
AN AI SYSTEM FOR COACHING NOVICE PROGRAMMERS

An Undergraduate Research Scholars Thesis

by 

GILBERT CRUZ, JACOB JONES and MEAGAN MORROW

Submitted to the Undergraduate Research Scholars program
Texas A&M University

in partial fulfillment of the requirements for the designation as an

UNDERGRADUATE RESEARCH SCHOLAR

Approved by
Research Advisor: Dr. Bruce Gooch

May 2016

Major: Computer Science and Engineering 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/186710445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TABLE OF CONTENTS

Page

ABSTRACT 1 ..

SECTION

I INTRODUCTION 2 ...

Background 2 ..
Objective 3 ..

II METHODS 4 ..

Materials 4 ..
Procedure 4 ...

III RESULTS 6 ..

REFERENCES 8 ..

ABSTRACT

An AI System for Coaching Novice Programmers

Gilbert Cruz, Jacob Jones and Meagan Morrow
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Bruce Gooch
Department of Computer Science and Engineering

Rapidly giving students meaningful feedback is a key component in an effective educational

experience. A common problem in modern education is scalability, as class size increases the

ability of the instructor to rapidly provide meaningful feedback decreases. Our team of

undergraduates are preparing Java language platform for beginning programmers. The team has

done background reading and had discussions on meaningful feedback for novice programmers

over the last year. As a result we are building an online Artificial Intelligence (AI) system

capable of providing insightful narrative based coaching to beginning programmers. We will then

evaluate the system to insure that it meets the following criteria: it generates a unique narrative

response for every input, response is generated in real time, the system is deployable online.

!1

SECTION I

INTRODUCTION

Background

First year Computer Science carries the highest cognitive load of any academic disciple [1 - 6].

Students have to learn the problem the solving skills of Engineers in addition to a new form of

language. Compounding this problem is the widespread use of Mathematics pedagogy. Exercises

and tests use a “fill in the blank” model where students are given nonworking computer code or a

specification and expected to generate a solution.

Dr. Gooch found more effective methods of teaching introductory computer science by

incorporating cognitive linguistics research [7 - 12]. The most effective result is changing the

Exercise format from “fill in the blank” to creative writing. Dr. Gooch gave students working

code and educational scaffolding based on industry practice. Students extend the starter code to

increase functionality or efficiency. Then test their code using data they are responsible for

creating.

Current auto grading software uses a Compile, Correct, Copied model [13]. The software checks

that student submissions compile, run, produce correct output, and do not constitute plagiarism.

Such software does not provide meaningful feedback [14-15].

!2

Objective

Our team will design, build and evaluate a system to provide narrative based feedback and

coaching in real-time. The system will first perform the standard Compile, Correct, Copied

checks. If the submission passes a set of metrics will be computed that compare the submission

to a code database including; the starter code, the students previous work, model code, and

submissions from previous classes. Feedback in the form of a unique narrative will be generated

that details the effects of the students modifications (speed, functionality, memory usage, etc.),

tips on how they might improve both the functionality and readability of their code, how is their

work is novel when compared with their peers, and an evaluation of how their coding ability is

improving. 

!3

SECTION II

METHODS

Materials

In order to reach multiple goals and manage our project development, our team implemented a

project management task known as scrum. This allowed for the building and testing of the AI

system to have a designated timeline. Our team also used our personal past assignments as a

sample material. These assignments are located in a database and will be used as a testing aid

when implementing our AI. To create these databases, we used a database manage system known

as MariaDB. For the generation of individualized and unique reports, our team will use the

KPML system[20]. This system is a platform that uses grammar engineering for text generation

based on sample sentences in which we have provided to the software.

Procedures

As a basis of this study, we used a bottom up design process shown to be useful in

Computational Linguistics [18], Applied Computing [17] and Machine Learning [16]. Our team

created two databases that hold information that will be used as either the input or the output.

The first database, the input, is a collection of old coding assignments. We will compare the

students turned in code with the database to check for similarity between their code and already

turned in assignments. This is an effort to instantly check for plagiarism, whether a student has

copied an old assignment or has turned in a similar assignment as their peer. We will also use the

first database to see how a student has improved over time in a statistical manner. The second

!4

database, the output, is a collection of feedback text we have coined as “mad libs.” This text will

give students personalized feedback after they have turned in their assignment. The feedback is

based on their personal information and how well they did on their assignment.

The team has also created an all-encompassing script that executes everything in order and

neatly package the different outputs to be passed to the database. We have written a Java

program to accomplish this task using Unified Code Count [19] and Maven. This Java code is

called and Unified Code Count is executed along with a newly created Maven project. Once an

output is generated, the Java code compiles all the useful statistics into a final output for the

database. We are able to delete unnecessary files and statistics once a final output is created.

Figure 1 shows the design of the processes used in creating the AI.  

!5

Figure 1: This figure encompasses a break down of the system our team used when
creating our AI. It also demonstrates how each component of the design is related and
interconnected.

CHAPTER III

RESULTS

Our team has created Java code that can remotely gain accesses and inject SQL code into our

database. This code is imbedded in our report that runs when we call to make a report. The report

uses the Java code to access the tables in our database of the student information. The final

program uses a CSV file that is generated with the help of our entire research team. The program

will use the CSV file as an input file to generate a report for the user allowing them to know

where they have improved and in what areas they need improvement based off of the specific

data and statistics generated from the analysis programs. The purpose of the program that is

being built is to avoid making the report seem like it was automatically generated by a computer,

but rather make it seem as if another person generated it for them. Every student’s progress is

stored for the purpose of creating new reports without making them sound too familiar to

previous generated reports. The finalized report is designed in an easy to read manner that will

hold specific detail that is relevant to the students as individuals. This type of result aids in

coaching a student based off of their personal improvement rather than in comparison to fellow

students. Figure 2 demonstrates the metrics and criteria use to generate the report.

!6

Figure 2: This figure is a demonstration of possible metrics that are generated in the statistical
analysis programs, the tentative criteria guidelines for illustrative purposes, and an example
report designed based on the given metrics and criteria.  

!7

REFERENCES

[1] Tuovinen, Juhani E.; Sweller, John A comparison of cognitive load associated with discovery
learning and worked examples. Journal of Educational Psychology, Vol 91(2), Jun 1999,
334-341.

[2] John Sweller Cognitive load theory, learning difficulty, and instructional design. Learning
and Instruction Volume 4, Issue 4, 1994, Pages 295–312.

[3] Pea, Roy D., and D. Midian Kurland. “On the cognitive effects of learning computer
programming.” New ideas in psychology 2.2 (1984): 137-168.

[4] Jenkins, Tony. “On the difficulty of learning to program.” Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences. Vol. 4. 2002.

[5] Pennington, Nancy. “Stimulus structures and mental representations in expert comprehension
of computer programs.” Cognitive psychology 19.3 (1987)

[6] Mayer, Richard E. “Different problem-solving competencies established in learning computer
programming with and without meaningful models.” Journal of Educational Psychology 67.6
(1975): 725.

[7] Soloway, Elliot, and James C. Spohrer. Studying the novice programmer. Psychology Press,
2013.

[8] Gomes, Anabela, and António José Mendes. “Learning to program-difficulties and solutions.”
International Conference on Engineering Education–ICEE. Vol. 2007. 2007.

[9] Du Boulay, Benedict. “Some difficulties of learning to program.” Journal of Educational
Computing Research 2.1 (1986): 57-73.

! 8

[10] Lahtinen, Essi, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A study of the difficulties of
novice programmers.” ACM SIGCSE Bulletin. Vol. 37. No. 3. ACM, 2005.

[11] Mayer, Richard E. Teaching and learning computer programming: Multiple research
perspectives. Routledge, 2013.

[12] Tan, Phit-Huan, Choo-Yee Ting, and Siew-Woei Ling. “Learning difficulties in
programming courses: undergraduates’ perspective and perception.” Computer Technology and
Development, 2009. ICCTD’09. International Conference on. Vol. 1. IEEE, 2009.

[13] Ala-Mutka, Kirsti M. “A survey of automated assessment approaches for programming
assignments.” Computer science education 15.2 (2005): 83-102.

[14] Ihantola, Petri, et al. “Review of recent systems for automatic assessment of programming
assignments.” Proceedings of the 10th Koli Calling International Conference on Computing
Education Research. ACM, 2010.

[15] Morris, Derek S. “Automatic grading of student’s programming assignments: an interactive
process and suite of programs.” Frontiers in Education, 2003. FIE 2003 33rd Annual. Vol. 3.
IEEE, 2003.

[16] Mary Elaine Califf and Raymond J. Mooney. Bottom-up relational learning of pattern
matching rules for information extraction. J. Mach. Learn. Res., 4:177–210, 2003.

[17] Byeong-Mo Chang, Kwang-Moo Choe, and Roberto Giacobazzi. Abstract filters: improving
bottom- up execution of logic programs by two-phase abstract interpretation. In Proceedings of
the 1994 ACM symposium on Applied computing, pages 388–393. ACM Press, 1994.

[18] Gregor Erbach. Bottom-up earley deduction. In Proceedings of the 15th conference on
Computational linguistics, pages 796–802. Association for Computational Linguistics, 1994.

[19] http://sunset.usc.edu/ucc_wp/

! 9

http://sunset.usc.edu/ucc_wp/

[20] http://www.fb10.uni-bremen.de/anglistik/langpro/kpml/readme.html

! 10

