
国立大学法人電気通信大学 / The University of Electro-Communications

Low Complexity Algorithm for Range-Point
Migration-Based Human Body Imaging for
Multistatic UWB Radars

著者（英） Yoshiki Akiyama, Shouhei Kidera
journal or
publication title

IEEE Geoscience and Remote Sensing Letters

volume 16
number 2
page range  216-220
year 2019-02
URL http://id.nii.ac.jp/1438/00008865/

doi: 10.1109/LGRS.2018.2871775



IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. XX, NO. Y, MONTH 2018 1

Low Complexity Algorithm for Range Points
Migration Based Human Body Imaging for

Multi-static UWB Radars
Yoshiki Akiyama, Non-member and Shouhei Kidera, Member, IEEE,

Abstract—High-resolution, short-range sensors that can be
applied in optically challenging environments (e.g., in the pres-
ence of clouds, fog, and/or dark smog) are in high demand for
various applications. Ultrawideband radar is a promising sensor
that is suitable for short-range surveillance or watching sensors.
Range point migration (RPM) has been recently established as
a promising imaging approach to achieve accurate and real-
time three-dimensional (3D) imaging. However, when objects
with many scattering points are dealt with, such as a human
body, RPM suffers from high computational costs. In this
paper, we propose an algorithm with a lower complexity for
an RPM-based 3D imaging method by introducing a sampling-
based scattering center extraction with a simplified evaluation
function, in which an efficient sample pattern is provided by a
golden ratio. The results from a finite-difference time-domain
(FDTD-) based numerical test, which introduces a realistic
human body object, demonstrate that our proposed method
remarkably reduces the computational cost without sacrificing
the reconstruction accuracy.

Index Terms—Ultra-wideband (UWB) radar, range points
migration (RPM), short-range sensor, three-dimensional (3-D)
imaging, multi-static observation model

I. INTRODUCTION

Ultra-wideband (UWB) radars offer significant advantages,
such as higher range resolution and applicability to optically
harsh environments (e.g., dense fog, dusty air, or through-
the-wall conditions). The above-mentioned advantages form
the basis for various short-range sensing applications such
as human body detection in visually blurred or through-
the-wall scenarios and observation sensors that address the
privacy issues of elderly or disabled persons living alone.
Various studies have been conducted on three-dimensional
(3D) imaging methods that focus on short-range radars. The
major approaches in 3D imaging are primarily based on the
delay-and-sum (DAS) algorithms, such as synthetic aperture
radar [1], Kirchhoff migration approaches [2], the diffraction
tomography (DT) method [3] or compressed sensing (CS)
based approaches [4] However, DAS-based methods usually
require a high computational cost to obtain a full 3D image,
and they suffer from inaccuracies in the reconstructions of
objects with continuous boundaries (not pointwise shapes),
that are located close to the sensors. The fast DT algorithm
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[3] achieves a real-time 3D imaging by the fast Fourier trans-
form (FFT) based acceleration on the two-dimensional array
data. However, it requires a data-interpolation process in the
wavenumber domains, and a coarse array configuration can
come up with an ambiguous image. In addition, while the CS
based method avoids the ambiguity responses due to a grating
lobe, and obtains a higher resolution image, it often requires
a numerical solution for large-scale optimization problems,
thus incurring an extremely expensive computational cost to
obtain a full 3D image.

As a promising solution to the above-mentioned problem,
the range point migration (RPM) method has been developed
which offers several advantages in terms of accuracy and low
computational complexity in 3D imaging. It is also acceptable
for coarse-array data resulting from an incoherent process.
This method is based on the batch conversion algorithm from
range point (RP), which is defined as a set of each observed
time delay and antenna location, to a corresponding scattering
center point [5]. The notable feature of this method is its
effective solution to the joint problem between the range
and the direction of arrival (DOA) using a Gaussian kernel-
based DOA estimator. Further, it is free from complicated
preprocessing for connecting or paring RPs. A number of
studies have demonstrated the effectiveness of this method
in different observation models, where it achieves a higher
reconstruction accuracy even in cases with high interference
[6], [7]. In particular, the literature [7] deals with the imaging
issue of a human body by exploiting micro-Doppler discrim-
ination to enhance the accuracy and computational efficacy
of the RPM. Nonetheless, the RPM still suffers from an
inherent problem in which the computational complexity of
the original RPM algorithm drastically increases according
to the number of RPs, because it requires the calculation
of the intersection points of three spheroids for all possible
combinations of the measured RPs.

In order to avoid an explosive increase in the computational
cost in the original RPM, in the current study, we introduce
a sampled-point extraction algorithm whose basic idea was
recently proposed by us in [8]. First, this method retains
a number of discrete points, which are sampled on an
assumed spheroid obtained by each RP. Then, the scattering
center is extracted from these sampled-points, and not from
the intersection points. In addition, this method adopts the
golden ratio sampling pattern as one of the most effective
spatial patterns with the least gaps. In order to make the
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Fig. 1. Observation model assuming the one-dimensional MIMO array with
linear scanning.

scheme suitable, this method further introduces a simplified
evaluation function for a Gaussian kernel estimator, which
requires a much less computational complexity cost, even for
a multistatic observation model. The finite difference time-
domain (FDTD)-based 3D numerical simulations that use a
realistic human body dielectric phantom, demonstrate that the
proposed method remarkably reduces the computational cost
compared with the original RPM method without sacrificing
the reconstruction accuracy.

II. OBSERVATION MODEL

Figure1 shows the observation model. The one-
dimensional (1D) array, which assumes a multiple
input and multiple output (MIMO) radar, along the z-
axis is scanned in the x-direction. The locations of the
transmitting and receiving antenna elements are defined as
LT = (XT , 0, ZT ) and LR = (XR, 0, ZR), respectively. For
each LT and LR combination, the recorded electric field
is denoted as s′(LT,LR, t), where t denotes a fast time.
s(LT,LR, t) denotes the output of the range extraction
filter of s′(LT,LR, t). s(LT,LR, t) is converted into
s(LT,LR, R), with R′ = ct/2 using radio-wave speed c.
q ≡ (LT,LR, R) is defined as the RP, which is extracted
from the local maxima of LT, LR with respect to R.

III. CONVENTIONAL IMAGING METHODS

A. DAS Based Method

Many studies on short-range radar imaging have been
conducted on the basis of the DAS approach, which is known
as SAR processing or multi-dimensional beamforming. Even
though the DAS-based methods provide noise robust and
accurate images, when a target is expressed as an aggregation
of points, they cannot offer a sufficient accuracy for continu-
ous boundaries because the DAS algorithm assumes that the
scattering point is invariant with respect to the observation
point, which is valid for a point-shaped target. Conversely,
in the case of a continuous-shaped boundary, the dominant
scattering center moves along its boundary and the above
mentioned DAS method assumption or principle is invalid

and yields an inaccuracy in the shape estimation. Further,
the complex-value-based DAS method requires dense sam-
pling intervals (within half the wavelength of the dielectric
medium) between the observation points in order to avoid
the grating lobe effect.

B. RPM Based Method

The RPM method has been demonstrated to address the
aforementioned issue when introducing a RP conversion
algorithm with a Gaussian kernel estimator is introduced.
According to the geometric optics approximation, one scat-
tering center point on the target boundary that corresponds
to one RP q, should exist on a spheroid with focal points
LT and LR and major radius R. In order to extract the
scattering center point, this method is used to calculate all the
possible intersection points determined by other RPs (called
SubRPs). Then, the RP determines the scattering center p̂(qi)
that corresponds to the RP (called MainRP) qi, such that

p̂(qi) = arg max
pint(qi;ql,qm)∈Pi

∑
(qj ,qk)∈Qall

g(qi; qj , qk)

× exp

{
−
||pint(qi; qj , qk)− pint(qi; ql, qm)||

2σ2
r

}
. (1)

Here, pint(qi; qj , qk) denotes the intersection points between
the three spheroids, which are determined by the RPs qi, qj ,
and qk, respectively. Pi denotes a set of these intersection
points, and σr is determined by considering the spatial
density of the accumulated intersection points. Qall denotes
the set of all RPs. The weighting function g(qi; qj , qk) is
defined as

g
(
qi; qj , qk

)
= s

(
qj

)
exp

{
−
D

(
qi, qj

)
2σ2

D

}

+s (qk) exp

{
−D (qi, qk)

2σ2
D

}
, (2)

where σD is empirically determined. D(qi, qj) denotes the
actual separation of the two sets of transmitting and receiving
antennas such that;

D(qi, qj) = min
(
∥LT,i −LT,j∥2 + ∥LR,i −LR,j∥2 ,
∥LT,i −LR,j∥2 + ∥LR,i −LT,j∥2

)
. (3)

The term exp
(
−
∥∥D(qi, qj)

∥∥2/2σ2
D

)
and

exp
(
−
∥∥D(qi, qk)

∥∥2/2σ2
D

)
in Eq. (2), denotes the weight

function, based on the characteristic determined in which
the intersection point of pint(qi; qj , qk) should converge to
the actual scattering center when LT,j ,LT,k → LT,i (also
in LR), as detailed in [5]. Thus, σD should be determined
to be greater than the minimum array or scanning interval.

We note that, in Eq. (1), the optimal combination of
ql and qm is determined by a full search for all possible
combinations. A number of studies demonstrated that the
RPM achieves accurate and high-speed 3D imaging even
with an elaborate target shape, which generates a richly
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Fig. 2. Relationship between sample point as pg
k,i and intersection point.

interfered situation, by avoiding the pre-connection procedure
of the RPs. However, when dealing with an object with
many scattering points, such as a human body, the RPM
suffers from an explosive increase in the computational cost
because of the large number of intersection points in the
three spheroids that must all be numerically solved. In a
quantitative manner, the computational complexity of the
original RPM method is estimated to be O(N5), where N
denotes the number of available RPs.

IV. PROPOSED RPM ALGORITHM

In order to achieve a substantial reduction in the compu-
tational complexity of the RPM method, in this study, we
introduce a sample-point extraction based algorithm to avoid
the calculation of the intersection point of the spheroids,
the basic idea of was introduced in [8]. To obtain further
acceleration, in this study, we modify the evaluation function
in Eq. (1), to make it suitable for the sampled point extraction
scheme. The proposed idea focuses on the fact that the
interval of the azimuth angle, from the intersection points
to the sample point on the assumed spheroid is almost
proportional to the distance defined as;

L(pg
i,k, qj) ≡

∣∣∣||LT,j−pg
i,k||+||LR,j−pg

i,k||−2Rj

∣∣∣/2. (4)

Here, in the 3D model, pg
i,k denotes the k th sampled point

on the spheroid obtained from qi, whose focal points are
(LT,i,LR,i) and the major radius is Ri. By exploiting Eq.
(4), this algorithm determines the scattering center p(qi) as;

p̂(qi) = arg max
pg

i,k

∑
qj∈Qi

s(qj) exp

{
−D(qi, qj)

2

2σ2
D

}

× exp

{
−
L(pg

i,k, qj)
2

2σ2
L

}
, (5)

where D(qi, qj) is defined in Eq. (3), and σD and σL are
constant parameters. Since σL expresses the spatial variations
of the intersection points, it is usually set to a sufficiently
smaller value than the array interval. Figure 2 shows the rela-
tionship between the sample point and the intersection points.
Compared with Eq. (1) in the original RPM, Eq. (5) offers
a univariate optimization problem and does not require the
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Fig. 3. Relationship between sampling point and transmitting and receiving
antennas.

combined summation in calculating the evaluation function,
which considerably reduces the computational complexity.
In addition, the computational cost of this method does not
significantly depend on the number of processed RPs (i.e.,
N ), which is proportional to the number of objects. Here,
we note that the computational complexity of this method
is estimated to be O(MN2) , where M denotes the total
number of sample points.

However, the accuracy of the proposed method naturally
depends on the spatial interval or the pattern of the sample
points, which should be preliminarily given. In this study,
we introduce a golden ratio-based pattern, which occurs in
some patterns in nature, such as the spinal arrangement of
leaves, as the most efficient pattern for these sample points
without gaps. Here, we introduce the parameters θ and ψ as
the azimuth and elevation angles of the spheroid, respectively,
as shown in Fig. 3. Each sample point on the golden ratio
pattern of qi is expressed as follows;

pg
i,k = (LT,j+LR,j)/2+Ri(sin θk cosψk, cos θk, sin θk sinψk),

(6)
where the following relationship holds;

θk = (k − 1)π/2M, (7)
ψk = 4(k − 1)π/M(1 +

√
5). (8)

The actual procedure of the proposed method is described
as follows:

Step 1): Signals are recorded at each combination of trans-
mitting and receiving antennas as s(LT,LR, t) and are
processed by the range extraction filter, whose output is
denoted as s(LT,LR, R

′).
Step 2): RPs are extracted as qi from the local maxima of

s(LT,LR, R
′) with respect to R′.

Step 3): For each RP qi, the sampling points on the
spheroid are created using Eq. (6) as pg

i,k.
Step 4): p̂(qi) is determined by Eq. (6).
Step 5): Steps 3) and 4) are processed for all RPs, and the

target boundary points are expressed as an aggregation
of scattering center points p̂(qi).

V. EVALUATION IN NUMERICAL SIMULATION

In this section, we describes the performance evaluation
of each method on a realistic human body phantom us-
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(a) (b)

Fig. 4. 3-D reconstruction results, where color denotes reconstruction error
e. (a): Original RPM. (b): Proposed method.

Fig. 5. Sectional view of reconstruction results obtained by the DAS
method. (a)x=0 mm. (b)z=1300mm, where white dots denote the actual
human body shape.

(a) (b)

y [mm]

Fig. 6. Sliced view of reconstruction results obtained by the proposed
method, where black dots denote the actual human body shape. (a) 1250
mm ≤ z ≤ 1350 mm. (b) -50 mm ≤ x ≤ 50 mm.

ing the 3D FDTD-based numerical simulations. Here, the
transmitted signal forms a pulse-modulated signal, with a
center frequency of 5.0 GHz and a bandwidth of 2.0 GHz.
An elaborate human model is investigated as an object as
shown in Fig. 1, which is implemented in the commercial
software XFdtd Bio-Pro, where each tissue has a realistic
dielectric property [9]. Here, in order to obtain a higher range
resolution using the RPs extraction scheme, the Capon filter
is adopted, whose effectiveness been well demonstrated in
[10]. The 1D linear array antennas are composed of three
transmitting antennas and 21 receiving antennas, where the
separation of the transmitting and receiving antennas is 1000
mm and 100 mm, respectively. This array antenna is scanned
along the x-axis for −1600mm ≤ x ≤ 1600mm with a
200 mm sampling interval. Figure 4 show the reconstruction

Number of sample points Number of sample points

(a) (b)

Fig. 7. (a): Box-plot diagram for reconstruction error e versus the number
of sample points (M ). (b): Processing time versus the number of sample
points (M ).

TABLE I
COMPARISON FOR COMPUTATIONAL COMPLEXITY AND ACTUAL

PROCESSING TIMES.

Original RPM Proposed RPM
Computational

complexity O(N5) O(MN2)
Processing times 6.0× 105 sec 410 sec

Quantities N = 3053
N = 3053
M = 5000

results obtained by the original RPM (intersection point
based) and the proposed RPM methods. Here, the numbers
of processed RPs and sampling points in the proposed
method are N = 3053 and M = 5000, respectively. These
figures show that both the original and the proposed RPM
methods accurately reconstruct each part of the human body.
In order to quantitatively analyze the reconstruction image,
the reconstruction error, denoted as e is introduced as the
minimum distance between the actual target boundary and
each reconstructed point. The accumulation proportions that
satisfy e ≤10 cm are 100% (2105/2105) for the original RPM
method and 98.1% (2705/2804) for the proposed method,
respectively. Table I lists the comparison of the computational
complexity and the actual processing times of each method.
We note that, the calculation time is more than 6 × 105 s
(approximately 165 h) for the original RPM method and
410 s for the proposed method using an Intel(R) Xeon(R)
CPU E5-2680 v4 at 2.40GHz and 128GB RAM. In other
words, approximately 1400-fold times acceleration can be
achieved with the proposed method, without sacrificing the
reconstruction accuracy. For reference, Fig. 5 shows the
image obtained by the DAS algorithm, whereas Fig. 6 shows
a sliced view of the reconstruction results by the proposed
method, for comparison. Figure 5 shows that the DAS image
does not present a significant boundary shape of the human
body, compared with that obtained by the proposed method
as shown in Fig. 6.

Note that, the accuracy of the proposed method naturally
depends on the number of sampling points (i.e., the density
of the sampling pattern). Hence, we predict that the increase
in the sampling points incurs a high computational cost.
Here, in order to quantitatively assess the aforementioned
characteristic, we investigated the reconstruction performance
under different numbers of sampling points. Figure 7 shows
a the box-plot diagram of error e assuming the same model
as that shown in Fig. 1 and the required computational time
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Fig. 8. 3-D reconstruction results obtained by the proposed method at 20
dB SNR.

TABLE II
QUANTITATIVE COMPARISON FOR EACH SNR LEVEL IN THE PROPOSED

METHOD.

SNR RMSE Cumulative probability for
e ≤ 10 cm

∞ 22.5 mm 98.1 %
30 dB 22.6 mm 98.6 %
20 dB 22.3 mm 98.7 %
10 dB 56.1 mm 92.5 %

for each number of sampling points. These figures show that
lower limits exist for reconstruction accuracy e shown in Fig.
7-(a), and the computational costs are approximately linear
with the number of sampling points, which is also another
advantage of the proposed algorithm.

Next, the robustness of the proposed method to additive
noise is investigated, where a white Gaussian noise is added
to each recorded electric field. Figure 8 shows the recon-
struction results by the proposed method, where the average
signal-to-noise ratio (SNR) is 20 dB, assuming the same
model shown in Fig. 1. Figure 8 shows that the proposed
method has a significant robustness to additive noise, even
with the use of the Capon filter. Table II summarizes the
results for different SNR levels. The proposed method main-
tains noise robustness similar to that of the original RPM
method, in which both the original and the proposed methods
apply false image reduction by considering the quantity of
the evaluation function in Eq. 5 at the postprocessing.

Finally, the sensitivity study of the parameters used in
the proposed method, namely, σD and σL, assuming the
same model shown in Fig. 1, is investigated next. Table III
summarizes the quantitative analysis under each parameter
variation and shows that no severe sensitivity to the selected
parameters exists, especially for σL. In contrast, we con-
firmed that when σD becomes smaller, the error becomes
relatively larger, especially along the z axis, because the
minimum separation of the transmitting antennas along the
z-axis is 1000 mm. Thus, we recommend that σD should be
larger than the minimum separation for both the transmitting
and receiving antennas.

VI. CONCLUSION

In this paper, we proposed a considerably lower com-
plexity algorithm for 3D image reconstruction with the
RPM method using a sample-point-based scattering center
extraction, in which a golden ratio sampling pattern and a

TABLE III
QUANTITATIVE COMPARISON FOR EACH SNR LEVEL IN THE PROPOSED

METHOD.

(σD, σL) RMSE Cumulative probability for
e ≤ 10 cm

(1000mm, 20 mm) 22.5 mm 98.1 %
(1500mm, 20 mm) 24.8 mm 97.3 %
(500mm, 20 mm) 35.7 mm 94.4 %

(1000mm, 10 mm) 20.4 mm 98.8 %
(1000mm, 30 mm) 26.4 mm 97.2 %

simplified evaluation function are introduced to upgrade the
computational efficacy. The results from the FDTD-based
numerical simulations, using a realistic human body model,
demonstrate that our proposed RPM method significantly
accelerates the computational speed without sacrificing the
reconstruction accuracy, compared with the original RPM
method. We note that one of the advantages of the UWB
radar is its applicability to through-the-wall imaging (TWI)
scenario, and note that, this algorithm can be extended to a
TWI model using the suitable modifications by considering
the distorted propagation model similar to that in [11].
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