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ABSTRACT 

 

Thermography is a non-destructive testing method (NDT), which is widely used to 

guarantee the quality of non-metallic materials, such as carbon fiber composite, anti-

reflection (AR) film, and coatings. As other NDT methods do, thermography determines 

a defective area based on the signal difference between suspected defective areas and 

defective-free areas. Two unavoidable effects are decreasing the credibility of 

thermography detection: one is uneven heating, and the other is lateral diffusion of heat. 

To solve this problem, researchers have developed various reconstruction methods. 

Restoring methods are known to have the capacity to reduce the effect of heat-flux lateral 

diffusion by de-convoluting a point spread function either along a temporal profile or a 

spatial profile to process captured thermal images. These methods either require pre-

knowledge with depth or are not effective in detecting deep defects. Here we propose a 

spatial-temporal profile-based reconstruction method to reduce the effect of uneven 

heating and lateral diffusion. The method evaluates the heat flux deposited onto tested 

samples based on surface temperature gathered under ideal conditions. Then the proposed 

method is tested in three real applications – in defect detection on semi-transparent 

materials, on semi-infinite defects (coatings) and anisotropic materials. The method is 

evaluated against existing methods. Results suggest that the proposed method is effective 

and computationally efficiently over all the reconstruction methods reviewed. It reduces 

the effect of uneven heating by providing a good approximation to the input heat flux at 

the ending image of the sequence. 
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CHAPTER I  

 INTRODUCTION AND BACKGROUND OF THE RESEARCH 1 

The chapter here introduces the background of the research, including the significance 

of the problem, the nature of the research, including the definitions of terms used in 

thermography, and an overall outline of following chapters. The entire chapter is divided 

into three sections: the first section provides the importance of the research by introducing 

the cost issues in inspection, production yield and product failures due to insufficient 

coating and minute defects; the second section introduces the nature of thermography 

detection and coating measurements and the definitions of terms in thermography, and 

explains the terms used in the research; and the last section will illustrate the overall 

outline of the rest part of the proposal.  

 

                                                 

1 Part of the data reported in this chapter is reprinted with permission from: 

(1) “Non-metallic coating thickness prediction using artificial neural network and support vector 

machine with time resolved thermography” by Hongjin Wang, et.al. 2016. Infrared Physics & 

Technology, Volume 77, July 2016, Pages 316-324, ISSN 1350-4495,Copyright [2016] by Elsevier 

B.V. or its licensors or contributors 

(2) “Using active thermography to inspect pin-hole defects in anti-reflective coating with k-mean 

clustering” by Hongjin Wang, et.al , 2015. NDT & E International, Volume 76, Pages 66-72, ISSN 

0963-8695, Copyright [2015] by Elsevier B.V. or its licensors or contributors 

(3) “Evaluating the performance of artificial neural networks for estimating the nonmetallic coating 

thicknesses with time-resolved thermography” by Hongjin Wang, et al, 2014. Optical Engineering, 

Volume 53, 083102 , Copyright[2014] by SPIE 

(4) “Comparison of step heating and modulated frequency thermography for detecting bubble defects in 

colored acrylic glass” by Hongjin Wang and Sheng-jen Hsieh. 2015 Proceeding of SPIE 9485 

Thermosense: Thermal Infrared Applications XXXVII, Page number 94850I, Copy right[2015] by 

SPIE 
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I.1 Background of the research 

Non-metallic materials are widely used in the industries. Their qualities are required 

to be strictly controlled. Comparing to metallic materials, non-metallic materials may have 

several advantages: easy to be visual transparent; resistant to the chemical corrosions and 

less density [1-3]. For example, polymeric coatings are widely used in packaging [4, 5] 

Another example is anti-reflection film, which usually made by adhering several non-

metallic layers together. Carbon fiber composites are used in aircrafts, wind turbines and 

cars as structure materials to resist pressure, static or dynamic loads, twists, or other forces.  

Failure of these materials to function as designed brings in losses in both money and 

human lives. Defects can also be very expensive for the producers. Federal Aviation 

Regulations require all the product providers to report defects in components (FAR Part 

21 section 3). Failing to do so will cost the provider double charges. Thus, there certainly 

is a justifiable reason to investigate defects detection in carbon fiber composites. The pin-

hole defects in optical films like Anti-reflection films invokes customer complaints. The 

coating thickness is well controlled in order to make sure the coated materials functions 

as required. Therefore, to reduce the cost due to production failure, a testing in quality 

control process is applied before the products follow into markets.  

Non-destructive testing (NDT) is developed in order to save cost on quality control 

since the product yields are decreased by destructive testing methods [6]. NDT allows the 

manufacturers to low down the cost of quality control since the nondestructive detection 

will not reduce the tested products’ qualities after tests. What’s more, nondestructive 
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detection will allow in-situ detection during manufacturing process so that technicians 

may find abnormal processes at an early stage. 

The basic principle behind a successful NDT technology is that the defect will change 

the amplitude, the frequency, the phase angle of the inputted wave-like signal by 

reflection, refraction or, even, absorption. The wave-like signal used in the NDT can be 

optical light, x-ray, elastic wave, ultrasound wave, ultra-violent wave, alternative 

electrical field, magnetic field and infrared wave.  

Eddy currency and magnetic detection are widely used in the pipeline corrosion due 

to its cost efficiency. However, the main problem of these two technologies is that they 

have limited capacity in defect shape recognition.  

The optical inspection uses optical light as a source. The basic idea that surface cracks, 

scratches, voids or surface unevenness will change the original routine of the light source. 

The defect will be detected by using a CCD camera or optical radiometer to capture the 

transmitted light or reflected light. Once there is a defect like cracks, scratches, voids or 

surface unevenness, either the transmitted light intensity or reflected light intensity will 

change in certain degree [7]. This technology is the most frequently used in the 

manufacturing industrial. The both the spatial resolution and the time resolution of optical 

inspection will be very high. With an optical microscope, the spatial resolution of a visual 

camera can get to 0.2μm [8]. The data sampling speed can exceed Gb/s. Apparently, the 

visual inspection will be able to detect the defects buried in the tested sample only if the 

material is transparent. Or else, the optical inspection can just focus on the surface defects, 

which may be not sufficient for the early age detections.  
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Radiographic Testing (RT), a nondestructive testing method of hidden defect 

detection, uses the ability of short wavelength electromagnetic radiation (like X-ray, 

𝜸 Ray) to penetrate various materials. This technology predicts the hidden flaw size and 

location by analyzing changes of intensity of the transmitted short wavelength 

electromagnetic radiation at the back of tested material. The Radiographic testing can 

easily find out voids in the material [9 , 10]. However, others failed in detection of voids 

with this method. Evermore, the X-Ray detection may have difficulties in find the cracks, 

de-bonding or delamination in the composite material [10, 11]. In 2003 review, Carrivea 

still considers X-Ray has limited capacity in the de-bonding detection [11]. Yet, in a recent 

new review, it seems that the CT technology advanced radiographic testing by improving 

its crack detection with help of dyes [12]. Yet the largest problem which prohibits X-ray 

testing applied in the industrial is the cost and the potential hazard it may bring in due to 

radioactive ray leakage. 

Ultrasound inspection methods are commonly used NDT testing methods and has an 

advantage over radioactive method by getting free of potential radioactive pollution 

because ultrasound, in fact, is wave-like acoustic energy with a frequency exceeding the 

human hearing range. It is possible to get a high resolution by choosing high frequency 

(100 kHz to 40 MHz). In ultrasonic testing, acoustic waves are injected into the material 

or component as an examination source and then a transmitted / reflected beam is used to 

monitor the resonance of ultrasound in the material.  

Ultrasonic inspection works well in the metallic material inspection. It can be used to 

detect almost all kinds of defects [10]. With the help of ultrasonic guided wave, this 
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method can travel along the tested material, especially metal with a long distance [13]. 

Ultrasonic inspection can achieve a high resolution, but the resolution which it can achieve 

quite depends on the model chose [13]. Another very interesting application of guided 

wave analysis can be considered for coated structure detection, for example, steel in the 

concrete or steel coated with tars. This ability will save money by reducing the process to 

remove ‘coated materials’ [13]. However, as the attenuation for ultrasound is relative high 

in the composite material, the contrast between the defect and the surrounding material is 

relative low during ultrasonic inspection for these materials. Thus, to obtain an acceptable 

contrast between defects and surroundings, the frequency of input ultrasonic wave should 

exceed 1MHz for defects smaller than 0.1mm. Frequencies much lower than “0.1 MHz 

would not produce wave interactions appropriate to the specimen microstructure” [14]. 

Also, Gros has reported C-scan limited in find out delamination buried in 1.1mm Carbon 

fiber composite [14]. Obviously, ultrasonic inspection gets problem with small defect 

detection in the polymeric composite materials.  

Thermography is a non-destructive method concerned with the measurement of 

temperature on the surface of the zone. The basic idea of thermography is that the heat 

conduction in the solid material similar to the wave propagation under a certain input 

thermal wave. The magnitude of the input may follow a step function, a pulse function, 

and a periodic sinusoidal, or other kinds of function of time. According to whether an extra 

thermal excitation is applied to the tested sample, thermography technologies can be 

categorized as passive thermography and active thermography. Passive thermography, as 

its name indicated, does not apply extra thermal source to heat up test samples but just use 
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the source emitted by the samples themselves. Thus, it can just be applied to inspect 

objectives with a temperature different from the ambient, like a tank, a vehicle engineer 

or a human body. On the other, active thermography employs an external heat source for 

excitation. Hence, it can inspect many objects without an internal heat source.  

According to the shape of the excitation wave, active thermography can be classified 

as pulsed thermography, modulated thermography and time-resolved thermography. 

Pulsed thermography uses an instantaneous heat pulse, like an optical laser pulse, a flash 

lamp pulse or an eddy current pulse, as a heat source [14]. Due to the instantaneous heat 

flux, heat cannot conduct in an equilibrium way. The surface temperature of a semi-

infinite slab with a thickness at L will change following the error function format. The 

detection capacity of pulsed thermography depends on the changing rate of input energy. 

So does that of time-resolved thermography. Yet, the time-resolved thermography also 

requires the surface temperature change larger than the noise equivalent temperature of 

the camera. Thus, the detection capacity of time-resolved thermography also depends on 

input energy amplitude. On the other, the pulsed thermography and time-resolved 

thermography has limited capacity in detecting large depth to diameter ratio defects [15-

17]. 

The costs of different non-destructive testing methods require significantly different 

for the same type of defects in different materials due to the prerequisite of NTD methods: 

a ‘sharpen boundary’, should lies between the defective area and the bulk material. The 

‘sharpen boundary’ here refers to an interface where the penetrable mediums (like 

ultrasonic wave in ultrasonic NDT, visual light in visual inspection, radiation in X-ray, 
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Table I.1 Different NDT coating measurement instruments 

production name principle accuracy adaptive range 
substrate 

material 
price($) 

Defelsko 
Magnatical +eddy 

currency 

± (0.01 mm + 1%) 0 

- 2.5 mm, ± (0.01 

mm + 3%) > 2.5 mm 

thick coatings all metals 1175 

ultra-sonic gauge for 

non-metal substrate 
Ultrasonic ± (2 um + 3%) 1-1000 micron non-metal 2695 

PosiTector® 6000 N1 S eddy currency 

±(1 um + 1%) 0 - 50 

um, ± (2 um + 1%) > 

50 um 

non-conductive coating 

0-1500 

conductive 

substrate 
695 

Filmetrics 
optical/spectrum 

analysis 
 silica unknown >20K 

Fluorescent X-Ray 

Coating Thickness Gauge 
x-ray 50nm   >20K 

Atd Mask-Less Direct 

Write Too 

Light source: KrF 

Lase 
80nm not specified 

not 

specified 
>20K 
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Table I.2 Comparison of various NDT methods’ capacity in detecting defects in Carbon fiber reinforced Composite 

 Time(per round) delamination voids cracks 

Eddy current 
1 s (50 mm by 50 

mm) 

Yes, for shallow mounted ones in weak 

conductive TRM (CFRP) [18] 
NA 

Yes, for near surface 

ones in weak 

conductive TRM 

(CFRP) [18] 

Magnetic NA NA NA NA 

NDT optical 

inspection 
NA NA NA NA 

Radiographic 

Testing 
10-150 min limited, only with dyes [10, 12, 18,19]  Yes[10, 12, 18-20]  

Acceptable [10, 12, 

18-20] 

Ultrasound 
10𝜇𝑚 per 0.3mm 

by 0.3 mm 

Limited in finding delamination near 

holes [21, 22] 

Yes, limited while 

Vc<1% [23, 24] 

Limited, rare 

industrial 

application[10, 19] 

Thermography 1s-160s 
Yes, good for finding delamination near 

holes , [25-28] 

Yes comparable to 

Ultrosonic, [29] 
Yes [2, 30-33] 
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heat flux in thermography) will be absorbed, reflected or refracted significantly. For 

example, Ultrasonic inspection usually works well in the metallic material inspection [11]. 

However, as the attenuation for ultrasound is relative high in the composite material, the 

contrast between the defect and the surrounding material is relative low during ultrasonic 

inspection for these materials [11]. The Radiographic testing can easily find out voids in 

the material [9, 19]. Evermore, the X-Ray detection may have difficulties in find the 

cracks, or delamination without dyes in the composite material since these defects cannot 

reduce enough irradiance [10, 19]. A comparison of the cost of non-destructive testing 

methods in non-metallic coating thickness measurement is compared in Table I.1. It can 

be observed thermography is an attractive NDT method. 

Thermography is an attractive NDT method for non-mantellic materials [34-36]. 

Current non-destructive technologies cannot address all the issues in the non-metallic 

material testing and measurements [11]. Table I.2 summarizes the capacity of several NDT 

methods carbon fiber composite defect detection. For example, the capacitive of 

automotive optical inspection to detect pin-holes in visual transparent is limited because 

the method can only generate a small contrast between the health area and the defective 

area [37]. Moreover, this small contrast may be degraded by the inappropriate view angles 

[38]. 

I.2 The nature of detection and coating thickness measurements with NDT 

In general, defect detection is a process to identify and locate an area where the 

measured targets behaves differently from the major part of the tested samples under a 

designed excitation, (like radioactive waves, eddy currents, magnetic field, visual lights 
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and acoustic waves) since a type-X defect may generate a clear ‘tested boundary ‘(an 

interface where difference in the measured targets between the top surface of the defect 

and the adjacent bulk material is large enough to be captured.) The basic principle behind 

a successful NDT technology is that the defect will change the amplitude, the frequency, 

the phase angle of the inputted wave-like signal by reflection, refraction or, even, 

absorption. The wave-like signal used in the NDT can be optical light, x-ray, elastic wave, 

ultrasound wave, ultra-violent wave, alternative electrical field, magnetic field and 

thermal wave[39-41]. 

 

 

Figure I.1 The nature of non-destructive defect detection 

Several major components are included in a thermal NDT defect detection process 

(As shown in Figure I.1) (also, known as thermography detection, suggested by Vavilov 

[42] ): “ 

 modelling defect situations and optimizing both heating and data acquisition, 
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 choosing a proper hardware (both an IR imager and a heater), 

 conducting a test and collecting an IR image sequence, 

 preliminary data processing (correcting object 3D shape, enhancing signal-to-

noise ratio and making decision on presence/absence of defects in tested areas),  

 .advanced data processing—determine the existence of defects by producing 

binary maps of defects and evaluating defect parameters in lateral dimension and 

in depth, and 

 making a final decision on sample quality by applying approved 

acceptance/rejection criteria”.  

As Bues [43]and Vavilov [42] have pointed, NDT usually cannot provide a direct 

images about the defects. In fact, the measured data from thermography is thermal 

responses. These responses may not reveal the depth information of defects directly. 

Therefore, a model which predicts the thermal response changed by defect of type x is 

required. Inspection patterns then need to be formulated both for contrast enhancement 

and for determining the existence of defects.  

Coating thickness Measurement can be treated as a special case of defect detection 

where the defect size buried h depth beneath the coating surface with semi-infinite size. 

By having this point, the steps to detect defects with thermography can be used to measure 

coating thickness with some modification. 

Criteria (Baseline) must be set up before detection is conducted in order to determine 

the non-defective area and defective area. A cured composite part may contain a multitude 

of internal defects [44]. These internal defects can be voids, delamination, fiber mis-
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orientations, and non-uniform fiber distribution [44]. It’s believed that a good quality 

polymeric composite will contain voids whose volume is less than 0.5% volume of the 

total. Wisnom also points out the length of the defect will affect the strength of the material 

significantly [45]. His experiments show that the inter-laminar shear strength reduces 

between 8% and 31% when discrete defect growth from 0.28 mm diameter void to 3 mm 

long crack. The delamination area should be controlled within certain proportional of the 

total area [44]. However, there are no standards for the critical size of delamination in 

Carbon fiber composite [44]. For the pin- holes in the AR films in the display application, 

The pin-hole defect size is one of the dominant factors in quality control of anti-reflective 

coating. Up to authors’ knowledge, a lot of AR manufacturers for viewing application set 

a limitation about the maximum tolerable pinholes sizes [46-49]. A commonly acceptable 

pinhole size for AR film designed for displays is set to be 0.1mm [46-49]. Thickness of 

thin coating is a quite important quality control in many industrial fields, such as 

pharmacy, aerospace, power generation, electronics industrial and others [4, 31, 50, 51]. 

And this technology is gaining importance due to the narrowing market and competition 

[52]. The current common used non-destructive detection method and classified them 

according to their principles: a) Geometric part measurement ,b) Gravimetric analysis 

;c)Pull-off force analysis; d) Acoustic emission analysis; e)Ultrasonic impulse echo 

analysis; f) Magnetic induction analysis; g)Eddy-current analysis; h)X-ray fluorescent 

analysis; i)Beta-Backscatter analysis; j)X-ray diffractometer. 
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I.3 The overall outline of the dissertation 

In summary, the cost of the production failures, the cost of product yields and the cost 

of inspection technics motivate the author to conduct the current study in the non-metallic 

coating thickness measurement and material defects detection by using thermography. The 

nature of NDT detection and coating thickness measurement has been introduced with 

details on the critical size of the defects. In the next chapter, a detailed review about 

thermography is given. It has been shown that building analytical models and formulating 

inspection patterns are necessary steps for thermography to characterize defects and 

measuring coating thickness. A comparison between the existing models for 

thermography and between commonly used inspection patterns will be given in the next 

chapter. By reviewing these, the gap between the current state of thermography and the 

need of improvements will be illustrated. Based on the review, the research question, the 

objectives, the research scopes and detailed research task will be discussed and displayed 

in Chapter III. From Chapter IV to Chapter VII, the theory background, proposed 

methodology and experimental results will be described and discussed. In Chapter 8, the 

summary of finding and conclusions will be displayed and future work will be discussed.  



 

14 

 

CHAPTER II  

 LITERATURE REVIEW 

The chapter here provides readers a detailed review about the current state of three 

major components in thermography technics: the analytical models for the thermography 

and inspection patterns currently used. By reviewing these components, the gap between 

the current methods and the needs will be discussed and displayed. The need of proposed 

objective will be reinforced.  

II.1 The models for thermography defect detection and coating thickness measurement 

and their applications 

The section reviews the evolution of the models for thermography defect detection 

and the coating thickness measurement. The models are compared with each other based 

on their complexity and their assumptions. The reasons behind the evolutions are 

presented. Therefore, the needs and the direction of evolution of thermography in the 

future will be discussed.  

The first trials in using thermography to detect discontinuous in materials can be dated 

back to late 1970s. Henneke’s work [53] should be recognized. They have conducted a 

serial conceptual experiment to demonstrate the possibilities of thermography to detect 

various defects in both isotropic and anisotropic material. Their studies have displayed 

different thermal patterns of cracks, internal defects due to loads and delamination. 

However, the study did not provide an efficient theory to predict thermal patterns for 

different defects. Later on, various experiments have been applied to different materials 
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to explore the capacity of thermography. Early researchers usually simplify the 

thermography detection process into 1D heat conduction problems in homogenous 

materials with one side as adiabatic surface under a pulse excitation [54]However, the 

model follows the experimental results in limited conditions: when the pulse is shorter 

than dozens of milliseconds; the defect is relatively large that the lateral heat conduction 

can be neglected; the heat leakage from the bottom surface can be neglected and the 

surface heat excitation is absolutely homogenous. Vavilov [42] has figured out, the heat 

leakage from the bottom surface should not be neglected when the tested sample is 

thermally thin. A comprehensive review of the models used in thermography has been 

summarized in Vavilov’s reviews [42, 55]. A supplementary comparison is listed in Table 

II.1. It can be found that early researchers prefer to use a simple 1D models since the 

defects in tested samples are relatively large or say thermally different from the bulk. Later 

researchers like Ludwig[56]figured out that the 3D effect of refractive thermal waves 

cause a large bias in lateral dimension between the predicted one and the directly measured 

value, and, therefore, have added an approximated thermal diffusion due to refraction 

although the estimation is semi-empirical. Baddour [57] later developed a model which 

can be adaptive to both pulse thermography and lock-in thermography. However, the 

model is built to evaluate the diffraction effect and no experiments have been conducted 

to demonstrate the capacity of the model. Although researchers have noticed that the 

homogeneous heating source is not realistic in the thermography and the detection results 

are degraded by them, its effect is not included or discussed in the model for 

thermography. 
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Table II.1 Comparison of different heat conduction models used in thermography 

Author Mode 
Temporal profile of 

excitation 

Dimension 

considered 
Blurred by 3D 

Assumptions 

3D 

diffusion 
SNH 

Steinberger [54] Transmit. Pulsed 1D -trainsient Yes  No 

Busse [58] reflective pulse 1D transient Yes No No 

Mulaveesala [35, 59-61] reflective MF 1D transient Most of No No 

Avdelidis [62] reflective Pulse/ step Lumped transient Yes No No 

Petal [63] reflective Lock-in 1D transient Yes, 3D of defect No No 

Osiander [64] reflective Pulse/ step 1D transient  Yes No No 

Ludwig[56] reflective pulsed 
1D transient with 

lateral adjust 

Empirical 

corrected 
yes no 

Vavilov [55] reflective pulsed 1D * Yes no 

Baddour [57] reflective Pulsed/lock-in 3 D corrected A Yes NA 

Erturk [65] 

 
Refl./tran. constant 3D 

Corrected iterative 

inverse 
Yes NA 

Vavilov [66, 67] Refl./tran. pulse 1D/2D/3D No Yes no 
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However, it does not mean that no researchers have noticed the negative effect of non-

homogeneous heating nor methods to reduce this effects are not attractive. In fact, a lot of 

trials have been conducted to reduce the negative effect due to non-homogeneous heating 

by developing different informative patterns. These efforts will be summarized and 

discussed in the next section. 

II.2 The current detection patterns in thermography and their limitations 

The section here discusses the existed efforts in formulating informative patterns in 

thermography and their limitations. The need in enhancing the contract between defective 

area and non-defective area and in extracting characteristic information drives researchers 

to generate various detection patterns. Based on the principle behind formulating 

informative patterns, the patterns can be classified into two categories: the empirical 

informative patterns, and the model-based patterns. The empirical informative patterns are 

generated empirically based on the statistical characters in the surface temperature 

response. Some of the variances used as input to the patterns are determined empirically. 

Principle component analysis [68] is a typical empirical informative pattern. Compared to 

the empirical informative patterns, the model-based empirical informative patterns are 

generated based on the heat conduction mechanisms. The current researchers are more 

interested in the second kind of patterns since they can be adaptive to those problems 

which share common principles with each other.  

Vavilov [42, 55] has compared and summarized several commonly used informative 

patterns: temperature increments, early detection correlations, phase-grams. The table one 

compares several commonly used informative patterns which are not discussed in 
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Vavilov’s review dated at 2002 and summarized in Table II.2. Including those discussed 

in Vavilov’s review, there are no model-based patterns can be applied to all kinds of 

excitation. That is to say, the current model-based informative patterns are highly 

depending on the assumptions made in the thermography models from which they are 

derived. An informative pattern may not be able to be adaptive to other thermography 

technics rather than the one it derives from. For example, Shepard’s Logarithm 

reconstruction [69] is developed based on the pulse excitation assumption and it will 

violate its basic if the pattern is applied into either step heating thermography or lock-in 

thermography, let along the FM thermography. Besides, the Hilbert analysis developed by 

Mulaveesala [61] is based on the assumption that FM thermography is applied. 

Although researchers have generated several informative patterns based on 1D models 

to eliminate the effect of non-homogenous heating sources, the efficiency of these 

informative patterns should be examined carefully. For example, although conventional 

phase images are believed to be independent of heat excitation spatial distribution, several 

sets of experiments shows that its independence is conditional to lock-in thermography 

[70, 71]. The figures from Almond’s[70, 72] researches show that the spatial diffusion in 

the conventional phase image blurred the contrast between defective area and non-

defective area. The coefficient images seem to eliminate the non-homogenous a little bit. 

However, the coefficient is determined semi-empirical by fitting the temporal temperature 

by a polynomial curve. Author previous researchers also demonstrated that the non-

homogenous spatial distribution of heating source cannot be neglected for deeply buried 

defects. Therefore, a theoretical model to understanding the non-homogenous distribution 
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of the heating source should be developed in order to figure out a widely adaptive method 

to eliminate the negative effect of non-homogenous heating.  

Another issue in the thermography is that the lateral diffusion caused by limited defect 

size biased from the 1D assumptions. As a result, the 1D defect size assumption caused a 

difficulty in characterizing the lateral size small defects. Recently, researchers began to 

consider formulating informative patterns with 3D diffusion effects involved in [17, 57, 

66, 73]. Omar[17, 74] has developed a deconvolution filter based on the numerical 

simulation of surface temperature under a Gaussian point heat conduction. Holland [73] 

reconstructed the method with a heat conduction model based on uniform heating 

deposited on thin slabs to mock the detection process with vibro-thermography. The 

existing researches show that by doing so, the detection capacity of thermography has 

been enhanced in detecting and characterizing defects with significant lateral diffusion. 

However, they are aiming at to discuss effect of the deconvolution methods in reducing 

the lateral heat diffusion effect. The discussing about the effect of deconvolution effect on 

identifying solid area under non-homogenous heat is missing. Moreover, iterative method 

requires the measured surface temperature to be noise free. And the diffractive analysis 

requires an experimental demonstration. Comparing to Laplacian models, the 3D Fourier 

analysis proposed by Baddour [57] provides a stable numerical solution. Also, several 

kinds of lateral effect restoring filters (mentioned as restoring filters) are developed for 

vibrothermography [73, 75]. 

The spatial profile based patterns refers to those patterns which are used to determine 

the defective or non-defective area, or the depth of the defects based on the thermal distri- 
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Table II.2 The current reconstruction methods to enhance the contrast beyond Vavilov’s summarization  

Author Method Excitation Dimension Approximation Bottom 

Maldague [76] Pulsed phase pulse 1D  adiabatic 

Shepard [69] 
Synthetic Signal 

Processing /Logarithm 
Pulse excitation 1D  Semi-infinite 

Mulaveesala [61] Hilbert analysis Modulated Freq.  
Digital -> 

continuous 
Semi-infinite 

Lugin [77] Iterative echo comparison Pulse   Adiabatic 

Almond [78] 
Temporal polynomial 

coef. 
Lock-in 1D  Semi-infinite 

Omar[54] PSF deconvolution Pulse 3D  Numerical kernel 

Holland [73] 
Heat source intensity 

estimation 
vibrothermogrpahy 3D Noise free  

Rajic[68] 
Principle component 

analysis 
pulse Empirical   

Baddour [57] 3D Fourier transform Lock-in 3D  Semi-infinite 

Delpueyo [75] 
Derivation of Gaussian 

filter 

Mocked 

vibrothermography 
2D   
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bution along the surface rather than the time. Bisson [79] has shown a method based on 

the spatial thermal profile to estimate the diffusivity of a slab. Bison [80]has summarized 

several spatial-based thermography method to determine the thermal diffusivity of thin 

coats or slabs . As Bisson has pointed out, the method using spatial distribution of thermal 

profile requires neither the initial time nor the beam radius. However, the detraction should 

not be neglected during the method [79]. 

II.3 The evaluation system of detection patterns 

There are three indexes to describe an image. The first one is the standard deviation 

over the entire image. It measures the uniformity of the back ground. If the variation in a 

processed image is only caused by noises in the background, its overall standard deviation 

in the non-defective area will be relative small. Inversely, if the image’s main index varies 

along spaces (distributed non-homogenously), the overall deviation of the non-defective 

area will be relatively large. 

The second one is signal-to-noise ratio. It is one of the most important index to 

evaluate the efficiency of the inspection patterns [81]. However, in the previous work, the 

noise is evaluated based on uniform background, which is hard to obtain in the step heating 

thermography. The common definition of the signal to noise ratio (SNR) can be written 

as: 

𝑆𝑁𝑅𝐺 =
∑ ∑ 𝐼(𝑖,𝑗)2

[𝜎(𝑁(𝑖,𝑗))]
2                       (II.1) 

Where 𝐼(𝑖, 𝑗) is the signal values inside the defective area well the 𝜎(𝑁(𝑖, 𝑗)) is the 

standard deviation of noise. In the previous studies, the standard deviation of the noise is 

determined based on the variation of the Intensity in the non-defective zone (sound zones) 
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[17, 81, 82]. However, by such a definition, there are two challenges which should be 

solved in or der to obtain a good approximation to the real standard deviation of the noise: 

first, the intensity in the sound zones should be uniform; moreover, the solid zone need to 

be known. Identification of Sound zone identification is a problem in thermography [81]. 

Basically, there are two methods to identify the sound zones: empirical method, and 

model based method. In the empirical method, the solid zones are arbitrarily determined. 

However, it doesn’t mean unjustified. The method is suitable for testing subjects with 

complex inner structures [17]. In the model based method, the zones whose thermal 

responses are strictly stick to a pre-known thermal model are considered as solid zones. 

However, when the heating source is not uniform and the thermal properties of the material 

is anisotropic, the method will cause problems [81, 82]. Shepard et al. [83] has developed 

a method, later called “self-referencing thermography” [84, 85], to automatically detect 

defects. The method do not need any prior knowledge of the existing non-defective areas 

but whose principle lies in comparing the temperature rise of a given pixel to the mean of 

the pixels in its neighborhood. The so-calculated contrast is compared to the noise 

evaluated for the neighborhood. Based on the principle, another index to evaluate the SNR, 

called local SNR is introduced. The definition of local SNR has the exactly the same 

expression as show in Equation (II.1), the differences are lies in the way to evaluate the 

signal level and the standard deviation of noise level: the standard deviation of noise is 

evaluated based on the overall standard deviation of the neighbor-hood standard deviation. 

The method gives best estimation to the real noise level when the spatial intensity variance 



 

23 

 

rate are uniform over the entire field of view. In another words, the local SNR works well 

for small variance across the image.  

II.4 Summary 

Based on the literature review and comparisons between different models for 

thermography and between existed informative patterns in thermography, several points 

can be summarized:  

 As the requirements on thermography increased, the lateral non-homogenous 

distribution of thermal excitation cannot be neglected,  

 The non-homogeneity affects the identification of the solid zones as well, which 

is important in the certainty of defect detection. 

 There are several widely-adaptive inspection time-resolved patterns like surface 

temperature, phase angle, and temperature temporal derivatives, however, they are 

all highly influenced by the spatial distribution of thermal excitation. 

 There is a need in developing a model-based pattern which can be applied to all 

kinds of excitation and be independent to lateral distribution of thermal excitation. 

 In the depth characterization, the time-resolved patterns requires high sampling 

rate 

 Space-resolved patterns has been demonstrate to be attractive in thermal 

diffusivity measurement with thermography.  
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CHAPTER III  

THE OBJECTIVE AND DETAILED TASKS 

Based on the literature review from the second chapter, it has been concluded that the 

non-homogenous heating source degrades the detection results and bring in difficulties in 

identifying solid zones when basing on the widely used homogenous heating source 

models. One draw-back of the thermography lies in the mode-based inspection patterns 

used for detection depends on both on the temporal profile of excitation and its spatial 

distribution. All the trials in formulating inspection patterns is guided by the rule that the 

inspection patterns of defective area should be as different from those in the healthy areas 

as much as they can. A homogeneous heat excitation is preferred in thermography since 

under this condition; the surface temperature may display most recognizable differences 

between the defective area and non-defective area. However, the absolute-homogenous 

spatial distribution is hard to available in real application and as a result, the contrast of 

inspection patterns between the defective area and non-defective areas are blurred with a 

model which excludes the non-homogenous spatial distribution effects. Based on the 

reviewing in the Chapter II, it has been found that although several existed inspection 

patterns can reduce the blurring effects due to spatial non-homogeneity of heating source, 

they cannot eliminated the effect of non-homogenous heating without scarifying certain 

detectability and are limited to the temporal excitations based on which the models are 

derived. If a widely-adaptive model-based pattern would be built, a better understanding 

in the non-homogenous effect of heating and in generating inspection patterns can be 
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achieved. It may be possible to find a new inspection patter which base on spatial profile 

to detect and characterization defects. To achieve these goals, a problem should be 

understood and answered first: What does the exactly role of spatial non-homogeneous 

excitation play on in the thermography and can a restoring inspection pattern derived 

based on models to improve the thermography’s recolonization on the geometry 

dimensions of defects? To answer such a question, the thermal wave propagation 

mechanism need under spatial non-homogenous heat excitation should be understood. The 

current chapter introduces the research objective based on the question, the detailed 

research task. 

The study is aim at understanding the effect of spatial-based inspection patterns 

(restored heat flux by temporal-spatial Fourier mask) in AR film defect detection, coating 

thickness estimation and defect characterization in carbon fiber composite. 

Spatial restored patterns can be used to improve the detection by reducing the effect 

of non-homogenous heating and providing a method to identify solid zones in AR film 

defect detection, coating thickness estimation and defect characterization in carbon fiber 

composite. 

The research is limited to study the effect of non-homogenous heating in three cases: 

pin-hole detection in anti-reelection film, non-metallic coating thickness measurement, 

and planar defect detection in CRFC. The AR film are opaque to the Long-wave IR 

radiance. The heat source should be located outside of the field of view in AR tests. Also, 

thermography works when there is a thermal boundary between the coating and substrate. 

The term thermal boundary means the interface where thermal properties between the 
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coating and the substrate are different. In coating thickness measurement, the thermal 

boundary lies between coating and substrate in coating thickness estimation. The coating 

thickness studied in this study varies from 2.5 mil to 22.5 mil since most packaging 

industries are interested in the coating thickness within this range [4, 5, 52, 50].  

 

Table III.1 Research scopes of experimental design  

Applications 
Coating thickness 

measurement 
Defect detections 

Bulk material substrate Anti-reflection film 
Carbon-fiber 

composite 

Defects/ coatings 
Non-metallic 

paintings 
Pin holes 

Foreign lmplants- 

FEP and Teflon 

Testing Method Thermography Thermography Thermography 

Excitation Heat 

Spatial Spot like Uncontrolled 

Proposed to be 

uncontrolled or 

motion 

Temporal 
Constant within a 

short time 

Constant within a 

short time 

Proposed to be 

either Constant 

within a short time 

or Frequency 

modulated 
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These three cases are selected because the dimension of geometry characteristics are 

2D, 1D and 3D respectively. The detailed scopes of the research are listed in the table 

above (Table III.1). In details, they are described as following: 

 The Derivation of the filter based on the surface temperature in Fourier-Hankel 

domain and theoretical validations of the restoring kernel.  

 Heat conduction theories behind thermography and Image processing 

o Methodologies: deriving and modifying the spatial patterns for pinholes in 

AR film 

o experiment set-ups  

o Data Process and results-- comparison the spatial patterns with temporal 

patterns  

o Discussing about the dimension of Sub-pixel Defect Recognition Algorithm 

 The heat conduction and non-homogenous heating in non-metallic coating 

thickness measurement. 

o Heat conduction model for coating thickness estimation  

o Understanding how the spatial patterns varies with coating thickness 

theoretically 

o Set up experiments  

o Comparison the spatial patterns with existed temporal patterns  

 The heat conduction and non-homogenous heating in composite material. 

o Heat conduction model for coating thickness estimation  
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o Understanding how the spatial patterns varies with coating thickness 

theoretically 

o Set up experiments  

o     Comparison the spatial patterns with existed temporal patterns  
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CHAPTER IV  

THE DERIVATION OF THE FILTER AND THEORETICAL VALIDATIONS1 

IV.1 Heat conduction in thermography and derivation of restored heat flux 

Considering a heat flux q(t, x, y)  heating on the surface semi-infinite thermally 

isotropic block, the 3D Fourier transformed surface temperature of the bulk can be 

obtained by doing Fourier transform in both spatial directions and temporal direction:  

                    T(ξ, 0, ω) =
q(ξ,ω)

k

1

√𝜉2+
𝑖𝜔

𝛼

                      (IV.1) 

, where 

                               ξ2 = 𝑢2 + 𝑣2,                    (IV.2) 

, and,  

   T(x, y, t) = ∫ ∫ ∫ 𝑇(𝜉, 𝜔) exp(𝑖𝑢𝑥) exp(𝑖𝑣𝑦) exp(𝑖𝜔𝑡) 𝑑𝑢𝑑𝑣𝑑𝜔
∞

−∞

∞

−∞

∞

−∞
,  (IV.3) 

α stands for the thermal diffusivity of the bulk, and k stands for the thermal conductivity 

of the bulk. 

The Equation (IV.3) is equivalent to the convolution of thermal response under 

simultaneous spot heating over the given heat source: 

  T(x, y, 0, t) = ∫ ∫ ∫
𝑞(𝑥′,𝑦′,𝑡′)

√4𝜋𝜌𝑐(𝑡−𝑡′)3
exp (−

(𝑥−𝑥′)
2

+(𝑦−𝑦′)
2

4𝛼(𝑡−𝑡′)
) 𝑑𝑥′𝑑𝑦′𝑑𝑡′

+∞

−∞

+∞

−∞ 

𝑡

0
  (IV.4) 

                                                 

1 Part of the data reported in this chapter is reprinted with permission from“Using active thermography   

to inspect pin-hole defects in anti-reflective coating with k-mean clustering” by Hongjin Wang, et.al , 2015. 

NDT & E International, Volume 76, Pages 66-72, Copyright [2015] by Elsevier B.V. or its licensors or 

contributors 
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A variable, named restored pseudo heat flux (RPHF), can be obtained by doing inverse 

Fourier transform of the product between the 3D Transformed surface temperature 

response over a time t and the filter √𝜉2 +
𝑖𝜔

𝛼
. The RPHF, theoretically, is proportional to 

1/k. 

The surface temperature of a coated sample under a laser spot can be expressed as 

Equation (IV.5) in the 3D Furrier transformed domain:  

                  𝑣1 =
�̅�(𝑠,𝜉)(1+𝑅 𝑒𝑥𝑝(−2𝑧0√𝜉2+

𝑖𝜔

𝛼1
))

𝑘1√𝜉2+
𝑠

𝛼1
(1−𝑅 𝑒𝑥𝑝(−2𝑧0√𝜉2+

𝑠

𝛼1
))

                (IV.5) 

By applying the filter to the surface temperature of coated samples, a pseudo heat flux 

RPHF (restored heat flux) will be generated, it always equals to the convolution of heat 

flux and the refraction caused by the thermal boundary between coatings and the substrate 

when the heat flux flows out of the FOV is zero.  

   R𝑃𝐻𝐹 = ∫ 𝑒𝑖𝜔𝑡 ∫
exp(−

𝜉2𝐵2

8
)(1+𝑅 exp(−2𝑧0√𝜉2+

𝑖𝜔

𝛼1
))

4𝜋𝑅2 (𝑖𝜔)𝑘(1−𝑅 exp(−2𝑧0√𝜉2+
𝑖𝜔

𝛼1
))

𝜉𝐽0(𝑟)𝑑𝜉 𝑑𝑠
+∞+∞𝑖

−∞−∞𝑖
    (IV.6) 

At r=0, the pseudo heat flux can be written as: 

𝑅𝑃𝐻𝐹(𝑡, 0) = ∫ 𝑒𝑖𝜔𝑡 ∫
exp(−

𝜉2𝐵2

8
)(1+𝑅 exp(−2𝑧0√𝜉2+

𝑖𝜔

𝛼1
))

4𝜋𝑅2 (𝑖𝜔)𝑘(1−𝑅 exp(−2𝑧0√𝜉2+
𝑖𝜔

𝛼1
))

𝜉𝐽0(0)𝑑𝜉 𝑑𝑠
+∞+∞𝑖

−∞−∞𝑖
    (IV.7) 

The pseudo heat flux can be normalized by dividing the pseudo heat flux at the center 

of laser pulse.  
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IV.2 Theoretical validation and effect of noises  

To validate the effect of the proposed filter on restoring heat flux from surface 

temperature collected from a time after the zero moment when the heating begins, a set of 

numerical simulated surface temperature data are used. These data are simulated under 

several heat source with several spatial distribution listed in the table below. Several 

reasons makes numerical simulation rather than experimental data being used here. 

Comparing to experimental data, the noise numerical simulated data can be well 

controlled; the examined samples can be perfect in isotropic and defect-free; and the 

probable uncertainty brought in by thermal diffusivity can be eliminated from the 

numerical simulation. The tested heat flux are listed in the table below (Table IV.1). The 

first one is an idea point heating source which is instantaneous at moment zero. The second 

one is a heat sour with Gaussian spatial distribution and delta temporal profile. It mocks a 

laser beam heating and the third one is a circle like heat source with whose spatial 

distribution across the width of circle band has a Gaussian shape. Based on the theory 

which has been discussed in the previous sections. The surface temperature under a heat 

source can be calculated by convoluting the surface temperature under a delta spot pulse 

with the heat source. The surface temperature at 1s, 10s, 20, 30s and 40s after the heating 

begins are showing in the Figure IV.1. As the time goes on, the surface temperature 

diffuses. Even heating with a perfect spot like source, the heat will disperse and affect 

other areas of the material. 
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Table IV.1 The heat source profiles used to test the RPHF filter 

Heat 

flux no. 
Heat flux expression Normalized spatial distribution 

1 𝑞(𝑥, 𝑦, 𝑡) = 𝐴𝛿(𝑥)𝛿(𝑦)𝑢(𝑡) 

 

  

2 𝑞(𝑥, 𝑦, 𝑡) = 𝐴 exp (−
𝑥2 + 𝑦2

4𝜎2
) 𝑢(𝑡) 

 

3 

𝑞(𝑥, 𝑦, 𝑡)

= 𝐴 exp (−
(𝑥 − 𝑥𝑖) 2 + (𝑦 − 𝑦𝑖)2

4𝜎2
) 𝑢(𝑡) 

[𝑥𝑖, 𝑦𝑖] ∈ [(𝑥𝑖 − 𝑥0)2 + (𝑦𝑖 − 𝑦0)2

= 𝑅2] 
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Figure IV.1 Surface temperature distribution at different time 

The deconvolution filter is coded and compiled with MATLAB as MATLAB provides 

a strong math library with stable FFT transform algorithms. The deconvolution results are 
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shown in Figure IV.2 below. It can be observed that with the proposed filter, the heat flux 

spatial distribution can be obtained (known as restored heat flux). Comparing both the 

normalized spatial profile of the restored heat flux (RPHF) and that of surface temperature 

to the normalized spatial profile of the heat source, it can be observed that RPHF has a 

spatial profile almost the same with that of heat source while surface temperature has a 

diffused profile. 

 

 

Figure IV.2 Comparison the profile of heat flux restoration (blue) with that of 

heat flux (red) and surface temperature (black) 

However, the above results are obtained at an idea condition that no noise is shown 

up during data collection. In the real experiments, the Gaussian noises can seldom be 

eliminated from the measured surface temperature. Therefore, the effect of Gaussian 

noises should be discussed. The following images shows the RPHF from surface 

temperature under spot delta pulse with no noise, Gaussian white noise whose standard 

derivation at 0.01, 0.05, 0.1, 0.5, 0.9 separately (Figure IV.3). With light noise, the 
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proposed filter still works and the restored heat flux spot can be easily found from the 

image. However, when the standard derivation goes up to 0.1, it’s difficult to tell the 

restored spot source from the noise. Thus, Gaussian blur filter should be used to reduce 

the standard deviation of noises in the image. 

 

 

Figure IV.3 The noise effect on the RPHF (first row, left—zero noise; mid --- 

Gaussian noise with 0.01 std; right ---0.05 std; the second row, left—0.1 std, mid -

0.5 std, right—0.9std 
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CHAPTER V  

THE EFFECT OF SPATIAL PROFILE BASED PATTERNS IN DETECTING PIN-

HOLES ON AR FILM1 

V.1 The theory behind detection surface defects- pinhole detection in AR film 

If the heat source caused by chemical reaction, heat convection, or phase change at 

surface can be neglected, the heat source due to radiation can be written as: 

           𝑆 = 𝑔(𝑟)𝑓(𝑑)𝑢(𝑡) − 𝑆𝑒𝑚 + 𝑆𝑎𝑏,                    (V.1), 

where 𝑔(𝑥, 𝑦)𝑓(𝑑)𝑢(𝑡) represents the heat absorbed from the bulbs across the surface at 

different times; 𝑆𝑒 the emitted heat from the film; and 𝑆𝑎𝑏 the energy absorbed from the 

ambient. 

According to the Beer–Lambert law, the volumetric heat absorption in attenuated 

media can be expressed as [32]  

                𝑓(𝑑) = ∫
𝛽𝑒(𝜆)𝑖𝐼0(𝜆)

2𝑘𝑒
exp(−𝛽𝑒𝑑)  𝑑𝜆,                   (V.2) 

, where 𝛽𝑒 is defined as the effective absorption coefficient for the Anti-reflective film 

with thickness at d. βe is tested based on total attenuation reflective Fourier transform 

Infrared spectroscope (ATR-FTIR). 

                                                 

1 Part of the data reported in this chapter is reprinted with permission from“Using active thermography to 

inspect pin-hole defects in anti-reflective coating with k-mean clustering” by Hongjin Wang, et.al , 2015. 

NDT & E International, Volume 76, Pages 66-72, Copyright [2015] by Elsevier B.V. or its licensors or 

contributors 
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                𝐼0(𝜆) =
𝜀2ℎ𝑐2

𝜆5

1

exp(
ℎ𝑐

𝜅𝐵𝜆(𝜃𝑠+𝜃0)
)−1 

                       (V.3) 

, where ℎ and ΚB are Planck’s constant and Boltzmann’s constant respectively; c is the 

speed of light in vacuum; 𝜆 is the wave length; and the 𝜃0 is the reference temperature 

that is equal to the initial temperature of the film. It also equals to the ambient temperature. 

Under the experimental conditions used in this study, the heat source is a step function 

of time:  

                        𝑢(𝑡) = {
1  𝑡 ≥ 0
0 𝑡 < 0

.                        (V.4) 

The heat gain from the bottom side of the film can be expressed as:  

                𝑆𝑒𝑚 = 𝐹𝑏(𝑥, 𝑦)휀𝑒𝜎((𝜃 + 𝜃0) 4),                    (V.5) 

                 𝑆𝑎𝑏 = 𝐹𝑏(𝑥, 𝑦)휀𝑒𝜎((𝜃𝑎𝑏 + 𝜃0)4),                   (V.6) 

, where 𝐹𝑏 is the view factor.  

During heating, although the temperature of the AR film increases by 20℃, the heat 

loss due to radiation is smaller than the heat gain. The lumped temperature of the AR film 

can be solved by applying the Fourier transform temporally and the Hankel transform 

spatially  

                             �̃� =
�̃�(𝜉,𝜔)

𝑘𝑒√𝜉2+
𝑖𝜔

𝛼

                           (V.7) 

. Transferred back to the time and spatial domain:  

      𝜃 = ∫
𝛽𝑒𝐼0

2𝑘𝑒
exp(−𝛽𝑒𝑑)𝑑𝜆 ∫ −

𝑖

𝜔
[𝐾0 (√

𝑖𝜔

𝛼
𝑟) ∗ 𝑔(𝑟)] 𝑒𝑖𝜔𝑡𝑑𝜔

∞

−∞
,      (V.8)  

, where 𝐾0(𝑥) is a modified Bessel function of the second kind at zero order:  
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                         𝐾0(𝑥) = ∫
cos(𝑥𝑡)

√𝑡2+1
𝑑𝑡

∞

0
;                   (V.9) 

, ∗ is the convolution operator. The temperature of the AR film is observed to increase as 

the film thickness decreases. 

The temperature readings 𝜃𝑟𝑒𝑎𝑑𝑖𝑛𝑔 from a bolometer infrared camera depend on both 

the surface temperature and the transparent radiance from an incident source for a semi-

transparent film at a pixel, since the energy sensed by a single bolometer cell M is the sum 

of emitted radiance and transparent radiance:  

          𝜃𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = Δ𝜃𝑟 + 𝜃𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 휀𝑟                 (V.10) 

         Δ𝜃𝑟 = 𝑀 ⋅ 𝐺                          (V.11) 

     𝐺 = 𝐹𝑏휀𝑒𝜎(𝜃4 − 𝜃𝑎𝑏
4 ) + ∫ 𝐹𝑏Τ(𝜆)𝐼0(𝜆) 𝑑𝜆,                  (V.12) 

, where 

Τ(𝜆) = 10−𝛽𝑒𝑑,                       (V.13) 

εr is the random error introduced by the characteristics of micro-bolometer cell. 

From Equation (V.7), it can be observed, in the thermography detection of thin film, 

the surface temperature of the film is a product of heat flux and the term 
1

√𝜉2+
𝑖𝜔

𝛼

 in the 3D 

Fourier transformed domain. In this equation, �̃�(𝜉, 𝜔) is the 3D Fourier transform of the 

heat flux. By multiplying the term√𝜉2 +
𝑖𝜔

𝛼
, the Fourier transform of heat source can be 

restored. As the temporal profile of excitation is well controlled, it can be known that there 

is a defective area once its local temporal profile of excitation is different from the others.  
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However, the temperature reading from infrared camera is not equal to the surface 

temperature due to heating for pin-hole area, where the transmitted radiance cannot be 

neglected. For the healthy area the readings are approximated to the surface temperature 

since the material is opaque to the IR radiance. As a result, the deconvolution filter may 

be able to reduce the effect of inhomogeneity on the measured temperature in the healthy 

area although some side effects may be brought in by the defective area where the heat 

diffusion rule does not dominates.  

By substituting Equation (V.7), (V.11-13), and Equation (V.8) into Equation (V.10), 

one can find that the bolometer readings increases as the film thickness d decreases owing 

to the increase in both the temperature and the transmitted radiance; in contrast, visual 

inspection can only detect defects based on the change in transmittance at the defect area. 

Moreover, the transmittance of visual light is affected little by the film thickness as AR 

films with thickness of the order of 100 μm are usually transparent to visual light. 

IR camera readings 𝜃𝑟𝑒𝑎𝑑𝑖𝑛𝑔 described in Equation (V.10) is smooth if there is no 

random errors. In other words, a harsh change in the spatial gradient of the temperature 

indicates the boundary of a defective area or noise at this location. However, if an uneven 

heating source is applied, IR camera readings 𝜃𝑟𝑒𝑎𝑑𝑖𝑛𝑔 is uneven even though there is no 

random errors. Under this condition, IR camera readings 𝜃𝑟𝑒𝑎𝑑𝑖𝑛𝑔  bends spatially 

following a certain curve described by Equation (V. 8-13) for non-defective areas. The 

unevenness of infrared readings causes a problem [2, 33, 86]. when using spatial 

derivations, which were used to detect the edge of defective areas [1, 30, 32] , to detect 

defects in the film: once the main trend of the derivations of the thermal image is close to 
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the level of the change caused by a defect, the defect edge may become blurred based on 

derivations. The contrast of thermal images is affected by non-homogenous heating 

Equation (V.8) [2, 33, 86]. This occurs frequently for small-sized defects. Therefore, a 

method to reduce the impact of non-homogenous heating on the image should be applied. 

The phase image is commonly used for this purpose [2, 33, 86]. However, recent 

numerical simulations have shown that the phase image has limited capability to eliminate 

the effect of a temporal step-wise non-homogenous heating source [71]. 

V.2 Semi-empirical polynomial approximated de-trend filter 

According to an analysis of thermography processing, the trend of the thermal image 

can be estimated. Based on the definition of the exponential function:  exp(𝑥) =

lim
𝑛→∞

∑
𝑥𝑛

𝑛!
∞
𝑛=1 , the temperature at a given time t can always be approximated by a high-

order two-dimensional polynomial equation within a given area as lim
𝑛→∞

𝑥𝑛

𝑛!
→ 0. In other 

words, the general trend of the Infrared camera reading can be approximated by a high-

order polynomial equation. If the order of polynomial equation is high enough, the fitted 

model 𝜃(𝑥, 𝑦)𝑣𝑓 should be able to represent the Infrared camera readingsθreading(𝑥, 𝑦) 

[40-41]. The value of random noises should take a large portion of the residuals between 

the thermal readings and the fitted values: 

εr(𝑥, 𝑦) ≈ �̃�(𝑖, 𝑗) = 𝜃(𝑥, 𝑦)𝑣𝑓 − θreading(𝑥, 𝑦),           (V.14) 

�̃�(𝑖, 𝑗) also refers to the de-trended temperature in the following paragraphs.  
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That is to say, the residuals from a good fitting model should follow normal 

distribution [40-42]. In this research, the average of ninth order polynomial fittings along 

x and y direction separately was selected to fit the image based on least square regression: 

𝜃(𝑥, 𝑦)𝑣𝑓 =
1

2
(𝜃𝑗(𝑦)𝑣𝑓 + 𝜃𝑖(𝑥)ℎ𝑓)                (V.17) 

𝜃𝑖(𝑥)ℎ𝑓 = ∑ 𝑏𝑘𝑥𝑘9
𝑘=1                     (V.18) 

𝜃𝑗(𝑦)𝑣𝑓 = ∑ 𝑎𝑘𝑦𝑘9
𝑘=1                     (V.19) 

, with constrains: 

𝐽𝑗(𝜙) = min (𝑆𝑈𝑀((𝜃(𝑖, 𝑗)𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜃𝑗(𝑖)𝑣𝑓)
2

) )  𝑗 = 1,2, … . 𝑁,    (V.20) 

𝐽𝑖(𝜙) = min (𝑆𝑈𝑀((𝜃(𝑖, 𝑗)𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝜃𝑖(𝑗)ℎ𝑓)
2

) )  𝑖 = 1,2, … . 𝑀.    (V.21) 

The order of the model is determined by F-test [40-41]. The sum of squares due to 

error (SSE) is calculated to evaluate the goodness of each fitting: 𝑆𝑆𝐸 = ∑ 𝑤𝑖(𝑦𝑖 −𝑛
𝑖=1

�̂�𝑖)
2 . For all fittings for 90 tested areas in this study, the maximum SSE is 0.271. The 

residuals of each fittings from non-defective area are randomly positive and negative 

based on runs tests [87, 88]. The distribution residuals of the model were tested with 

Shapiro-Wilk test [89-91]. Test results shows that the residuals from the non-defective 

area follows normal distribution as expected. The proposed curve fitting models fit each 

images well.  

The above process is also called de-trend filter. After de-trending, the defective pixel 

should be separated from the background so that the size of the pinhole can be calculated.  

Sobel edge detection is commonly used to extract a defective feature from inspection 

images. Sobel edge detection for each thermal image can be expressed as: 
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 𝐺𝑖 = √𝐺𝑥,𝑖
2 + 𝐺𝑦,𝑖 

2             𝑖 = 1,2,3 … 65       (V.22) 

𝐺𝑥,𝑖 = ℎ𝑥 ∗ 𝐴𝑖, 𝐺𝑦,𝑖 = ℎ𝑦 ∗ 𝐴𝑖                 (V.23) 

, where 𝐺𝑖  stands for the edge detection image based on Sobel approximation for de-

trended images derived at each data point, and ℎ𝑥 , ℎ𝑦 are so called Sobel kernels. 𝐴𝑖 is 

the de-trended image derived at each data point. 

For each single image, the Sobel edge detection algorithm detects the boundaries of 

defects as well as, occasionally, some noise. However, as white noise does not appear at 

the same pixels along time, the defect edges take heavy weights in the sum of binary 

images over time while the noise will be eliminated automatically. Thus, a new binary 

𝐺𝑐𝑟𝑒𝑑𝑖𝑡(𝑥, 𝑦 ) image is generated for each pinhole with the equation below: 

𝐺𝑐𝑟𝑒𝑑𝑖𝑡(𝑥, 𝑦 ) = ∑ 𝐺𝑖(𝑥, 𝑦)65
𝑖=1 .                   (V.24) 

K-means clustering is a widely used centroid-based clustering algorithm [92, 93-95]. 

It aims to separate all n observations ( 𝒙1, 𝒙2, 𝒙3, … 𝒙𝑛 ) into k (k < n) clusters, 

{𝑆1, 𝑆2, 𝑆3 … 𝑆𝑘 }, in such a way that each observation belongs to the cluster with the 

nearest mean. In other words, in k-means clustering, the square sum within one cluster is 

minimized: 

arg min
𝑆 

∑ ∑ ‖𝑥 − 𝜇𝑖‖ 2𝒙∈𝑆𝑖

𝑘
𝑖=1 ,                  (V.25) 

, where 𝜇𝑖  are the mean points of𝑆𝑖 . To achieve this minimization objective, several 

general steps should be followed [2]. 
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V.3 3D Fourier deconvolution filter 

From Equation (V.7) ,it can be observed, in the thermography detection of thin film, 

the surface temperature of the film is a product of heat flux and the term 
1

√𝜉2+
𝑖𝜔

𝛼

 in the 3D 

Fourier transformed domain. In this equation, �̃�(𝜉, 𝜔) is the 3D Fourier transform of the 

heat flux. By multiplying the term√𝜉2 +
𝑖𝜔

𝛼
, the Fourier transform of heat source can be 

restored. As the temporal profile of excitation is well controlled, it can be known that there 

is a defective area once its local temporal profile of excitation is different from the others.  

However, the temperature reading from infrared camera is not equal to the surface 

temperature due to heating for pin-hole area, where the transmitted radiance cannot be 

neglected. For the healthy area the readings are approximated to the surface temperature 

since the material is opaque to the IR radiance. As a result, the deconvolution filter may 

be able to reduce the effect of inhomogeneity on the measured temperature in the healthy 

area although some side effects may be brought in by the defective area where the heat 

diffusion rule does not dominates.  

V.4 Experiment set-ups 

All the experiments were tested with the set-up showing in the Figure V.1. A Compix 

222 infrared camera (Compix Inc.) with focal plane arrays at a size of 160 by 120 pixels 

was set about 3.8 cm above the surface of tested samples. The detectors sensed to light 

ranging from 7μm to 14μm. As a result, a 0.106 mm by 0.106 mm was obtained. The 

camera was calibrated to achieve a noise equivalent temperature difference (NETD) at 

0.1K and an accuracy at ±2ºC or 2% whichever is larger.  
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Figure V.1 The experiment set-ups. 1- Compix 222 infrared camera, 2- the 

tested AR film with pinhole, 3- heating bulbs; 4- the control box; 5-data analysis 

center 

Samples were multiple-layer anti reflective coatings for flat panel display (by 

Dexerials Corporation). The films were at a thickness of 160 μm in average and were 

designed to be anti-reflective to the light whose wavelength ranges between 450 nm and 

670 nm [48]. The emissivity of the Anti-reflection (AR) film was tested under ASTM code 

[96] with a value at 0.88. 

The samples were cut by a PLS6.120D carbon-dioxide laser system (Universal Laser 

Systems). The size of pinholes varied from 4 mm to 0.03mm as it is shown in Table V.1. 

A 60 W incandescent lamp was used as heating source for the thermography testing 

located about 5 cm below the sample. The center of the lamp was set outside of the field 

of view. The lamp was kept on for 65 seconds. During this time, thermal images were 

taken at a rate of one frame per second.  
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Table V.1 The dimension of pinholes  

Diameter 

(mm) 
4 3 2 1 0.7 0.4 0.2 0.08 0.03 

No. 10 10 10 10 10 10 10 10 10 

 

V.5 Methodology of image processing 

In general, several steps are applied to identify, extract, and estimate the diameter of 

pinhole area as it is shown in Figure V.2. The trend of original images were estimated with 

high order polynomial curves based on the thermal response under thermography as the 

method descried in section V.2. The de-trend images are prepared. Later, edge detection 

based on Sobel approximation was applied to extract the boundary of defective area. 

Considering noises in thermal images, the Sobel edge detection method was applied to 

each of the de-trended image. As the algorithm was implanted by MATLAB, the threshold 

for the Sobel edge detection is determined by MATLAB automatically [95, 97] . Later, 

the binary images of edges based on Sobel approximation were convoluted over each 

image sampled at each second after heating begins. The new images were used as the input 

of k-mean clustering. After that, the diameter of the defective area was measured based 

on the method described in Hsieh’s study [98]. K-means clustering returned defective 

clusters and non-defective clusters as results. The coordinates of pixels in defective 

clusters were stored for diameter calculation. 
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Figure V.2 The process of image processing 

V.6 Data process and results 

The original image is shown in the left picture in Figure V.3. Obviously, the 

background area was not uniform due to the non-homogenous heating. By applying the 

de-trend filter described in the section V.2, the background becomes flattened (uniform 

with noise). (The right image in the Figure V.3) 

 

 

Figure V.3 The raw thermal image (on the left) and the de-trended thermal 

image (right) 
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We noted that when the defective area was relative large, (in Figure V.3, the diameter 

of defective area is about a third of the width of the image), the polynomial curve may 

followed the trend inside the defective area. However, due to the sharpen change of 

temperature over space, the polynomial curves was forces out of the trend at the 

boundaries between defective and non-defective areas. After the de-trend process, the 

edge of the defect area is extremely clear. The edge of the defect (the dark circle in the 

right image of Figure V.3) significantly differed from the average of readings of all pixels.  

 

 

Figure V.4 The thermal profile of measured temperature vs de-trended 

temperature and the edge detection results of them. 
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The de-trend filter is essential for small size pinhole detection. The top figure in Figure 

V.4 compares the horizontal thermal profile of pinholes with diameter at 0.08mm and the 

estimated trend based on polynomial curves. Polynomial curves approximated the trend 

of surface temperature well. By subtracting the estimated trend from the thermal image, 

the de-trended thermal profile was obtained and shown in the middle figure of Figure V.4. 

Comparing to the variance between healthy pixels, the difference of de-trended 

temperature between the defective pixels and the average of healthy pixels was obviously 

in the de-trended thermal image (Figure V.4 middle). Our study showed the binary edge 

image based on de-trended temperature (Figure V.4 bottom right) showed the boundary 

of defect clearly while that based on original image (Figure V.4 bottom left) failed to 

indicate the position of the defect.  

 

 

Figure V.5 The measured temperature increment (right) vs restored pseudo 

heat flux (left) for a sample of pin-hole 5 

In the Chapter IV, it has been theoretically shown that the proposed filter can enhance 

the contrast between the pin-hole defects and their neighboring area. In this section, the 

proposed filter will be applied to the thermal images gathered from thermography 
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detections on the AR film. The figure below (Figure V.5) compares surface temperature 

at 65seonds (right) with the restored heat flux at the same time (Left). It can be seen that 

the restored heat flux gives a better vision contrast. 

 

 

Figure V.6 Comparison between de-trended data (left column), restored heat 

flux (mid column) and measured surface temperature increment (right column) in 

color map (first row), profile across the defect horizontally (mid row) and vertically 

(bot row) based on a sample with pinhole 6 

Figure V.6.gives a comprehensive comparison between the empirical de-trending 

(first rows left), the restored heat flux (first row middle) and the surface temperature (first 

row right) at 65s for the pinhole 6, whose diameter is 0.2 mm. The second row and the 

third row exhibit the horizontal and the vertical line profile across the defect. The empirical 

de-trending filter gives the best spatial contrast. It can been seen that after de-trending, the 

background area only contains noises and the defective signal soared out of the 
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background noise. With the proposed filter, the restored heat flux can be obtained. 

Comparing to the normalized surface temperature increment (NSTI), the restored heat flux 

image gives a better contrast between the defect and its neighboring area although the 

restored heat flux images did not a noise-only background as the de-trending filter did. 

Due to the proposed restore filter is derived based on the model for heat conduction in a 

semi-infinite area, the filter created aliases at the boundary of the images when the field 

of view is smaller than the thermal desperation area. In all the 9 by 10 samples examined 

in the study, the aliases do not degrade the contrast between the defect and its neighboring 

area. 

 

 

Figure V.7 Comparison between de-trended data (left column), restored 

pseudo heat flux (mid column) and measured surface temperature increment (right 

column) in color map (first row), based on a sample with pinhole 9 

The de-trend filter, RPHF filter is essential for small size pinhole detection. Figure 

V.7 and Figure V.8 show the results of de-trending filter, RPHF and surface temperature 

for one of the pin-holes with diameter at 0.03 mm. The two binary images are the edge 

detection result based on RPHF image (left) and de-trended image (right). In this sample, 
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it looks like that the RPHF image has a better local signal to noise ration than the residual 

images and the NSTI image. It can be seen that with Restored heat flux image, the edge is 

detected for the detective area while it fails based on the de-trended data. However, the 

effect of the filters should be measured quantitatively. Figure V.9 shows that with a 

complex geometry, RPHF forms better than de-trend data since the latter one will bring in 

a distortion at non-defective area  

 

 

Figure V.8 Edge detection result based on RPHF (left) and de-trended data 

based on one of the sample with pinhole 9 

 

Figure V.9 Comparison between de-trended data (left), RPHF (mid) and 

measured surface temperature increment (right) for pinholes with complex 

geometries 
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Figure V.10 compares the standard deviation for the non-defective area over the entire 

field of view (STD over FOV). The solid line are the means of STD over FOV based on 

ten samples for each kind of pinholes. It can be observed that the processed data (both 

RPHF and the de-trended data) exhibit a good uniformity in the back ground while the 

NSTI images exhibit a large variation over the FOV. In the examined cases, the uniformity 

of the background in RPHF is comparable to those obtained based on de-trending process.  

 

  

Figure V.10 Comparison of STD for overall FOV 

The second criteria introduced in is the global SNR over the entire image. The criteria 

is defined as following:  

𝑆𝑁𝑅𝐺 =
∑ ∑ 𝐼(𝑖,𝑗)2

[𝜎(𝑁(𝑖,𝑗))]
2                       (V.26) 

, where 𝐼(𝑖, 𝑗) is the signal values inside the defective area well the 𝜎(𝑁(𝑖, 𝑗)) is the 

standard deviation of noise. In the study, the 𝜎(𝑁(𝑖, 𝑗)) for all the three methods are 

evaluated based on the overall standard deviation of the images values. By such a method, 
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the evaluated variance of noise in the de-trended data are the one most approximate to its 

true value in all the three method since the background of the de-trended images are noises. 

On the other side, the standard deviation of noises may be overly estimated in both RPHF 

and NSTI since they contains index variations into noises variation as well. 

To give a better measurement of the SNR in the NSTI and RPHF, another criteria is 

introduced in: local signal to noise Ration , which has the same formula as the global one 

but uses local standard deviation to measure the defective area’s local contrast  

𝑆𝑁𝑅𝑙 =
∑ ∑  𝐼(𝑖,𝑗)2

𝑤

[𝜎(𝑁𝑊(𝑖,𝑗))]
2                      (V.27). 

The signal is measured based on the variances between the normalized detecting index 

in defective areas and its local average within the windows. The comparison results based 

on local SNR are shown in Figure V.11. 

 

Figure V.11 Comparison of local SNRs 

Although the de-trended method seems provide the best SNR among the three method, 

however, to calculate the de-trended data, is very time consuming. The MATLAB needs 

about 4 minutes to compute the de-trended filter based on the data from MATLAB 
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performance evaluator. And it just takes less than 1 second (0.239s) to compute the 

restored heat flux. Moreover, the restored heat flux images give a better performance in 

false positive/negative error test. (As shown in Table V.2) Also, it has been found that de-

trended method may give a false alias when the defect shape is complex while the restored 

heat flux did not.  

The calculated pinhole diameter based on thermography was illustrated in the Table 

V.3. Obviously, diameters estimated by the proposed method responded to the variance of 

pinhole diameter for those greater than 0.2mm. However, pinholes whose diameter smaller 

than 0.2m is detectable but not recognizable based on the method described here since 

they are smaller than one-pixel. For the pinholes smaller than 0.2mm, the infrared camera 

can just reveal them as a 0.2mm diameter holes in the image, with a predicted diameter at 

0.27 mm. At the same time, the estimated size of pinholes whose diameter is greater than 

0.2mm approximate to the named defect size. The difference between the average of 

estimated diameter and the named diameter for those 0.03mm pinholes can be as large as 

700%. However, this number drops down to 3% for the pinholes with diameter at 4mm. 

For pinholes whose diameter is varying from 0.2mm to 1mm, the estimated diameter is 

always about 25%-33.3% larger than the named diameter in average. Besides, in all the 

90 test, the proposed method predicted pinhole diameter greater than the actual sizes. The 

standard deviation for the estimated diameters of pinholes at 0.03mm was 0.004mm; that 

for pinholes at 0.08mm was 0.0165mm; for pinholes at 0.2mm was 0.015mm. The 

algorithm estimates the multiple-pixel defects with an acceptable accuracy. However, it 
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overate the diameter of sub-pixel defects. Therefore, an algorithm to recognize the 

subpixel defects should be developed and described in the next section. 

 

Table V.2 False negative error and false positive error for each pinhole  

RPHF 

Diameter 

(mm) 
4 3 2 1 0.7 0.4 0.2 0.08 0.03 

Tested times 10 10 10 10 10 10 10 10 10 

False positive 0 0 0 0 0 0 0 0 0 

False negative 0 0 0 0 0 0 0 1 1 

 

NSTI 

Diameter 

(mm) 
4 3 2 1 0.7 0.4 0.2 0.08 0.03 

Tested times 10 10 10 10 10 10 10 10 10 

False positive 0 0 0 0 0 0 0 0 2 

False negative 0 0 0 0 0 0 0 0 2 

 

De-trend 

Diameter 

(mm) 
4 3 2 1 0.7 0.4 0.2 0.08 0.03 

Tested times 10 10 10 10 10 10 10 10 10 

False Positive 0 0 0 0 0 0 0 0 2 

False negative 0 0 0 0 0 0 0 0 2 
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Table V.3 Estimated diameter (est. dia.), their standard deviation (std. of est. dia.) 

and average estimation bias based on algorithm 

Pinhole 

dia. (mm) 

est. dia. 

(mm) 

Std. of est. dia. 

(mm) 

Average Bias 

(%) 

4 3.91 0.25 -2.17 

3 2.96 0.06 -1.48 

2 2.17 0.27 8.67 

1 1.16 0.13 15.91 

0.7 0.89 0.07 26.50 

0.4 0.53 0.05 33.32 

0.2 0.25 0.02 26.42 

0.08 0.26 0.02 227.59 

0.03 0.27 0.00 801.25 

V.7 Discussions on the dimension of sub-pixel defect recognition 

The sub-pixel defect can just irradiate part of a pixel or irradiate 2by2 pixel partially. 

Therefore, the measured temperature from the infrared camera will be underrated. For a 

sub-pixel defect to be recognized from thermal image, the temperature change caused by 

the defect should be greater than the noise equivalent temperature. 

An interest phenomenon were observed during experiment. The pinhole area did not 

illuminate the FPA detectors as soon as the heating source turned on. Instead, even the 
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largest defect took about 10 seconds before it become recognizable from the thermal 

image. The time required by sub-pixel defects may longer than large defects. The image 

below comparisons the time required to show 0.2 mm pinholes (lager than IFOV) and that 

for 0.08mm pinholes and 0.03 mm (smaller than IFOV). The tests were conducted nine 

times on pinholes with diameter at 0.03mm, 0.08mm and 0.2 mm separately. The y axil 

showed the time after the heating source had been turned on. After the defect were 

recognized according to the method described in the section above, the significance of the 

defect at each sampling point was determined by the Sobel edge detection algorithm. The 

brightness in Figure V.12 shows how much percentage of the defect boundaries were 

detected by Sobel operator at each sampling point for each samples. That is to say, if a 

pure white bar were seen in a trial at some sampling point that means a complete boundary 

was shown up at that time in that trial. A conception called critical time is introduced in 

here. It is defined as the first time, 70% of a defect edge can be observed continuously for 

5 seconds. The research shows that the critical time for edges of the 0.2mm pinhole are no 

later than 20 seconds. It required 25-35 seconds for pinholes with diameter from 0.08mm 

to get 70% of their edges continuously detectable on the thermal image. However, the 

edges of 0.03mm pinholes may appear earlier than those of 0.08mm pinholes but late than 

those of 0.2mm pinholes. 
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Figure V.12 Time sequence for appearance of defect boundary in thermal 

image 
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CHAPTER VI  

THE HEAT CONDUCTION AND NON-HOMOGENOUS HEATING IN NON-

METALLIC COATING THICKNESS MEASUREMENT1 

VI.1 The theory behind thickness characterization 

The 𝑣1 can be solved expressed as Equations (IV. 5) for the coating under a laser spot 

shooting (check Appendix A for further information): 

𝑣1 =

�̅�(𝜔, 𝜉) (1 + 𝑅 𝑒𝑥𝑝 (−2𝑧0√𝜉2 +
𝑖𝜔
𝛼1

))

𝑘1√𝜉2 +
𝑖𝜔
𝛼1

(1 − 𝑅 𝑒𝑥𝑝 (−2𝑧0√𝜉2 +
𝑖𝜔
𝛼1

))

 

, where 𝑅(𝜉, 𝑠) =
√𝜉2+

𝑖𝜔

𝛼1
−𝜒√𝜉2+𝑛2 𝑖𝜔

𝛼1

√𝜉2+
𝑖𝜔

𝛼1
+𝜒√𝜉2+𝑛2 𝑖𝜔

𝛼1

, 𝑛  is the thermal diffusivity ratio between the 

substrate and coating 𝑛 = √
𝛼2

𝛼1
 , 𝜒  for a thermal conductivity ratio of 𝜒 =

𝑘2

𝑘1
. The 

above result is consistent with those of previous studies [99-101]. The subscript 1 and 2 

stand for the coating material and the bulk material separately; 𝑧0 is the thickness of the 

coatings. 

                                                 

1 The data reported in this chapter is reprinted with permission from: 

(1) “Non-metallic coating thickness prediction using artificial neural network and support vector 

machine with time resolved thermography” by Hongjin Wang, et.al , 2016. Infrared Physics & 

Technology, Volume 77, July 2016, Pages 316-324, ISSN 1350-4495,Copyright [2016] by Elsevier 

B.V. or its licensors or contributors 

(2) “Evaluating the performance of artificial neural networks for estimating the nonmetallic coating 

thicknesses with time-resolved thermography” by Hongjin Wang, et al, 2014. Optical Engineering, 

Volume 53, 083102 , Copyright[2014] by SPIE 
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For the laser spot shining constantly over time, �̅�(𝑠, 𝜉) can be expressed as Equation 

(VI.1) if light penetration through the coating surface is neglected [32, 34]: 

�̅�(𝜔, 𝜉) = 𝐴
1

2i𝜔
exp (−

𝜉2𝐵2

8
) /4𝜋𝐵2        (VI.1). 

When the filter has been applied to the gathered surface temperature, a coating 

thickness modified Restored heat flux can be observed. It equals to the convolution 

between the original heat flux spatial profile and the coating thickness factors 

(1+𝑅 𝑒𝑥𝑝(−2𝑧0√𝜉2+
𝑖𝜔

𝛼1
))

(1−𝑅 𝑒𝑥𝑝(−2𝑧0√𝜉2+
𝑖𝜔

𝛼1
))

. In another world, it can be expected that coating thickness can be 

revealed from both the spatial profile of surface temperature and that of restored heat flux.  

To examine the effect of variances in coating thicknesses on surface temperatures 

under general conditions, a non-dimensional analysis is conducted. When introducing a 

‘root’ thickness on the order of the coating thickness, several non-dimensional variables 

can be defined: 

𝜉∗ = 𝑧𝑟𝜉 , 𝑠∗ =
𝑠𝑧𝑟

2

𝛼1
, 𝑧𝑛 =

𝑧0

𝑧𝑟
~1 , 𝑟∗ =

𝑟

𝑧𝑟
, 𝑡∗ = 𝑡𝛼1/𝑧𝑟

2 . If a ‘root’ temperature is 

defined as:𝑇0 =
𝐴

4𝜋𝐵2𝑧𝑟𝑘
, a non-dimensional temperature level can be defined as: 𝑇∗ =

𝑇/𝑇0. According to this definition, non-dimensional temperature levels are independent 

of thermal properties but depend on thermal conductive and thermal diffusivity ratios. By 

adding the above non-dimensional to Equation (VI.2), the following is obtained: 

𝑇∗(𝑟∗, 𝑡∗) = ∫ ∫
exp(−

𝜉∗2
𝐵2

8𝑧𝑟
2 )(1+𝑅 exp(−2𝑧𝑛√𝜉∗2

+𝑠∗))

𝑠∗√𝜉∗2
+𝑠∗(1−𝑅 exp(−2𝑧𝑛√𝜉∗2

+𝑠∗))

𝜉∗𝐽0(𝑟∗𝜉∗)𝑑𝜉∗ 𝑒
𝛼1

𝑧𝑟
2𝑠∗𝑡

𝑑𝑠∗∞+∞𝑖

−∞−∞𝑖
 (VI.2) 
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Figure VI.1 shows non-dimensional surface temperature changes with non-

dimensional time. The substrate exhibits a stronger thermal conductive capacity level than 

that of the coating. Rather, 𝜒 > 1 (𝜒 = 5) and n<1 (n=0.5). The thickness root is 2 mil 

(50.2 μm) at the same level for most protective or non-conductive coatings [102, 103]. 

When the substrate is more conductive than the coating material, the surface temperature 

increases as the coating becomes thicker. Equation (VI.2) shows that a surface temperature 

increment caused by a 10% thickness change in the coating can be sensed by a NET at 

0.1K IR camera with a laser spot power level at an order of 1 mW and with a spot diameter 

of 2 mm. 

 

Figure VI.1 The non-dimensional temperature T* vs. non-dimensional time t* 

Figure VI.2 shows that non-dimensional temperature varies with the thermal 

diffusivity ratio. The thermal diffusivity ratio increases by 0.1 for each line in the direction 

shown in the figure. As the thermal diffusivity ratio approaches a value of one, non-
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dimensional surface temperature changes caused by the thermal diffusivity ratio are small. 

Non-dimensional surface temperatures are nearly doubled when the thermal conductivity 

ratio decreases from 0.2 to 0.1.  

In a summary, if it’s required to build up a correlation between the surface 

temperature and the coating thickness, either the problems should be transformed into a 

domain that the relationship between transformed surface temperature and the coating 

thickness can be approximated by a basic function; or non-linear regression models should 

be introduced in. Although high spot energy is preferred to obtain a good sensitivity to the 

coating thickness in the thermography, to avoid surface melting for coatings at 120 

micrometre thick, the spot energy should be controlled with in 30-50 mW.  

 

Figure VI.2 The non-dimensional temperature T* vs. non-dimensional time t* 

changes with different thermal diffusivity ratios 

VI.2 Experiment set-up 

Sixty-one sets of experiments on paint-coated samples were conducted to collect data 

and to establish regression models. Samples were tested on the test rig shown in Figure 
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VI.3. A BWF-1-785-450E model laser was used as a heating source. The laser reached a 

maximum output of 50 mW. To generate results comparable with those of previous 

studies, the same r experimental set-up used in previous studies was used in the present 

study [19].  

 

 

Figure VI.3 Experiment set-ups 1- Compix 222 infrared camera; 2- laser 

emitter; 3- optical fiber; 4 --laser terminator; 5- tested samples 

Substrates of the sixty-one samples were made from the same tin steel foil material 

with a thickness of 7.5 mil±0.3 mil (190.5μm±7.62μm). KRYLON black carbon paint was 

used to coat the samples owing to its widespread industrial use and re-printability. To 

further demonstrate the Capacities of the proposed method in estimating coating 

thicknesses, we divide the 61 paint-coated samples into four groups based on their coating 

thicknesses: 2.5 mil, 7.5 mil, 12.5 mil and 22.5 mil (63.5μm to 571.5μm). Variances and 

the number of samples in each level are listed in the table below (Table VI.1). Samples in 

a certain level are designed to represent a particular coating thickness. However, 

manufacturing processes causes coating thicknesses to vary according to a particular 

coating thickness. However, the nominal standard variance is controlled within 1.6 mils 
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(as shown in Table VI.1). All the coating thicknesses are examined by a G-mouth 

micrometre with a resolution at 0.1mil. 

Table VI.1 Coating thickness of paint-coated samples for model training 

Nominal coating thickness (mil) 2.5 7.5 12.5 22.5 

Nominal standard variance 0.5 0.9 0.8 1.6 

Number of samples 15 15 15 16 

 

 

Figure VI.4 Tested painting emissivity according to ASTM standard E1933 

The output laser power amplitude was set to 85% of the maximum output to prevent 

detection surface damage. During each measurement, samples were heated for 60 s. The 

entire process was recorded using a Complex 222 model infrared camera. Thermal images 

were taken at a rate of one frame per second. The spatial resolution of the camera was set 
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to 160*120 pixels. The accuracy of the camera was set to ±2ºC or 2% (whichever was 

higher). The NETD value was set to 0.1K. The emissivity of the black paint was measured 

according to ASTM Standard E1933[92]. The coatings were heated up by a Tokai Hit 

OLYMPUS, Shizuoka, Japan thermos-plate for 20 min to ensure that both the 

thermocouple and the coating samples were in a steady state. The measured emissivity 

was 0.945±0.05 (as shown inFigure VI.4). At the start of the heating process, the heat 

source may have been unstable.  

VI.3 Thermography data analysis 

Sixty-one sets of data were collected for the paint-coated samples. Differences 

between the samples of varying coating thickness (solid lines) and variance levels among 

the samples of the same coating thickness (error bars) are shown in Figure VI.5  

Figure VI.5 shows the maximum surface temperature increment for samples with 

different coating thickness. The solid lines stand for the average maximum surface 

temperature increment while the short vertical bars presents the deviations among 

different samples with the same nominal coating thickness. The T test results show that 

means of samples with the same nominal coating thickness are different from those with 

a different coating thickness with a significant greater than 90% when the heating is longer 

than 15 seconds.Samples with 2.5-mil coatings generated the lowest temperature 

increments of all four groups of samples of different coating thicknesses (Figure VI.5). 

The temperature increment at each time point increased as its coating thickness increased, 

as predicted by Equation (VI.2). The standard deviation among samples with 2.5 mil 

coating thicknesses was found to be relatively smaller than that of the samples with thicker 
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coatings. It is evident that the standard deviation recorded under increasing temperatures 

is larger than that recorded for data collected during the stable period. Camera behaviours 

can serve as a reasonable explanation: infrared staring arrays integrate sensed lights into 

temperatures over a certain period. Thus, more severe temperatures challenge camera 

capacities. 

 

 

Figure VI.5 The maximum temperature increment 

However, if the amplitude did not hold constantly for each testing, then the surface 

temperature of samples with same coating thickness may differ from each other 

significantly. And it would be hard to see the difference between the means of maximum 

surface temperature increment gathered from samples with different coating thickness (as 

shown in Figure VI.6 right). Comparing to the maximum surface temperature increment, 

the spatial patterns—normalized restored heat flux spatial profile and the normalized 
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spatial profile of surface temperature increment is independent from the heating source 

amplitude. It can be observed that with the heat flux restoration filter, the spatial profile 

has one more inflection point than the surface temperature profile.  

 

 

Figure VI.6 Normalized spatial profile of restored heat flux (left) vs. that of 

surface temperature increment (mid) and the maximum temperature increment 

(right) 

VI.4 Regression model set-up 

The relationship between surface temperatures and coating thicknesses is implicit and 

inflexible during industrial use. Therefore, several regression models such as and SVM 

[104-108]should be considered when conducting the measurements. 

Overfitting issue can be observe when using a test set to evaluating different settings 

to determine ‘hyper-parameters’ (e.g., the C coefficient), which must be manually set for 

an SVM [109] for regression models, as parameters can be altered during training until a 

given estimator performs optimally. To solve this problem, another part of the dataset 
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should formed as a so-called ‘validation set’ [110]. Rather, training proceeds on the 

training set, and then evaluations are performed on the validation set. When the 

experiment appears to be successful, a final evaluation (i.e., testing) can be performed on 

the test set [110]. However, by partitioning the available data into three sets, we drastically 

reduced the number of samples that can be used to learn the model, and the results can 

depend on a particular degree of random choice for the pair of (train, validation) sets. 

Cross-validation (CV for short) serves as another solution to this dilemma [111, 112]. 

A test set should still be created for final evaluation, though a validation set is no longer 

needed when conducting CV. For this basic approach referred to as k-fold CV, the training 

set is divided into k smaller sets. The following procedure is followed for each k ‘fold’: 

[113, 114] 

 a model is trained using the  kth of the folds as training data; 

 The resulting model is validated for the remaining data (i.e., it is used as a test set 

to compute a performance measure (e.g., accuracy)). 

The performance determined via k-fold cross-validation is the average of the values 

computed for the loop. While this approach can be computationally expensive, it does not 

waste excessive amounts of data (as is the case when fixing an arbitrary test set). This 

constitutes major advantage relative to problems such as those of inverse inference, where 

the number of samples is very small. 
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VI.5 Support vector regression 

The principle of SVM can be described as follows: a linear decision surface can be 

constructed in a feature space by mapping input vectors to a very high-dimensional feature 

space [115]. However, for a given n of training examples {xi, yi}, i= 1,…,n, with d inputs 

(xi ∈ 𝐑d), several hyper-planes in the Rd domain with a transform vector (w) can be drawn 

and be expressed as w∙x +b=0to separate the examples into two classes {-1, +1}. Rather, 

for all examples in domain Rd, the hyper-plate should cause them to satisfy the following 

relationship: y i ((w ∙x i )+b)≥1 . 

Therefore, SVM, as a supervised learning algorithm, is designed to determine suitable 

w and b values to maximize the geometric distance from the hyper-plane to the closest 

data examples. The distance from the hyper-plane to the closest data examples is also 

known as ‘margin’. An optimal hyper plane can be mathematically obtained as a solution 

to optimization problems to minimize τ(w)=1/2 ||w||2 subject to yi ((w ∙ xi)+b) ≥ 1, i=1,2, 

∙∙∙, l, as the following decision function is well expressed for all data points belonging to 

either 1 or -1: f (x)=sign((w ∙x )+b). In cases of regression, f(x) is continued. 

The SVM algorithm was constructed based on Chang’s LibSVM [116]. Although 

several researchers [116] have found that SVM may generate superior regression results 

when the target label has been normalized to a range of between [-1 1] or [-10 10], it has 

been shown that the root mean square error with a measured coating thickness used as a 

training label is similar to (and sometimes even better than) the scaled training label once 

training parameters (e.g., kernel types, kernel degrees and kernel shift coefficients) have 

been scaled. K-folder cross validation is used to identify the best hyper-parameters in a 
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space where C varies from 3e-5 to 6e-5 and where gamma varies from 0.15 to 0.17. Based 

on a 50-step interval in C and a 10-step interval in gamma, when C=3.8e-5 and gamma= 

0.17, the SVM performs best through all ten folders than it performs with other C and 

grammar values. The regression coefficient of the SVM model in turn reaches a value of 

0.99. The Root Mean Squared Error (RMSE) for the entire training set is recorded at 0.80 

mil on average. The performance of both models is comparable during training. The 

maximum difference between the predicted and specified coating thicknesses on from 

SVM is recorded at 2.9 mil. 

VI.6 Model testing 

As a model over-fits training data (i.e., a model generates a perfect score during 

training but fails to predict useful information for unknown data), it is always a 

methodological mistake to determine parameters of a prediction function and to apply 

them to the same data [50]. To avoid this, a set of data typically referred to as a test set is 

used [50]. 

 

Table VI.2 Coating thickness of the test set  

Specified coating thickness (mil) 2.5 5 17.5 22.5 

Specified standard variance 0.5 0.5 0.9 1.2 

Number of samples 8 6 7 7 

 

On the other hand, it is also impossible to consider all thicknesses varying from 2.5 

mil to 22.5 mil, wherein a set of complete unknown data collected from samples with 
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thicknesses from 5 mil and 12.5 mil is used to test the external validity of SVM models 

(see Table VI.2). 

 

 

Figure VI.7 SVR results based on spatial profile of RPHF vs temperature 

temporal profile 
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VI.7 Experiment findings 

An analytical expression of surface temperatures is obtained based on Fourier-Hankel 

transformed mechanisms. Non-dimensional analyses are employed to examine the effects 

of thermal diffusivity ratios and power amplitudes on surface temperatures. The analysis 

results show that a decline in the thermal diffusivity ratio may cause a considerable change 

in non-dimensional temperatures when the conductivity difference between the coating 

and substrate is significant. Surface temperatures can be used to estimate coating 

thicknesses when using a relatively stable heating source. SVM and neural network 

models are developed for various coating thickness and surface temperature increments, 

which are gathered from 61 painting-coated samples via k-folder cross validation to 

optimize the model coefficients. The correlation and neural network models are validated 

with another 28 unknown paint-coated samples. The test results shows (in Figure VI.7) 

that unlike the temporal profile based inspection patterns, the spatial profile of RPHF are 

insensitive to the heat flux amplitude change. With 50% variances in heat flux amplitude, 

the RPHF based SVR model gives a regression coefficient at 0.93 while temporal profile 

based one gives a value at 0.87. The SVR prediction accuracy dropped from 25.3% to 

40.7% when changing the input from spatial profile based data to temporal profile based 

data.  
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CHAPTER VII  

DEFECT DETECTION ON PLANAR DEFECTS IN CARBON FIBER COMPOSITE1 

Pulsed Thermography has been considered as a mature NDT technology for defects 

detection in carbon fiber composite [117-120]. the basic principle of pulse thermography 

detection lies in the fact that the subsurface defects distort regular flowing of heat fluxes 

which appear due to either external thermal stimulation or routine object operation [53, 

54, 56-58, 121]. The current thermography test standard for carbon fiber composites [120] 

takes thermal response calculated from 1-D homogeneous heating model under a pulse of 

heat whose duration is less than 5 microseconds as the reference. In another words, the 

standard test requires a homogenous heating source and a fast response infrared camera 

However, there are two issues associated with the practice: an absolute homogeneous 

heating is almost impossible in real practices and the flashes causes an optical hazard to 

the inspectors [85, 117, 120, 122-124]. With uneven heating, the results obtained 

according to standard processes will be biased [56-58, 118-121]. Moreover, the short 

strong-insensitivity light exploration is uncomfortable, even harmful to human eyes. 

To solve the first issue, researchers have contributed a lot of effort in developing 

different reconstruction methods. Based on whether these processing methods choose a 

references relative theoretical heat conduction models, they are classified into theoretical 

                                                 

1 Part of the data reported in this chapter is reprinted with permission from “Comparison of step heating 

and modulated frequency thermography for detecting bubble defects in colored acrylic glass” by Hongjin 

Wang and Sheng-jen Hsieh. 2015 Proceeding of SPIE 9485 Thermosense: Thermal Infrared Applications 

XXXVII, Page number 94850I, Copy right[2015] by SPIE 
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processing methods and experimental ones. The experimental ones, like Morphological 

enveloping filtering[122], principle decompose[123], self-referencing filter[85], and 

normalizations[124], choose the pseudo background reconstructed based on neighboring 

area or arbitrary selected area as references.  

In this study, we have developed a way to estimate the heat flux at the surface, 

mentioned as restored Pseudo heat flux (RPHF) in the paper, by using Fourier transform 

analysis for Inverse heat conduction problems. And we figured out this estimated heat flux 

RPHF can be used as a detection index for thermography. To demonstrate this, we first 

built a numerical simulation for the case that using thermography to detecting the back 

drilled holes in composite boards under equipment noise free condition, and compared the 

RPHF results with other five existed methods. The numerical method also shows that the 

end image of RPHF gives a good approximation to the distribution of stimulation heat 

source. Later, two set experiments are conducted to test the effect of uneven heating and 

that of thermal diffusivity on RPHF based thermography detection. The comparison shows 

that proposed method has an advantage in revealing deep buried defects in an earlier time. 

Comparing to other restoring algorithms, the RPHF shows a better senility to the defect 

material and depth.  

VII.1 Theoretical models and principles 

Figure VII.1 shows a general model for planar foreign objects between the plies of 

carbon fiber composite. The foreign materials are thin planar layers with a thickness at 𝑑1 

and width at W. The defects are buried 𝑑0 deep below the exanimated surface. A special 

condition is considered when a spot heat flux pulse is imposed upon a point on the surface 
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above defects, where the side boundary of the defect is so far that the heat flux at the side 

defect boundaries are kept to be zero within a timeτ. In this case, the condition described 

in Figure VII.1a) can be simplified into Figure VII.1 b). A set of heat conduction 

governing equation can be written:  

∂T1

∂t
= 𝛼11

𝜕2𝑇1

𝜕𝑥2
+ 𝛼11

𝜕2𝑇1

𝜕𝑦2
+ 𝛼12

𝜕2𝑇1

𝜕𝑧2
              (VII.1) 

∂T2

∂t
= 𝛼21

𝜕2𝑇2

𝜕𝑥2 + 𝛼21
𝜕2𝑇2

𝜕𝑦2 + 𝛼22
𝜕2𝑇2

𝜕𝑧2              (VII.2) 

∂T3

∂t
= 𝛼11

𝜕2𝑇3

𝜕𝑥2 + 𝛼11
𝜕2𝑇3

𝜕𝑦2 + 𝛼12
𝜕2𝑇3

𝜕𝑧2              (VII.3) 

, with boundary conditions: 

𝑇1,𝑧=𝑑0
= 𝑇2,𝑧=𝑑0

                       (VII.4) 

𝑘12
𝜕𝑇

𝜕𝑧1,𝑧=𝑑0

= 𝑘22
𝜕𝑇

𝜕𝑧2,𝑧=𝑑0

                  (VII.5) 

𝑇1,𝑧=𝑑0+𝑑1
= 𝑇2,𝑧=𝑑0+𝑑1

                    (VII.6) 

𝑘12
𝜕𝑇

𝜕𝑧3,𝑧=𝑑0+𝑑1

= 𝑘22
𝜕𝑇

𝜕𝑧2,𝑧=𝑑0+𝑑1

               (VII.7) 

𝑘12
𝜕𝑇

𝜕𝑧1,𝑧=0
(𝑥0, 𝑦0, 0) = 𝑞0                   (VII.8) 

 

Figure VII.1 The geometry of tested materials with planar defects inserted 

in. 



 

76 

 

By transforming the equation set above into Fourier Domain, then the partial equation 

sets will be converted into linear equation sets: 

𝑖𝜔�̅�1  = 𝛼11𝑢2�̅�1 + 𝛼11𝑣2�̅�1 𝛼12
𝜕2�̅�1

𝜕𝑧2
              (VII.9) 

𝑖𝜔�̅�2 = 𝛼21𝑢2�̅�2  + 𝛼21𝑣2�̅�2 𝛼22
𝜕2�̅�2

𝜕𝑧2
            (VII.10) 

𝑖𝜔𝑇3̅ = 𝛼11𝑢2𝑇3̅  + 𝛼11𝑣2𝑇3̅ 𝛼12
𝜕2�̅�3

𝜕𝑧2             (VII.11) 

 , where �̅� = ∭ 𝑇𝑒𝑖𝜔𝑡𝑒𝑖𝑢𝑥𝑒𝑖𝑣𝑦𝑑𝑥𝑑𝑦𝑑𝑡
+∞

−∞ 
. 

The temperature at top surface of tested samples can be solved: 

�̅�1 =
𝑞

𝑘1𝜂1√
𝑖𝜔

𝛼11
+𝜉2

G(ξ, ω)                 (VII.12) 

, where 𝑟 = (
𝐹1𝑘1𝑤1

𝐹2𝑘2𝑤2
),  F1 = √

𝑖𝜔

𝛼11
+ 𝜉2, 𝐹2 = √

𝑖𝜔

𝑛2𝛼11
+ 𝜉2, ξ2 = 𝑢2 + 𝑣2, w1 = 𝛼11/

𝑎12 w2 = 𝛼21/𝛼22 and  

𝐺(𝜉, 𝜔) =
(1+

2𝑒2d0F1w1(1+𝑒2d1F2w2)

(−1+𝑒2d1F2w2)(1+𝑒2d0F1w1)𝑟
+

(−1+𝑒2d0F1w1)

(1+𝑒2d0F1w1)
𝑟−2

(
−1+𝑒2d0F1w1

1+𝑒2d0F1w1
+

2𝑒2d0F1w1(1+𝑒2d1F2w2)

(−1+𝑒2d1F2w2)(1+𝑒2d0F1w1)
+𝑟−2)

        (VII.13) 

. Obviously, G(ξ, ω) is a function relative to the dimensions of defects along the depth 

and to the ratio between thermal properties of defects and that of bulk materials.  

If the defect is large enoughW ≫ d1, the heat flux refraction at the side boundaries of 

defect can be neglected with in a time τ. That means the heat flux outside the defective 

area does not affect the surface temperature inside the defective area， vice versa. If the 

heat flux applied to the surface can be described by a function q(x, y, t) , then the surface 

temperature can be approximated by: 
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�̅�1 ≈
�̅�(𝜉,𝜔)

𝑘1𝜂1√
𝑖𝜔

𝛼11
+𝜉2

G̅(ξ, ω)f(̅ξ)               (VII.14) 

, where f(̅ξ, ω) is the lateral geometry function of the defects, 

                       f(x, y) = {
1 , (𝑥, 𝑦) ∈ Ω𝑑𝑒𝑓𝑒𝑐𝑡 

0,   𝑜𝑡ℎ𝑒𝑟𝑒𝑙𝑠𝑒         
.                  (VII.15) 

A variable, named restored pseudo heat flux (RPHF), can be obtained by doing inverse 

Fourier transform of the product between the 3D Transformed surface temperature 

response over a time t and the filter √𝜉2 +
𝑖𝜔

𝛼
 : 

𝑅𝑃𝐻𝐹̅̅ ̅̅ ̅̅ ̅̅ (𝜉, 𝜔)  ≈
�̅�(𝑢,𝑣,𝜔)

𝑘1𝜂1
G̅(u, v, ω)f(̅u, v).            (VII.16) 

, in another format: 

RPHF = ∭
�̅�(𝑢,𝑣,𝜔)

𝑘1𝜂1
G̅(u, v, ω)f(̅u, v)eiux𝑒𝑖𝑣𝑦𝑒𝑖𝜔𝑡𝑑𝑢𝑑𝑣𝑑𝜔

∞

−∞
     (VII.17) 

The new function, RPHF is a convolution of the lateral geometry and depth temporal-

geometric function with the heat flux function.  

VII.2 Discussion on the determination of thermal diffusivities and the effect of noises 

and truncated data 

The definition of RPHF in Equation (VII.17) is derived based on the assumption that 

the tested sample is infinite large in the horizontal planar, which means the heat flux at the 

boundary is zero in the planar direction. However, restrictedly by the field of view (FOV) 

of cameras, it cannot be guaranteed that the heat flux at the boundary is zero in the planar 

direction. Therefore, a truncation error will be brought in and affect the performance of 

the RPHF. RPHF is not evenly attributed at the boundary of images even though heat flux 

is even at the boundary at the boundary. To solve this issue, the implantation of RPHF is 
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adapted based on discrete and spatial truncated surface temperature. Take the function 

showing in the Figure VII.2 below as an example: 

 

 

Figure VII.2 Illustration of truncation caused by FOV and introduced phase 

distortion 

At x=0 and x= N, the gradient of function as well as the value of function 

approximated to zero. It can be considered that the function shown in Figure VII.2 with 

thick dash lines (denoted as 𝑓(𝑥)) can be considered as a periodical function with a 

period N. In this view, the fast Fourier transform of function f(x) , FFT(f(x), j) keeps 

constant with its continuous Fourier transform  

ℱ(f(x), ω) = ∫ 𝑓(𝑥) exp(−𝑖𝑥𝜔) 𝑑𝑥 
∞

−∞
= ∫ 𝑓(𝑥) exp(−𝑖𝑥𝜔) 𝑑𝑥 

𝑁𝑇

0
     (VII.18) 

FFT(f(x), j) = ∑ 𝑓(𝑘) exp(−
2𝜋𝑖(𝑘−1)(𝑗−1)

𝑁𝑇
)𝑁

𝑘=0        (VII.19) 

However, due to limited FOV, function f(x) has been truncated into functionf1(𝑥), 

shown as the solid line, the fast Fourier transform calculated based on function f1(𝑥) 

cannot present the continuous Fourier transform function since: 
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FFT(f1(x), j) = ∑ 𝑓(𝑘) exp(−
2𝜋𝑖(𝑘−1)(𝑗−1)

(𝑛2−𝑛1)𝑇
)

𝑛2
𝑘=𝑛1

.         (VII.20) 

Therefore, another function is constructed as an approximation to the original function 

f(x), denoted as f2(𝑥): 

f2(x) = {
𝑓1(𝑥)         𝑛1 ≤ 𝑥 ≤ 𝑛2

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑜𝑓[0 𝑁]
               (VII.21) 

, or say f2(𝑥) = 𝑓(𝑥)Π (
x−

N

2

n2−n1
), where Π(

x

L
) stands for a windows function which is 

centered at x=0 with a width of L . 

The fast Fourier transform of function f2(𝑥) can be expressed as： 

                   FFT(f2(x), j) = ∑ 𝑓(𝑘) exp(−
2𝜋𝑖(𝑘−1)(𝑗−1)

𝑁𝑇
)

𝑛2
𝑘=𝑛1

.     (VII.22) 

It’s a better approximation to the continuous Fourier transform of the function 𝑓(𝑥) 

since the phase angle shift is the same with that of FFT(f(x), j). 

In the previous proposed method, RPHF is calculated based on the fast fourier 

transform of truncated images. Let G(u,v ) as the previous proposed frequency domain 

filter  

𝐺(𝑢, 𝑣, 𝜔) = √𝑢2 + 𝑣2 +
𝑖𝜔

𝛼
                (VII.23) 

. That means 

 𝐹𝐹𝑇(𝑅𝐻𝐹) ≅ {𝐹𝐹𝑇𝑆ℎ𝑖𝑓𝑡 (∑ 𝑓(𝑘) exp (−
2𝜋𝑖(𝑘−1)(𝑗−1)

(𝑛2−𝑛1)𝑇
)

𝑛2
𝑘=𝑛1

) 𝐺(𝑢, 𝑣, 𝜔)} ≠

[∑ 𝑓(𝑘) exp (−
2𝜋𝑖(𝑘−1)(𝑗−1)

𝑁𝑇
)𝑁

𝑘=0 ] 𝐺(𝑢, 𝑣, 𝜔).         (VII.24) 

That’s explains the uneven spatial distribution at the boundary of the image. 
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To solve this phase shift caused by finite field of view, several revolutions have been 

proposed in the following paragraphs and their performance have been compared under 

ideal conditions. The first trial is to define another function 𝑓(𝑥2) based on the original 

function 𝑓(𝑥1) but extended to a larger field of view to a range where the exact function 

𝑓(𝑥)  converges to zero by reparative padding. By using FFT(f2(x), j)  instead 

of FFT(f1(x), j), the discretized RPHF can be calculated as : 

𝐹𝐹𝑇(𝑅𝑃𝐻𝐹) ≅ {[∑ 𝑓(𝑘) exp (−
2𝜋𝑖(𝑘−1)(𝑗−1)

𝑁𝑇
)𝑁

𝑘=0 ] ∗                                                 ∗

[∑ Π(𝑘) exp (−
2𝜋𝑖(𝑘−1)(𝑗−1)

𝑁𝑇
)𝑁

𝑘=0 ]} 𝐺(𝑢, 𝑣, 𝜔).             (VII.25) 

Still, the revolved RPHF is not approximating to the Heat flux, which is theoretically 

equal to ∫ ∫ 𝑓(𝑥) exp(−𝑖𝑥𝜔) 𝑑𝑥 
∞

−∞
⋅ 𝐺(𝜔) exp(𝑖𝑥𝜔) 𝑑𝜔. 

In the second method, we use FFT(f2(x), j) instead of FFT(f1(x), j), and define 𝐺1(𝝎) =

√𝑢2 + 𝑣2 +
𝑖𝜔

𝛼
∗ (

𝑢𝑣

sin 𝑢 sin 𝑣
). The Fourier transform of RPHF is considered as a product of 

Fourier transform of 𝑓2(𝑥) and 𝐺1(𝝎): 

𝐹𝐹𝑇(𝑅𝐻𝐹) ≅ {𝐹𝐹𝑇𝑆ℎ𝑖𝑓𝑡 (∑ 𝑓(𝑘) exp (−
2𝜋𝑖(𝑘−1)(𝑗−1)

𝑁𝑇
)

𝑛2
𝑘=𝑛1

) √𝑢2 + 𝑣2 +
𝑖𝜔

𝛼
∗

(
𝑢𝑣

sin 𝑢 sin 𝑣
)}.                      (VII.26) 
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Figure VII.3 Comparison of different revolutions of RPHF in restored 

temporal profiles 

Figure VII.3 shows the temporal profile of restored heat flux by different methods 

comparing to the input temperature (dash lines) .As the Figure VII.3, the heat flux 

temporal profile which is restored with the second restoring method exhibit best restoring. 

With the second restoring method, the profile shows a good approximation to right angle 

at the point heat flux changing rapidly. As shown in Figure VII.4, the first revolved method 

shows a better performance than the previous version of restoring method. However, the 

second revolved method generates a significant aliasing similar to Morrie Patterns (As 

shown in Figure VII.4).  
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Figure VII.4 Comparison of different revolutions of RPHF in restored 

spatial profiles 

However, all these results are obtained with theoretical simulations. It’s not clear 

whether all these proposed methods will be robust enough for experimental data. 

Therefore, the proposed methods have been tested with pin-hole data. If there is no 

smoothing filter applied to the surface temperature, the noises in the restored image are 

significant when comparing to the defect signals. And the second revolved method 

provides nothing but aliasing (as shown in Figure VII.4). Therefore, a smoothing filter is 

chose for the input temperature. After the input temperature has been smoothed by 3 by3 

averaging filter, the restored heat flux has been obviously improved in SNR. It can be 

seen, with the paddings at boundary, the boundary distortion has been reduced. 
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VII.3 Testing and comparison RPHF with other restoring algorithm based on simulated 

data 

To testing and comparison the performance of RPHF on eliminating the effect of 

uneven heating and on enhancing thermography detection capacity, RPHF are applied to 

a set of simulated thermography data. The results are compared to temperature increment 

and 4 existed restoring technologies: inverse scattering algorithm proposed by Crowther, 

heat flux derivatives along defect depth proposed by Holland, Gaussian Laplacian Filter 

proposed by Omar and reconstructed Thermogram.  

The aim of the numerical study here is aimed at providing a set of surface temperature 

data with zero random noise obtained known and measurable input heat flux. On the other 

hand, the true value of heat flux and that of surface temperature are not available during 

an experiment.  

To achieve this aim and to keep the results from numerical model meaningful in the 

real applications, several factors have been considered in the simulation process: uneven 

heat flux over the top surface of the tested samples.  

The mesh of the simulation area is shown in the Figure VII.5 and Table VII.1. The 

simulation zone is proximate to the average size of the samples tested in x and y direction. 

The simulations zone is 30.5 mm in width and 30.5 mm in length. The simulated defect 

zone is located 4 mm beneath the top surface of the zone with a diameter at 6 mm and 1 

mm in thickness. In order to consider in the heat flux leakage at the back surface of the 

tested sample, the calculation zone is extended to 20 mm beneath the top surface of the 

sample, where the heat flux is approximate to zero after 160s heating based on the 
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theoretical solution for a non- defective semi carbon fiber bulk with 0.57 mm2/s thermal 

diffusion, which is tested based on transient thermal diffusivity testing of the material. 

Here, in the simulation, carbon fiber board is simplified as an isotropic material since the 

aim of the simulation is to testing the performance of RPHF rather than get a highly 

approximation to the surface temperature of carbon fiber board under thermography. 

 

Table VII.1 Properties of materials used in the simulation  

CFRB [128] 

Density 1184 Kg/m3 

Cp 298.64 J/Kg-K 

Thermal conductivity 2.1 W/m-K 

Defects 

Density 840 Kg/m3 

Cp 476 J/Kg-K 

Thermal conductivity 0.2 W/m-k 
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Figure VII.5 The mesh used in simulations 

An extremely uneven heating source (shown in Figure VII.10 left), is used in the 

simulation. Such an uneven heating is hard to available in the real application. But it can 

help to determine the performance of RPHF to find out thermal property changes by 

comparing simulated surface temperature to measured surface temperature. The results of 

RPHF will be compared with other reconstruction methods will be discussed in the section 

“Analysis and results”. 

VII.4 Experimental set-ups and samples manufacturing 

Two sets of experiments are conducted on two different carbon fiber composite boards 

with a set-up showing in the Figure VII.6. A Compix 222 infrared camera is set about 65 

cm above the surface of the first tested sample and 25cm above the surface of the second 

tested sample. The Focal Plane Array in the Compix 222 Infrared camera has 160×120 

detectors. The instantaneous field of view (IFOV) is 1.81 by 1.81 mm, by using the first 

set-up described above, and 0.885 by 0.885 mm/ the detectors are sensitive to light ranging 
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from 7 𝜇𝑚 to 14𝜇𝑚. The accuracy of the camera is ±2ºC or 2% whichever is larger. The 

Noise Equivalent Temperature Difference (NETD) of temperature is 0.1K. The emissivity 

of the carbon fiber composite has been tested under ASTM code [96]. The emissivity of 

the surface is 0.93. A 500 W halogen lamp has been used as heating source for both sets 

of experiments.  

The purpose of the first sets of experiment is to test the performance of RPHF under 

uneven heating source while the second one is aimed at measuring its performance on 

eliminate the thermal diffusion effect. Therefore, in the first set of experiments, three 

different heat distribution are created by change the radiance angle between the beam and 

the tested surface. A thin 4 ply carbon fiber composite are manufactured by wet laying-up 

method with vacuum bag. With this method, the distribution of the epoxy resin can be 

control manually to a relative even. The defects inside this samples are inserted in to layers 

during laying-up. The location and the material of the defects are listed as below. The 

board has a dimension of 290 x 217mm2. The gray outline defects are made from 2inch 

wide (50.8 mm) -6mil (0.152mm) thick copper tape with. The black outline defects are 

made from 1” (25.4 mm) 6mil (0.152mm) Teflon tape. The size of the defects are drawn 

in scale in the Figure VII.7 and Table VII.2. The sample has been explored under heating 

for 65 seconds then follows a 135-second cooling. The images are recorded at a frequency 

1 frame per second. The geometry scheme of second sample is shown in Figure VII.8. 
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Figure VII.6 Experimental set-up 

 

 

Figure VII.7 The geometric layout of the first sample and heating source 

distribution 

Table VII.2 The heat source distribution used in experiments  

 Angle/ degree distance 

set-up 1 42 8” 

set-up 2 30 8” 

set up 3 90 8” 
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The second set of experiments are designed to test the performance of RPHF in 

eliminating the effect of thermal diffusion in both lateral direction and in depth. Therefore, 

a thicker, 16-ply composite board manufactured with resin-fusion vacuum bag method. 

As a result, the distribution of resin is uncontrolled. The carbon fiber composite board are 

anisotropic. An optical image of the board is shown as below. The board is 295mm by 295 

mm by 3.5mm in volume. There are six rows of defects cut from 1mil thick FEP, EPL and 

vinyl resin release sheet. The sheets are cut into about 20mm by 10 mm rectangles. The 

patch between each column is 55 mm.  

 

Figure VII.8 The geometric layout of the second sample  

VII.5 Analysis and results 

This section will analyze the results based on numerical-simulated surface 

temperature, that sampling from sample 1 and sample 2 separately. All the data are 

processed following a similar process. The details are documented in the following.  



 

89 

 

During all the process of the data simulated by numerical data, a normalization based 

on first image is applied to all the other five reconstruction methods as their author 

suggested except the RPHF. The RPHF data are normalized by its last image rather than 

first image. The Figure VII.9 compares the RPHF with the other reconstruction methods 

mentioned above based on the simulation data. It can be observed that expect the 

reconstructed Log-scaled temporal derivatives of surface temperature, all the other five 

reconstruction method display a surface distribution which is close to that of heat flux at 

an early time (t<30s) although normalization is applied. Meanwhile, Shepard’s 

reconstruction data is affected by uneven heat as well although its distribution is dissimilar  

 

 
Figure VII.9 Comparison of different reconstruction methods based on 

simulated data under uneven heating at t=85s (left three column) and t=100s (right 

three column), top left: normalized surface temperature, mid—Holland heat flux , 

right—Crowther’s inverse scattering method, bottom left – Omar’s Gaussian 

Laplacian filter, mid—Shepard’s reconstructed log-scaled first order temporal 

derivatives, right--- restore pseudo heat flux 
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Figure VII.10 Comparison the estimated heat flux distribution from RPHF 

(mid) with original heat flux for simulation (left) by using image structural 

similarity index (right) 

with that of heating source. As early as 35 second after heating begins, the defect shape is 

relieved clearly from RPHF images while its shape stays blur with other reconstruction 

methods. In addition, RPHF advantages over other reconstruction method by giving a 

heating-source-independent testing results after the heating is off. (As shown in Figure 

VII.9) As one of the purpose of numerical simulation is to understand how well the 

proposed method, RPHF, estimates the input flux, the similarity between the estimated 

heat flux and the original input is shown in Figure VII.10. It shows that the estimated heat 

flux from decayed RPHF achieves a 0.93 SSIM value while its maximum is one.  

Signal to Noise Ration, (SNR), is a frequently used index to measure performances of 

reconstruction methods. However, due to the natural of thermography, it won’t be possible 

to evaluate the real random noise in real practices; neither it will be possible to be affected 

by random noise from measurement equipment in a numerical simulation. Therefore, to 

considering in the effect of uneven heating, the SNR used here are calculated based on 

such a way: the signal is determined as the difference between the local standard deviation 

within defective area and the histogram max of index from non-defective area, the noise 
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is evaluated from variance of local standard deviation of non-defective area. Such a 

definition will be useful for real application: if a method give a high SNR, then that means 

it provide a clear boundary between the defect and non-defective area by using local 

standard deviation. Figure VII.11 shows the SNR comparison between different 

reconstruction methods. It can be observed that the SNR from RPHF are increasing as 

heating goes on. It decrease somehow as the bubble heated into a relative stable period. 

Once the heat is turned off, the SNR from RPHF method increase significantly for this 

case.  

 

 

Figure VII.11 SNR from different reconstruction methods based on 

numerical simulation data 

Except the SNR, the computation cost of each method should be considered in real 

practices. As it requires linear regression along time for the surface temperature of each 

pixel, the computation coast for Shepard’s reconstruction is significantly large. For all the 
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other methods, the computation coast are comparable to each other. (As shown in 

Table.VII.3)  

 

Table.VII.3 Comparison of computation cost of different reconstruction methods 

 NST HHF CIS OGL RLndT RPHF 

Calculation Cost /s 0.03 2.359 2.913 0.914 1574.46 1.936 

 

Figure VII.12 and Figure VII.13 compare different reconstruction method under three 

uneven heating. It can be found that the defects made from copper can be easily detected 

with a simple normalization. However, the uneven heating degrades testing results with 

NIST, RdLnT, Cis, and OGL significantly. HHF and RPHF performs similar to each other 

under different degree of uneven heating although there are some small differences 

between the results obtained from the same reconstruction method but different uneven 

heating. For example, with a relative even heating, it can be easily identify four small 

Teflon defects buried next the left column of copper tapes. With a server uneven heating, 

only two of them are observed at t=15s. For this set of experiments, as all the defects are 

shallow buried, Holland’s Heat flux provide best contrast to the Teflon tape defects. 

However, the contrast difference obtained from HHF between Teflon tape defects and 

copper tape defect does not differ each as much as that from RPHF. The SNR of each 

method for defects buried at different depth and made from different materials are 

compared in Figure VII.14. 
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Figure VII.12 Comparison different reconstruction methods under 3 

different uneven heating sets: a) Top row—normalized surface temperature, mid 

row—Shepard’s reconstructed log-scaled temporal temperature derivatives, 

bottom row --- Crowther’s inverse scattering algorithm at extremely uneven 

heating ( left) , moderate uneven heating (mid) and near even heating(right); b) 

Top row—Omar’s Laplacian Gaussian, mid row—Holland’s heat flux, bottom row 

--- restored pseudo heat flux at extremely uneven heating (left) , moderate uneven 

heating (mid) and near even heating(right) at t =15s and t =65s 

. 
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Figure VII.13 Comparison different reconstruction methods under 3 

different uneven heating sets: a) Top row—normalized surface temperature, mid 

row—Shepard’s reconstructed log-scaled temporal temperature derivatives, 

bottom row --- Crowther’s Inverse scattering algorithm; b) Top row—Omar’s 

Laplacian Gaussian, mid row—Holland’s heat flux, bottom row --- restored pseudo 

heat flux at extremely uneven heating (left), moderate uneven heating (mid) and 

near even heating (right) at t=120s 



 

95 

 

 

Figure VII.14 Comparison SNR of different reconstruction methods at 

copper tape (left) and Teflon tape defects (right) buried at different depth 

Figure VII.15 compares the six reconstruction results based on experimental data form 

the second sample. As to achieve a sufficient IFOV, the surface of the board is sectored 

into 9 areas and a separate testing has been conducted to each area. Then, all the nine 

images are blundered together according to their position and geometric. Both RPHF and 

Holland’s heat flux gives a good contrast for the shallow buried defects. However, when 
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comparing the contrast for the deep buried defects in the middle section, and those in the 

top right and bottom right corner, RPHF gives a better contrast with obviously less noises. 

 

 
Figure VII.15 Comparison different reconstructing method top row – 

normalized surface temperature (left), Shepard’s reconstructed Log-scaled 

temperature derivatives (mid), Crowther’s inverse scattering algorithm (right); 

bottom row—Omar’s Gaussian Laplacian filter (left), Holland heat flux (mid) and 

restored pseudo heat flux(right) at t =16 

Another very useful information has been obtained from the RPHF method. The last 

image of RPHF has been found to be a good inverse image of heating source spatial 

distribution (as shown in Figure VII.16 ). In addition, this image has been used as mask 
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for the surface temperature normalization. It has shown that amount of defects not shown 

in NIT, which is normalized by the first image of surface temperature. However, no matter 

the proposed method, or the method existed, neither of them are developed to enhance the 

detection performance by using human judge but to improve the defection performance 

based on edge detection. Therefore, a set of machine learning and edge detection process 

are used, the results are listed in Table VII.4 and Table VII.5. 

 

Table VII.4 False negative and false positive rate for sample 1  

  NST RLndTdt Crowther’s GOL 
Holland 

(modified) 

RPHF 

(Proposed) 

Set 1 

FN 23 20 13 7 2 4 

FP 0 0 0 2 2 2 

Set 2 

FN 22 22 12 9 3 2 

FP 0 0 2 4 4 2 

Set 3 

FN 20 20 20 7 3 2 

FP 0 0 0 5 4 2 
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Table VII.5 False negative and false positive rate for sample 2 

  NST RLndTdt Crowther’s GOL 
Holland 

(modified) 

RPHF 

(Proposed) 

Set 1 

FN 60 60 38 29 30 17 

FP 0 0 0 2 2 5 

 

 

Figure VII.16 Inverse distribution of heat flux in spatial calculated by RPHF 

(left) and the enhanced surface temperature normalized based on it (right) 

VII.6 Summaries 

In this test, the proposed reconstruction method has been developed based on the 

Fourier analysis of heat conduction process. Its performance has been compared to five 

other commonly used reconstruction methods both numerically and experimentally. The 

RPHF reconstructed images provide a better contrast than the early time normalized 

surface temperature, Crowther’ inverse scattering method[125] and Shepard’s 

reconstructed temporal temperature derivatives in the case we tested. The RPHF gives a 

testing result comparable to those from Holland’s heat flux and Omar’s Gaussian 

Laplacian filter. Holland’s method does give the best contrast to the shallow defects. 
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However, the RPHF gives a good contrast to the deep buried ones. Unlike OGL or HHF, 

the contrast of RPHF images varies along time when the defects’ depth are different. 

Moreover, the end RPHF image in a temporal sequence provide a good approximation to 

the heating source distribution. 
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CHAPTER VIII  

THE SUMMARIES OF RESULTS AND FUTURE WORK 

The research are conducted to reduce the effect of two unavoidable effects which 

decrease the credibility of thermography detection: the uneven heating and the lateral 

diffusion. The current study has proposed a spatial-temporal profile based restoring 

reconstruction by evaluating the heat flux deposited onto tested samples based on surface 

temperature gathered under idea condition at each moment. Then the proposed 

reconstruction method are tested on three extended condition – on semi-transparent 

material, on semi-infinite defects (coatings) and on anisotropic materials. The method is 

evaluated by quality metrics and compared with exist methods. We conclude that the 

proposed method an efficient performance/ computation cost ratio in all the reconstruction 

method reviewed in the paper. It reduce the effect of uneven heating by providing a good 

approximation to the input heat flux at the ending image of the sequence. In the following, 

detailed findings from each test are explained. 

VIII.1 Study 1: testing the pin holes on AR film 

Based on the comparison the STD over FOV, global SNR and local SNR between the 

restored heat flux images, de-trended data and the normalized surface temperature 

increment images, it can be found that: 

The restored heat flux images and the de-trended images give a better uniformity in 

non-defective area than the normalized surface temperature increment when the heating 

source is not located in the FOV. 
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Both the RPHF and de-trended images give a better local SNR and global SNR than 

the normalized surface temperature increment. As the De-trended data only contains white 

noise in the background area, de-trended data gives best global SRN in all the test. 

However, RPHF gives a global SNR at the same order of those from de-trend data.  

RPHF gives a lower false positive rate than the de-trended data. However, RPHF may 

fails in the sub-pixel detection for pinholes with diameter at 0.08mm.  

RPHF shows a better performance when a 𝜆 shape crack combined on a round blind 

hole. The de-trended filter created heavy alias and external patterns which misguide the 

edge detection results.  

Comparing on the computation time, the de-trend filter takes 220s to compute on I7 

4700 process computers while it takes less than 0.5 seconds for the restored heat flux.  

VIII.2 Study 2: the coating thickness study  

The statics testing results between the restored heat flux spatial profiles from samples 

with different coating thickness differs from each other at the inflection point next to the 

peak  

The normalized restored heat flux spatial profile is tested to be independent from the 

amplitude of the heat source while the temporal patterns are sensitive to it.  

The SVR regression has been set up based on both the RPHF and normalized 

temperature with 50% heat flux variances. The spatial profile based results shows a better 

r.m.s.e. and regression coefficient than that based on temporal profile based data.  

However, the coating thickness variance in the horizontal direction is not discussed in 

the study yet.  
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The effect of uncertainty of thermal diffusivity on the restored heat flux should either 

be studied experimentally or theoretically.  

VIII.3 Study 3: planar defects detection in carbon fiber composite detection 

The proposed method has an efficient performance/ computation cost ratio in all the 

reconstruction method reviewed in the paper.  

In the carbon fiber composite planar defect testing, the proposed method shows least 

false positive and false negative testing.  

The numerical testing shows the proposed method are robust to at least 50% thermal 

diffusivity variance to 5000% heating amplitude variance in coating thickness estimation 

when the temporal based patterns only handling a 50% amplitude variance in coating 

thickness estimation  

Comparing to temperature based methods, the proposed method, like other restoring 

methods, are less sensitivity to the uneven heat flux 

In fact, the method itself provides a good approximation to the heat flux distribution 

at the end of its temporal sequence.  

This approximation to the heat flux distribution can even greatly enhance the detection 

capacity of surface temperature.  

In the Future direction, the detection of subpixel pinholes should be studied and 

characterized. The current method may not be applicable to thermal-graded materials since 

the research assumes that a defective area is an area where the thermal properties are 

different from others. Modified Holland’s method has a better SNR than RPHF in 

shallowly buried defects. This can be explained by the nature of modified Holland’s 
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method in Fourier Hankel domain. It equals to apply RPHF twice to a sample. The RPHF 

currently shows a better detection in finding deeply buried thin planar defects than other 

tested methods (including modified Holland’s method) and give a relative earlier detection 

comparing to Shepard’s reconstruction and normalized surface temperature. However, it 

requires further understanding about the relationship between RPHF and buried depth. 
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APPENDIX B 

SOLVE THE HEAT CONDUCTION GOVERNING EQUATION IN 3D USING 

THE HANKEL TRANSFORM 

The heat conduction governing equation can be expressed as following after the 

Laplace transform applied in time and after the Hankel transform applied in space:  

s

α1
𝑣1 + 𝜉2𝑣1 =

𝜕2𝑣1

𝜕𝑧2         (B.1) 

s

α1
𝑣2 + 𝜉2𝑣2 =

𝜕2𝑣2

𝜕𝑧2        (B.2) 

With boundary conditions set as:  

−𝑘1
𝜕𝑣1

𝜕𝑧
(𝑧 = 𝑧0) = �̅�(𝑠, 𝜉) = 𝐴

1

2𝑠
exp (−

𝜉2𝐵2

8
) /4𝜋𝑅2   (B.3) 

𝑣1(0) = 𝑣2(0)        (B.4) 

𝑘1
𝜕𝑣1

𝜕𝑧
(0) = 𝑘2

𝜕𝑣2

𝜕𝑧
(0)       (B.5) 

𝑘2
𝜕𝑣2

𝜕𝑧
(−∞) = 0        (B.6) 

Eq.s (A.1) and (A.2) are solved using:  

𝑣1 = 𝐴 exp (−𝑧√𝜉2 +
𝑠

𝛼1
) + 𝐵 exp (𝑧√𝜉2 +

𝑠

𝛼1
)    (B.7) 

𝑣2 = 𝐵2 exp (−𝑧√𝜉2 +
𝑠

𝛼1
) + 𝐴2 exp (𝑧√𝜉2 +

𝑠

𝛼1
)   (B.8) 

According to (B.6): 

𝐵2 = 0         (B.9) 

By adding (B.7) (B.8) and (B.9) to Eq. (B.3) (B.4) and (B.5), the following equations 

are obtained:  
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𝐴 exp (−𝑧0√𝜉2 +
𝑠

𝛼1
) − 𝐵 exp (𝑧0√𝜉2 +

𝑠

𝛼1
) =

�̅�(𝑠,𝜉)

𝑘√𝜉2+
𝑠

𝛼1

   (B.10) 

𝐴 + 𝐵 = 𝐴2         (B.11) 

(𝐵 − 𝐴) =
𝑘2√𝜉2+

𝑠

𝛼2

𝑘1 √𝜉2+
𝑠

𝛼1

 𝐴2        (B.12) 

When Eq. (B.11) is added to Eq. (B.12), A and B are expressed as:  

𝐵 = (1 +
𝑘2√𝜉2+

𝑠

𝛼2

𝑘1 √𝜉2+
𝑖𝜔

𝛼1

) 𝐴2/2       (B.13) 

𝐴 = (1 −
𝑘2√𝜉2+

𝑠

𝛼2

𝑘1 √𝜉2+
𝑠

𝛼1

) 𝐴2/2       (B.14) 

Define 𝑅(𝜉, 𝑠) as the ratio between A and B:  

𝑅(𝜉) =
𝐴

𝐵
=

√𝜉2+
𝑠

𝛼1
−𝜒√𝜉2+𝑛2 𝑠

𝛼1

√𝜉2+
𝑠

𝛼1
+𝜒√𝜉2+𝑛2 𝑠

𝛼1

       (B.15), 

where 𝜒 =
𝑘2

𝑘1
  and 𝑛 =

𝛼2

𝛼1
. 

 

Add Eq B.14) (B.13) and (B.15) to Eq. (B.10): 

𝐴 (1/𝑅 − exp (−2𝑧0√𝜉2 +
𝑠

𝛼1
))   =

�̅�(𝜔,𝜉) exp(−𝑧0√𝜉2+
𝑠

𝛼1
)

𝑘√𝜉2+
𝑠

𝛼1

    (B.16) 

𝐴 =
�̅�(𝑠,𝜉) Rexp(−𝑧0√𝜉2+

𝑠

𝛼1
)

𝑘√𝜉2+
𝑠

𝛼1
(1−𝑅 exp(−2𝑧0√𝜉2+

𝑠

𝛼1
))

      (B.17) 
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𝐵 =
�̅�(𝑠,𝜉) exp(−𝑧0√𝜉2+

𝑠

𝛼1
)

𝑘√𝜉2+
𝑠

𝛼1
(1−𝑅 exp(−2𝑧0√𝜉2+

𝑠

𝛼1
))

      (B.18) 

 

𝑣1 =
�̅�(𝜔,𝜉) Rexp(−(𝑧+𝑧0)√𝜉2+

𝑠

𝛼1
)

𝑘√𝜉2+
𝑠

𝛼1
(1−𝑅 exp(−2𝑧0√𝜉2+

𝑠

𝛼1
))

+
�̅�(𝑠,𝜉) exp((𝑧−𝑧0)√𝜉2+

𝑠

𝛼1
)

𝑘√𝜉2+
𝑠

𝛼1
(1−𝑅 exp(−2𝑧0√𝜉2+

𝑠

𝛼1
))

  (B.19) 

At the surface of coating 𝑧 = 𝑧0, one can obtained: 

𝑣1 =
�̅�(𝜔,𝜉)(1+Rexp(−2𝑧0√𝜉2+

𝑠

𝛼1
) )

𝑘√𝜉2+
𝑠

𝛼1
(1−𝑅 exp(−2𝑧0√𝜉2+

𝑠

𝛼1
))

     (B.20)  
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APPENDIX C 

CALIBRATION OF INFRARED CAMERA WITH BLACK BODY METHOD 

The energy transformation between the detectors and the measured object can be 

typically illustrated as the figure below [126]. The energy absorbed by a micro-bolometer, 

s, can be expressed by the sum of radiant heat from several source[126]:  

 

 

Figure AIII-0.1 Interaction of the radiation fluxes in measurement with an 

infrared camera cited from Minkina’s book [126](copyright2009 by J Wiley & 

sons,), reprinted with permission 

      𝑠 = 휀𝑜𝑏 ⋅ 𝑇𝑇𝑎𝑡𝑚𝑠𝑜𝑏 + 𝑇𝑇𝑎𝑡𝑚(1 − 휀𝑜𝑏)𝑠𝑜 + (1 − 𝑇𝑇𝑎𝑡𝑚)           (C.1), 

where s stands for radiant heat signals, 휀 stands for emissivity, and 𝑇𝑇𝑎𝑡𝑚 stands for the 

transparency. The subscripts 𝑜𝑏 and 𝑜 stands for measured objects and environment 

respectively.  

Signal 𝑠𝑜 can be calculated according to the model below: 

                        𝑠𝑜 =
𝑅

exp(
𝐵

𝑇0
)−𝐹

                           (C.2), 

where R, B, F are constants. As the infrared camera are Long-wave IR camera which 
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sensitive to the IR with wave length from 8-14𝜇𝑚 , the R, B, F are determined by 

manufactories.  

Therefore, the object’s temperature can be evaluated as: 

𝑠𝑜𝑏 = 𝑠
1

𝜀𝑜𝑏𝑇𝑇𝑎𝑡𝑚
− [

1−𝜀𝑜𝑏

𝜀𝑜𝑏

𝑅

exp(
𝐵

𝑇0
)−𝐹

+
1−𝑇𝑇𝑎𝑡𝑚

𝜀𝑜𝑏𝑇𝑇𝑎𝑡𝑚

𝑅

exp(
𝐵

𝑇0
)−𝐹

].              (C.3) 

𝑇𝑜𝑏 =
𝐵

𝐿𝑛(
𝑅

𝑠𝑜𝑏
+𝐹)

, 𝐾.                          (C.4) 

Based on The equation above, the infrared camera measurement model is defined as 

a function of 휀𝑜𝑏, 𝑇𝑇𝑎𝑡𝑚, 𝑇𝑜, R, B, and F.  

The expanded uncertainty of the IR camera measured objective temperature can be 

calculated from the sum of chain derivatives of these factors.  

The IR camera calibration is quite similar to that calibrates a calibrating an Infrared 

Thermometers [126, 127].The first scheme described in the ASTM Code E2847-14  has 

been applied . A flat heating source is used. The setting up of the experiment is shown as 

figure below. Used sensor, heating source are listed in the table as well. The thermal 

couple readings are averaged with 3 sequential reading within a second. And the thermal 

couple is calibrated at ice-water and boiling water points. 

Table AIII-1 The sensors, heating source used 

Heating source Tokai Hit OLYMPUS 

thermo plate 

Guaranteed 

Temperature variance 

at ‘steady state’ 

+/-0.1 C 

Thermocouple T type Uncertainty +/-0.1 C 
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Figure AIII-0.2 The set-up of calibration experiments 

The table below reports standard calibration report suggested by ASTM E E2847-14.  

Table AIII-2 The calibration results 

Nominal 

[C] 

S. T. 

[C] 

C.T. 

[C] 

d(mm) Apt. Source 

Type 

Scheme Exp. Unct  

[C] 

22.5 22.6 22.6 240 N Flt. 

400x300 

I 0.8 

27.0 26.8 27.0 240 N Flt. 

400x300 

I 0.8 

30.0 30.1 30.3 240 N Flt. 

400x300 

I 0.9 

45.5 45.4 45.3 240 N Flt. 

400x300 

I 1.5 

52.0 51.6 51.7 240 N Flt. 

400x300 

I 1.6 

 

However, more than the accuracy, thermography application are more interested in 

that how consistency a camera reports the difference between objects with two different 



 

122 

 

temperature. That means, it requires a good precision in camera readings. Therefore, 

reparative readings have been conducted  
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