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ABSTRACT 

An AI System for Coaching Novice Programmers 

Gilbert Cruz, Jacob Jones and Meagan Morrow 
Department of Computer Science and Engineering 

Texas A&M University 

Research Advisor: Dr. Bruce Gooch 
Department of Computer Science and Engineering 

Rapidly giving students meaningful feedback is a key component in an effective educational 

experience. A common problem in modern education is scalability, as class size increases the 

ability of the instructor to rapidly provide meaningful feedback decreases. Our team of 

undergraduates are preparing Java language platform for beginning programmers. The team has 

done background reading and had discussions on meaningful feedback for novice programmers 

over the last year. As a result we are building an online Artificial Intelligence (AI) system 

capable of providing insightful narrative based coaching to beginning programmers. We will then 

evaluate the system to insure that it meets the following criteria: it generates a unique narrative 

response for every input, response is generated in real time, the system is deployable online. 
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SECTION I 

INTRODUCTION 

Background 

First year Computer Science carries the highest cognitive load of any academic disciple [1 - 6]. 

Students have to learn the problem the solving skills of Engineers in addition to a new form of 

language. Compounding this problem is the widespread use of Mathematics pedagogy. Exercises 

and tests use a “fill in the blank” model where students are given nonworking computer code or a 

specification and expected to generate a solution.  

Dr. Gooch found more effective methods of teaching introductory computer science by 

incorporating cognitive linguistics research [7 - 12]. The most effective result is changing the 

Exercise format from “fill in the blank” to creative writing. Dr. Gooch gave students working 

code and educational scaffolding based on industry practice. Students extend the starter code to 

increase functionality or efficiency. Then test their code using data they are responsible for 

creating.  

Current auto grading software uses a Compile, Correct, Copied model [13]. The software checks 

that student submissions compile, run, produce correct output, and do not constitute plagiarism. 

Such software does not provide meaningful feedback [14-15]. 
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Objective 

Our team will design, build and evaluate a system to provide narrative based feedback and 

coaching in real-time. The system will first perform the standard Compile, Correct, Copied 

checks. If the submission passes a set of metrics will be computed that compare the submission 

to a code database including; the starter code, the students previous work, model code, and 

submissions from previous classes. Feedback in the form of a unique narrative will be generated 

that details the effects of the students modifications (speed, functionality, memory usage, etc.), 

tips on how they might improve both the functionality and readability of their code, how is their 

work is novel when compared with their peers, and an evaluation of how their coding ability is 

improving. 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SECTION II 

METHODS 

Materials 

In order to reach multiple goals and manage our project development, our team implemented a  

project management task known as scrum. This allowed for the building and testing of the AI 

system to have a designated timeline. Our team also used our personal past assignments as a 

sample material. These assignments are located in a database and will be used as a testing aid 

when implementing our AI. To create these databases, we used a database manage system known 

as MariaDB. For the generation of individualized and unique reports, our team will use the 

KPML system[20]. This system is a platform that uses grammar engineering for text generation 

based on sample sentences in which we have provided to the software.  

Procedures 

As a basis of this study, we used a bottom up design process shown to be useful in 

Computational Linguistics [18], Applied Computing [17] and Machine Learning [16]. Our team 

created two databases that hold information that will be used as either the input or the output. 

The first database, the input, is a collection of old coding assignments. We will compare the 

students turned in code with the database to check for similarity between their code and already 

turned in assignments. This is an effort to instantly check for plagiarism, whether a student has 

copied an old assignment or has turned in a similar assignment as their peer. We will also use the 

first database to see how a student has improved over time in a statistical manner. The second 
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database, the output, is a collection of feedback text we have coined as “mad libs.” This text will 

give students personalized feedback after they have turned in their assignment. The feedback is 

based on their personal information and how well they did on their assignment. 

The team has also created an all-encompassing script that executes everything in order and 

neatly package the different outputs to be passed to the database. We have written a Java 

program to accomplish this task using Unified Code Count [19] and Maven. This Java code is 

called and Unified Code Count is executed along with a newly created Maven project. Once an 

output is generated, the Java code compiles all the useful statistics into a final output for the 

database. We are able to delete unnecessary files and statistics once a final output is created. 

Figure 1 shows the design of the processes used in creating the AI.  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Figure 1: This figure encompasses a break down of the system our team used when 
creating our AI. It also demonstrates how each component of the design is related and 
interconnected. 



CHAPTER III 

RESULTS 

Our team has created Java code that can remotely gain accesses and inject SQL code into our 

database. This code is imbedded in our report that runs when we call to make a report. The report 

uses the Java code to access the tables in our database of the student information. The final 

program uses a CSV file that is generated with the help of our entire research team. The program 

will use the CSV file as an input file to generate a report for the user allowing them to know 

where they have improved and in what areas they need improvement based off of the specific 

data and statistics generated from the analysis programs. The purpose of the program that is 

being built is to avoid making the report seem like it was automatically generated by a computer, 

but rather make it seem as if another person generated it for them.  Every student’s progress is 

stored for the purpose of creating new reports without making them sound too familiar to 

previous generated reports. The finalized report is designed in an easy to read manner that will 

hold specific detail that is relevant to the students as individuals. This type of result aids in 

coaching a student based off of their personal improvement rather than in comparison to fellow 

students. Figure 2 demonstrates the metrics and criteria use to generate the report.  
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Figure 2: This figure is a demonstration of possible metrics that are generated in the statistical 
analysis programs, the tentative criteria guidelines for illustrative purposes, and an example 
report designed based on the given metrics and criteria.  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