
Andrew Gamlen

Submission

for

MASTER OF ARTS (ELECTRONIC ARTS)

IN COMPUTER ANIMATION

Australian Centre for the Arts and Technology
Canberra Institute of the Arts

The AustraUan National University

1996
No .127

Andrew Gamlen

Submission

for

MASTER OF ARTS (ELECTRONIC ARTS)

IN COMPUTER ANIMATION

Australian Centre for the Arts and Technology
Canberra Institute of the Arts

The Australian National University

This submission consists of the following sections.

1. Index and Programme Notes to Animation Portfolio

2. Sub Thesis: Investigating Flocking Using Behavioural Modelling

3. Animation Portfolio: VHS video tape containing the animation portfolio is
included. Three of the animations have already been presented at ACAT performances,
the remaining animations will be presented on a date to be announced.

Acknowledgments

Firstly, I would like to thank my supervisors Stuart Ramsden and David
Worrall. Thanks also to all the staff and students at ACAT for their help and support.

The Australian National University Supercomputer Facility (ANUSF) provided
computer and video resources necessary for animation. Thanks also to Drew
Whitehouse for his help.

Index and Programme Notes to Animation Portfolio

^ Who Knows

Date: June 1993 Duration: 270"

If consciousness is the result of a certain level of complexity in an organic

system, such as human beings, can other complex systems, such as computers, become

conscious? Will higher levels of complexity allow consciousness to evolve further,

perhaps past the level of "self so that an individual has the consciousness of a whole

population?

Hardware: Amiga 500/2000.

Software: DpaintIV, Art Department Professional.

Journeys Through Scenery

V/ Date: November 1993 Duration: 2'00'

This animation is about a journey through patterns and ideas and as such is more

concerned with the overall method of travel than the final destination.

Hardware: Amiga 500/2000.

Software: DpaintIV, Adpro, Real3D, Imagine.

Formication

Date: July 1995 Duration: 310"

"If 100 ants are placed on aflat surface, they will walk around in never
decreasing circles until they die of exhaustion. In extremely high numbers, however it
is a different story."

Franks, N.R., "Army Ants: A Collective Intelligence," American Scientist, vol. 77, no.
2, March 1989, pp. 139-145.

A "conscious" colony of ants attempts to make contact with humanity.

Hardware: Amiga 2000, Silicon Graphics workstations, Sony Videodisk recorder.

H Software: Real3D with custom RPL code. Imagine.

^ Wild Planet

Date: June 1994 Duration: 3'30"

In the not to distant future, shopping malls have covered vast areas of the world.

In the open expanses of the carparks that service these malls a new life form has

emerged. "Shopping trolleys" roam the carparks in search of food, which can always

be found where there are cars.

Hardware: Amiga 2000, Silicon Graphics workstations, Sony Videodisk recorder.

Software: Real3D with custom RPL code. Imagine.

Fuzzy Continuous Life

Date: July 1995 Duration: 4'00"

Researchers in the field of Artificial Life and those in Biological sciences cannot

agree on a definition of life. The measurement of life should not be considered discrete,

objects should not be considered animate or inanimate. Life should be seen as a

continuous scale that ranges from the smallest particle of matter to the whole Universe.

Of course a single atom is not very life-like, however atoms will seek out other atoms

to form molecules and compounds. This self organising principle is only one of the

properties of life.

The artificial creatures presented in this animation lie somewhere on the scale of

life. They progress through their life cycle oblivious to the world outside of the

computer.

Hardware: Amiga 2000, Silicon Graphics workstations, Sony Videodisk recorder .

Software: DPAINTIV, Real3D with custom RPL code. Imagine, XV.

Multiple Uses for Flocking Algorithins

Date: April 1995 Duration: 415"

This animation presents a series of short animations to show some of the

technical details of my flocking algorithms:

1. Moths swarming around a lamp,

2. A school of fish,

3. Dragonflies that change from a swarm to a flock and

4. An interaction between two flocks.

Hardware: Amiga 2000, Colourpic, Silicon Graphics workstations, Sony Videodisk

recorder.

Software: Dpaint IV, Real3D with custom RPL code. Imagine.

Andrew Gamlen

Sub Thesis

Investigating Flocking
Using Behavioural Modelling

In partial fulfilment of the requirements
for the degree of Master of Arts

(Electronic Arts) in Computer Animation 1995.

Table of Contents

1 Introduction 2

1.1 Previous Work on Rocking Algorithms 3

1.2 Particle Systems 4

2 Rocking and Artificial Life 5

3 Implementation of the Algorithm 7

3.1 Collision Avoidance 8

3.2 Velocity Matching 10

3.3 Flock Centring 12

3.4 A Rock Member's View of The World 13

3.5 Directing the Rock 15

3.6 Overall Control Structure 17

3.7 Physical Simulation 19

3.8 Different Types of Behaviour 21

4 Other Uses of Rocking Algorithms 25

4.1 Computing Environment 26

4.2 Algorithmic Efficiency 27

4.3 Extensions and Future Work 28

Conclusion 29

Bibliography 30

Appendix A RPLCode 32

Andrew W. Gamlen

Investigating Flocking
Using Behavioural Modelling

Australian Centre for the Arts and Technology
Canberra Institute of the Arts

The Australian National University

Abstract

The motions of flocks of birds, herds of land animals and schools of ocean

creatures seem quite complex and beautiful. This thesis describes a simple method to

simulate the motion of flocks and herds. By using a number of simple behavioural

rules that each flock member executes independently, flocking behaviour emerges.

Using such a behavioural approach frees the animator from having to define the motion

and path of every flock member. As an extension to simulating natural flocking and

herding, this thesis examines a flock-like behaviour that is not seen in nature.

Following on from the generic flocking algorithm, there is some work on animating

multi-legged creatures. This extends the flocking study to deal with the lower level

locomotion of the creatures. The creatures are intelligent enough avoid obstacles and

traverse uneven terrain, thus further freeing the animator from having to plot their

every step.

It is a unique delight to watch a flock 1 of birds as they twist and turn in

synchrony. As a whole the flock seems to have a goal, with all the birds acting

together. However if the birds are viewed as individuals, their movements and the

paths they follow seem to be quite complex. In some folklore it is often thought that

birds communicate changes in direction by using some form of mental telepathy,

whilst others thought that most of the flock are just simply following a leader.

However more recent evidence [Reynolds 87] suggests that the flock motion is the

combined result of creatures^ acting out a set of behaviours according to how they see

the rest of the flock and their non-flock environment, such as obstacles, food and

predators. In Reynolds' model there is no explicit communication such as telepathy,

only implicit communication like the position and speed of neighbours.

To create a simulated flock using conventional computer animation methods

would be extremely difficult. It would require, the plotting of a complex motion path

for each bird and subsequently checking every one to make sure that none of the birds

collide with any other. If a collision occurs during the animation, the paths would have

to be modified and then checked again. The process would need to be repeated for all

birds until there were no collisions. If an animator wanted to change the animation, the

process would also have to be repeated. Obviously a method to make the animators

job less tedious is required. The approach I investigate in this thesis is behavioural

animation. My investigations and experiments are mainly based on the work of Craig

Reynolds [Reynolds 87].

1 In this thesis the word "flock refers generically to a group of creatures that display
aggregate motion.
2 The word "creature is used generically throughout this thesis to describe an individual
flock member.

1.1 Previous Work on Flocking Algorithms

The earliest published work in computer animated flocking algorithms was by

Susan Amkraut from the Computer Graphic Research Group of the Ohio State

University. In 1985 Susan Amkraut in collaboration with Michael Girard created the

work Eurythmy [Amkraut 85], which showed a flock of birds that could avoid

collisions both with their flock mates and obstacles in their environment. The system

developed by Amkraut uses vector force fields to control large populations. Repulsion

fields placed at the centre of the creature's local co-ordinate system prevent collision

among flock mates. Global force fields are used to direct the motion of the flock.

Linear differential equations are used to specify force fields which are numerically

integrated to compute each creature's trajectory [Amkraut 90]. By using different types

of fields, such as: spirals, sinks, sources, saddles and orbits an animator can control the

motion of the flock.

Creatures also have behavioural responses to force fields. These are modelled in

terms of constraints on an individuals creature's orientation, direction and speed. For

example, large birds have limits on their turning speeds, whereas insects are able to

change direction quickly [Amkraut 90].

In 1986 Craig Reynolds made a computational model of coordinated animal

motion as of bird flocks and fish schools [Reynolds 87]. This model is based on a 3D

computational geometry of the sort normally used in computer graphics or computer-

aided design. The software was called Boids. Each boid has direct access to the whole

geometric description scene, but reacts only to flock mates within a certain small radius

of itself. This basic flocking model consists of three simple steering behaviours for each

flock member:

1. Separation: steer to avoid crowding local flock mates.

2. Alignment: steer towards the average heading of local flock mates.

3. Cohesion: steer to move toward the average position of local flock mates.

In addition to this model, Reynolds made a more elaborate behavioural model to

include predictive obstacle avoidance and goal seeking. Obstacle avoidance allowed the

boids to fly through simulated environments while dodging static objects. For use by

animators, a low priority goal seeking behaviour caused the flock to follow a scripted

path [URL 3]. Using this system, Reynolds produced the animation, Stanley and Stella

[Symbolics 87], which shows the motion of a flock of birds and a school of fish.

Andy Kopra of VIFX expanded on Craig Reynolds original Boids software to

produce photorealistic imagery of bat swarms that were used in the motion pictures

Batman Returns and Clifhanger [URL 3].

1.2 Particle Systems

The Flocking algorithm used by Reynolds and described later in this thesis can

be seen as an expanded version of a particle system [Reeves 83]. Particle systems are

used to simulate "fuzzy" objects, such as clouds, fire, smoke and water. Because these

objects change shape fluidly over time, much like a flock, they cannot be simulated by

means of traditional computer graphics using techniques such as afflne transformations.

Particle systems contain large numbers of individual particles which can each

have a number of properties:

(1) position,

(2) velocity,

(3) size,

(4) colour,

(5) transparency,

(6) shape and

(7) lifetime.

The dynamic shape of the objects being simulated is the result of these properties of

particles changing over time by reacting to the environment in which they are placed.

The environment will usually be some form of simulated gravity, but it could also be

any force that acts on the velocity or other properties of the particles. The flocking

algorithm takes this one step further in that the creatures interact with each other as well

as the environment. Particle systems generally use points or spheres as the particles,

whilst the flocking algorithm needs a much more complicated geometry to simulate a

bird or other creature. Because of this the creature needs another property, orientation.

2 Flocking and Artificial Life

The motion of the simulated flock can be described as emergent, in that the

global pattern of flocking motion is not programmed but emerges from the interactions

between the flock members. Flocking is just one example of "emergence"; the term is

borrowed from the discipline of Artificial Life. Different disciplines assign

"emergence" differing meanings. Crutchfield [Crutchfield 94] offers this definition:

Emergence is generally understood to be a process that leads to the appearance
of structure not directly described by the defining constraints and instantaneous forces
that control a system. Over time "something new" appears at scales not directly
specified by the equations of motion. An emergent feature also cannot be explicitly
represented in the initial and boundary conditions. In short, a feature emerges when
the underlying system puts some effort into its creation.

These observations form an intuitive definition of emergence. For it to be
useful, however, one must specify what the "something" is and how it is "new".
Otherwise, the notion has little or no content, since almost any time-dependent system
would exhibit emergent features.

The "something new" or "unexpected phenomena" are often cited as

requirements for emergence. However, chaos physicists and some philosophers

[Crutchfield 94] claim that unpredictability is not an appropriate criteria for emergence.

They argue that unexpectedness or unpredictability means only a lack of data or an

incomplete data set [Kawata 94]. Once a flock has been simulated, we are in

possession of all lines of interactions and critical events that govern the simulation

results. Although it may be impractical in many cases, we may be able to trace and

explain how the commands of a program cause the events of the simulated flock, which

suggests that these events are not unexpected and so are not "emergent". The

impracticality is usually a result of the vast number of interactions that need to be traced

to explain how the flock interacts. Thus there is no clear criteria to determine whether

the results obtained are predictable or not. Some computer scientists restrict the

definition of emergence even further. In their view if the simulation cannot change the

code which controls the simulation, the results are more or less programmed in [Kawata

94].

Chris Langton proposed a more practical definition of emergence as the

feedback between micro- and macro-level behaviours. Taylor [Taylor 91] describe it

thus;

"The local dynamics of a set of interacting entities (creatures) supports an
emergent set of global dynamical structures which stabilise themselves by setting
boundary conditions within which the local dynamics operates. That is, these global
structures can "reach down" to their own, physical bases of support and fine tune them
in the furtherance of their own, global ends. Such LOCAL to GLOBAL back to LOCAL,
inter-level feedback loops are essential to life, and are the key to understanding its
origin, evolution and diversity."

Under such a definition, the flocking algorithm presented in this thesis cannot

really be considered as true emergence; only a simulation. However it does fit into the

earlier intuitive definition suggested by Crutchfield. Crutchfield expands on the idea

that the unexpected behaviour is not only the result of not having full knowledge about

a system but is also dependent on the observer's knowledge and ability to build accurate

models. Since the observer's knowledge is critical in evaluating whether a system

shows emergent behaviour or not, this leads to a very subjective view of emergence.

When a person uses their subjective judgement to say whether a simulated flock

produces realistic looking motion, they are using previous models to judge the realism

of the system. If the observer were to have no previous knowledge of flocks in nature,

they would probably perceive no pattern on initially observing a simulated flock.

Although the previous statement is only an assumption (thought experiment) there is an

historical bases for this assumption: The Belousov-Zhabotinsky reaction, is a chemical

reaction which shows spiral patterns that oscillate and change shape over time. When

this reaction was first discovered a number of scientist denied that the reaction created

any pattern [Crutchfield 94]. This was perhaps due to them continuing to use an older

model that maintains that complex patterns could not be the result of a simple reaction

between two chemicals.

3 Implementation of the Algorithm

The three steering behaviours that I have implemented to control my own

animated flocks are very similar to those mentioned by Reynolds earlier, differing

more in name than actual function. The short names I have chosen represent the

geometrical way these behaviours are derived. The three steering behaviours I have

implemented are, in order of precedence of operation:

(1) Collision avoidance,

(2) Velocity matching and

(3) Hock Centring.

3.1 Collision Avoidance

The collision routine that is used is basically the simple inverse square method.

Creature 1 collision radius Creature2 collision radius

Figure 1: Collision Avoidance. For ease of viewing this diagram shows an inverse
method. In an inverse square method the vectors isub and -isub are reduced to the
square root of their lengths. The following equations show how the new velocity is
derived.

Equation 1: sub = C0G1-C0G2

Equation 2: isub = J s u b | | x - ^ c o l i r a d - l s u b l

Equation 3: new velocityl = velocityl + isub

The diagram shows the collision avoidance vector being added to both flock members,

this was only used in earlier version of the algorithm. A flock member may have more

than one collision and avoiding a collision with one flock member may create a

collision with another. This same type of collision avoidance is also used to avoid

environmental objects such as buildings, trees and cars in my animation Wild Planet

[Gamlen 94], The cars presented a further problem in that they were moving faster than

the herd of trolleys and are of a different size. In one test animation the trolleys

collided and embedded themselves within the geometry of the car. To stop this from

happening again I always made sure that objects in motion had a collision radius that

was at least twice the length of their maximum velocity vector. As a spherical vector

field on its own will not satisfy all shapes of creatures and static objects I implemented

a tubular force field which I used in the log and reed avoidance in the dragonfly

animation [Gamlen 95a]. Reynolds implemented a collision prediction method which

involves a form of artificial vision to look ahead for collisions. Although this method

would be much better, the number of calculations involved in determining which flock

members are visible (not obscured) and how far away they are was outside the realistic

time constraints with the hardware 1 was using.

3.2 Velocity Matching

Velocity matching behaviour enhances collision avoidance and also helps to

keep the flock together. The collision avoidance is enhanced by flock members roughly

travelling in the same direction; they thus don't cross each others paths and thus avoid

collisions.

toav

Average
velocity

Figure 2: Velocity matching. The following equations show how the new velocity is
derived.

Equation 4: toav = average velocity - current velocity

Equation 5: new velocity = toav x bias + current velocity

By varying the velocity matching bias, the animator can have an effect on how well the

flock members match each others velocities and hence avoid collisions. This can be

used to make up for some of the shortcomings in the collision avoidance routine.

However making the velocity matching bias very high has the unpleasant side effect of

making the flock motion very "st i f f as it negates the flock centring behaviour. This

motion looks like a squadron of aeroplanes flying in formation and would be a good

way to simulate this motion as the aeroplanes would still be free to make slight course

deviations. This type of motion is usually animated by making all the aeroplanes

follow the same path, creating the ultimate "perfect" flying as the planes always keep

exactly the same distance from each other. As this would be totally impossible for

human pilots, it looks unrealistic.

3.3 Flock Centring

Flock-centring behaviour causes individual flock members to seek the centre of

the flock. This behaviour is important as it simulates the flock members need for safety

from predators. In the wild, one of the main reasons that animals flock is to appear

larger than they really are; this deters predators. Being at the centre of the flock means

that a predator would probably take the flock members on the outskirts of the flock

instead. It is this safety instinct that creates the interesting turning motion of flocks as

members turn and try to get to the centre, other flock members respond by turning away

to shift themselves closer to the centre. This behaviour is calculated in much the same

way as the previous behaviour.

tocentre

New

Flock centre

Current
velocity

COG
Figure 3: Flock centring. The following equations show how the new velocity is
derived.

Equation 6: centre = Flock centre - COG

Equation 7: tocentre = centre - current velocity

Equation 8: new velocity = tocentre x bias + current velocity

By using large centre-bias values the flock shows a motion that is more like that of a

swarm of insects hovering around a light or food source, than that of a flock of birds.

3.4 A Flock Member's View of The World

As mentioned in the previous section, a creature's behaviour depends on its

perception of its local neighbours. In the earliest version of my algorithm, every flock

member "looked at" every other flock member to modify their behaviour. In this global

model the type of behaviour that usually emerged was more like swarming than

flocking. This was probably due to all the flock members wanting to be at the centre of

the flock and because the flock centre perceived by flock members was the actual flock

centre, there was no impetus to fly in any direction. They simply wanted to swarm

around the flock's centre. It is very unrealistic to assume that every flock member can

see every other flock member, however it is a lot easier to implement this on a

computer as the algorithm doesn't have to calculate which creatures can be seen by

other creatures. To overcome this problem I gave the creatures a form of artificial

vision. This involved calculating a spherical segment volume of vision for each

creature. Any flock members who were within this volume are used to influence a

flock members behaviour.

Figure 4: Artificial vision volume.

Two calculations are used to generate the vision volume. Firstly any flock members

that lies within a user-defined vision radius of a particular member are said to be

visible. This provides a distance or depth to which a creature can see, which is used to

simulate the effect of close creatures obscuring those that are further away. As this is

only a simulation it is of course possible that if the creatures had real vision there would

be other creatures within this radius that would be obscured from vision and creatures

outside the radius that would be visible. However this method works well within my

simulated environment. Secondly, a limited vision angle is calculated to either side of

an imaginary axis running lengthwise through a creature's body. This simulates the

forward-looking vision that most animal possess. Because the angle and view radius

are user definable the earlier global model can be replicated by setting the viewing

angle to 360 degrees and the visible radius to a suitably large number that it

encompasses the whole flock.

3.5 Directing the Flock

If a flock of creatures is given a set of initial velocities and positions and the

flocking algorithm is set in motion, the system will provide a realistic simulation of

natural flocking. However the flock is free to fly where ever it wants. Although the

simulated flock is not sentient (it does not actually decide where it wants to fly) the

complex nature of the steering calculations could not possibly be predicted. Since it is

impossible to predict the direction of travel of the flock I wrote a flock tracking routine

so that the computer graphics "camera" always followed the flock. This tracking

routine has two flock-following options:

1. Follow the centre of the flock or

2. Follow a particular flock member

and two camera options:

1. Stationary camera (camera pans and tilts to follow flock) or

2. Moving camera (camera stays a fixed distance from the flock).

Of the four combinations of these options the moving camera following the

flock centre is the most useful for observing the flock, as it tracks the flock even if the

creatures try to fly out of view. However the method I relied upon most is a fixed

camera method which follows the flock centre, as this is more like a real camera trying

to follow a flock.. Using these tracking routines it is similar to being a camera person

for a nature documentary, this is especially so when using a stationary camera, as the

flock can move so far away that they become mere specks. You then wait hoping that

they will turn and come back into view. Viewing simulated flocks like this provided

the inspiration for the animation Wild Planet [Gamlen 94] which has a format similar

to that of a television nature documentary.

The algorithm would be enhanced by a method of corralling and directing the

flock. Initially I tried to use force fields similar to that used by Amkraut [Amkraut 85],

This was simple to implement as these fields are just invisible static objects. However

I found this method hard to use, mainly because I only had two types of static objects

and hence two types of force fields: spherical and cylindrical. Complex paths would

have to be made up of many sub-fields otherwise some flock members would escape

the fields. The circular nature of the fields caused some members to reflect in one

direction and others in an opposite direction causing the fiock to split and rejoin for no

apparent environmental reason.

To overcome the above mentioned problems, I implemented a path following

steering behaviour. The path is a smooth spline curve with an invisible object moving

along it. To see the effect on behaviour the path object can be made visible . This

behaviour was given an even lower priority than the three original steering behaviours

(see section 3.6 Overall Control Structure). If it were given a higher priority the

creatures would be more interested in following the path than flocking and the motion

would look much like a squadron of aeroplanes. The path object is usually well ahead

of the flock, causing very large path-following vectors to be generated. To counteract

this, the path bias is usually kept small. Path bias works in the same way as does the

flock centring and the velocity matching biases. The path-following method is a system

with which most animators are already familiar. Using this method the flock can be

located anywhere it is wanted giving the ability to interact with other motion pathed or

key framed parts of an animation. If some part of the animation is not synchronised

then all the animator has to do is change the path and run the simulation until the

desired results are achieved. The major problem with the path method is finding an

appropriate ratio between the path object's velocity and the velocity of the flock. If the

path object gets too far in front of the flock, the path-following vector can get

excessively large and cause the flock motion to become stiff. Conversely, if the flock

catches the path object then the flock will have no impetus to move forward and will

swarm around the path object.

The main problem with finding a ratio that will produce realistic motion for the

full length of the path is that the velocity of the path object can be varied over the path,

simulating acceleration and deceleration. This leads to a non-linear relationship

between the average velocity of the path object and the velocity of the flock. I have

not implemented an algorithm to handle this problem, instead I have a couple of

heuristic rules that I use by hand:

1. ff the animation is too "swarm-like",

a. reduce the number of frames in the animation, or

b. decrease the maximum velocity of the creatures.

2. If the animation is too stiff,

a. increase the number of frames, or

b. increase the creatures maximum velocity.

note: increasing or reducing the number of frames in the animation is equivalent to

reducing or increasing the velocity of the path object.

These rules work well and realistic results are usually obtained by the second run of a

simulation.

3.6 Overall Control Structure

The four steering behaviours: Collision Avoidance, Velocity Matching, Flock

Centring and Path Following each generate a vector, signifying the desired motion of

the creature. Since there are four behaviours the simplest way to generate a single

vector for an individual flock member would be to average all three vectors. This

system will work fairly well in most situations, however in critical situation there can

problems [Reynolds 87]. In crowded environments, where there are many creatures

and static objects, the averaging of vectors can produce collisions. For example a

creature may have a flock centring vector pointing in one direction and a collision

avoidance vector pointing in another direction and the averaging effect on these two

vectors will sometimes swing the final vector back towards the static object that the

creature is trying to avoid. To deal with this problem my algorithm uses a prioritised

scheme of assigning velocities similar to that used by Reynolds in his Boids software

[Reynolds 87], The main difference between Reynolds method and mine is that

Reynolds assigns accelerations rather than velocities to his flock members. Using

accelerations rather than velocities is slightly more complex and allows creatures to be

given strength limits past which they can't accelerate. This creates more realistic

motion than simply using velocities, as creatures can accelerate and decelerate in

certain circumstances such as; collision avoidance and rejoining the flock. The added

computational and programming expense of using acceleration over velocities is not

warranted for the small increase in realism which would be gained, as the execution of

the three steering behaviours in my algorithm changes the creature's velocities over

time.

Collision avoidance is given the highest priority since if a natural creature was

involved in a collision it may be harmed or die. Also a collision in three dimensional

computer graphics looks very unrealistic as it appears as if one object is passing

through another. The second highest priority is given to velocity matching, since it

enhances collision avoidance. The lowest priority is given to flock centring, since

giving it higher priority causes the flock to remain moving around a fairly stationary

point, which is a behaviour more like swarming than flocking.

A secondary issue with flock centring is that if the priority is too high, a large

number of collision avoidance calculations are necessary as creatures on the outside of

the flock try to dive into the centre and the creatures that are already near the centre

want to stay at the centre and not move to make way for the other creatures. This large

number of calculations not only slows the algorithm but can also cause an individual

creature to have multiple collision calculations with other flock members.

The collision avoidance routine is simple and straight forward as it only deals

with collision involving two creatures faithfully. If the collision avoidance routine had

to deal with multiple collisions the vectors that it produces for the first collision can be

negated be the second and subsequent collisions hence the first collision may not be

avoided. When the flock is run in directed mode, the path following behaviour is given

the lowest level of priority (see section 3.5 Directing the Flock). The three behaviours;

Velocity Matching, Flock Centring and Path Following all have a user definable bias

which can be used to create different types of flocking behaviour (see section 3.8

Different Types of Behaviour).

In the simulation the velocity matching and flock centring routines are executed

in the reverse order of priority as the vector produced by the flock centring routine is

then taken to be the current velocity which is then used by the velocity matching

routine. This order of execution means that the effect of flock centring routine is

lessened by the velocity matching routine and hence the velocity matching routine has

higher priority since it has the last say. The collision avoidance routines are executed

separately from all other behaviours. If a creature has to take collision avoidance

action then none of the other behaviours are executed at that point in time. Collisions

with "static" objects are given a higher priority than collision with other flock members

in the current version of the algorithm. This is because in the animation Wild Planet

[Gamlen 94] the "static" objects were actually cars that were moving at higher velocity

than the herd. If the "static" objects are actually static then the program can be simply

modified.

3.7 Physical Simulation

As has been already mentioned, increasing the complexity of the algorithm for

only very small gains in realism is not worthwhile. The problem of complexity and

realism of a simulation versus the complexity of the controlling algorithm is very

common in computer graphics. Recent attempts have been made to overcome this

problem by using genetic algorithms to "evolve" creatures and their control systems

[Sims 94]. My approach to physical simulation was to use none and observe the results

and see what was needed to create a more life-like simulation. In some of my early

simulations the flock would slowly wind down and eventually stop. Whilst this was

due to an error, it prompted me to implement a minimum and maximum velocity

constraining routine. Although it would not look unrealistic for a sea or land creature

to have a zero or very small velocity it would be quite unusual for a bird. Another

problem was that during simulations creatures would sometimes turn nearly 180

degrees in a single frame usually while trying to avoid a collision. This type of sudden

movement is not out of place under the microscopic and with insects, however the

direction of larger creatures is more constrained by their momentum. Therefore I

implemented turning angle constraint so that larger creatures could be more faithfully

simulated. Although these two physical constraints are rather simple they have a

remarkably realistic effect on the motion.

Reynolds [Reynolds 87] implemented a simulation of the laws of gravity, so

that his boids would decelerate when climbing and accelerate when diving. The boids

could also stall if they tried to climb without signiflcant velocity. Tu took physical

simulation even further in a simulation of artificial fishes [Tu 94] by simulating a

number of different physical phenomena. The physics of water were simulated. The

dynamics of the muscles of the artificial fishes and plants that were part of the

environment were simulated using a spring mass system. These plants were seen as

food by some of the fish and the whole simulation was quite complex; containing

numerous different species of fish, including predators and prey. Each fish possessed a

sophisticated perceptual system that could use vision to sense light and dark patterns

and judge distances. Even mating behaviour was incorporated. This information was

used by the artificial fish to build an internal model of it's environment. With such a

complex system the fishes can be seen as autonomous agents living in a simulated

environment. Since the fish are autonomous agents it would be difficult for animators

to make them do what they would like them to do, so this type of highly complex

simulation may have more a role to play in understanding complex systems such as real

fish and artificial life.

3.8 Different Types of Behaviour

Flocking is not the only group behaviour that can be simulated by the algorithm

presented here. In this section I will discuss a number of natural behaviours and how I

have used the flocking algorithm to simulate them. I discovered swarm-like motion by

accident when testing my global algorithm and found that the velocity matching

behaviour was not operating. Once I had my algorithm fully working I could still

repeat this kind of motion by setting the velocity matching bias very low and giving the

creatures 360 degree vision, similar to real insect vision. A high cenu-e bias can also be

useful to keep the creatures constrained to a particular location.

In the first section of the animation. Multiple Uses for Flocking Algorithms

[Gamlen 95a], moths swarming around a lamp are simulated. My flocking algorithm

was slightly modified so that the moths perceived the lamp to be the centre of their

swarm, ensured that they would not fly away. Collisions with the lamp are avoided by

the use of a spherical "force field" which repels the moths. This force field and the

turning angle constraint (see section 3.7 Physical Simulation) keeps the moths from

trying to return immediately to the lamp.

Although fish in nature use slightly different behaviours than those in ray

flocking algorithra, a reasonable simulation can still be generated. The rules used by

Tu [Tu 94] to simulate fish are:

1. Each individual maintains an empty space around itself. In general, only one
neighbour at a time is at the preferred distance from a particular fish.

2. Fishes tend to keep their neighbourhood at a particular preferred angle with
respect to their body angle.

Most schools of fish are organised on the same lines of preferred distance and angle

[URL 2], [Tu 94]. Fish use organs called lateral lines to sense pressure variations in the

water. This organ is used to sense the distance to other fish and to detect pressure

vortices that can be used to increase swimming efficiency [Triantafyllou 95]. Other

experiments with fish seemed to show that vision provided an attractive force between

school members while the lateral lines provided a repulsive force [Partridge 82]. Most

of the studies done on schools of fish have been on species of fish that are consumed.

Schooling among these species reduces the probability of being eaten, since the

probability of detection is reduced by forming a school. The school may also be

mistaken for a larger organism. As a school gets larger a greater percentage of its

members are protected within the "shell" of the surrounding members. Some predators

also form schools, not to gain a protective advantage but to increase their food

searching area by spreading out, until the other members are barely in the sight. Then if

one member finds food the other members can take advantage of the find [URL 2]. To

add some realism to the school of fish in my animation [Gamlen 95a] a number of

techniques were used:

1. the collision radius of the fish was made much smaller than that of the moths,

forcing them to school closer together. An unexpected outcome of this change was that

the fish looked as if they were moving their tail fins in a swimming motion, when in

fact their bodies were completely rigid. This illusion is due to fish trying to turn into

the school centre and then turning away as it tries to avoid a colUsion with another fish.

2. The turning angle constraint was set at 5 degrees so that the fish would not try

any unrealistic turns.

3. The path that they follow was drawn to mimic the motion of real fish.

The third example on the video [Gamlen 95a] shows a number of dragonflies

that begin by swarming around some reeds and then fly off in a flock along a river. By

the end of the animation the dragonflies are nearly all flying in perfect formation. This

was achieved by varying the velocity of the path object. At the beginning the path

object is stationary and thus the dragonflies swarm around it. As the path object

accelerates the dragonflies follow, at first looking like a mobile swarm then a flock and

finally the motion changes to look similar to aircraft flying in formation. Throughout

the animation the dragonflies avoid a log, rocks and a clump of reeds which cause them

to disperse and reform. This animation in no way parallels real dragonflies and was

done to show how a flock could change its behaviour over time.

The final animation [Gamlen 95a], is an example of a completely synthetic

flocking behaviour. It shows the interaction between two flocks of simple ellipsoidal

creatures. The creatures have subtle markings, one flock has aqua veins on a green

body while the other has the colours reversed. Although the two flocks have a

reasonably complex double helix path to follow any evidence of this path is lost as the

flocks combine but see each other as "static objects" rather than members of the same

flock. This animation suggests a future series to investigate a number of flocking

motions and behaviours not seen in nature (see section 4.3 Extensions and Future

Work).

Use of my flocking algorithm is not only restricted to creatures that can travel in

three dimensions. By limiting creatures movements to two dimensions, herds can be

simulated. In natural herds such as wildebeests and buffalo, the individuals view of

other herd members is considerably diminished by occlusion due to the 2 dimensional

structure of the herd. To simulate this with the flocking algorithm, the creature's vision

radius must be in the order of 2 to 4 creature lengths. Reducing a herd member's vision

can present problems. If a creature is separated from the herd it may not be able to "see"

the herd and will not know which direction to move in to return to the herd. This

problem can be solved by either increasing the vision radius, at the loss of some degree

of realism from the simulation, or creating a new behaviour to allow the creature to re-

find the herd. The behaviour I implemented was to have creatures that couldn't see any

other creatures, move toward the path object.

Another feature of natural herds is that the distance between herd members will

decrease (the herd will bunch up) in response to danger [Calvin 90]. It is possible to

simulate this behaviour be decreasing the creatures collision radius. The size of the

collision radius to simulate this behaviour could be linked to the distance between the

flock and a predator. A minimum and maximum distance hmit would need to be set. If

the predator was outside the maximum distance then the creatures would ignore it.

Once the predator comes within this distance the algorithm would decrease the

creatures collision radius and they would bunch together. The creatures would stop

bunching up when the predator reached a certain minimum distance so that they would

not intersect with each other (see section 3.1 Collision Avoidance).

Simulating the raiding behaviour of army ants presented a challenge for my

flocking algorithm. Army ants of different species have different raiding behaviour

which follows a roughly similar procedure. Ants search for food while leaving a

chemical trail, when food is found they spread out to gather the food (which may be

another insect colony) and when an ant has gathered some food it returns to the nest by

following the chemical trail. Trail formation and simulation in ants is a well studied

area. Army ants, like other self-organising insect societies, exist in large colonies.

"If 100 ants are placed on a flat surface, they will walk around in never
decreasing circles until they die of exhaustion. In extremely high numbers, however it
is a different story." [Franks 89]

Artificial life researchers have used genetic algorithms to "breed" generations of

simulated ants that become more adept at following trails, with each new generation

[Levy 92], However to date nobody has simulated the trail forming behaviour of ants

[Levy 92], It has been suggested by biologists that the simulated ants probably failed to

leave trails because the food in the simulated environment was distributed in small

randomly spaced clumps. Ants in nature usually do not leave trails in similar

circumstances [Levy 92]. Army ants move along a pre-marked trail fairly rapidly, until

they reach new territory where upon they will advance only a few centimetres while

marking the new trail and then turn around to rejoin the main swarm of ants [Schneirla

71]. To simulate this type of behaviour in my animation Formication [Gamlen 95b],

the path objects velocity was kept quite small so that the ants would swarm around the

front of the flock in an approximation of the above-mentioned behaviour. This did not

produce a very realistic simulation, however the animation is more concerned with

complex global emergent behaviour arising from simple local interactions than with

realism.

4 Other Uses of Flocking Algorithms

As can be seen, flocks of birds are not the only type of motion that can be

simulated using a flocking algorithm. Flocking algorithms could be used to control a

crowd of synthetic actors in a feature film. At the Graphics, Visualisation and Usability

Centre of the Georgia Institute of Technology [URL 1], Jessica Hodgins and students

are using an herding algorithm to simulate the movement of groups of robots and

cyclists. This work is very focused on the dynamics of the herd members. By

comparing simulations with a dynamically controlled herd and a herd of point masses

that have perfect velocity control they have shown that more realistic results can be

generated using dynamical control. However since the dynamically controlled herd

members can only alter their movement while their "legs" are in contact with the

ground the herd was not as robust as the point masses and some collisions occurred

[URL 1].

Simulated flocks can play an important role in understanding natural flocks.

The behaviour of simulated flocks can be interpreted much more easily than that of

natural flocks. Simulations can be run many times changing a single parameter such as

visual perception of flock members and observing how this effects the flock. However

biologists have been slow to accept the validity of simulated flocking experiments

[Levy 92]. In the fledgling science of Artificial Life there are many groups working

with systems similar to flocking algorithms. In these systems, complex global

behaviour emerges from the interaction of many simple local agents. To facilitate a

standard amongst researchers the Santa Fe Institute has been developing a simulation

system which they call The Swarm [URL 4], [Hiebeler 94]. The flocking algorithm

could be easily implemented within The Swarm Simulation System. Many other

phenomena can be simulated using the Swarm system:

1. Economic models, with economic agents interacting with each other through
a market.

2. Social insects building nests, foraging for food, or performing other actions.
3. Molecules interacting in artificial chemistry.

4. Traffic simulation.
5. Ecological simulations.
6. Artificial intelligence applications.
7. General studies of complex systems, artificial life,

emergent phenomena, etc. [Hiebeler 94]

This powerful system will help to unify researchers in different fields and may give

Artificial Life a higher standing in the biological sciences.

4.1 Computing Environment

My initial locally oriented flocking algorithm was developed on the Amiga

platform, firstly 68030 and later, a 68040 based system. The Amiga is a good low cost

graphics platform and about the only personal computer capable of playing full screen

animations at video rates (25 frames per second and faster). The flocking code was

written in RPL, a FORTH like language which is part of the commercial package

REAL3D. REAL3D was used because of its a total integration, eliminating the need to

program a three dimensional renderer or to integrate flocking data with other programs.

The lack of debugging facilities in REAL3D made programming difficult for complex

sequences. The final animation work was rendered in 24 bit colour at a resolution of

768 by 576 pixel's on the Amiga and test animations were viewed on a Silicon Graphics

Indigo work station. The final animations were output to Sony video disk before being

edited onto U-MATIC SP video tape. The rendering process was quite time

consuming. The dragonfly animation [Gamlen 95a] took almost 2 weeks to render.

This animation runs for 48 seconds in real time and contains no complex rendering

attributes, such as shadows or multiple light sources. The wire frame test run of the

same animation, 1200 frames, took 6 hours to render although there are only 19

dragonflies in the swarm/flock.

4.2 Algorithmic Efficiency

The standard implementation of ray flocking algorithra grows in complexity and

time in proportion to the square of the flock's population O(l^) . This is because each

creature must calculate data about every other creature even if only to decide that some

creatures cannot be "seen" (see section 3.4 A Flock Member's View of the World) and

should not be involved in further calculations. When the flock size increases, the

amount of time taken to calculate the position of the flock increases exponentially. To

counteract this characteristic of the algorithm I used the Monte Carlo method. Each

creature only has to look at a predefined number of other creatures that are chosen at

random. This technique made it possible to render an animation containing 104 fish in

10 hours without any perceivable difference in realism from the standard algorithm.

This method makes the flocking algorithm into a linear time problem 0(N) as long as

the random sample is keep constant. However there is a problem in that the collision

avoidance section of the algorithm is still in the order 0 (n 2) . Reynolds investigated

dynamical partitioning of the flock to solve this problem. A creature would keep a list

of its neighbours and when it moved closer to one of its neighbours it would only need

to test the list of it's neighbour to avoid collisions and check for new members in it's

neighbourhood [Reynolds 87]. Another method is Girard's PODA system [Girard 85]

which uses a system of incremental collision detection. This uses a partial solution that

described the situation just a moment before a change in the flock. The algorithm need

only be concerned about the changes and so can run much faster, assuming that the

incremental changes are small. This algorithm is apparently linear time 0 (N) for

typical cases [Reynolds 87]. The system of linear differential equations used by

Amkraut [Amkraut 90] achieves linear time at the cost of not be able to simulate vision.

The algorithm could be speeded up further by using parallel processing

hardware. Each flock member could be assigned a processor on a multiple CPU

computer. This type of distributed processing parallels nature, where each bird in the

flock can be considered as a separate information processor.

4.3 Extensions and Future Work

For the animation Formication [Gamlen 95b] I started using dynamic simulation

to control the legs of ants. The Amiga computer was not capable of calculating in a

reasonable time, so key frames from a single dynamic walk cycle were used to generate

the motion for the ants legs. The dynamical leg control algorithm was largely based on

based Rodney Brooks' Subsumption Architecture for robotics [Brooks 89], [Badler 91],

[Franke 95], [URL 5]. The basic premise of Subsumption architecture is that it

involves a number of low level computer processes (finite state machines) that operate

in parallel and can be subsumed by higher level processes. For example the walking

behaviour of Brooks' six legged robots is not programmed but emerges from a network

of simple reflexive behaviours. This fits in well with the emergent flocking behaviour

as it can act as a higher level process and subsume the lower level walking dynamics.

To take the step from computer simulation to the real world I have constructed a

Braitenberg vehicle [Braitenberg 84], [Cheeseman 88]. This vehicle is not controlled

by a digital computer. It uses simple analog connections between two light detectors

and two drive motors and is capable of simple behaviours, such as light avoidance and

light following. A number of these vehicles acting together would produce an

interesting experiment and could be the basis for co-operative robotics [URL 2].

Porting the code to run on faster machines such as Silicon Graphics work

stations or fast Pentium based machines would allow the implementation of a number

of the more advanced features mentioned in this thesis, such as more complex

environments, larger numbers of creatures, together with obstacles and features such as

wind and ocean currents. Individual creatures could be made more individual by

varying their size, shape, strength and other physical attributes. Further

experimentation with flock like behaviours that are not found in nature, such as

multiple flock interaction and using other behaviours to create flocking should prove

useful.

Conclusion

The emergent model of flocking presented in this thesis is capable of producing

animations that evoke a sense of the natural world. This model can be executed on

simple personal computers, although more realistic animation could be generated using

more complicated dynamical simulation on more sophisticated computers.

The level of realism generated by the algorithm allows an animator to change

parameters to create a number of different flock-like behaviours. With advances in

flocking algorithms and general purpose simulators like The Swarm, flocking

algorithms will have a greater role in computer animation and the study of complex

behaviour.

Bibliography

[Amkraut 90] "Eurhythmy: Concept and Process", Susan Amkraut and Michael Girard,
Journal of Computer Visualization and Computer Animation, VOL 1: 15-17, 1990.

[Badler 91] "Making Them Move", Eds. Norman I. Badler, Brian A. Barsky and David
Zelter, Morgan Kaufman Publishers, Inc, 1991.

[Braitenberg 84] "Vehicles: Experiments in Synthetic Psychology", Valentino
Braitenberg, MIT Press, 1984.

[Brooks 89] "A Robot that Walks: Emergent Behaviors from Carefully Evolved
Network", Rodney Brooks, Artificial Intelligence Memo 1091, Massachusetts Institute
of Technology (February 1989).

[Calvin 90] "The ascent of mind: ice age climate & evolution of intelligence.", Calvin,
William H, Bantam, 1991.

[Cheeseman 88] "Experiment with 'Synthetic Psychology' Build a Braitenberg vehicle".
Electronics Australia: 60 - 64, March 1988.

[Crutchfield 94] "The Calculi of Emergence", James P. Crutchfield, Physica D
{1994)special issue on the proceedings of the Oji International Seminar, Complex
Systems - from Complex dynamics to Artifcial Reality, held 5 - 9 April 1993, Numazu,
Japan.

[Franke 95] "Brooks, Subsumption, and Mobile Robots", Jerry Franke and John R.
Surdu, Departmental Technical Report number 95-061, Computer Science Department,
Rorida State University, April 1995.

[Franks 89] "Army Ants: A Collective Intelligence", Nigel R. Franks, American
Scientist, vol. 77, no. 2, pp. 139-145, March 1989.

[Girard 85] "Computational Modeling for Computer Animation of Legged Figures",
Michael Girard and AnthonyA. Maciejewski, ACM SIGGRAPH Vol 19, #3:263 - 270
July 1985.

[Hiebeler 94] "The Swarm Simulation System and Individual-based Modeling", David
Hiebeler, proceedings of Decision Support 2001: Advanced Technology for Natural
Resource Management, Toronto, September 1994.

[Kawata 94] "From artificial individuals to global patterns", Masakado Kawata and
Yukihiko Toquenaga,
TREE 9(11), 1994,417-421.

[Levey 92] "Artificial Life", Steven Levey, Vintage Books, NY, 1992.

[Partridge 82] "The Structure and Function of Fish Schools", Brian L. Partridge,
Scientific American, June 1982.

[Reeves 83] "Particle Systems-A technique for Modeling a Class of Fuzzy Objects",
William T. Reeves, ACM SIGGRAPH Vol 17, #3:359 - 376 July 1983.

[Reynolds 87] "Flocks, Herds and Schools: A Distributed Model", Craig W. Reynolds,
ACM SIGGRAPH Vol 21, #4:25 - 34 July 1987.

[Schneirla 71] "Army Ants", T. C. Schneirla, W. H. Freeman and Co., 1971.

[Triantafyllou 95] "An Efficient Swimming Machine", Michael Triantafyllou and
George Triantafyllou, Scientific American, March 1995.

[Tu 94] "Artificial Fishes: Physics, Locomotion, Perception, Behaviour", Xiaoyuan Tu
and Demetri Terzopoulos, Proceedings of SIGGRAPH 94:43 - 50, July 1994.

Videos references

[Amkraut 85] "Eurythmy", Amkraut, S., Girard, M., Kari, G., Issue #21, item 2,
SIGGRAPH Film & Video Show, 1985.

[Gamlen 94] "wild Planet", Andrew Gamlen, produced at The Australian Centre for the
Arts and Technology, 1994.

[Gamlen 95a] "Multiple uses for Flocking Algorithms", Andrew Gamlen, produced at
The Australian Centre for the Arts and Technology, 1995.

[Gamlen 95b] "Formication", Andrew Gamlen, produced at The Australian Centre for
the Arts and Technology, 1995.

[Symbolic 87] "Stanley and Stella: Breaking the Ice", Symbolics Graphics and Whitney
Demos Productions, Issue #36, item 1, SIGGRAPH Film & Video Show, 1987.

HTML references

[URL 1] Graphics, Visualization, and Usability Center Animation
http://www.cc.gatech.eduygvuyanimation/Animation.html

[URL 2] The Armyant Project
http://armyant.ee.vt.edu/armyant-project.hUnl

[URL 3] Boids, Flocks, Herds, and Schools:
http://reality.sgi.com/employees/craig/boids.html

[URL 4] Swarm Web Pages
http://www.santafe.edu/projects/swarni/

[URL 5] Thing
http://piglet.cs.umass.edu:4321/-macdonal/thing.html

Note: The first section of the html references is a title. The line begining http:// is the
universal resource locator (URL).

Appendix A
RPL Code

"r3d2:rpl/3ys/vectors.rpl" LOAD
"r3d2:rpl/3ys/objects.rpl" LOAD
"r3d2:rpl/sys/tags.rpl" LOAD

VARIABLE obja VARIABLE obja VARIABLE objl VARIABLE obj2
VARIABLE Obs
VARIABLE addstor
VARIABLE locary VARIABLE mem
VARIABLE current VARIABLE loci
VARIABLE nof VARIABLE fa
VARIABLE col-flag VARIABLE car-flag

(floating point variables

FVARIABLE midbias FVARIABLE avbias FVARIABLE speed
FVARIABLE locrad FVARIABLE angel FVARIABLE con-ang
FVARIABLE pathbias FVARIABLE collrad
FVARIABLE min-vel FVARIABLE max-vel
FVARIABLE sang FVARIABLE lenstor

FVARIABLE tcount FVARIABLE period

(Vector variables

VARIABLE center VARIABLE substor
VARIABLE vtit?) VARIABLE velstor
VARIABLE vstor VARIABLE vswap

VARIABLE newv VARIABLE oldv

VARIABLE one VARIABLE two VARIABLE tre

(flock objects are referenced by name
(0_FINDWILD will find all occurences of fly

: GetTargets
"/level/ant*" O FINDWILD

(All flock objects are place in the array obja

: array-targets
BEGIN

DOT
WHILE

objs e 4 * obja 8 + !
objs DOT 0 1 + SWAP !

REPEAT
DROP (EOobjs marker

(get "static objects by name ellip*

: array-cars
"/level/cars/ellip*" 0_FINDWILD
BEGIN

DOT

WHILE
nof 8 4 * fa e + !
nof DUP 6 1 + SWAP !

REPEAT
DROP (EOobjs marker

;
(Keep a copy of each objects previous velocity

: remember
objs e 0 DO

I 4 * obja e + 8
"WEL" 0_FINDTAG 4 + 0 VS (get velocity
I 24 * mem 8 + V!

LOOP

(Calculate the local flock centre using flock members from
(the array loci. Result is stored in vtmp

: FindMid
0 0 0 vtmp 8 V! (initialize average
loci 8 0 DO

I 4 * locary 8 + 8 obja 0 + 8
iOP_COG 0_PR0P
vtmp 8 V0 VADD
vttap 8 V!

LOOP
vtmp 8 V8 1.0 loci 8 F/ VMUL (HOPEFULLY I HAVE AN AVERAGE
vtirp 8 V!
;

(fixedmid is used to give a swarm a stationary point to
(swarm about, used in place of FindMid. Used in moth
(animation

: fixedmid
"/level/center*" 0_FIND
iOP COG 0 PROP center 8 V!

(calculate flock centring vector for current object

: mts
FindMid

(fixedmid
vtmp 8 V8 (get center
current 0 obja 8 + 8 (get object address
iOP_COG 0_PR0P (get COG
VSUB (vector from object to center
current 8 obja 8 + 8
"WEL" 0_FINDTAG
4 + 8 DUP addstor ! V0 (get curren vel
VSUB midbias F0 VMUL (scale vector from current to
center 8 (centre by midbias

addstor 8 V0 VADD (add to origonal vector
addstor 8 V! (put it back

(Inverse collision routine. Used for insect like behaviour

: colls
objl 8 i0P_C0G 0_PR0P

obj2 e iOP_COG 0_PR0P
VSUB VLEN
collrad Ffi F<

IF
objl 0 iOP_COG 0_PR0P
objZ e iOP_COG 0_PR0P
VSUB substor e V!
objl 0 "WEL" 0_FINDTAG
4 + 0 DUP V0
substor 0 V0 VADD
4 ROLL V!
obj2 0 "WEL" 0_FINDTAG
4 + 0 DUP V0
substor 0 V0 -1.0 VMUL VADD
4 ROLL V!

ENDIF

(Inverse square collision routine

: colls-inv
objl 0 iOP_COG 0_PR0P
0bj2 0 iOP_COG 0_PR0P
VSUB VDUP vstor 0 V! VLEN
collrad F0 F<

IF
vstor 0 V0 VNORM collrad F0 VMUL
vstor e V0 VSUB VDUP vstor 0 V! VNORM vstor 0 V0 VLENSQRT VMUL vsto

0 V!
objl 0 "WEL" 0_FINDTAG
4 + 0 DUP addstor ! V0
vstor 0 V0 VADD addstor 0 V!
1 col-flag !

ENDIF

(collision checking loop to make sure flock members check
(for collision with all other members.

: coil-loop
current 0 obja 0 + 0 objl !

objs 0 0 DO
I 4 * obja 0 + 0 obj2 !
objl 0 obj2 0 <>
IF

colls-inv (change to colls for insect
ENDIF { like behaviour

LOOP

< Check for collisions with static objects

: check-cars
current 0 obja 0 + 0 objl !
nof 0 0 DO

I 4 * fa 0 + 0 DUP obj2 ! (get the static object
(from feild

iOP_SIZE 0_PROP 2.1 F* (get cars size / 2 - radius
collrad F0 F+ lenstor F! (add trolleys collision radius
objl 0 iOP_COG 0_PR0P
0bj2 0 iOP_COG 0_PR0P 2.1 F*
VSUB VDUP vstor 0 V! VLEN
lenstor F0 F<

IF
vstor e V8 VNORM lenstor Fg VMUL
vstor e ve VSUB vstor 6 V!
Objl 0 "WEL" 0_FINDTAG
4 + 8 DOT addstor ! V0
vstor 8 V8 VADD addstor 8 V! 1 car-flag F!

ENDIF
LOOP

(Calculate the average vector for all objects in the array loci.
(i.e all Objots local to/can be seen by current.

: av-vel
0 0 0
loci e 0 DO

I 4 * locary 0 + 0 6 * mem 8 + V0 VADD
LOOP
1.0 loci 8 F/ VMUL
velstor 8 V!
;

(Calculate velocity matching vector

: do-av
av-vel

velstor 8 ve current 8 obja 8 + 8
"WEL" 0_FINDTAG 4 + 0 DUP addstor ! V0
VSUB avbias F0 VMUL addstor 0 V0 VADD
addstor 0 V!

;
(Calculate path following vector

: patb
"/level/path*" 0_FINDWILD
t F8 u F8 V F8 0_EVAL

(eval pnt on curve in time
current 8 obja 8 + 0 (get object address
iOP_COG 0_PR0P (get COG
VSUB (vector from obja to curve
current 0 obja 0 + 0
"WEL" 0_FINDTAG
4 + 0 DUP addstor ! V0 (get curren vel
VSUB pathbias F0 VMUL (scale vector from current to curve

(by pathbias
addstor 0 V0 VADD (average between current
addstor 8 V! (put it back

DROP

(Calculate path following vector with no bias.
(Used in simulating herds with short visual ranges.
(If a herd member can't see the flock it heads for the path.

: pat
"/level/path*" 0_FINDWILD
t F0 u F0 V F0 0_EVAL
(eval pnt on curve in time
current 0 obja 0 + 0 iOP_COG 0_PR0P VSUB (V to point on curve
current 0 obja 0 + 0 "WEL" 0_FINDTAG 4 + 0 V! < DUP addstor ! V8 VSUB
DROP

(to experiment. If a flock member can't see other members it slows down.

: slowdown
vtmp e V0 current 6 obja 0 + 8 DUP iOP_COG 0_PR0P VSUB (V to last loc center 6
0.1 VMUL 4 ROLL "WEL" 0_FINDTAG 4 + 8 DUP addstor ! VS VADD
addstor 8 V!

(orient object geometry from normal to direction of velocity vector.

: dir
objs 8 0 DO
I 4 * obja 8 + 8
0 SWAP DUP
iOP_COG 0_PR0P
4 PICK
"WEL" 0_FINDTAG
4 + 8 V8 VNORM VDUP one 0
VCROSS VNORM one 8 V8 tre
0
M_R0TATE
LOOP

(GET OBJECTS CENTER OF GRAVITY AS ROT CENTER

V! DUP -1.0 F*
8 V8

0.0 5 PICK VNORM VDUP tre 0 V!

(return object to normal orientation.

: ndir
objs 8 0 DO
I 4 * obja 0 + 0
0 SWAP DUP
iOP_COG 0_PR0P
4 PICK
"WEL" 0_FINDTAG
4 + 0 V8 VNORM VDUP one 8 V!

(GET OBJECTS CENTER OF GRAVITY AS ROT CENTER

DUP -1.0 F* 0.0 5 PICK VNORM VDUP tre 8 V!
VDUP two 8 V! DROP DROP
one 0 V8 DROP DROP
tre 8 ve DROP DROP
two 8 V8 ROT DROP DROP
one 8 ve ROT DROP DROP
tre 8 V8 ROT DROP DROP
two 0 V8 ROT ROT DROP DROP
one 8 V8 ROT ROT DROP DROP
tre 8 V8 ROT ROT DROP DROP

M_ROTATE
LOOP

(track flock centre or track named flock member by removing comments.
: track
(object camera tracking
"/level/camera/aim*" 0_FINDWILD
(track first selected obj
(obja 8 8 i0P_C0G 0_PR0P
(track average center 8
(vtitp 0 V0
0 0 0 (initialize average

objs 0 0 DO
1 4 * obja 0 + 0
iOP_COG 0_PR0P
VADD

LOOP
1.0 Objs 0 F/ VMUL < HOPEFULLY I HAVE AN AVERAGE
0 M MOVECOG

(Stop creatures turning to fast

: constrain
objs 0 0 DO
mem 8 I 24 * + V0 oldv 0 V!
I 4 * obja 0 + 0
"WEL" 0_FINDTAG 4 + 8 (find add of cur. vel tag
DUP addstor ! V8 VDUP newv 8 V!
oldv 0 V0
VDOT F+ F+ (VDOT needs to extra F+s
oldv 0 V0 VLEN
newv 0 V0 VLEN F* F/ ACOS
DUP sang F!
con-ang F0 F>
IF

newv 0 V0 oldv 8 V8 VSUB
con-ang F8 sang FS F/
VMUL oldv 0 ve VADD
addstor 8 V! (replace current vel with constraint

ENDIF
LOOP

(Stop creatures going to fast or to slow

: vel-limits
objs 8 0 DO

I 4 * obja 8 + 0 "WEL" 0_FINDTAG 4 + 0 DUP addstor ! V8 VLEN DUP
max-vel F0 F>
IF

addstor 8 V8 VNORM max-vel F0 VMUL addstor 0 V! DROP
ELSE

min-vel F0 F<
IF

addstor 8 V8 VNORM min-vel F0 VMUL addstor 0 V!
ENDIF
ENDIF

LOOP

(constraint herds to 2D
: flat
objs 0 0 DO (keep the herd flat

I 4 * obja 8 + 0 "WEL" 0_FINDTAG
4 + 8 DUP ve
SWAP DROP 0 SWAP
4 ROLL V!

LOOP

(move objects "along their velocitiy vectors

: process
objs 0 0 DO

0
I 4 * obja 0 + 8 DUP
"WEL" 0 FINDTAG 4 + 0 V0

4 PICK iOP_COG 0_PR0P VADD
0 M_MOVECOG

LOOP

(initially multiply all objects velocities by a constant.
(to speed up or slow down all objects

: sped
objs 0 0 DO

I 4 * obja 0 + 0
" W E L " 0_FINDTAG 4 + 0 DUP VS
speed F0 VMUL
4 ROLL V!

LOOP

(get vel
(multiply by factor
(put the vel back

(routines to add new objects to the flock over time

: init-add
(adding time
0.2 obs 0 objs 0 - F/ DUP period F!
tcount F!

: add-obj
(t F0 tcount F0 F>

IF
objs 0 obs 0 <
IF
tcount F0 period F0 F+ tcount F!
objs 0 1 + objs !

ENDIF
ENDIF

(initialise all variables and user definable parameters

: init
GetTargets
DEPTH 4 * 0 MEM ALLOC obja
DEPTH 4 * 0 MEM_ALLOC locary
DEPTH 32 * 0 MEM ALLOC mem

32 0 MEM ALLOC vtit^) !
32 0 MEM_ALLOC velstor !
32 0 MEM ALLOC substor !
32 0 MEM ALLOC vstor !
32 0 MEM ALLOC vswap !
32 0 MEM ALLOC one !
32 0 MEM ALLOC two !
32 0 MEM_ALLOC tre !
32 0 MEM_ALLOC newv !
32 0 MEM ALLOC oldv !
32 0 MEM ALLOC center !

array-targets

(uncomment special words when needed in animations

(array-cars
(init-add
(fixedmid

(parameter input disabled because it is easier to change only the
(parameters that need changing by altering the code

0.55 collrad F!
0.09 midbias F!
0.45 avbias F!
30 locrad
110 angel
6 con-ang F!
0.05 min-vel
0.1 max-vel F!
0.02 speed F!
0.09 pathbias F!

F!
F!

F!

("Collision Radius" GET_FLT DROP
("Middle Bias" GET_FLT DROP

("Velocity Match" GET_FLT DROP
("Local Radius" GET_FLT DROP
("Angle of View" GET_FLT DROP
("constrain angle" GET_FLT DROP
("minimum velocity" GET_FLT DROP
("maximum velocity" GET_FLT DROP
("Speed multiply" GET_FLT DROP
("path bias" GET FLT DROP

angel FB >RAD angel F!
con-ang F8 >RAD con-ang F!

sped
flat
dir

drop the return value
0 - bad value
1 - fit O.K.

(release memory and print out a summary of user definable parameters
: clean
obja 0 32768 MEM_FREE
locary 9 32768 MEM_FREE
mem 8 65536 MEM_FREE
fa e 32768 MEM_FREE
0 objs ! 0 nof !
collrad F0 "Collision Radius"

midbias F® "Middle Bias"
avbias F0 "Velocity Match"
locrad F0 "Local Radius"
angel F8 "Angle of View"
con-ang F0 "constrain angle"
min-vel F0 "minimum velocity"
max-vel F8 "maximum velocity"
speed F0 "Speed multiply"

PUTS F.
PUTS F.
PUTS F.
PUTS F.
PUTS F.
PUTS F.
PUTS F.
PUTS F.
PUTS F.

(Main control loop, calculates which members are local

: control
objs 0 0 -
IF
init

ENDIF
ndir
remember
objs 0 0 DO

I 4 * current !
0 loci !
objs 8 0 DO
I 4 * obja 0 + 0 DUP DUP
current 8 obja 8 + 0 <> IF
current 0 obja 0 + 8 SWAP
iOP_COG 0_PR0P 4 ROLL iOP_COG 0_PR0P VSUB VDUP newv V! VLEN
locrad FS F< IF (check vision radius

current 0 obja 0 + 0 "WEL" 0_FINDTAG 4 + 0 V0 VDUP oldv V!
newv V0 VDOT F+ F+
newv V8 VLEN oldv V0 VLEN F* F/ ACQS
angel F8 F< IF (check vision angle

I 4 * loci 8 4 * locary 8 + ! DROP
loci DUP 0 1 + SWAP !

ELSE

DROP
ENDIF

ELSE
DROP

ENDIF
ELSE

DROP DROP
ENDIF
LOOP

loci e 0 >
IF

0 oar-flag !
0 col-flag !
check-cars 0 car-flag 0 -
IF (1 - static object collision avoidance

coll-loop 0 col-flag 8 -
IF (1 - flock object collision avoidance
patb { path following
mts (flock centring
do-av (velocity matching

ENDIF
ENDIF

ELSE
pat (if no local objs follow path

ENDIF
LOOP

constrain
vel-limits
dir

(call camera tracking routines if necessary

(track
(follow
process

t FS 1 F- IF clean .S ENDIF (cleanup when at animation end time
1 (return 1 to REAL3D to say OK

(Create animation method hook for REAL3D
i control "TRY" MTH CFtEATE DROP

