

This is not the published version of the article / Þetta er ekki útgefna útgáfa greinarinnar

Author(s)/Höf.:	Xu, M., Eiriksson, F. F., Thorsteinsdottir, M., Heidmarsson, S., Omarsdottir, S., & Olafsdottir, E. S.
Title/Titill:	Alkaloid fingerprinting resolves Huperzia selago genotypes in Iceland
Year/Útgáfuár:	2019
Version/Útgáfa:	Pre-print (óritrýnt handrit)

Please cite the original version:

Vinsamlega vísið til útgefnu greinarinnar:

Xu, M., Eiriksson, F. F., Thorsteinsdottir, M., Heidmarsson, S., Omarsdottir, S., & Olafsdottir, E. S. (2019). Alkaloid fingerprinting resolves Huperzia selago genotypes in Iceland. Biochemical Systematics and Ecology, 83, 77-82. doi:https://doi.org/10.1016/j.bse.2019.01.009

Rights/Réttur: © 2019 Elsevier Ltd. All rights reserved

1	Alkaloid fingerprinting resolves Huperzia selago genotypes in Iceland
2	
3	Maonian Xu ¹ , Finnur Freyr Eiriksson ^{1,2} , Margret Thorsteinsdottir ¹ , Starri Heidmarsson ³ ,
4	Sesselja Omarsdottir ¹ , Elin Soffia Olafsdottir ¹
5	
6	Affiliation
7	¹ Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland
8	² ArcticMass, Sturlugata 8, IS-101 Reykjavik, Iceland
9	³ Icelandic Institute of Natural History, Borgum Nordurslod, IS-600 Akureyri, Iceland
10	
11	Correspondence
12	Elin Soffia Olafsdottir, PhD, Professor
13	Faculty of Pharmaceutical Sciences
14	University of Iceland
15	Hagi, Hofsvallagata 53,
16	IS-107 Reykjavik, Iceland
17	Email: <u>elinsol@hi.is</u>

- 18 Abstract
- 19
- 20 The club moss family Lycopodiaceae produces a diverse array of bioactive lycopodium
- 21 alkaloids (LAs). In particular, the alkaloid huperzine A (hupA) has grasped attention since it
- 22 is a potent acetylcholinesterase inhibitor of medical interest in Alzheimer's disease. Although
- 23 the structural diversity and bioactivities of LAs have been studied to some extent, their
- 24 chemotaxonomic value is mostly unexplored, especially to a lower taxonomic unit (e.g.
- subspecies or genotypes). This study focused on previously reported Icelandic Huperzia
- 26 selago genotypes, and aimed to evaluate the chemotaxonomic value of LAs in resolving
- them. Using liquid chromatography-mass spectrometry (LC-MS), alkaloid fingerprints of *H*.
- 28 selago taxa were subjected to principal component analysis (PCA). Our results revealed that
- 29 each genotype tends to have its own alkaloid profile. Genotype 1 and 3 form distinct groups
- 30 in a PCA plot, where genotype 2 is an intermediate between the other two genotypes. HupA
- and its derivative, huperzine B, both contribute to the differentiation of genotype 3 from the
- 32 others. Therefore, our study demonstrated the potential of alkaloid fingerprints in resolving
- 33 deep taxonomic groups and selecting plant taxa of medicinal importance.
- 34
- 35 Keywords: Lycopodiaceae, lycopodium alkaloids, huperzine A, phylogeny, alkaloid
- 36 fingerprinting
- 37

- 38 **1. Introduction**
- 39

Among vascular plants the club moss family Lycopodiaceae represents an ancient lineage 40 dating back to 420 million years ago (Bateman et al., 1992). According to the recently 41 42 proposed phylogeny of this family, it contains two subfamilies - Lycopodioideae and Huperzioideae (Field et al., 2016). In total three genera are recognized in Huperzioideae, 43 44 including Huperzia Bernh., Phlegmariurus Holub. and Phylloglossum Kunze, while Lycopodioideae accommodates more than 10 genera, such as Spinulum A. Haines, 45 46 Lycopodium L. and Diphasiastrum Holub (Field et al., 2016). Morphological characters may 47 mask species diversity, and molecular phylogenetics is expected to provide us with better 48 taxonomic and systematic insights (Testo et al., 2018). 49 50 Compared to seed plants, club mosses are much less studied with respect to their 51 phytochemistry. They produce a wide array of bioactive alkaloids, called lycopodium 52 alkaloids (LAs). According to their structural characteristics, LAs are classified into four groups: lycopodane, lycodane, fawcettimine and miscellaneous groups (Aver and Trifonov, 53 54 1994). Huperzine A (hupA), a lycodane-type alkaloid, was first discovered from the Chinese 55 medicinal plant Huperzia serrata (Thunb. Ex Murray) Trevis (Liu et al., 1986). HupA is a 56 potent acetylcholinesterase inhibitor, and has been proposed as a potential drug lead for the 57 treatment of Alzheimer's disease (Olafsdottir et al., 2013). Increased interest in LAs has led 58 to extensive bioprospecting efforts in other club moss taxa (Ma et al., 2005). The diversity of 59 LAs has been explored in Icelandic taxa, including Diphasiastrum alpinum (L.) Holub (Halldorsdottir et al., 2013), Spinulum annotinum (L.) A. Haines (Halldorsdottir et al., 2010) 60 61 and Huperzia selago (L.) Bernh. ex Schrank & Mart (Stærk et al., 2004). Up to now, in total 62 12 LAs (Fig. 1) have been reported in *H. selago* belonging to two LA groups: 1) five 63 lycodane-type LAs including hupA, huperzine B (hupB), 6β -hydroxyhuperzine A, α -64 obscurine and β -obscurine; 2) seven lycopodane-type LAs including selagoline, serratidine, lycopodine, 6a-hydroxylycopodine, lycodoline, isolycodoline and acrifoline (Achmatowicz 65 and Rodewald, 1956; Ayer et al., 1989, 1990; Rodewald and Grynkiewicz, 1968; Stærk et al., 66 2004; Valenta et al., 1960; Xu et al., 2018). Screenings on acetylcholine inhibitory activity 67 suggest lycodane-type LAs to be more potent than their lycopodane-type counterparts 68 (Halldorsdottir et al., 2013, 2010; Olafsdottir et al., 2013). 69 70

75 Despite the discovery of many new LAs, the chemotaxonomic value of LAs and their distribution patterns between taxa are not well known. Alkaloid profiling of ten major LAs 76 77 using thin layer chromatography has been carried out in Chinese taxa, and each genus tends 78 to have a genus-specific alkaloid pattern (Ma et al., 1998). A recent review on the LAs 79 present in the genus *Diphasiastrum* shows that this genus is abundant of lycopodane-type 80 alkaloids but lack hupA (Halldorsdottir et al., 2015). However, the utility of LA data in 81 resolving lower taxonomic units (species and subspecies) has not been explored. In a previous study, we have reported the presence of three genotypes of *H. selago* in Iceland (Xu 82 83 et al., 2018), which vary in hupA contents and morphology. The aim of the present study was 84 to explore the potential chemotaxonomic value of LAs in resolving the Icelandic H. selago 85 taxa. The diversity of LAs in Icelandic H. selago was also characterized in light of reported 86 LAs in literature. 87

- 88
- 89 90

2.1 Plant materials, genotype identification and chemicals

2. Materials and Methods

91

92 Taxon sampling of Icelandic Huperzia selago specimens included all described morphotypes,

93 "arctica", "appressa" and "selago". Vouchers of plant specimens were stored in Icelandic

94 Institute of Natural History, Akureyri Division, Iceland. Voucher information is provided in

- Table 1 with representative photographs in Supplementary file Fig. S1. Morphological
- 96 identification followed former circumscriptions (Jonsell and Karlsson, 2000; Kristinsson,
- 97 2010). Intermediate morphotypes were also found and included in our sampling, altogether
- 98 representing the morphological and genetic diversity in Iceland. It has been under debate
- 99 whether different morphotypes should be regarded as subspecies or species (Jonsell and
- 100 Karlsson, 2000; Rothmaler, 1993; Wagner and Beitel, 1993). Our recent phylogenetic
- 101 analysis using five chloroplastic loci data suggested that each morphotype should be treated
- 102 as subspecies under *Huperzia selago* (Xu et al., 2018).
- 103
- 104

 Table 1. Voucher information of sampled Icelandic Huperzia selago.

SampleID Herbarium No. Dat		Date	Location	Latitude	Longitude
HS3	VA21572	19.Aug.2014	Reykjanes, Iceland	64,1917	-22,1875
HS5a	VA21574	19.Aug.2014 Reykjanes, Iceland		63,9967	-22,0978
HS5b	VA21575	19.Aug.2014	Reykjanes, Iceland	63,9967	-22,0978
HS5c	VA21576	19.Aug.2014	Reykjanes, Iceland	63,9967	-22,0978
HS5d	VA21577	19.Aug.2014	Reykjanes, Iceland	63,9967	-22,0978
HS6a	VA21578	26.Aug.2014	Snæfellsnes, Iceland	64,9500	-23,0308
HS6b	VA21579	26.Aug.2014	Snæfellsnes, Iceland	64,9500	-23,0308
HS7	VA21580	17.Jul.2014	Aðalvík, Iceland	66,3358	-23,0486
HS8a	VA21581	26.Aug.2014	Snæfellsnes, Iceland	64,9625	-22,9328
HS8b	VA21582	26.Aug.2014	Snæfellsnes, Iceland	64,9625	-22,9328
HS9a	VA21583	26.Aug.2014	Snæfellsnes, Iceland	64,9683	-22,9317
HS9b	VA21584	26.Aug.2014	Snæfellsnes, Iceland	64,9684	-22,9317
HS10a	VA21585	1.Aug.2012	Snæfellsnes, Iceland	64.9403	-22.8942
HS10b	VA21586	1.Aug.2012	Snæfellsnes, Iceland	64.9403	-22.8942
HS11	VA21587	6.Aug.2009	Aðalvík, Iceland	66.3363	-23.0518
HS12a	VA21588	31.Aug.2011	Snæfellsnes, Iceland	64,8972	-22,8453
HS13	VA21590	12.Jun.2012	Snæfellsnes, Iceland	64,9736	-22,9431
HS14	VA21591	6.Aug.2005	Seyðisfjörður, Iceland	65.2602	-13.9915
HS15	VA21592	18.Jul.2013	Skíðadalur, Iceland	65,7878	-18,6206
HS16	VA21593	9.Jul.2013	Aðalvík, Iceland	66,3381	-23,0542
HS17	VA21594	11.Sep.2015	Flateyjardalur, Iceland	66,1235	-17,9746
HS18	VA21595	11.Sep.2015	Flateyjardalur, Iceland	66,1239	-17,9788
HS19	VA21596	9.Jul.2005	Snæfellsnes, Iceland	64.9010	-22.9015
HS20	VA21597	12.Jun.2012	Snæfellsnes, Iceland	64,9736	-22,9431
HS21	VA21598	12.Jun.2012	Snæfellsnes, Iceland	64,9736	-22,9431
HS23	VA21600	12.Jun.2012	Snæfellsnes, Iceland	64,9736	-22,9431
HS24	VA21601	16.Aug.2016	Austur-Island, Iceland	65.8968	-14.8154

HS25	VA21602	16.Aug.2016	Austur-Island, Iceland	65.9283	-14.5265
HS26	VA21603	16.Aug.2016	Nordur-Island, Iceland	66.2869	-15.0258

- 105
- 106 To facilitate effective communication and consistency of *Huperzia selago* diversity in
- 107 Iceland, we used the concept of genotypes. Each genotype was recognized by haplotype
- 108 networking analysis of a concatenated chloroplast gene sequences using the software
- 109 POPART v1.7 (Leigh and Bryant, 2015). The combined data matrix of 2372 base pair length
- 110 included three chloroplast genes (i.e. rbcL, matK and psbA-trnH), and their sequences
- 111 (Supplementary file Table S1) were retrieved from our previous study. Three genotypes were
- 112 recovered, and their relationship is shown in **Fig. 2** (Xu et al., 2018).
- 113

and then crude alkaloids were extracted with 2% acetic acid three times. Combined extracts

129	were washed with dichloromethane. Alkaloids were partitioned to organic phase
130	(dichloromethane) by adding ammonium dropwise until the pH value of the aqueous phase
131	reaches 10. Free alkaloids were extracted with dichloromethane two more times, and
132	combined organic layers were evaporated, dissolved in mobile phase and filtered before
133	UPLC-QToF-MS analysis.
134	
135	2.3 Alkaloid fingerprinting using LC-MS
136	
137	Alkaloid fingerprinting was carried out using an Acuity UPLC TM system (Waters corp.,
138	Milford, USA) coupled to a QToF SYNAPT G1 mass spectrometer equipped with
139	electrospray ionization (ESI) interface (Waters MS Technologies, Manchester, UK).
140	Separation of LAs was performed on a Luna Omega Polar C-18 column (2.1 mm \times 100 mm,
141	$1.6\ \mu\text{m},$ Phenomenex, UK). Mobile phase contained 10 mM ammonium acetate buffer pH 5.5
142	(solvent A) and methanol (solvent B). A gradient elution was used as follows: 5% B, 0-0.5
143	min; linear gradient 5% B-80% B, 0.5-9 min; 80% B, 9-10 min; linear gradient 80% B-5% B,
144	10-10.1 min; 5% B, 10.1-12 min. Injection volume was 2 μ L, and flow rate was 0.4 mL/min.
145	Pooled samples were analyzed as quality control. The SYNAPT G1 mass spectrometer was
146	operated in positive ionization mode with capillary voltage 3.2 kV, cone voltage 42 V, cone
147	gas flow 50 L/h at source temperature 120° C, desolvation temperature 400° C and desolvation
148	gas flow 800 L/h. Collision energy was ramped from 10.0 to 35.0 eV. Ions were scanned at
149	mass to charge ratio (m/z) 100 to 1550. Acquisition and data processing were performed with
150	MassLynx v4.1 (Waters corp., Milford, USA).
151	
152	2.4 Data processing and multivariate data analysis
153	
154	MS spectrum alignment and normalization were performed using the software MakerLynx
155	v4.1 (Waters corp., Milford, USA). Peak detection was set from 2-8 min and mass ranging
156	from 100 to 700 Da. Collection parameters were set as follows: marker intensity threshold
157	250 counts, mass window 0.05 and retention time window 0.2. Processed MS data
158	(Supplementary file Table S2) were subjected to principal component analysis (PCA) using
159	SIMCA v14.1 software (Sartorius Stedim Data Analytics, Umea, Sweden). PCA was used to
160	investigate the potential grouping of specimens or species. Specimens close to each other in
161	the PCA plot indicate similar alkaloid fingerprints. Compounds driving specimen groups
162	differing from each other is visualized using a PCA loading plot. Dots in PCA loading plots

163	represent detected ions/compounds fulfilling the aforementioned peak detection and
164	collection criteria, which can be annotated by their retention times and base peak m/z values.
165	
166	3. Results and Discussion
167	
168	3.1 LC-MS alkaloid fingerprinting
169	
170	A good alkaloid separation was achieved using Luna Omega Polar C18 column (Fig. 3).
171	HupA and hupB were identified in alkaloid extracts by comparing with the commercial
172	standard compounds, which eluted out at 5.61 and 4.69 min, respectively (Fig. 3A). Icelandic
173	H. selago genotypes 1-3 (Fig. 3B-3D) exhibit overall similar alkaloid fingerprints, and they
174	may primarily vary in the contents of certain alkaloids. For example, our previous study
175	shows that the genotype 3 (264 – 679 μ g/g) contains significantly (p < 0.05) higher amount of
176	hupA than genotype 1 (20 – 180 μ g/g), and that intermediate genotype 2 has a broad hupA
177	content (Xu et al., 2018). The current study also revealed a hidden diversity of LAs present in
178	Icelandic H. selago. In addition to hupA and hupB, the other three major LAs that have been
179	reported in Icelandic H. selago, including lycopodine (m/z 248.2027), selagoline (m/z
180	248.2001) and serratidine (m/z 262.1803) (Stærk et al., 2004) are detected. The extracted ion
181	chromatogram (EIC) at m/z 248.20 shows three peaks, and two of them may be lycopodine
182	and selagoline, while the third one is unknown (Fig. 4A). The alkaloid 6β -hydroxyhuperzine
183	A ($t_R = 4.27$ min) can be annotated by extracting ion at m/z 259.18 (Fig. 4B). An EIC at m/z
184	262.18 also suggests more serratidine isomers yet to be described (Fig. 4C), and one of them
185	might be acrifoline. Another EIC at m/z 264.20 shows five major peaks, which correspond to
186	the molecular mass of protonated 6α -hydroxylycopodine, lycodoline and isolycodoline
187	previously described in <i>H. selago</i> , and the remaining two compounds are still unknown. (Fig.
188	4D). Future work should focus on isolation and structural elucidation of the undescribed LAs
189	in H. selago.
190	

195

196

192 193

Fig. 3. UPLC-QToF-MS base peak chromatograms of alkaloid samples detected in positive ion mode. A) standard compounds huperzine A ($t_R = 5.61$ min) and huperzine B ($t_R = 4.69$ min); (B) Icelandic *Huperzia selago* genotype 1; (C) Icelandic *Huperzia selago* genotype 2; (D) Icelandic *Huperzia selago* genotype 3.

197 198

Fig. 4. Extracted ion chromatograms at (A) m/z 248.2 corresponding to lycopodine and selagoline; (B) m/z
 259.2 corresponding to 6β-hydroxyhuperzine A; (C) m/z 262.2 corresponding to serratidine; (D) m/z 264.2
 corresponding to 6α-hydroxylycopodine, lycodoline and isolycodoline.

203 The MS fragmentation pattern of hupA (Fig. S2A) in our study is in agreement with

reference studies (Cuthbertson et al., 2012; Wang et al., 2004; Yang et al., 2017), showing a

- protonated molecular ion at m/z 243.1424 and a sodium adduct ion at 265.1354.
- 206 Characteristic fragments result from the loss of NH₃ (m/z 226.1250), followed by further loss
- of CH₄ (m/z 210.0964) and C₂H₆ (m/z 196.0822). Current collision energy ramp from 10 to
- 208 35 eV could generate multiple fragment ions from aromatic LAs (e.g. hupA and hupB),
- which aids to their structural elucidation. Similarly, hupB (Fig. S2B) has characteristic

210	fragment ions at m/z 240.1394 $[M-NH_3]^+$ and m/z 198.0966 $[M-NH_3-C_3H_6]^+$. The other
211	lycodane-type alkaloid 6β -hydroxyhuperzine A was annotated as a major peak in the
212	extracted ion chromatogram (Fig. 4B), and it shows a fragment ion at m/z 242.1576 [M-
213	NH_3] ⁺ as well as a sodium adduct ion at m/z 281.1936. MS data for identified and annotated
214	lycodane-type alkaloids are summarized in Table 2. However, the lycopodine-type alkaloids
215	lack diagnostic fragments at collision energy of 35 eV and lower, and their identification

- 216 relies on isolated pure standards. It has been reported that lycopodane-type alkaloids with
- saturated ring structures, such as lycopodine, selagoline and serratidine in H. selago (Stærk et 217
- 218 al., 2004), are devoid of MS fragments at commonly used collision energy levels around 30-
- 219 35 eV, and that only a few fragments could be expected to occur at a higher collision energy
- 220 over 40 eV (Shan et al., 2016). Whether high collision energy levels (> 40 eV) could generate
- 221 characteristic fragment ions for lycopodane-type LAs remains unexplored.
- 222

223 **Table 2.** Retention times (t_R), protonated molecular ions ($[M+H]^+$), fragment ions and molecular formula of 224 identified lycodane-type alkaloids in Icelandic Huperzia selago at an energy ramp from 10 to 35 eV.

225

Alkaloids	t _R	$[M+H]^+$	[M+Na] ⁺	Fragment ions (m/z)	Molecular
	(min)	(m/z)	(m/z)		formula
Huperzine A	5.61	243.1378	265.1323	226.1218, 210.0945,196.0811	$C_{15}H_{18}N_2O$
Huperzine B	4.69	257.1693	279.1502	240.1394, 198.0966	$C_{16}H_{20}N_2O$
6β-hydroxyhuperzine A	4.27	259.1805	281.1936	242.1576	$C_{15}H_{18}N_2O_2$

226

227 3.2 Multivariate data analysis

228

229 Each genotype tends to form a distinct group in the PCA plot (Fig. 5A). The first component 230 could explain 24.98% of the variance found in the PCA analysis, while the second component 231 accounts for 18.19% variance. From the first principal component, it is apparent that 232 genotype 1 and 3 are markedly different from each other. Fig. 5B is the PCA loading plot 233 showing detected ions with ion counts over 250. Ions/dots contributing similarly to a certain 234 cluster are grouped together. Dots representing hupA and hupB were located in the loading 235 plot with their respective retention time and m/z values. They contribute to the separation of 236 genotype 3 from genotype 1. In light of their pharmaceutical potential in acetylcholinesterase 237 inhibition (Bai, 2007), genotype 3 should be prioritized for bioprospecting due to its higher 238 contents of hupA and hupB (Xu et al., 2018). This corresponds to our previous results showing that genotype 3 contains significantly higher hupA contents than genotype 1, and 239

- that detectable amount of hupB is only found in genotype 3 (Xu et al., 2018). Genotype 2, the
- intermediate genotype as shown in haplotype network in **Fig. 2**, also shows an intermediate
- alkaloid fingerprint between the other genotypes, which in turn supports our previous genetic
- analysis result (Xu et a., 2018).

Fig. 5. Multivariate data analysis of alkaloid fingerprints. (A) Principal component analysis (PCA) plot showing genotype-specific groups; (B) PCA loading plot showing that hupA and hupB contribute to the separation of *H. selago* genotype 3 from the other two genotypes.

Although chemotaxonomic values of LAs have been proposed (Ma et al., 1998), our study constitutes the first report using alkaloid fingerprints to resolve taxa at a low taxonomic level – subspecific genotypes. What's more, our chemical results (i.e. PCA plot) well corroborate genetic results (e.g. haplotype network), which provides strong support for the uniqueness of each genotype. The combination of both chemical and genetic approaches suggests that genotype 3 should be prioritized for future bioprospecting, since it contains more of the valuable lycodane-type LAs, such as hupA and hupB.

257

4. Conclusions

- 260 Our results demonstrate the potential chemotaxonomic value of alkaloid fingerprints at
- subspecific level in Icelandic *H. selago*. They corroborate our previous genetic results
- showing that Icelandic *H. selago* contains three genotypes that can be considered as
- subspecies. In addition, the integrated approach of combining alkaloid fingerprinting and
- 264 genetic analysis can be valuable when selecting plant materials of high medicinal importance.
- 265

266 Acknowledgements

- 267
- 268 This work was supported by The People Program (Marie Curie Actions) of the European
- 269 Union's Seventh Framework Program FP7/2007-2013 (grant number 606895); Icelandic
- 270 Research Fund (grant number 152604051); and the Bergthora and Thorsteinn Scheving
- 271 Thorsteinsson Fund.
- 272

273 Conflicts of interest

- 274
- 275 The authors declare no conflict of interest.
- 276

277 References

- Achmatowicz, O., Rodewald, W.J., 1956. Lycopodium alkaloids III. Alkaloids of Lycopodium selago L. Rocz.
 Chem. 30, 233–242.
- Aver, W.A., Trifonov, L.S., 1994. Chapter 3 Lycopodium Alkaloids. Alkaloids Chem. Pharmacol. 45, 233–266. https://doi.org/http://dx.doi.org/10.1016/S0099-9598(08)60278-3
- Ayer, W.A., Browne, L.M., Elgersma, A.W., Singer, P.P., 1990. Identification of some L-numbered
 Lycopodium alkaloids. Can. J. Chem. 68, 1300–1304. https://doi.org/10.1139/v90-200
- Ayer, W.A., Browne, L.M., Orszanska, H., Valenta, Z., Liu, J.-S., 1989. Alkaloids of Lycopodium selago. On
 the identity of selagine with huperzine A and the structure of a related alkaloid. Can. J. Chem. 67, 1538–
 1540. https://doi.org/10.1139/v89-234
- Bai, D., 2007. Development of huperzine A and B for treatment of Alzheimer's disease. Pure Appl. Chem. 79, 469–479. https://doi.org/10.1351/pac200779040469
- Bateman, R.M., DiMichele, W.A., Willard, D.A., Bateman, R.M., 1992. Experimental cladistic analysis of
 anatomically preserved arborescent lycopsids from the Carboniferous of Euramerica: An essay on
 paleobotanical phylogenetics. Ann. Missouri Bot. Gard. 79, 500–559. https://doi.org/10.2307/2399752
- Cuthbertson, D., Piljac-Žegarac, J., Lange, B.M., 2012. Validation of a microscale extraction and high throughput UHPLC-QTOF-MS analysis method for huperzine A in Huperzia. Biomed. Chromatogr. 26, 1191–1195. https://doi.org/10.1002/bmc.2677
- Field, A.R., Testo, W., Bostock, P.D., Holtum, J.A.M., Waycott, M., 2016. Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Mol. Phylogenet. Evol. 94, 635–657.
 https://doi.org/10.1016/j.ympev.2015.09.024
- Halldorsdottir, E.S., Jaroszewski, J.W., Olafsdottir, E.S., 2010. Acetylcholinesterase inhibitory activity of
 lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp. alpestre. Phytochemistry 71,
 149–157. https://doi.org/10.1016/j.phytochem.2009.10.018
- Halldorsdottir, E.S., Kowal, N.M., Olafsdottir, E.S., 2015. The Genus Diphasiastrum and Its Lycopodium
 Alkaloids. Planta Med. https://doi.org/10.1055/s-0035-1546182

- Halldorsdottir, E.S., Palmadottir, R.H., Nyberg, N.T., Olafsdottir, E.S., 2013a. Phytochemical analysis of
 alkaloids from the Icelandic club moss Diphasiastrum alpinum. Phytochem. Lett. 6, 355–359.
 https://doi.org/10.1016/j.phytol.2013.04.004
- Halldorsdottir, E.S., Palmadottir, R.H., Nyberg, N.T., Olafsdottir, E.S., 2013b. Phytochemical analysis of
 alkaloids from the Icelandic club moss Diphasiastrum alpinum. Phytochem. Lett. 6, 355–359.
 https://doi.org/10.1016/j.phytol.2013.04.004
- Jonsell, B., Karlsson, T., 2000. Flora Nordica, Volume 1: Lycopdiaceae Polygonaceae. The Bergius
 Foundation, The Royal Swedish Academy of Sciences, Stockholm.
- Kristinsson, H., 2010. A guide to the flowering plants and ferns of Iceland, 3rd ed. Mal Og Menning,Iceland,
 Reyjavik.
- Leigh, J.W., Bryant, D., 2015. Popart: Full-Feature Software for Haplotype Network Construction. Methods
 Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410
- Liu, J.-S., Zhu, Y.-L., Yu, C.-M., Zhou, Y.-Z., Han, Y.-Y., Wu, F.-W., Qi, B.-F., 1986. The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can. J. Chem. 64, 837–839. https://doi.org/10.1139/v86-137
- Ma, X., Tan, C., Zhu, D., Gang, D.R., 2005. Is there a better source of huperzine A than Huperzia serrata?
 Huperzine A content of huperziaceae species in China. J. Agric. Food Chem. 53, 1393–1398.
 https://doi.org/10.1021/jf048193n
- Ma, X.Q., Jiang, S.H., Zhu, D.Y., 1998. Alkaloid patterns in Huperzia and some related genera of
 Lycopodiaceae sensu lato occurring in China and their contribution to classification. Biochem. Syst. Ecol.
 26, 723–728. https://doi.org/10.1016/S0305-1978(98)00022-2
- Olafsdottir, E.S., Halldorsdottir, E.S., Pich, 2013. Lycopodium Alkaloids: Pharmacology, in: Ramawat, K.G.,
 Mérillon, J.-M. (Eds.), Natural Products. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 343–358.
 https://doi.org/10.1007/978-3-642-22144-6
- Rodewald, W.J., Grynkiewicz, G., 1968. Lycopodium alkloids. VI. The alkaloids of Lycopodium selago L.
 Rocz. Chem. 42, 465–474.
- Rothmaler, W., 1993. Huperzia Bernh, in: Moore, D. (Ed.), Flora Europaea. Volumn 1. Cambridge University
 Press, London, UK, pp. 1–629.
- Shan, S.M., Luo, J.G., Pan, K., Zou, H. yan, Kong, L.Y., 2016. Rapid screening and identification of lycodine-type alkaloids in Lycopodiaceae and Huperziaceae plants by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomed. Chromatogr. 30, 1861–1872. https://doi.org/10.1002/bmc.3723
- Stærk, D., Larsen, J., Larsen, L.A., Olafsdottir, E.S., Witt, M., Jaroszewski, J.W., 2004. Selagoline, a new alkaloid from Huperzia selago. Nat. Prod. Res. 18, 197–203.
 https://doi.org/10.1080/14786410310001620600
- Testo, W., Øllgaard, B., Field, A., Almeida, T., Kessler, M., Barrington, D., 2018. Phylogenetic systematics, morphological evolution, and natural groups in Neotropical Phlegmariurus (Lycopodiaceae). Mol.
 Phylogenet. Evol. 125, 1–13. https://doi.org/10.1016/j.ympev.2018.03.016
- Valenta, Z., Yoshimura, H., Rogers, E.F., Ternbah, M., Wiesner, K., 1960. The structure of selagine.
 Tetrahedron Lett. 1, 26–33. https://doi.org/https://doi.org/10.1016/S0040-4039(01)99300-1
- Wagner JR, W.H., Beitel, J.M., 1993. Lycopodiaceae Mirbel, in: (eds.), F. of N.A.E.C. (Ed.), Flora of North
 America North of Mexico. Volumn 2. Pteridophytes and Gymnosperms. Flora of North America
 Association, New York and Oxford, pp. 18–37.
- Wang, Y., Chu, D., Gu, J., Fawcett, J.P., Wu, Y., Liu, W., 2004. Liquid chromatographic-tandem mass
 spectrometric method for the quantitation of huperzine A in dog plasma. J. Chromatogr. B Anal. Technol.
 Biomed. Life Sci. 803, 375–378. https://doi.org/10.1016/j.jchromb.2004.01.013
- Xu, M., Heidmarsson, S., Thorsteinsdottir, M., Wasovics, P., Sun, H., Deng, T., Omarsdottir, S., Olafsdóttir,
 E.S., 2018. Infraspecific Variation of Huperzine A and B in Icelandic Huperzia selago Complex. Planta
 Med. 84, 1–9.
- Yang, M., You, W., Wu, S., Fan, Z., Xu, B., Zhu, M., Li, X., Xiao, Y., 2017. Global transcriptome analysis of Huperzia serrata and identification of critical genes involved in the biosynthesis of huperzine A. BMC Genomics 18, 245. https://doi.org/10.1186/s12864-017-3615-8
- 356