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ABSTRACT. Soil organic carbon (SOC) has received increased attention over the last decades 13 

because of its role as an option to mitigate the effects of increased anthropogenic greenhouse 14 

gas emissions. In Iceland, the loss of vegetation and soil due to land-use and natural processes 15 

has left large areas as barren deserts. Land restoration actions have the primary goals to prevent 16 

land degradation and restore lost ecosystems but the ancillary benefits of SOC accumulation 17 

with regards to COP 21 are obvious. Natural vegetation succession is active in areas being 18 

exposed by glacial recession since the end of the Little Ice Age in ~1890. Here, we attempt to 19 

estimate the current regional SOC stock on undisturbed moraines in front of two glaciers in SE-20 

Iceland, using surface age, soil properties and vegetation cover data. RapidEye images were 21 
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used to estimate the surface area of two vegetation classes with <50% and >50% cover. 22 

Regional SOC stock was calculated using soil data and the sum of the area of each cover class 23 

for each time zone. The rates of SOC accretion reached the maximum values of 0.004−0.009 24 

kg C m-2 yr-1. The regional SOC stock for the two glacier fore-fields was estimated at 1605 Mg 25 

C (0−10 cm) for Skaftafellsjökull (396 ha), and 1106 Mg C (0−5 cm) for Breiðamerkurjökull 26 

(632 ha). The current annual increase in the moraine SOC stocks was estimated at 20.7 Mg C 27 

yr-1 for Skaftafellsjökull and 19.7 Mg C yr-1 for Breiðamerkurjökull. 28 

 29 

Key words: Glacial recession, land reclamation, proglacial areas, soil organic carbon, SOC 30 

accretion, SOC stock, soil development, vegetation cover. 31 

 32 

Introduction 33 

Soil organic carbon (SOC) has received increased attention over the last decades because of its 34 

importance as an option to mitigate the human-induced increase of greenhouse gas (GHG) 35 

emissions to the atmosphere and the concurrent climate change via soil C sequestration (SCS) 36 

(Kennett, 2002; Lal, 2008; McBratney et al., 2014). Plants convert CO2 from the atmosphere to 37 

produce organic matter (OM), their detritus is consequently incorporated in the underlying soils 38 

resulting in immobilization of C. The mechanisms for stabilizing SOC may be categorized as 39 

biochemical recalcitrance, chemical stabilization and physical protection. For example, SOC 40 

may be bound to clay minerals and organo-mineral compounds or by forming stable soil 41 

aggregates (Christensen, 1996; Dahlgren et al., 2004). Under natural conditions, plants and soils 42 

sequester C from the atmosphere but anthropogenic land-use has depleted the terrestrial C pool 43 

by disturbing and utilizing plants and soils (Lal, 2004). According to the United Nations 44 
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Framework Convention on Climate Change (UNFCCC), the net change in C stocks and GHG 45 

emissions resulting from direct human-induced land-use change and forestry activities, is 46 

considered as an option for countries to meet the commitments of COP 21 (UNFCCC, 2015), 47 

which also recommended the “4 per Thousand” program of sequestering C in soils at the rate 48 

of 0.4% per year (Chambers et al., 2016; Lal, 2016). This includes, under article 3.4, any elected 49 

human-induced activities, which can be forest management, revegetation, cropland 50 

management and grazing land management.  51 

In Iceland, the history of ecosystem decline and land degradation goes back to the 52 

Settlement in 874 AD and as a result from land-use, climate deterioration and volcanism, large 53 

parts of the country are now barren deserts (Arnalds et al., 2001; Ólafsdóttir and Guðmundsson, 54 

2002; Gísladóttir et al., 2010; Gísladóttir et al., 2011). Óskarsson et al. (2004) estimated the 55 

amount of erosion-induced SOC depletion since the Settlement at 120−500 Tg (1 Tg = 1012 g 56 

= 1 million Mg). Since 1907, the Soil Conservation Service in Iceland (SCSI) has been 57 

combating soil erosion and sand encroachment, undertaking large scale revegetation actions, 58 

e.g. by using lyme-grass (Leymus arenarius), seeding of grass species, applying mineral and 59 

organic fertilizers, protection from livestock grazing, planting of trees and seeding with the 60 

nootka lupine (Lupinus nootkatensis) (Aradóttir et al., 2013). As a result, these areas are 61 

accreting plant biomass and SOC (Aradóttir et al., 2000; Arnalds et al., 2000; Arnalds et al., 62 

2013). Although the primary goals of the SCSI are to prevent land degradation and erosion, 63 

revegetate eroded areas, restore lost ecosystems and improve grazing lands, the ancillary 64 

benefits of SOC accumulation are obvious with regards to COP 21 and the “4 per Thousand” 65 

initiative. In 2011, revegetation actions are estimated to have resulted in the net removal of CO2 66 

of 174 Gg and are projected to reach 274 Gg in 2030 (Borgþórsdóttir et al., 2014).  67 
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Glaciers cover ~10% of Iceland and since the end of the Little Ice Age (LIA) in ~1890 they 68 

have been steadily retreating. The area that has been deglaciated between 1890 and 2000 is 69 

estimated at 1285 km2 (Sigurðsson et al., 2013). Models predict further reduction in glacial 70 

cover, and the largest ice-caps will have reduced in size with 15−40% of the glacial cover 71 

remaining by 2090 (Björnsson and Pálsson, 2008). The emerging proglacial areas are now sites 72 

of active plant succession and soil formation (Persson, 1964; Vilmundardóttir et al., 2015a; 73 

Vilmundardóttir et al., 2015b) and the moraine soils in front of Skaftafellsjökull glacier are 74 

estimated to have accumulated 1.1 kg C m-2 over a period of 120 years (Vilmundardóttir et al., 75 

2015b). Since the processes of plant succession and soil development are governed by natural 76 

causes, these are not considered under COP 21 but can potentially be considered under the “4 77 

per Thousand” initiative. However, questions arise regarding 1) the rates at which these 78 

proglacial areas are accreting SOC in comparison with the sites of revegetation or forestry, and 79 

2) the significance of the C sink capacity of these areas emerging after glacial retreat from a 80 

national perspective. 81 

During the initial stages of plant succession, SOC concentrations are closely related to the 82 

extent and species composition of vegetation cover and depend upon the magnitude of litter 83 

accumulation and OM input that vary among plant species and growth forms (Crocker and 84 

Major, 1955; Dahlgren et al., 2004; Su et al., 2004; Rajaniemi and Allison, 2009). Based on a 85 

chronosequence study from Skaftafellsjökull, Vilmundardóttir et al. (2015b) reported that time 86 

and vegetation in conjunction with landscape were the primary drivers of soil formation and 87 

SOC accretion. The SOC stocks correlated with vegetation cover, and the latter reflected the 88 

impact of topography to some extent. Similarly, Egli et al. (2006) documented that topography 89 

influenced soil evolution, with the slope gradient, slope aspect and landform determining the 90 

soil development.  91 
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The present study tests the hypothesis that the regional SOC stocks can be estimated within 92 

young proglacial landscapes on the basis of surface age, soil properties, vegetation cover and 93 

plant communities. The study builds upon the previous research from Skaftafellsjökull (Stanich, 94 

2013; Vilmundardóttir et al., 2014; Vilmundardóttir et al., 2015b) and Breiðamerkurjökull 95 

(Vilmundardóttir et al., 2015a), where the development of soil properties and vegetation 96 

succession have been assessed and described. For the regional application, remote sensing data 97 

are used to classify vegetation cover and geomorphic features, as the estimate applies for 98 

undisturbed moraines only. These, in conjunction with the time since deglaciation, are used to 99 

estimate the regional SOC stocks accumulating within the two proglacial areas through the 100 

natural processes of plant succession and soil formation over the last 120 years.   101 

Study area 102 

The study sites are within the glacial fore-fields of two outlet glaciers extending from the 103 

Vatnajökull ice-cap down to the lowlands, Skaftafellsjökull and Breiðamerkurjökull (Fig. 1). 104 

Both glaciers advanced during the Little Ice Age (LIA) and reached the maximum extents in 105 

~1890. Since then, both glaciers have receded although with some periods of re-advance 106 

(Guðmundsson, 2014; Hannesdóttir et al., 2014b).  The relatively smaller Skaftafellsjökull 107 

glacier has created a fore-field sheltered between mountain ridges while the vast 108 

Breiðamerkurjökull has exposed wide plains of thick moraines which are in close proximity to 109 

the Atlantic Ocean. Both sites are at low elevations and have an oceanic climate with cool 110 

summers and mild winters (Einarsson, 1984). The mean annual temperature is ~5°C, and in 111 

winter the temperatures often hover around zero (Table 1).  112 
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  113 

Fig. 1. The study sites within the glacier fore-fields of Skaftafellsjökull and Breiðamerkurjökull. 114 
Lines mark the glacier position for a given year, redrawn from Hannesdóttir et al. (2014a) and 115 
Guðmundsson (2014), and circles mark the location of sampling sites/transects. The map 116 
background is a Lidar DEM from the Icelandic Meteorological Office (IMO), which was used 117 
for determining the extent of undisturbed moraines of the fore-fields. The position of the 118 
glaciers’ termini is from 2012 for Skaftafellsjökull (drawn from RapidEye image) and 2013 for 119 
Breiðamerkurjökull (drawn from aerial photographs from Loftmyndir Inc. 2013). The locations 120 
of Skaftafell and Kvísker weather stations (Table 1) are shown on the larger inset map. 121 

Table 1. General information about the study areas. 122 

Parameter Skaftafellsjökull / Breiðamerkurjökull 
Position N 64°02’−64°00’ 

W 16°57’−16°53’ 
 N 64°05’−64°02’ 

W 16°18’−16°14’ 
Elevation range 70−120 m a.s.l.  15−70 m a.s.l. 
 
Mean annual temperature* 
July 
January 

Skaftafell 
5.1°C 

10.5°C 
3.3°C 

Fagurhólsmýri 
4.8°C 

10.6°C 
0.4°C 

Hólar in Hornafjörður 
4.7°C 
10.5C 
0.3°C 

Mean annual precipitation* NA 1800 mm 1500 mm 



7 

 

 Kvísker: 3500 mm 
Hali: 2250 mm 

Approximate area  7 km2  11 km2 
*Based on unpublished data from the IMO. Skaftafell weather station is the closest to the Skaftafellsjökull study 123 
site and records span the period from 1996−2007. Fagurhólsmýri weather station is midway between 124 
Skaftafellsjökull and Breiðamerkurjökull and the average values represent the period of 1949−2007. Hólar in 125 
Hornafjörður is the closest weather station to Breiðamerkurjökull to the east and values represent the period from 126 
1949−2011. Additional precipitation data from Kvísker and Hali are also shown but those weather stations are 127 
located closer to Breiðamerkurjökull than Fagurhólsmýri and Hólar. 128 
 129 

Both sites have similar parent material where the glacial moraines are mainly comprised of 130 

ground basaltic rock and hyaloclastite, including tephra that originates from sub-glacial 131 

volcanoes and has been deposited on the glaciers or straight onto the fore-fields. Vegetation 132 

within the proglacial areas is primarily comprised of mosses where the average cover ranged 133 

from 40−60% on the oldest moraines. At Skaftafellsjökull, dwarf shrub and shrub cover reached 134 

25% on the oldest moraines (Fig. 2a) (Vilmundardóttir et al., 2015b). Shrubs and dwarf shrubs 135 

were rare or even absent at Breiðamerkurjökull but grasses were the vascular plant group with 136 

the largest cover percentage of 8% in the oldest moraine (Fig. 2b) (Vilmundardóttir et al., 137 

2015a). The developing soils on the well drained moraines featured a thin A horizon, if at all 138 

present, developing on the parent material. The thickness of the A horizon was 8 cm on average 139 

in the oldest moraines of Skaftafellsjökull and was only 2−3 cm thick in the oldest moraines of 140 

Breiðamerkurjökull.  141 



8 

 

 a) 142 

 b) 143 

Fig. 2. Examples of sampling sites within the a) Skaftafellsjökull and b) Breiðamerkurjökull 144 
forefields, both moraines were formed in ~1890. Mosses had the highest average cover 145 
percentage of the plant groups investigated, 38% and 58% cover, respectively. The vascular 146 
plant groups with the highest cover percentage were dwarf shrubs that covered 20% at 147 
Skaftafellsjökull,and grasses that covered 8% at Breiðamerkurjökull. 148 

Methods 149 

Field setup and sampling 150 

Three moraines were sampled in summer 2010 and 2011 in the Skaftafellsjökull fore-field, 151 

representing the location of the terminus in 1890, 1945 and 2003. The outline of the moraines 152 

was identified as GPS waypoints and six points were randomly selected for each of the 153 

moraines. The sites were located on ground- or end moraines devoid of natural or anthropogenic 154 
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disturbances. Areas where the surface age could not be determined were avoided, such as sites 155 

of fluvial erosion/deposition and dry lakebeds or ponds. A 10 m transect was selected parallel 156 

to the moraine ridge for each point. Soil samples were collected at 0, 4 and 8 m distance for 157 

each transect within a 0.25 m2 quadrant at 0−10 and 10−20 cm depth. Vegetation cover was 158 

measured using a Braun-Blanquet cover scale prior to sampling (Goldsmith and Harrison, 159 

1976). Soil samples from the Breiðamerkurjökull proglacial area were obtained during the 160 

summer 2012 on moraines exposed in 1890, 1930, 1945, 1960, 1982, 1994, 2004 and 2012. 161 

Five random GPS points were selected for sampling on the sites which met the same terms as 162 

those for Skaftafellsjökull. Vegetation cover was measured within a 0.25 m2 quadrant and soils 163 

were sampled at 0−5 and 5−15 cm depth. The top depth incorporated the A horizon on the 164 

surface of the parent material. The lower depth was generally SOC poor, reaching the highest 165 

concentrations of 0.3% in the 10−20 cm in the 120 yr old moraine at Skaftafellsjökull and 0.2% 166 

in the 5−15 cm in the 122 yr old moraine at Breiðamerkurjökull (Vilmundardóttir et al., 2015a; 167 

Vilmundardóttir et al., 2015b). 168 

Bulk density of the fine earth fraction was measured using small cubical cores of known 169 

volume and obtained perpendicular to the soil profile. The cores were of three sizes, ranging 170 

from 1.4−19.5 cm3. The larger cores were preferred but the smaller ones were used in places 171 

where gravel content was high. Due to the small size of the cores, replicates for each bulk 172 

density sample were collected to obtain an average value of 5 replicates for the smallest, 3 for 173 

the medium sized and 2 for the largest core. This sampling method was compared with the 174 

results reported by Stanich (2013), who sampled the top depth of the same soils using the 175 

excavation method with insulation foam to determine bulk density and gravel volume using 176 

much larger samples (~1000 cm3). The methods resulted in similar bulk density values (<2 mm) 177 

but showed that the content of coarse fractions was greatly underestimated by the core method 178 
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(Vilmundardóttir et al., 2015b). Therefore, the volume estimate of the coarse material 179 

determined by Stanich was used here to calculate the SOC stocks for the top depth.  180 

Soil sample preparation and analysis 181 

Soil samples were analyzed at the University of Iceland and the Carbon Management and 182 

Sequestration Centre of the Ohio State University, Columbus, Ohio, USA. Bulk density 183 

samples were dried, gently ground and sieved through a 2 mm sieve. The volume of coarse 184 

fragments (>2 mm) was determined by the water displacement method. Bulk density of the fine 185 

earth fraction (<2 mm) was calculated after subtracting the weight and volume of the coarse 186 

fraction from the weight and volume of the total sample. Bulk samples were air dried, gently 187 

ground, passed through a 2 mm sieve, and stored pending analysis. 188 

Concentrations of SOC in the Skaftafellsjökull soils were determined by the dry 189 

combustion method using a Vario Max C-N elementar analyzer. Samples were dried at 40°C, 190 

ground by hand and sieved through a 250 μm mesh. Samples from Breiðamerkurjökull 191 

moraines were ball milled and passed through a 150 μm sieve, then dried at 50°C prior to 192 

weighing and packing into tin containers. Concentrations of SOC were determined by a Flash 193 

2000 Elemental Analyzer (Thermo-Scientific, Italy). Soils were estimated to be carbonate-free 194 

and the measured C was assumed to be SOC. 195 

The C stock was estimated by using Eq. 1: 196 

SOC stock (kg C m−2) = BD × T × SOC% × ((100-S)/100) × 10-2, (Eq. 1) 197 

where, BD is the bulk density (kg m−3), SOC is the organic carbon concentration (%), T is the 198 

thickness (m) and S is the content of coarse fragments (>2 mm) of the specific soil depth (vol. 199 

%). Data on concentration of coarse material reported by (Stanich, 2013) were used herein to 200 
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calculate the SOC stocks in the glacier fore-fields. Since the volume estimate of the coarse 201 

fraction was only available for the top depth and SOC concentrations were generally very low 202 

for the lower depth (Vilmundardóttir et al., 2015a; Vilmundardóttir et al., 2015b), the regional 203 

SOC stock was calculated for the top depth only. Concentration of coarse fragments (S) was 204 

estimated by using Eq. 2: 205 

S (%) = [coarse fragments >2 mm (m3) / total volume (m3)] × 100. (Eq. 2) 206 

The rates of SOC accretion were calculated in two ways: 1) by dividing the stocks by the surface 207 

age and 2) as split time rates where the difference in SOC stocks between the given moraines 208 

is divided with the respective time period. 209 

Vegetation cover assessment  210 

Recent vegetation maps for the two study sites were not available. Therefore, other means for 211 

assessing regional vegetation cover were identified. The National Land Survey has been 212 

systematically collecting RapidEye images to cover the entire country. Images from the 213 

RapidEye satellite are composed of spectral bands designed for detecting vegetation cover with 214 

resolution of 5 m (orthorectified pixel size).  The satellite’s sensors include five spectral bands. 215 

In addition to the blue, green and red (440−510, 520−590, 630−685 nm); it also has the ‘Red-216 

Edge’ and Near-Infrared bands detecting radiation of 690−730 and 760−850 nm wavelengths, 217 

respectively (Lillesand et al., 2014). The use of the five spectral bands, including the Red-Edge 218 

band, has proven effective to classify vegetation cover and surface types  (Schuster et al., 2012; 219 

Roslani et al., 2014). Cloudless images from this area are rare, but an image from 12 September 220 

2012 was suitable for the image classification.  221 

Since the field data only represented well drained and undisturbed ground or end moraines, 222 

subsets of the satellite images were created, omitting areas with former riverbeds, lakebeds or 223 
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dead ice landscapes. For both glaciers, the terminal moraines from 1890 defined the 224 

southwardly extent of the areas to be classified. At Skaftafellsjökull, lateral moraines 225 

determined the western and eastern margins and the shores of the glacial lagoon that started 226 

forming in ~2000, determined the northern extent of the moraines included in the classified 227 

area. At Breiðamerkurjökull, the eastern and western margins were determined by the dead-ice 228 

landscape formed by the median moraines of Mávabyggðarönd and Esjufjallarönd and by the 229 

shores of Jökulsárlón glacial lake to the east. The northern extent was confined to the terminus 230 

of Breiðamerkurjökull as located in 2012. 231 

After trying out different ways of classifying the regions based on vegetation cover and/or 232 

plant groups and comparing them to the appropriate SOC stock values, only a simple two class 233 

system using the vegetation cover was chosen. The vegetation cover was classified into two 234 

groups: densely vegetated (cover >50%) and sparsely vegetated (cover <50%). The median 235 

values from the Braun-Blanquet cover scale were used to determine whether the vegetation 236 

cover percentage of sampling sites was above or below 50%. For Skaftafellsjökull, the average 237 

values of the three quadrants per transect were used to create one value, determining the cover 238 

class. Each sampling site has thus the attributes as a densely or a sparsely vegetated site. In 239 

conjunction with time since deglaciation, those two classes were used for assessing the regional 240 

SOC stock. 241 

Field measurements of vegetation cover and aerial images from Loftmyndir Inc. were used 242 

to create training samples for a supervised classification of each RapidEye image subset using 243 

the ArcGIS software. Each image subset, using all the five bands, was classified with the 244 

maximum likelihood classification method using the input signature file created with the 245 

training samples. The accuracy of the classification was determined using the field measures of 246 
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vegetation cover, resulting in the overall accuracy of 78−82% accuracy for the Skaftafellsjökull 247 

and Breiðamerkurjökull fore-fields. 248 

Estimating the carbon stocks of the glacier fore-fields 249 

The glacier fore-fields were divided into time-zones to estimate the regional C stocks, and to 250 

which the SOC stock values from every moraine would apply. The two proglacial areas needed 251 

different approaches to define the time-zones due to the different resolution in the sampled 252 

chronosequences. The higher resolution in the Breiðamerkurjökull chronosequence allowed for 253 

drawing time-zone boundaries midway between each of the moraines sampled. At 254 

Skaftafellsjökull, boundaries were drawn representing the location of the glacier’s terminus 255 

~1930 and 1980, representing the onset of new recession periods after having been advancing 256 

or static for some time (Guðmundsson, 2014; Hannesdóttir et al., 2014a).   257 

The areal extent of the two vegetation cover classes for each time-zone was calculated after 258 

converting the classified raster subset into shapefile, splitting the shapefile according to the 259 

defined time-zones and calculating the area of each polygon. The sum of the area of each 260 

vegetation cover class for each time zone was then used to calculate the regional C stock by 261 

using Eq. 3: 262 

 Regional SOC stock (Mg C ha) = BD × T × A × SOC% × ((100-S)/100), (Eq. 3) 263 

where, BD is the bulk density (Mg m−3), T is the thickness (m), A is the areal coverage (ha), 264 

SOC is the organic C concentration (%), and S is the content of coarse fragments (>2 mm) of 265 

the soil depth (vol. %).  266 

Results 267 

SOC stocks and rates of SOC accretion in the proglacial soils 268 
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The SOC stocks generally increased with increase in time since deglaciation, although being 269 

less profound in the Breiðamerkurjökull area. In the oldest moraine of Breiðamerkurjökull 270 

representing 122 yrs since deglacition, the SOC stock was estimated to be 0.50 kg C m-2, 271 

compared to 1.10 kg C m-2 for Skaftafellsjökull after 120 yrs since deglaciation (Table 2). The 272 

magnitude of SOC stock at Breiðamerkurjökull showed a slow initial increase, followed by an 273 

increase in rates after the first 50 years, reaching 4.5 g C m-2 yr-1 in the 67 and 82 yr-old 274 

moraines, and then decreasing again in the oldest moraine. The decrease in rates of SOC 275 

accretion at the end of the chronosequence is in contrast to the trend apparent for the 276 

Skaftafellsjökull area, which attained the maximum SOC accretion rate in the oldest moraine 277 

of 9.1 g C m-2 yr-1. Split time calculations indicate even higher rates of SOC accretion within 278 

the older moraines, reaching the highest rates of 15.1 g C m-2 yr-1 in the 120 yr old moraine at 279 

Skaftafellsjökull and 9.3 g C m-2 yr-1 between 1945−1960 at Breiðamerkurjökull (Table 2). 280 

Calculated rates of accretion at Skaftafellsjökull were somewhat higher during the earliest time 281 

period (2010−2003) compared to the second period (2003−1945). The reason for this is unclear 282 

but the SOC concentration is the lowest in the youngest moraine, the time split of the earliest 283 

period is much shorter compared to that for the other periods and it does not include the initial 284 

years after deglaciation.  285 

  286 
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Table 2. SOC stocks and rate of SOC accretion on undisturbed moraines within the 287 
Skaftafellsjökull and Breiðamerkurjökull glacier fore-fields. The rates of SOC accretion is 288 
reported in two ways: 1) by dividing the stocks by the surface age and 2) as split time rates 289 
where the difference in SOC stocks between the given moraines is divided with the respective 290 
time period. 291 

Moraine 
(year) 

Depth 
(cm) 

Moraine 
age (years) 

Bulk density 
(g cm-3)a, b 

SOC 
(%)a, b 

< 2 mm 
(vol.%)c, d 

kg C m-2 a 

 
g C m-2 

yr-1 a 
Split time g C m-2 

yr-1 
          
Skaftafellsjökull         
2003 0−10 8 1.36 (0.16) 0.05 (0.01) 37.1 (12.6) 0.04 5.09 2003−2010 5.0 
1945 0−10 65 1.33 (0.17) 0.30 (0.22) 32.5 (15.5) 0.27 4.17 1945−2003 4.0 
1890 0−10 120 1.07 (0.15) 1.77 (1.10) 42.2 (18.5) 1.10 9.14 1890−1945 15.1 
          
Breiðamerkurjökull         
2012 0−5 0 1.24 (0.08) 0.02 (0.00) 37.1 0.01 −   
2004 0−5 8 1.19 (0.06) 0.02 (0.01) 37.1 0.01 1.12 2004−2012 0.0 
1994 0−5 18 1.22 (0.07) 0.11 (0.02) 37.1 0.04 2.26 1994−2004 3.0 
1982 0−5 30 0.94 (0.10) 0.26 (0.10) 37.1 0.07 2.49 1982−1994 2.5 
1960 0−5 52 0.94 (0.13) 0.53 (0.29) 32.5 0.16 3.14 1960−1982 4.1 
1945 0−5 67 0.81 (0.16) 1.14 (0.63) 32.5 0.30 4.48 1945−1960 9.3 
1930 0−5 82 0.97 (0.14) 1.36 (0.62) 42.2 0.37 4.46 1930−1945 4.7 
1890 0−5 122 1.01 (0.06) 1.01 (0.07)   3.5 0.50 4.05 1890−1930 3.3 
          

a Results from Skaftafellsjökull published by Vilmundardóttir et al. (2015b). 292 
b Results from Breiðamerkurjökull published by Vilmundardóttir et al. (2015a). 293 
c Results from Skaftafellsjökull published by Stanich (2013). 294 
d Concentrations of coarse fragments was not estimated in the Breiðamerkurjökull fore-field using the excavation 295 
method. Values from Skaftafellsjökull were used to calculate the SOC stocks with the exception of the 1890 296 
moraine, where the concentration of coarse fragments was estimated by using values from the cubical cores. 297 

Regional SOC stocks 298 

The SOC stocks (Mg ha-1, Mg = 1 metric ton) of densely vegetated surfaces (>50% cover) were 299 

53−65% higher than those of the sparse vegetation cover (<50%). The total area of each glacial 300 

fore-field (undisturbed moraines only), for which the SOC stocks were calculated, was 396 ha 301 

and 632 ha for Skaftafellsjökull and Breiðamerkurjökull, respectively (Fig. 3). Thereof, densely 302 

vegetated areal extent was estimated to be 233 ha (59%) and 360 ha (57%). The regional SOC 303 

stocks for the two fore-fields were estimated at 1605 Mg C (0−10 cm) for the Skaftafellsjökull 304 

fore-field and 1106 Mg C (0−5 cm) for the Breiðamerkurjökull pro-glacial area (Table 3). 305 
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 306 

Fig. 3. The undisturbed glacial moraines classified into densely vegetated (>50% cover, green) 307 
and sparsely vegetated surfaces (<50% cover, orange) including the defined time-zones. 308 

Table 3. Calculated SOC stocks according to moraine age, the two vegetation cover classes and 309 
aerial extent for the undisturbed moraines of the Skaftafellsjökull and Breiðamerkurjökull fore-310 
fields. 311 

Moraine 
(year) 

Depth 
(cm) 

Moraine 
age (years) 

SOC 
(Mg ha-1) 

Area 
(ha) 

Regional SOC 
stock (Mg) 

 SOC 
(Mg ha-1) 

Area 
(ha) 

Regional SOC 
stock (Mg) 

        
   Dense vegetation cover >50%  Sparse vegetation cover <50% 
Skaftafellsjökull         
2003 0−10 8 0.72a 0.1 0.1  0.42 (0.10) 63.3 26.6 
1945 0−10 65 3.03 (1.94) 154.7 468.7  1.64 (0.57) 93.3 153.0 
1890 0−10 120 11.66 (6.32) 78.2 911.8  7.53 (2.90) 5.9 44.4 
    Total 1380.6   Total 224.0 
   Combined for both cover classes: 1604.6 Mg C (0−10 cm)   

         
Breiðamerkurjökull         
2012 0−5 0 0.14 a 0 0.0  0.08 (0.02) 39.1 3.1 
2004 0−5 8 0.15 a 0.1 0.3  0.09 (0.02) 66.7 6.0 
1994 0−5 18 0.70 a 5.3 3.7  0.41 (0.08) 46.0 18.9 
1982 0−5 30 0.88 (0.13) 33.4 29.4  0.54 (0.27) 50.3 27.2 
1960 0−5 52 1.81 (0.88) 95.8 173.4  0.96 (−)          39.9 38.3 
1945 0−5 67 3.01 (1.51) 94.5 284.4  1.75 a 13.4 23.5 
1930 0−5 82 3.23 (1.92) 107.6 347.5  1.88 a 13.0 24.4 
1890 0−5 122 4.95 (0.56) 22.9 113.4  2.89 a 4.3 12.4 

    Total 952.1   Total 153.8 
   Combined for both cover classes: 1105.9 Mg C (0−5 cm)   

          
a Where SOC values for both vegetation cover classes were not available from the field dataset, they were 312 
estimated to be of similar proportions as featured by values where both vegetation cover classes for the same 313 
moraine were available; the SOC stock was 58% higher on average, where surface was densely vegetated (>50%) 314 
compared to where vegetation cover was sparse (<50%). 315 
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 316 
Discussion 317 

The studies from Skaftafellsjökull and Breiðamerkurjökull show that the relative trends in the 318 

rates of SOC accretion are low during the first decades after deglaciation but increase after the 319 

first 50 years. This trend is in contrast to studies of soil formation from other glaciated regions 320 

such as from the Swiss Alps (Egli et al., 2010), Glacier Bay in Alaska (Crocker and Dickson, 321 

1957) and Svalbard (Kabala and Zapart, 2012), where the reported rates were higher during the 322 

first decades and then decreased. At Skaftafellsjökull the rates of SOC accretion increased to 323 

0.009 kg m-2 yr-1, but the rates remained at 0.004−0.0045 kg m-2 yr-1 at Breiðamerkurjökull 324 

during the last decades. The different patterns of SOC increase observed in SE-Iceland indicate 325 

that the rates of soil formation are initially restricted by relatively slow vegetation succession 326 

within the fore-fields. It may be caused by various factors, e.g. the land use, which includes 327 

sheep grazing, frequent freezing and thawing cycles, concurrent cryoturbation and strong winds 328 

(Arnalds, 2008). A general species paucity in Iceland may also be a factor because the island 329 

was mostly covered with glaciers during the last glacial maximum and it is still a matter of 330 

debate whether any species survived in ice free areas (Rundgren and Ingólfsson, 1999; 331 

Norðdahl et al., 2008). The Atlantic Ocean itself is a great barrier to long distance seed dispersal 332 

(Þórhallsdóttir, 2010; Alsos et al., 2015) and there is a lack of available nutrients in the moraines 333 

and N-fixing plants, which is often the case within the sparsely vegetated areas in Iceland 334 

(Magnússon, 1997).  335 

Andisols in general are capable of maintaining high SOC sequestration rates for centuries, 336 

due to their mineralogical properties, colloidal constituents and frequent burial events 337 

(Dahlgren et al., 2004). The volcanic soils of vegetated areas in Iceland are both capable of 338 

maintaining high SOC accretion rates for a long time and contain high SOC concentrations 339 
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throughout the soil profile (Arnalds, 2004; Óskarsson et al., 2004). This is demonstrated within 340 

the birch (Betula pubescens) woodlands in Skaftafellsheiði where the SOC stock within the top 341 

0−20 cm was estimated at 4.95 kg C m-2 (Vilmundardóttir et al., 2015b). The 1727 Öræfajökull 342 

tephra marker was identified at 23 cm depth within the soil profile and thickening rates from 343 

1727 to 2011 were estimated at 0.8 mm yr-1. By inferring from these data, rates of SOC 344 

accretion within the top 20 cm were estimated at 0.020 kg C m-2 yr-1, which are similar to those 345 

reported by Gísladóttir et al. (2011) in Histosols in West Iceland for selected time periods since 346 

the settlement of the island in ~871. Gísladóttir and colleagues reported total average values of 347 

0.016 kg C m-2 yr-1 from 665 BC to AD 2008. When the split time rates are considered, the rate 348 

of SOC accretion within the oldest moraine in Skaftafellsjökull reached 0.015 kg C m-2 yr-1, a 349 

rate comparable to the accretion rates of the Histosols in West Iceland (Gísladóttir et al., 2011). 350 

This trend suggests that the rates of SOC accretion within the oldest moraines at 351 

Skaftafellsjökull may be drawing close to equilibrium and may stabilize at this level for a long 352 

period of time. 353 

The present study also attempted to apply a more intricate vegetation classification than 354 

reported herein to estimate the regional SOC stocks based on cover percentage and plant 355 

composition. However, these approaches did not sufficiently reflect the SOC stocks of the 356 

moraine soils. These trends were attributed to the fact that the soil properties develop at a slower 357 

rate than the plant communities present within the proglacial landscapes in SE-Iceland, or that 358 

the stronger time factor was masking their effects on the rate of SOC accretion. 359 

Comparison of the moraine soils to SOC accretion by land reclamation and forestry  360 

Several reports on SOC accretion rates are available from sites of land reclamation treatments 361 

and forestry. Arnalds et al. (2000) reported a significant increase in SOC stock with increase in 362 
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treatment age, with the average rate of increase of 0.06 kg C m-2 yr-1 (0−30 cm depth). The SOC 363 

stock within sites of exclusion from grazing only showed no relationship with time since 364 

exclusion. Arnalds et al. (2013) reported SOC accretion rates for different reclamation methods, 365 

and concluded that sites revegetated by seeding of grasses with fertilization result in the highest 366 

SOC accretion rates (0.055−0.065 kg C m-2 yr-1, 0−10 cm depth). Reclamation sites that 367 

received no fertilizer or seeds (lupine and/or trees) produced the lowest rates of SOC accretion 368 

(0.04 kg C m-2 yr-1, 0−10 cm depth). Würsch (2012) reported the SOC accretion rates of 0.022 369 

kg C m-2 yr-1 (0−20 cm) in sites revegetated by the nootka lupine. These rates are substantially 370 

higher than those reported herein, where the accretion rates reached the highest average values 371 

of 0.009 and 0.005 kg C m-2 yr-1 in the Skaftafellsjökull (0−10 cm) and Breiðamerkurjökull 372 

(0−5 cm) moraines, respectively. The split time method, however, indicates that the rate of 373 

increase in the oldest moraine at Skaftafellsjökull is considerably higher and closer to these 374 

reported rates. However, comparisons among studies are not straight forward due to the 375 

differences in sampling depths used for calculating SOC stocks. During natural colonization of 376 

lyme grass, Stefansdottir et al. (2014) estimated the rate of SOC accretion as 0.013 kg C m-2 yr-377 

1  in 37 yr-old sand-dunes (0−75 cm depth) in the pristine volcanic island of Surtsey. The IPCC 378 

(2000) estimated the potential of restoring SOC on severely degraded lands at 0.03 kg C m-2 yr-379 

1, which is similar or lower to what has been reported for the restored areas in Iceland (Arnalds 380 

et al., 2000; Arnalds et al., 2013), yet considerably higher than the SOC accretion within the 381 

glacier fore-fields. However, the present study excludes sites within the proglacial landscape 382 

that may feature higher rates of SOC accretion, such as dry streambeds and relic ponds, as aerial 383 

photographs indicate a more rapid vegetation succession in these features. These areas were not 384 

included in this study due to difficulties in assessing the age of these surfaces and the different 385 

soil formation environment where water level is high. Therefore, additional research is needed 386 

to provide a complete picture on the regional SOC accretion within the glacier fore-fields. 387 



20 

 

In a restored birch forest, the SOC accretion rate was reported by Kolka-Jónsson (2011) at 388 

0.012 kg C m-2 yr-1 in the top 0−5 cm layer. Within the 0−10 cm soil depth in planted larch 389 

(Larix spp.) forests of 14−53 years, Ritter (2007) reported a non-clear trend of increase in SOC 390 

stock with time or -0.018− +0.023 kg C m-2 yr-1, probably because larch was planted in an 391 

already vegetated land. The accretion rates within the two forest types are considerably lower 392 

than those reported from the reclamation sites. These comparisons show that the proglacial 393 

areas have the lowest SOC accretion rates compared to those for revegetation and forestry. 394 

Nevertheless the rates of increase within the proglacial areas present important background 395 

values that are generated via natural plant succession without any human input. In contrast to 396 

the natural SOC accretion, revegetation efforts generally require inputs that involve CO2 397 

emissions, depending on the method used. The most commonly used method in restoration is 398 

by seeding and fertilization where a mineral fertilizer is applied for the first years mainly 399 

supplementing N, P and K (50−100 kg N and 27 kg P2O5 ha-1 (Arnalds et al., 2000; Arnalds et 400 

al., 2013)). 401 

The SCSI estimates the annual removal of CO2 from the atmosphere through land 402 

restoration (seeding and fertilizing, lupine, fertilizing) by soil formation to be 0.71 Mg C ha-1 403 

yr-1 in the 0−30 cm soil depth (2.6 Mg CO2 ha-1 yr-1) (Guðmundur Halldórsson, personal 404 

communications). Hallsdóttir et al. (2010) estimated the areal extent of land restoration between 405 

1990−2008 at 100,650 ha. This estimate would lead to the annual accumulation of SOC stock 406 

of 71,462 Mg C yr-1. When calculating the annual accretion for each time zone in the proglacial 407 

areas, using the average accretion rates from Table 2 and then combining these, the current 408 

annual increase in the moraine SOC stocks is 20.7 Mg C yr-1 for Skaftafellsjökull (top 10 cm 409 

layer, 396 ha), and 19.7 Mg C yr-1 for Breiðamerkurjökull (top 5 cm layer, 632 ha). 410 

Regional application possibilities 411 
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This method of using chronosequences, vegetation cover and SOC measurements provides an 412 

insight to the active SOC accretion rate in the moraine soils within the proglacial areas. This is 413 

particularly important in the context that large areas have been deglaciated during the last 414 

century, and the deglaciation trend is not foreseen to end in the near future. From 1890 to 2000, 415 

the total decrease in glacial cover has been estimated at 1285 km2 or  by >11% (Sigurðsson et 416 

al., 2013). The total area of the two study sites is 18 km2, which is only ~1% of the entire area 417 

that is estimated as being deglaciated between 1890 and 2000. The proglacial areas within 418 

Iceland probably differ greatly with regards to vegetation succession and SOC accretion rates, 419 

as is shown by the comparison between the two study sites. In order to estimate the SOC stocks 420 

within other glacial fore-fields, additional field data are needed for assessing the SOC content 421 

of the soils. Large scale SOC stock estimates can be made possible by using information on 422 

glacial recession, remote sensing data suitable for vegetation classification and additional SOC 423 

data. 424 

Conclusions 425 

The slow rates of soil formation and SOC accretion made it difficult to use plant communities 426 

in conjunction with vegetation cover to estimate the regional SOC stocks. Using a simple cover 427 

classification of two classes proved the best way of estimating the underlying SOC stocks. A 428 

more intricate vegetation (or cover) classification could be made possible by ensuring the soil 429 

sampling scheme includes all the presupposed classes being used for the regional SOC stock 430 

estimate. The regional estimates of the SOC stocks were 1605 and 1106 Mg C for the 431 

Skaftafellsjökull (0−10 cm, 396 ha) and Breiðamerkurjökull (0−5 cm, 632 ha) proglacial areas, 432 

respectively and the current annual increase in the moraine SOC stocks of the two areas was 433 

estimated at 20.7 Mg C yr-1 at Skaftafellsjökull and 19.7 Mg C yr-1 at Breiðamerkurjökull. The 434 

maximum rates of increase were 0.004−0.009 kg C m-2 yr-1, depending on the study site and 435 
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moraine age. These rates were considerably lower in comparison with sites of land reclamation 436 

where seeding by grasses and fertilizing is applied, where the nootka lupine has been seeded 437 

and in forest plantations. The split time rates indicate that the oldest moraine in Skaftafellsjökull 438 

may be close to reaching an equilibrium SOC accretion rate for the well drained Andisols in 439 

Iceland. 440 
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