Reproducibility for Bioinformatic tools and workflows

Authors: Peter Crisp, UMN, USA (0000-0002-3655-0130); Diep Ganguly, ANU, AUS (0000-0001-6746-0181)

Topic →

Challenges →

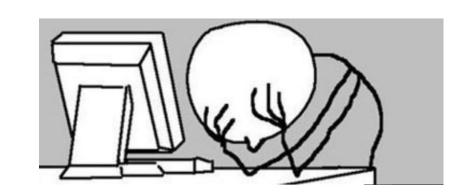
Solutions →

Resources -

Resources & further reading

- → Reproducible computational research Sandve et al. (2013), PloS Comp Bio, https://doi.org/10.1371/journal.pcbi.1003285
- → **Software**: reproducible installation Mangul S et al. (2018), BioRxiv,

https://doi.org/10.1101/452532


- → Documentation
- ◆ 'Bioinformatic data skills' Buffalo http://shop.oreilly.com/product/0636920 <u>030157.do</u>
- Software carpentry https://software- carpentry.org/
- → Version control:

http://smutch.github.io/VersionControlTutor

- → Containers:
 - ◆ Docker https://docs.docker.com/
 - ◆ Biocontainers http://biocontainers.pro
- → Reviewing:
 - Computation checklist github.com/vivekbhr/reproChecklist

Documentation

Why did I do this?

How can I record the steps of a bioinformatic analysis?

Notebooks

Notebooks are an essential tool for documenting analyses, enabling reproducibility and sharing.

- Keep track of analysis
- Interactive coding
- Interactive data exploration
- Imbedded visualization

Name -

Data.ipynb

Fasta.ipynb

Julia.ipynb

R.ipynb

iris.csv

(:) lightning.json

lorenz.py

Last Modified

a day ago

a day ago

a day ago

9 days ago

3 minutes ago

- Easy access to docstrings Mix of code and documentation
- Over 40 programming languages
- Easily shared
- Widgets
- Interactive plots
- Run remotely on server

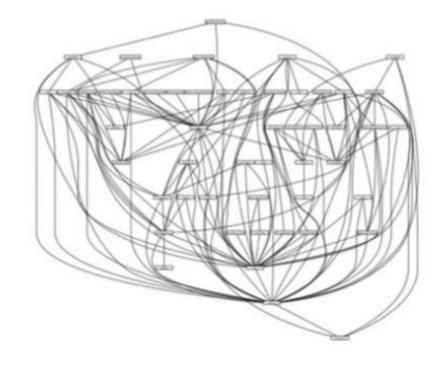
Version Control

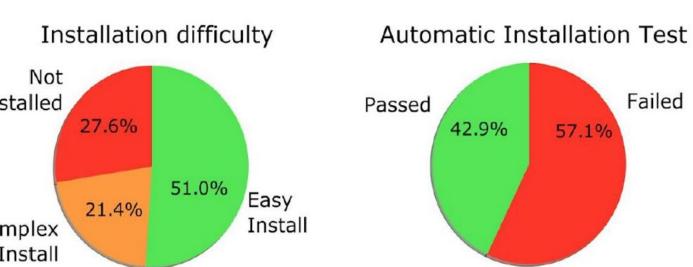
What version of the program, data etc... did I use?

Version conflict

Git

Git tracks changes to files over time, enabling documentation of development and reversion to prior versions.


- Records and illustrates changes between versions
- Lets you share code and collaborate easily
- Active community with lots of tutorials and help pages
- Provides a backup for all your code to be accessed remotely as needed


git

Software

Dependency hell

install Installation difficulty

28% of the tools are impossible to

https://www.biorxiv.org/content/early/2018/10/25/452532

Containers

Managers and containers enable consistent use of software when emulating or reproducing an analysis.

- Handles installs and dependencies
- Allows for multiple independent environments
- Easily configurable
- Allows for manual installs as well
- Runs on all three major systems
- Open source
- You can package your own work and contribute
- Docker runs images as containers that are
- self contained with all code, programs, libraries included. No subsequent installation required.
- Isolated
- Portable including dissemination
- Lightweight

https://jupyter.org/documentation

B + % □ □ ▶ ■ C Code

beta 2.67

rho ______ 28.00

from lorenz import solve_lorenz

https://www.rstudio.com/

Python 3

Lorenz.ipynb X ■ Terminal 1 X ■ Console 1 X ■ Data.ipynb X ■ README.md X

In this Notebook we explore the Lorenz system of differential equations

 $\dot{x} = \sigma(y - x)$

 $\dot{z} = -\beta z + xy$

 $\dot{y} = \rho x - y - xz$

Let's call the function once to view the solutions. For this set of parameters, we see the trajectories swirling around two points,

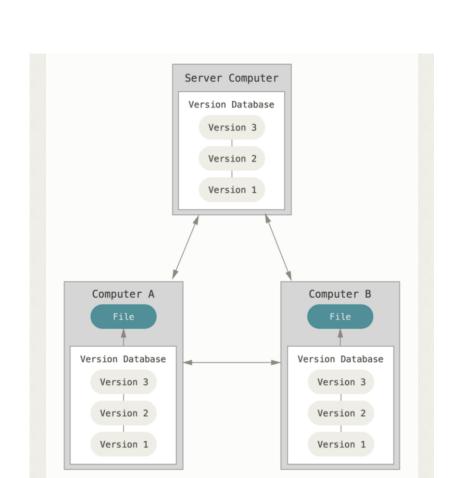
prepare the axes limit

ax.set_xlim((-25, 25)) ax.set_ylim((-35, 35)) ax.set_zlim((5, 55))

def solve_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0):

def lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho):

return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z]

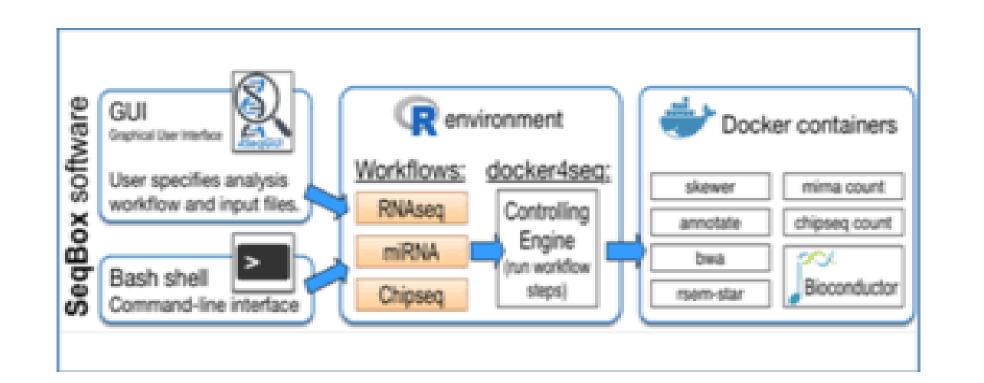

Choose random starting points, uniformly distributed from -15 to 15

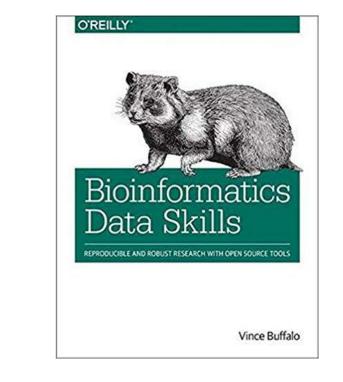
ax = fig.add_axes([0, 0, 1, 1], projection='3d')

 $x\theta = -15 + 30 * np.random.random((N, 3))$

https://git-scm.com/doc

Turns a GitHub repo with data and notebooks into a collection of interactive notebooks run in the cloud




CO CODE OCEAN

Configuration, preservation, & reuse of executable code using containers for researchers

