication was in agreement with the meta-
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analysis conducted by van Kessel, et al. (2013). Our simulations showed the yield trend 

being reduced tillage with the highest yield, followed by conventional tillage and no till. 

This trend was not true for all cases, but depended on whether increased water holding 

capacity and retained mineral N by more residue left on soil surface under reduced 

tillage or no-till dominated crop growth. Increased soil moisture content with lower 

tillage intensity has been reported to increase seed germination and root growth, thus 

improving crop production (Nyakatawa and Reddy, 2000, Plaza-Bonilla, et al., 2014, 

Triplett, et al., 1996). However, litter left on the soil surface with reduced or no till could 

be decomposed by microorganisms and the subsequent mineralized N might either be 

utilized by crops, gasified or leached. According to our simulation design, it seemed 

tillage during the growing season was the most effective way to increase yield by 

releasing more residue N compared to no till and holding more soil water compared to 

conventional tillage. 

5.3.2 Regional Distribution 

For arable land in each county, potential yield was higher in eastern compared to 

western counties under dryland management mainly due to precipitation patterns in 

Texas (Figure 5.2a). Precipitation in Texas varies widely, generally increasing from west 

(arid) to east (humid). Water stress controls on primary production in the conterminous 

U.S. were evaluated in the biogeochemical model Biome-BGC and by the remote 

sensing-based model MOD17 by Mu, et al. (2007). Results showed that gross primary 

production (GPP) and leaf area index (LAI) decreased from east to west as water stress 

increased, which was the same pattern as indicated in our simulations. Differences were 



 

113 

 

 

Figure 5.2 Annual aboveground biomass C (a), SOC change (b), N2O emission (c), and 

irrigation amount per unit area (d) under different residue return, N fertilization, and 

tillage intensity under three irrigation systems in 2016-2050 with bioenergy sorghum 

 

eliminated as irrigation level increased. However, more irrigation was acquired to 

achieve the same yield target in western compared to eastern Texas, mainly due to the 

greater water stress in western portions of Texas (Figure 5.2a).  

Soil organic C change didn’t show the same patterns as yield and N2O (Figure 

5.2b). Instead of responding to the west to east precipitation pattern, SOC change was 

more related to basic soil properties, such as texture, pH, and fertility. On one hand, 

organic C input might be decreased from the southeast to the northwest because of lower 

annual temperature and precipitation. On the other hand, however, satisfactory 

environmental factors for crop growth also favor microbial activity, which can offset the 
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C gain from additional crop litter. The long-term interaction of both created the pattern 

that we obtained from field investigations and model simulations. Growing season 

irrigation overall had a rather limited effect on long-term SOC change, indicating that 

annual temperature and fundamental soil properties likely had the greatest impact on 

SOC equilibrium. Irrigation in cm ha-1 to reach a certain yield goal increased from east 

to west due to declining annual precipitation (Figure 5.2d) 

When arable land area in each county was accounted for, county-level yield, 

SOC sequestration, and N2O emissions were concentrated in plain and prairie areas such 

as the High Plains, Rolling Plains, Rio Grande Plains, Blackland Prairie, and Coast 

Prairie (Figure 5.3a, b, c). Correspondingly, total irrigation amounts in these areas were 

also higher than those without much arable land (Figure 5.3d). Several of these areas are 

also classified as arid or semi-arid, again increasing total irrigation needed to achieve a 

target yield on a county basis. Arable land distribution is a result of a multiple-factor 

integration including climate, soil, geology, and landscape. Generally, areas with a 

considerable amount of arable land are those with flat or nearly level surfaces which 

encourages irrigation and mechanization without much erosion problem. At the same 

time, these areas are often located on fertile soils with some access to irrigation water. 

For example, groundwater from the Ogallala aquifer is the sole source of irrigation water 

in the Texas High Plains, while the Rio Grande Plains and Gulf Coast Prairie rely 

heavily on surface water (Wagner, 2012). Lark, et al. (2015) tracked crop-specific 

expansion pathways across the conterminous U.S. in 2008-2012 and the indicated 

potential biofuel crop conversion areas in Texas were highly consistent with areas with a 
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Figure 5.3 Annual aboveground biomass C (a), SOC change (b), N2O emission (c), and 

irrigation amount per county (d) under different residue return, N fertilization, and 

tillage intensity under three irrigation systems in 2016-2050 

 

high percentage of arable land. Additionally, as irrigation increased, corresponding 

higher yield, SOC change, and N2O emissions occurred as have been discussed in 

previous sections. 

5.3.3 Net greenhouse gas (GHG) Emissions 

When determining net GHG emission (positive) or mitigation (negative), all 

studied irrigation levels were able to mitigate GHG emissions at the field level if best 

management practices were selected (minimum sum of SOC change and N2O emission 

based on the prerequisite of increased SOC compared to initial year) without taking into 

account C emission replaced by harvested biomass conversion (Figure 5.4a). This 
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screening criteria favored a combination of 50% residue return, no-till, and 75 kg N ha-1 

fertilization in most cases. However, lower mitigation potential was indicated with 

higher irrigation, which was attributed to increased N2O outweighing barely increased 

SOC sequestration. In addition, average yield in some areas might not be high enough to 

make the planting bioenergy sorghum feasible. When C emission replaced by harvested 

biomass conversion was considered (Figure 5.4b), however, a treatment combination of 

0% residue return, no-till, and 150 kg N ha-1 fertilization was more favored. Higher 

biomass yield was attained by applying this combination and increased GHG mitigation 

potential with irrigation was demonstrated (Figure 5.4b). As a result, 0% residue return, 

no-till, and 150 kg N ha-1 fertilization under limited irrigation might be the best overall 

consideration for optimum management of bioenergy sorghum production.  

When accounting for arable land area in each county, net GHG emissions were 

again concentrated in areas with the most arable land, no matter if C emissions replaced 

by harvested biomass conversion were counted or not (Figure 5.5a, b). According to the 

simulation results comparing treatments, effects of irrigation were the most significant 

on yield, followed by N2O, and then SOC change. Higher net GHG mitigation potential 

may exist when higher irrigation intensity is applied when accounting for C emissions 

substituted for by more harvested biomass conversion for biofuel production, while the 

trend was the opposite on a field level when only SOC and N2O were considered. 

Predictably, higher GHG mitigation potential will be achieved when biofuel conversion 

efficiency is improved. 
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Figure 5.4 Annual net GHG emissions and irrigation amounts when accounting for C 

mitigation with harvested biomass conversion (global level) and without (field level) per 

unit area under best residue return, N fertilization, and tillage intensity combinations 

under three irrigation systems in 2016-2050 with bioenergy sorghum 

 

5.3.4 Uncertainty Analysis 

According to the model calibration and validation in our field trial, there were 

several shortcomings where the model may not capture the outputs satisfactorily. First, 

the model does not include a mechanism for soil water holding capacity increase by 

incorporating litter. This deficiency might affect yield differences among different 

residue return levels, especially when the returned residue would be transferred to  

subsoil through tillage practices (Wang, et al., 2017). Second, the model’s sensitivity for 

the effect of soil moisture content on SOC decomposition may not match well enough 
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Figure 5.5 Annual net GHG emissions and irrigation amounts when accounting for C 

mitigation with harvested biomass conversion (global level) and without (field level) per 

county under best residue return, N fertilization, and tillage intensity combinations under 

three irrigation systems in 2016-2050 with bioenergy sorghum 

 

what actually occurred in the field, possibly resulting in too conservative seasonal SOC 

change. It has been shown by other studies that SOC change produced by the model was 

smaller compared to observations (Campbell, et al., 2014, Paustian, et al., 1992). Third, 

DAYCENT does not have SOC distribution throughout the soil profile, only to 20-cm 

depth. This near surface effect would potentially overlook SOC decomposition from 

deeper in the soil profile, which may supply mineral N for plant growth and also release 

GHGs. This effect could be especially important under insufficient N fertilization and 

intensive water input either through precipitation or irrigation, particularly when the 
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simulation bias could be potentially larger if the decomposition effect of soil moisture on 

SOC were taken into account. Additionally, other field factors would also affect actual 

field measurements which were not included in the model, such as pest infestation, soil 

compaction, etc. 

Other than the potential model mechanism shortcomings, there were also other 

factors that may decrease the model’s accuracy. One would be field data collection, 

especially for GHG emissions such as N2O. Like many other studies, N2O fluxes used 

for model verification in our study were sporadic and variable. Additionally, N2O flux 

was determined weekly during growing seasons, but less frequently during fallow 

seasons due to labor, funding, and time shortages. The complexity of N gas fluxes and 

difficulty of data collection could involuntarily affect model verification. A second 

factor would be the regional data collection, especially for soil properties. Different than 

site simulation, regional simulation needs resolution and representative data selection. 

Soil properties may vary spatially from the representative point we selected for each 

county. Precipitation amount and distribution could also vary from the selected point, 

especially in summer. However, county level simulations should give a general pattern 

and an overall evaluation of the effects of conversion from conventional crops to 

bioenergy sorghum on biomass yield, soil C dynamics and GHG emissions. 

5.4 Conclusions 

Statewide county level simulations to study the effects of different field 

management practices and irrigation levels on bioenergy sorghum production showed 

that higher irrigation increased yield, SOC, and N2O emissions, with limited irrigation 
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appearing to have advantages over non-irrigation and full-irrigation. Within an irrigation 

level, higher biomass return and N fertilization increased yield, SOC, and N2O 

emissions. Lower tillage intensity increased SOC and reduced N2O emission, while the 

yield trend was reduced tillage having the highest yield, followed by conventional tillage 

and no till. For the arable land in each county, potential yield and N2O emissions were 

higher in eastern compared to western Texas under non-irrigation, but these differences 

were eliminated as irrigation level increased. Soil organic C didn’t show the same 

pattern as yield and N2O. When accounting for arable land area in each county, higher 

yield, SOC sequestration, and N2O emissions were concentrated in plain and prairie 

areas when irrigation was adequate. For net GHG emission, the treatment combination 

of 50% residue return, no-till, and 75 kg N ha-1 fertilization was generally lowest when 

not taking into account C emission replaced by harvested biomass conversion. However, 

average yield with this treatment might not be high enough to make bioenergy sorghum 

production feasible. A treatment combination of 0% residue return, no-till, and 150 kg N 

ha-1 had greater GHG mitigation potential when C emission replaced by harvested 

biomass conversion was considered. Higher yield was attained with this treatment and 

irrigation, increasing the positive effect on GHG mitigation potential. As a result, 0% 

residue return, no-till, and 150 kg N ha-1 fertilization under limited irrigation might be 

the best combination for optimum management of bioenergy sorghum production. 
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CHAPTER VI 

SUMMARY 

The DAYCENT model simulated soil temperature satisfactorily well, reflecting 

the temperature difference caused by residue return and N fertilization, with both 

observed and simulated results showing higher average soil temperature in treatments 

with lower N fertilization and residue return, and lower average soil temperature in 

treatments with higher N fertilization and residue return. The model simulated soil 

moisture peaks caused by precipitation and irrigation events quite well. However, 

simulated soil water differences among treatments were small. DAYCENT does not 

reflect the improvement of water holding capacity by soil incorporated plant litter, which 

could have been another reason why biomass produced in the 50% residue return 

treatment was higher than that with 0% residue return, besides the higher nutrient level 

in the 50% residue return treatment. DAYCENT performed fairly well in simulating 

aboveground biomass C when sufficient N fertilization was applied. However, the model 

tended to underestimate yield when N fertilization was insufficient. Both observed and 

simulated results indicated greater SOC with higher N fertilization and residue return 

and lower SOC with lower fertilization and residue return. However, the model was not 

sensitive enough in simulating observed temporal SOC changes, especially when 

growing seasons were shorter and fallowed soil was left exposed to high temperatures 

and precipitation. The model performance in simulating GHG fluxes demonstrated a 

pattern similar to aboveground biomass C, with better performance when sufficient N 

was applied and a less accurate fit when more N was required in the system. DAYCENT 
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only simulates SOC at 0-20 cm depth, which neglects SOC mineralization and N 

availability in deeper soil layers, and thus may underestimate crop yield and GHG fluxes 

when insufficient N was applied. Overall, DAYCENT was able to simulate observations 

of soil temperature, soil water content, aboveground biomass C, SOC, daily GHG fluxes, 

and annual GHG emissions reasonably well and captured variations caused by field 

management and seasonal changes. Thus, model outputs were deemed reliable for LCA 

of net GHG emissions under different field management practices when considering all 

C inputs and outputs from bioenergy sorghum production to bioethanol combustion.  

Life cycle analysis of net GHG fluxes were conducted by combining DAYCENT 

model results with fossil fuel used to produce farm inputs and operate field machinery as 

well as other required information. Of all C sinks, displaced fossil fuel during bioethanol 

conversion and production was the largest one, followed by SOC sequestration and CH4 

oxidation. Of all studied C sources, N2O was the largest one, followed by energy 

requirements for N fertilizer manufacture and field machinery operations. Compared to 

residue return and tillage, N fertilization was the largest contributor to high biomass 

yield, thereby resulting in high GHG mitigation by displacing fossil fuel C emissions. 

However, a high percentage of residue return might offset this mitigation potential, 

especially in fertilized treatments, because of less biomass available for conversion to 

biofuel. Treatments without N fertilization were most at risk of losing SOC unless 

residue return and reduced tillage practices were used. Nitrous oxide emissions were 

much higher in treatments with N fertilization, even with residue return and reduced 

tillage intensity. Most treatments tended to show net C sequestration, except that with N 
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fertilization and residue return, mainly due to higher N2O emissions and lower displaced 

fossil fuel C emissions.  

Statewide county level simulations to study the effects of different field 

management practices and irrigation levels on bioenergy sorghum production showed 

that higher irrigation increased yield, SOC, and N2O emissions, with limited irrigation 

appearing to have advantages over non-irrigation and full-irrigation. Within an irrigation 

level, higher biomass return and N fertilization increased yield, SOC, and N2O 

emissions. Lower tillage intensity increased SOC and reduced N2O emission, while the 

yield trend was reduced tillage having the highest yield, followed by conventional tillage 

and no till. For the arable land in each county, potential yield and N2O emissions were 

higher in eastern compared to western Texas under non-irrigation, but these differences 

were eliminated as irrigation level increased. Soil organic C didn’t show the same 

pattern as yield and N2O. When accounting for arable land area in each county, higher 

yield, SOC sequestration, and N2O emissions were concentrated in plains and prairie 

areas when irrigation was adequate. For net GHG emissions, the treatment combination 

of 50% residue return, no-till, and 75 kg N ha-1 fertilization was generally lowest when 

not accounting for C emission replaced by harvested biomass conversion. However, 

average yield with this treatment might not be high enough to make bioenergy sorghum 

production feasible. A treatment combination of 0% residue return, no-till, and 150 kg N 

ha-1 had greater GHG mitigation potential when C emission replaced by harvested 

biomass conversion was considered. Higher yield was attained with this treatment and 

irrigation, increasing the positive effect on GHG mitigation potential. As a result, 0% 
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residue return, no-till, and 150 kg N ha-1 fertilization under limited irrigation might be 

the best combination for optimum management of bioenergy sorghum production. 
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