Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

THE RELATIVE INFLUENCE OF ABOVE AND BELOW GROUND COMPETITION

ON THE GROWTH AND SURVIVAL OF RYEGRASS SEEDLINGS

TRANSPLANTED INTO A HILL COUNTRY PASTURE.

A thesis presented

in partial fulfilment of the requirements

for the degree of

Master of Agricultural Science

in Plant Science

at Massey University

NICOLA GILLIAN SEAGER
1987

ABSTRACT

In many pasture improvement programmes, for example oversowing in hill country, seedling survival is influenced by competition from the existing vegetation. Competition between pasture plants occurs when resources are limited and may be for factors above or below ground, or both. Technically, the effective separation of above and below ground competition is difficult and considerable problems have been associated A technique developed for field studies with previous studies. combined the treatments of clipping herbage surrounding transplanted seedling to prevent above ground competition and inserting a metal cylinder (root tube) into the ground to prevent below ground competition, resulting in conditions of shoot, root, full or no competition.

Ryegrass seedlings were transplanted in August 1986 into a pasture in summer dry hill country near Wanganui and subjected to shoot, root, full or no competition from the existing vegetation. The duration of the experiment was three months. The effect of competition on the growth of the ryegrass seedlings was assessed by non destructive measurements (plant height, tiller number) taken at approximately weekly intervals. On three occasions, destructive harvests were made and the dry weight of shoots and roots was recorded.

Below ground competition occurred before, and was more severe than above ground competition, as exemplified by changes in plant size. Ryegrass plants in the treatments with below ground competition were 80 % lighter, 64 % smaller and had 60 % fewer tillers than plants with either shoot competition or no competition. The distribution of plant size was highly skewed, and indicated that the stress encountered when subjected to below ground competition was severe. The effect of above ground competition on ryegrass growth was small except when root competition was also present. Shaded plants were usually taller than those that were unshaded. In conclusion, below ground competition, possibly for soil nutrients, was shown to be the major influence on growth and development of transplanted seedlings at the hill country site studied.

The survival of seedlings introduced into pasture was also dependent on environmental factors, especially soil moisture, and therefore important in summer dry hill country. In a second experiment during spring 1986, ryegrass seedlings were grown in tubes and transplanted into a hill pasture at Wanganui. The six treatments consisted of combinations of two planting dates, two tube lengths, two harvest dates and were arranged as a randomised complete block design Seedling survival was high over all treatments (98 %), probably because rainfall during the experimental period was high.

ACKNOWLEDGEMENTS

The enthusiastic supervision provided by Dr P.D. Kemp is gratefully acknowledged as is the advice of Dr A.C.P. Chu, particularly for his help with the experimental design.

The work reported in this thesis was supported by a research contract provided by the Ministry of Agriculture and Fisheries. I would like to thank Dr I. Popay for permitting the experimental work to be undertaken at the Research Area, Wanganui, to MAF staff for technical assistance at transplanting and for supervision of the experimental site.

The receipt of the following awards is acknowledged: BNZ Postgraduate Bursary in Agriculture and Horticulture, and the Helen E. Akers, Johannes August Anderson, D.J. McGowan and W.A. Jaques Memorial Scholarships.

Thanks are due to staff in the Agronomy Department for their helpful criticism of this manuscript, to Mrs F. Brown for drawing Figure 3.1 and to Dr T. Moore (Department of Mathematics and Statistics).

Finally, I wish to thank my friends, especially Dr S.D. Newton, and family for their support and encouragement during this period of study at Massey University.

Table of Contents

Abstractii
Acknowledgementsiv
Table of Contentsv
List of Tablesvi
List of Figuresviii
List of Platesix
List of Appendicesx
Chapter 1 INTRODUCTION1
Chapter 2 LITERATURE REVIEW4
2.1 Introduction
2.2 Hill country5
2.3 Competition8
2.4 Influence of above ground factors on plant growth10
2.5 Influence of below ground factors on plant growth14
2.6 Competition experiments18
Chapter 3 COMPETITION EXPERIMENT27
3.1 Introduction
3.2 Materials and methods29
3.3 Results
3.4 Discussion
Chapter 4 SURVIVAL EXPERIMENT69
4.1 Introduction
4.2 Materials and methods71
4.3 Results
4.4 Discussion
References79
Appendices91

List of Tables

 $(\mathcal{A}_{i}, \mathcal{A}_{i}) = (\mathcal{A}_{i}, \mathcal{A}_{i}, \mathcal{A}_{i}) = (\mathcal{A}_{i}, \mathcal{A}_{i}) = (\mathcal{A}_{i},$

Table 2.1 Historical development of experimental designs and
techniques21
Table 3.1 Monthly climatic data for the experimental period39
Table 3.2 Height of ryegrass plants subjected to full, root,
shoot and no competition40
Table 3.3 Comparison of regression coefficients relating
height of ryegrass plants to time40
Table 3.4 Tiller number of ryegrass plants subjected to
competition43
Table 3.5 Mean relative tillering rate of ryegrass plants
subjected to competition44
Table 3.6 Comparison of regression coefficients relating
tiller number of ryegrass plants to time44
Table 3.7 Dry weight and leaf area of ryegrass plants
subjected to competition50
Table 3.8 Root dry weight, root length and root : shoot
ratio of ryegrass plants subjected to competition50
Table 3.9 Regression coefficients of shoot dry weight
against plant height, tiller number and plant size54
Table 3.10 a) Regression coefficients of shoot dry weight
against plant size and b) multiple regression of shoot dry weight against plant height and tiller number54
Table 3.11 Multiple regression of plant height against
a) shading index and b) PPFD56
Table 3.12 Comparison of ontogeny in ryegrass plants subjected
to competition64

Table 4.1	Orthogonal contrasts of leaf area, shoot dry weight
and tiller	number of transplanted ryegrass seedlings74
Table 4.2	Leaf area and shoot dry weight of transplanted
ryegrass se	eedlings74

List of Figures

rigure 3.1	plagramatic representation of techniques used
to control compe	etition in the experiment32
Figure 3.2 P	redicted plant height and regression coefficients
for ryegrass pla	ints subjected to full, root, shoot and no
competition	
Figure 3.3 P	redicted tiller number and regression coefficients
for ryegrass pla	nts subjected to competition46
Figure 3.4 M	lean tiller age at death for ryegrass plants
subjected to com	petition48
Figure 3.5 P	lant size of ryegrass subjected to competition52
Figure 3.6 S	ize frequency distributions for ryegrass
subjected to com	petition53

List of Plates

Plate 1	General vie	w of field	site at	Wanganui	with fe	enced	
competition e	xperiment i	n foregrou	nd			facing	30
Plate 2	View of tra	ck with pe	gs markin	g paspalu	ım patch	nes	
and a root tu	be prior to	insertion		• • • • • • • •		facing	30
Plate 3	Shoots of r	yegrass pl	ants subj	ected to	shoot,	full,	
root and no o	omnetition.					facing	38

List of Appendices

Appendix	1	Plan of experimental site91
Appendix	2	Covariance analysis92
Appendix	3	Nutrient analysis92
Appendix time and		Regression coefficients of new tillers against ltiple regression against weather variables93
Appendix		Dry weight, leaf area and root : shoot ratio

Chapter 1 INTRODUCTION

Hill country farming is of major importance to New Zealand's economy in terms of land area, number of livestock carried and the volume of export meat and wool produced (Rattray, 1982). Nevertheless, the production, composition, quality and level of pasture utilisation by grazing animals, and moreover, the conversion of these to saleable products, is often capable of substantial improvement. Topographical constraints limit pasture development, renovation or improvement in steep hill country to oversowing by an aeroplane or helicopter (Lambert et al., 1985). The results of oversowing are unreliable due to hostile conditions encountered by many seeds, these conditions include: environmental factors (mainly moisture and temperature), pest or fungal attacks and competition from the resident vegetation (Lambert et al., 1985). The experiments reported in this thesis were designed to investigate the effect of competition from the resident pasture on the survival and growth of establishing seedlings in hill country.

Many of the 'classical' competition experiments were based on the additive design (for example, Donald, 1958) or replacement design (for example, de Wit, 1960), but these were not considered appropriate. Instead, a recent technique developed by Cook and Ratcliff (1984) was used as this permitted separation of shoot and root competition between an establishing seedling and the resident vegetation. ryegrass (Lolium perenne L.) was transplanted into a hill country pasture at Wanganui, and the effect of above and below competition from the resident species (paspalum (Paspalum dilatatum Poir.) was of particular interest due to its high competitive ability) on ryegrass growth and development was studied. concurrent Α experiment evaluated the transplanting technique and related seedling survival to environmental factors. A brief description of the growth characteristics of the species studied is given, followed by the experimental objectives.

The growth characteristics of perennial ryegrass in response to seasonal and management influences were described by Hunt and Field (1979). A survey of farmers in New Zealand by Sangakkara et al. (1982) showed that ryegrass was the most popular grass species used because 98 % of all seed mixtures incorporated one or more cultivars. Ellet, a ryegrass cultivar sown by 39 % of farmers (Sangakkara et al., 1982) was developed for its superior autumn and winter growth compared with older ryegrass cultivars, fast growth following rain after a dry summer period, as well as resistance to attack from Argentine stem weevil (Listronotus bonariensis (Kuschel)) (Barker et al., 1985). The cause of resistance to stem weevil was found in 1981 to be associated with the presence of an endophyte fungus (Acremonium loliae) in the ryegrass plant.

Paspalum, a perennial subtropical grass from South America introduced to New Zealand in the early 1890's (Percival, 1977). Paspalum has a high potential for herbage dry matter production in summer because it is a C4 species and is therefore active in the warm season and resistant to drought, but is frost sensitive and dormant during the winter (Lambert et al., 1979). A survey of paspalum in New Zealand pastures by Percival (1977) indicated that the distribution limits were set by winter temperatures and in most districts, rapid growth of paspalum began in late November (range October to December) (Percival, 1977). A survey by Sangakkara et al. (1982) indicated that farmers considered the formation of a sod bound pasture (a dense mat of rhizomes and tillers at or just below the soil surface) was the least favoured characteristic of paspalum because other sward components were excluded. Thom et al. (1986a) demonstrated that paspalum offered severe competition to establishing plants due to its exceptional colonising ability, growth potential during summer and ability to withstand treading and grazing.

The experimental objectives were:

- i) To determine whether above or below ground competition occurs first in the interaction between transplanted ryegrass and established paspalum plants in the field.
- ii) To determine the rate of survival of ryegrass seedlings transplanted into a hill country pasture and to relate seedling survival to environmental factors.