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Entanglement detection and parameter estimation of quantum channels
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We derive a general criterion to detect entangled states in multipartite systems based on the symmetric
logarithmic derivative quantum Fisher information. This criterion is a direct consequence of the fact that separable
states do not improve the accuracy upon estimating the one-parameter family of quantum channels. Our result is
a generalization of the previously known criterion for the one-parameter unitary channel to any one-parameter
quantum channel. Several variants of the proposed criterion are also given, and then the general structure is
revealed behind this sort of entanglement criteria based on quantum Fisher information. We discuss several
examples to illustrate our criterion. In the last part, we briefly show how the proposed criterion can be extended
to a more general setting that is applicable for a certain class of open quantum systems, and we discuss how to
detect entangled states even in the presence of decoherence.
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I. INTRODUCTION

The main objective of this paper is to address a problem of
the general relationship between entanglement in multipartite
systems and quantum Fisher information from the channel-
parameter estimation perspective. This problem has received
great interest in the field of so-called quantum metrology, that
is, quantum-mechanically enhanced precision measurements
[1–4]. Our work is largely motivated by the seminal work of
Pezzé and Smerzi and the experimental verification of their
criterion [5–7]. In Ref. [5], they observed that the symmetric
logarithmic derivative (SLD) quantum Fisher information for
any separable state cannot be greater than the total number
of qubits when qubit states undergo a global rotation along
some axis. Their result was further generalized to detect
k-producible states and to derive other criteria by taking
averages with respect to rotation axes [8–11] (see also updated
references cited in review articles [2–4]).

In a recent paper [7], a beautiful experimental result was
reported showing that global rotation of atomic spin states
was used to detect non-Gaussian entangled states. We also
note that Pezzé et al. [12] recently attempted to generalize
the above types of criteria using the concept of information
distance and demonstrated the usefulness of such an approach.
However, almost all previous results focused only on unitary
channels, which belong to a special class of general quantum
channels. The main achievement of this paper is to generalize
all previous criteria to the most general setting, i.e., any
quantum channel, and to reveal the general structure behind
these sorts of entanglement criteria based on quantum Fisher
information.

The second motivation of our work is to examine whether
entanglement has a benefit for estimating parameters for
nonunitary channels, i.e., general quantum channels. To
answer this question, we shall use the standard language
of the quantum parameter estimation theory developed by
Helstrom, Yuen and Lax, Holevo, and others [13–17]. A formal
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channel-parameter estimation problem in quantum systems
was initiated by Fujiwara and his collaborators [18,19], in
which they utilize basic tools developed in the quantum
parameter estimation theory mentioned above.

There exist at least four known no-go theorems regard-
ing the observation of a quantum metrologically enhanced
measurement upon estimating the one-parameter family of
quantum channels. Ji et al. [20] showed the rather remarkable
result that no programmable channels can be estimated with
quantum metrological enhancement. Here whether a given
channel is programmable or not is defined by Ref. [21].
Fujiwara and Imai [22] provided another no-go theorem stating
that quantum metrological enhancement cannot occur for any
full-rank channels changing smoothly with the parameter.
Their result is very general and implies that almost no
realistic quantum channels exhibit such quantum metrological
enhancement. Matsumoto gave a simple criterion where no
classically simulated channel can be estimated with quantum
metrological enhancement [23]. Two results in Refs. [22,23]
are well summarized in Ref. [24], where the authors applied
these two criteria for physically important quantum channels.
Last, Hayashi [25] gave a very powerful argument; no quantum
metrological enhancement occurs when a given channel admits
a finite amount of the right logarithmic derivative (RLD)
quantum Fisher information.

These no-go theorems state that there are quantum channels
in which we cannot utilize quantum entanglement to go beyond
the standard quantum limit [26]. This poses a question of
whether or not nonunitary channels which satisfy the above
no-go criteria can be used to detect entanglement. In this paper,
we answer this question first by showing that no separable
states bring any benefit to estimating one-parameter channels.
This is then translated into a simple yet general criterion:
If the amount of SLD quantum Fisher information of the
output state for a given family of a one-parameter quantum
channel is above a certain threshold, then the input state must
be entangled. We emphasize that the proposed criterion is not
meant to detect any entangled states, as typically done by a
quantum witness, but rather, it can detect useful entanglement
upon estimating a given quantum channel. This important point
and difference from the usual quantum witness approach were
already discussed in the literature [6,12]. We then examine
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several examples to demonstrate the obtained criterion, such as
the unitary channel, dephasing channel, depolarizing channel,
and transpose channel. We show that detection of entanglement
is possible for a certain range of parameters of these channels
in at least the two-qubit case.

This paper is organized as follows. In Sec. II we summa-
rize notations and discuss the relationship between classical
information quantities and quantum Fisher information. In
Sec. III we prove the main result of this paper and then give
several variants of the proposed criterion. In Sec. IV we apply
our criterion to the bipartite case and compare it to results
for different quantum channels. In Sec. V we extend our
criterion from the identically and independently distributed
(i.i.d.) setting to a more general setting in order to apply it to
open quantum systems. In the last section, we summarize our
results.

II. CHANNEL-PARAMETER ESTIMATION
IN QUANTUM SYSTEMS

We provide the basic terminology and notations used in
this paper. We then summarize the basic result known for one-
parameter channel estimation problems in quantum systems.

A. Preliminaries

Let H be a finite-dimensional Hilbert space and S(H) be
the set of all density operators on H, which are semidefinite
positive. Let �θ be a trace-preserving and completely positive
(TP-CP) map (also called a quantum channel, a quantum map,
etc.) from S(H) to itself that is parametrized by a single
parameter θ :

�θ : S(H) −→ S(H). (1)

Assume that the parameter θ takes values in an open subset
of real numbers, � ⊂ R; then the output state ρθ = �θ (ρ) for
a given input state ρ ∈ S(H) can be regarded as a quantum-
statistical model parametrized by this parameter θ ∈ �:

M = {ρθ = �θ (ρ) | θ ∈ � ⊂ R}. (2)

Depending on the channel and the given input state, the rank of
the output states �θ (ρ) may vary with respect to the parameter
θ in general. For mathematical convenience, we further assume
that the rank of the quantum statistical model M does not
change for all values θ ∈ �, at least for each fixed input
quantum state.

The SLD operator about ρθ ∈ M is defined by a Hermitian
operator Lθ satisfying

d

dθ
ρθ = 1

2
(ρθLθ + Lθρθ ). (3)

The SLD quantum Fisher information about ρθ is defined as

gθ [ρθ ] := tr
(
ρθL

2
θ

)
. (4)

By definition, it also holds that gθ [ρθ ] = tr(Lθ
d
dθ

ρθ ). For full-
rank states, the solution to operator equation (3) is unique; that
is, the SLD operator is uniquely defined. For low-rank states
such as pure states, on the other hand, the SLD operator is
not uniquely determined from the above equation. In this case,
one has to consider equivalent classes to define a proper inner

product first and then to define the SLD operator resulting in
the unique SLD quantum Fisher information [27].

There are several important properties of the SLD quantum
Fisher information. First, it is non-negative, i.e., gθ [ρθ ] � 0.

Second, quantum Fisher information is additive; that is, for
any product state ρθ = ρ1

θ ⊗ ρ2
θ ∈ S(H1 ⊗ H2),

gθ

[
ρ1

θ ⊗ ρ2
θ

] = gθ

[
ρ1

θ

]+ gθ

[
ρ2

θ

]
. (5)

Third, it cannot increase when a CP-TP � is applied to the
state, that is, the following inequality holds:

gθ [�(ρθ )] � gθ [ρθ ]. (6)

This property is usually referred to as the monotonicity of SLD
quantum Fisher information [28]. As a special case of quantum
channels, let us consider a general measurement, described by
a positive operator-valued measure (POVM), � = {�x | x ∈
X }. The map from a state ρ to a probability distribution
pθ (x) = tr(ρθEx) is regarded as the quantum to classical chan-
nel since the state ρ� = diag(pθ (x1),pθ (x2), . . . ) describes the
probability distribution for measurement outcomes. The SLD
quantum Fisher information about this (classical) state is equal
to the (classical) Fisher information Gc

θ [pθ ] defined by

Gc
θ [pθ ] :=

∑
x∈X

pθ (x)

[
d

dθ
ln pθ (x)

]2

=
∑
x∈X

[
d
dθ

pθ (x)
]2

pθ (x)
. (7)

Since the probability distribution for measurement outcomes is
determined by a given POVM �, we also write it as Gc

θ [�,ρθ ].
Thus, the following inequality for any POVM holds:

gθ [ρθ ] � Gc
θ [�,ρθ ]. (8)

We call this property the quantum to classical (q-c) mono-
tonicity of the SLD quantum Fisher information. Importantly,
the necessary and sufficient condition is explicitly known for
a measurement to attain the equality in Eq. (8) [29–31].

Last, quantum Fisher information is convex with respect
to quantum states. Let ρ

j

θ ∈ S(H) (j = 1,2) be two families
of states with the same parameter set �. The convex property
states

gθ

[
λρ1

θ + (1 − λ)ρ2
θ

]
� λgθ

[
ρ1

θ

]+ (1 − λ)gθ

[
ρ2

θ

]
(9)

for any λ ∈ [0,1]. This convexity can be proven in many ways.
The simplest is given in Ref. [18] using the monotonicity
of the SLD quantum Fisher information. It seems that the
equality condition for the above convex inequality is, in
general, complicated. Since this condition is important, we
examine it for a simple unitary model, which is given at the
end of Sec. III B.

The main objective of channel-parameter estimation in
quantum systems is to find the ultimate precision bound and
an optimal strategy upon estimating the value of parameters
describing a given channel. Here we stress that there is
no unique way to define the optimality, and one has to
analyze a given problem according to a suitable figure of
merit. A strategy upon estimating the value of the given
quantum channel consists of three elements: an input state,
a measurement, and an estimator. One way to get the optimal
strategy is as follows. For a fixed input state ρ, we optimize
over all possible quantum measurements described by a POVM
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� and an estimator θ̂ which is classical data processing.
The set (�,θ̂ ) is called a quantum estimator, or simply
an estimator in this paper. With this optimal estimator, we
optimize over all possible input states available. A triplet
(ρ,�,θ̂ ) is called an estimation strategy for the quantum
channel. For a one-parameter problem, this procedure gives
at least the asymptotically optimal one [32].

When one regards the mean-square error (MSE), defined
by

Eθ [�,θ̂] :=
∑
x∈X

[θ̂(x) − θ ]2tr[�θ (ρ)�x], (10)

as a figure of merit for the channel estimation, one can
derive lower bounds for the MSE depending upon resources
and estimation schemes under consideration. Let H⊗N and
S(H⊗N ) be the N tensor product of the Hilbert space and
the totality of positive density operators on it, respectively.
Consider an N th i.i.d. extension of the given channel, and
denote it as

�N
θ := �θ ⊗ �θ ⊗ · · · ⊗ �θ︸ ︷︷ ︸

N

: S(H⊗N ) −→ S(H⊗N ).

When one only uses the N th i.i.d. extension of input states
ρ⊗N to estimate the channel, the problem is to find an optimal
input state maximizing the SLD quantum Fisher information
for the channel �θ . Let ρ∗ be one such optimal input state and
g∗

θ be the maximum of the SLD quantum Fisher information:

g∗
θ (�θ ) := max

ρ∈S(H)
{gθ [�θ (ρ)]}. (11)

Importantly, the convexity property of the SLD Fisher infor-
mation guarantees that the optimal input state attaining g∗

θ (�θ )
can be a pure state [18].

The additivity of SLD quantum Fisher information becomes
gθ [�N

θ (ρ⊗N )] = Ngθ [�θ (ρ)]. For any locally unbiased estima-
tors (�,θ̂), the MSE is equal to the variance of estimating the
value of parameter and the SLD Cramér-Rao (CR) bound is
given by

Varθ [�,θ̂] � 1

N
[g∗

θ (�θ )]−1. (12)

In general, this bound is attained adaptively in the N infinite
limit unless the channel possesses a special symmetry. See the
discussion given in Ref. [33] and an experimental demonstra-
tion of the adaptive estimation [34]. Alternatively, one can use
the two-step method proposed in Refs. [35,36].

When one estimates the N th i.i.d. extension of the channel
�N

θ , one can also use other resources such as entangled
states ρ ∈ S(H⊗N ) for input states or ancillary states. In
this case, the variance for estimation can be further lowered.
This enhancement effect, known as quantum metrology, is
important for quantum information processing protocols and
has been investigated actively [1–3].

B. Experimental detection of SLD quantum Fisher information

In this section, we discuss a general strategy of how to detect
the amount of quantum Fisher information about the output
state of a given family of quantum channels in experiment.
We assume that the parameter for the quantum channel can
be tuned at will and there are identical resources to repeat the

same experiment sufficiently many times. A prominent step
was already reported in Ref. [7]. In this paper we shall present
a more general framework to supplement their result.

First of all, if one knows an input state ρ completely, then
one can directly evaluate the SLD quantum Fisher information
about the state �θ [ρ] by substituting an estimated value of
θ into formula (4). If one attempts to evaluate the SLD
quantum Fisher information without knowing input states,
one has to follow a different strategy as follows. For a given
one-parameter family of quantum channels �θ , let us fix an
unknown input state ρ and consider a fixed measurement �

on the output state ρθ = �θ (ρ). Then, the family of probability
distributions for the measurement outcomes is regarded as a
classical statistical model:

M(�,�θ ,ρ) = {pθ [�] | θ ∈ �},
pθ [�] = {pθ (x) = tr[�θ (ρ)�x] | x ∈ X }. (13)

By performing a sufficiently large repetition of the same
measurement for a fixed value of the parameter θ , we can
obtain experimental data according to the classical probability
distribution pθ [�]. These data then give a density estimation of
the distribution pθ [�]. We next change the channel parameter
θ and redo the same step as before. After sufficiently many
observations with respect to the changes in θ , say M different
choices, we can obtain the set of classical probability distri-
butions {pθ | θ ∈ {θ1,θ2, . . . ,θM}}. If we choose the parameter
set {θ1,θ2, . . . ,θM} (θk+1 > θk) such that the differences �k =
θk+1 − θk are sufficiently small, then we can directly calculate
the classical Fisher information Gc

θ [pθ ] approximately from
the definition (7).

Alternatively, one can estimate other information quantities
first and then calculate the classical Fisher information as
follows. In classical information theory, the most general
information quantity is the f divergence [37]. This family of
information quantity is a measure of “distance” between two
probability distributions. The formal definition of f divergence
for two probability distributions p,q on X is

Df (p||q) :=
∑
x∈X

p(x)f

(
q(x)

p(x)

)
, (14)

where f : R+ → R+ is a monotonically decreasing and
convex function and f (1) = 0 is a standard convention.
Familiar examples are f (t) = − log2(t) (the relative entropy),
f (t) = 1 − √

t (the Hellinger distance), and f (t) = tα (the
relative Rényi entropy). One important property of the f

divergence is the following relation to Fisher information:

Gc
θ [pθ ] = 2 lim

ε→0

1

ε2
Df (pθ ||pθ+ε). (15)

From experimental data obtained after many repetitions, we
can construct a curve for f divergence Df (pθ ||pθ ′) for
various different values of θ,θ ′. It is easy to see that formula
(15) provides an approximated value for the classical Fisher
information.

We next show that this experimentally obtained Fisher
information can attain the SLD quantum Fisher information by
the optimal measurement. As noted in the previous section, q-c
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monotonicity of the SLD quantum Fisher information implies

gθ [�θ (ρ)] � Gc
θ [�], (16)

where the equality holds if and only if � is optimal and is given
by the projection measurement about the SLD operator Lθ

[29–31]. By choosing the optimal measurement, the classical
Fisher information obtained with the above-described method
yields the approximated value of the quantum Fisher infor-
mation. However, this requires exact knowledge of the input
state, and hence, one can only get a rough estimate of the lower
bound for the SLD quantum Fisher information in general.

III. RESULT

A. Separability criterion

The main result of this paper is the following theorem.
Theorem 1. For a given channel �θ parametrized by a single

parameter θ , let �N
θ be the N th i.i.d. extension of �θ and g∗

θ (�θ )
be the largest value of SLD quantum Fisher information, which
is given by Eq. (11). For each value θ , if a density operator
ρ on S(H⊗N ) is separable, then the SLD quantum Fisher
information gθ [�N

θ (ρ)] is smaller than or equal to the value
Ng∗

θ (�θ ).
Several remarks are in order. First, taking the contraposition

of this theorem, it is equivalent to state that if the value of
SLD quantum Fisher information for the output states �N

θ (ρ)
is larger than Ng∗

θ (�θ ), then the input state ρ on S(H⊗N ) is
entangled.

Second, the special case of this separability criterion was
shown by Pezzé and Smerzi [5], where the channel is given
by a rotation along a given axis on N qubits in the context of
quantum metrology. In this case, g∗

θ = 1 holds for all values
of θ due to the symmetry of this unitary transformation. This
special case will be examined in the next section. Thus, our
contribution is to first prove their criterion in a general setting
and to provide a more general criterion.

Third, since the MSE for estimation of the value θ is
bounded by the inverse of SLD quantum Fisher information,
Theorem 1 states that separable states are not efficient
following the usage of the N th extension of a given channel.
But, of course, this theorem does not indicate if all entangled
states are more efficient than separable ones or not.

Fourth, it is straightforward to see this theorem can be
extended to more general channels parameterized by several
parameters. In this case, the SLD quantum Fisher information
becomes a matrix, and the corresponding inequality is given
by a matrix inequality. It is also not difficult to see from the
proof that SLD quantum Fisher information can be replaced
by other quantum Fisher information. See Sec. III C for more
details.

Last, the most important point is that the parameter θ is
arbitrary in Theorem 1. Since we can vary it as an arbitrary
value, we can then consider the union of all possible parameter
regions of entangled states. Let rent(θ ) be the entangled region
of the states derived from the inequality gθ [�N

θ (ρ)] > Ng∗
θ (�θ )

for a fixed value θ , i.e.,

rent(θ ) = {ρ ∈ S(H⊗N ) | gθ

[
�N

θ (ρ)
]

> Ng∗
θ (�θ )

}
; (17)

then, the union

Rent :=
⋃
θ∈�

rent(θ ) (18)

provides the most powerful criterion. Since the subset of states
Rent ⊂ S(H⊗N ) is solely determined by the given quantum
channel �θ , we denote it as Rent[�θ ]. With these notations, our
contribution is to derive the criterion

ρ ∈ Rent[�θ ] ⇒ ρ is entangled. (19)

This point will be illustrated by several examples in Sec. IV.
The proof of Theorem 1 is straightforward and is given as

follows.
Proof. Consider an arbitrary separable state on S(H⊗N ) of

the form

ρsep =
∑

j

pjρ
(1)
j ⊗ ρ

(2)
j ⊗ · · · ⊗ ρ

(N)
j , (20)

where
∑

j pj = 1 ∀pj � 0 and ρ
(k)
j are states on the kth

Hilbert space. Then, the following sequence of inequalities
holds:

gθ

[
�N

θ (ρsep)
] = gθ

⎡
⎣�N

θ

⎛
⎝∑

j

pjρ
(1)
j ⊗ · · · ⊗ ρ

(N)
j

⎞
⎠
⎤
⎦ (21)

= gθ

⎡
⎣∑

j

pj�
N
θ

(
ρ

(1)
j ⊗ · · · ⊗ ρ

(N)
j

)⎤⎦ (22)

�
∑

j

pjgθ

[
�N

θ

(
ρ

(1)
j ⊗ · · · ⊗ ρ

(N)
j

)]
(23)

=
∑

j

pjgθ

[
�θ

(
ρ

(1)
j

)⊗ · · · ⊗ �θ

(
ρ

(N)
j

)]
(24)

=
∑

j

pj

N∑
k=1

gθ

[
�θ

(
ρ

(k)
j

)]
(25)

�
∑

j

pj

N∑
k=1

g∗
θ [�θ ] (26)

= Ng∗
θ [�θ ]. (27)

Here equality (22) follows from the linearity of quantum
channels, and inequality (23) follows from the convexity of
SLD quantum Fisher information with respect to the states. The
i.i.d. assumption and additivity of the SLD Fisher information
give expression (25). Inequality (26) is due to the definition of
g∗

θ [�θ ], Eq. (11), and this completes the proof. �

B. Shift-parameter model

As noted in the remarks following Theorem 1, the theorem
is simplified when the channel is given by a unitary transfor-
mation of the form

�θ (ρ) = eiθAρ e−iθA, (28)

where a Hermitian operator A on H is called a generator of the
unitary transformation. The parameter region is any 2π interval
of real numbers, e.g., � = [0,2π ). The quantum-statistical
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model for the output states is given by

MA = {ρθ = eiθAρ0 e−iθA | θ ∈ R
}
. (29)

Here ρ0 is called a reference state. This model was referred
to as a shift-parameter model and a displacement model in
Refs. [13,15] and is also known as a unitary model in the
physics community.

The following lemma is fundamental for the shift-parameter
model.

Lemma 1. For a shift-parameter model, the SLD quantum
Fisher information is independent of the parameter θ and is
bounded from above as

gθ = gθ=0 � 4�ρ0A, (30)

where �ρA := tr(ρA2) − [tr(ρA)]2 is the square of the vari-
ance of operator A with respect to state ρ.

This lemma can be proven in different ways; here we sketch
the most transparent one due to Holevo [15].

Proof. For a given state ρ, let Dρ be a superoperator acting
on Hermitian operators X on H, which is formally defined by
the solution to the following operator equation:

ρ Dρ(X) + Dρ(X) ρ = 1

i
[ρ ,X]. (31)

It follows from the definition that the SLD operator is
expressed as

Lθ = 2Dρθ
(A) = e−iθAL0 eiθA, (32)

L0 = 2Dρ0 (A). (33)

This relation proves the first equality in Eq. (30).
We define a symmetric inner product for linear operators

X,Y on H by

〈X,Y 〉ρ := 1
2 tr[ρ(YX† + X†Y )]; (34)

then the SLD quantum Fisher information for the shift-
parameter model (29) is written as

g0 = 〈L0,L0〉ρ0 = 4〈Dρ0 (A),Dρ0 (A)〉ρ0 . (35)

Next, we note that the relation

〈X,X〉ρ −〈Dρ(X),Dρ(X)〉ρ = 〈X,
(
1 + D2

ρ

)
(X)
〉
ρ

� 0 (36)

holds for any Hermitian operators X and a state ρ on H since
the superoperator 1 + D2

ρ is positive with respect to the inner
product. Writing the variance as �ρ0A = 〈A − Ā,A − Ā〉ρ0

with Ā = tr(ρA) and using the relationDρ0 (A) = Dρ0 (A − Ā),
we prove the inequality in Eq. (30). �

We note that the equality condition for the inequality in
Eq. (30) is equivalent to the condition [15](

1 + D2
ρ

)
(A − Ā) = 0 ⇔ ρ0Aρ0 = Āρ2

0 . (37)

It is clear that this is satisfied if ρ0 is a pure state, and one might
expect that the converse also holds. This is true if the dimension
of the Hilbert space is 2, i.e., qubit. However, we note that the
condition that ρ0 is pure is just a sufficient condition in general.
The sufficiency is immediate if we use the second condition in
Eq. (37). A simple counterexample of mixed states satisfying

the upper bound is given by a rank-2 state in dimH = 3 as
follows:

ρ0 =
⎛
⎝λ 0 0

0 1 − λ 0
0 0 0

⎞
⎠, A =

⎛
⎝a 0 c∗

0 a d∗
c d b

⎞
⎠, (38)

where λ ∈ (0,1) and a,b and c,d are real and complex
numbers, respectively.

The variance of all possible states ρ ∈ S(H) is maximized
when we take an equally weighted superposition of the
eigenstates whose eigenvalues are maximum and minimum
[38]. With this observation, Theorem 1 and Lemma 1 can be
combined to give the following corollary.

Corollary 1. For a given shift-parameter model, let UN
A =⊗N

k=1 eiθA be a global unitary for S(H⊗N ). If a density
operator ρ on S(H⊗N ) is separable, then the SLD quantum
Fisher information gθ [UN

A ρ (UN
A )†] is smaller than or equal to

the value N (amax − amin)2, where amax (amin) is the maximum
(minimum) of the eigenvalues of A.

Since we have an achievable bound for unitary channels,
one can consider various extensions of the criterion. An
immediate one is to consider a set of rotations around several
axes and to take the average SLD Fisher information. Another
one is to consider k-producible states rather than a completely
separable state of N qubits. These extensions seem to work
quite well, as reported in Refs. [9–11]. In the next section,
we also examine how these variants can be derived from our
general theorem.

Before closing this section, we shall analyze the equality
condition for the convexity of SLD quantum Fisher infor-
mation, i.e., the equality condition in inequality (9), in the
case of this simple unitary model. Consider mixed qubit states
generated by the following unitary:

ρ
j

θ = e−iθn ·σ/2ρ
j

0 eiθn ·σ/2 (j = 1,2), (39)

where n is a given unit vector and θ is the rotation angle and
their convex mixture

ρλ
θ = λρ1

θ + (1 − λ)ρ2
θ . (40)

Let g
j

θ = gθ [ρj

θ ] and gλ
θ = gθ [ρλ

θ ] be the SLD quantum
Fisher information about states ρ

j

θ and ρλ
θ , respectively. A

straightforward calculation shows that

g
j

θ = g
j

θ=0 = |n × sj |2 (41)

when expressed in terms of the Bloch vector of the state, ρj

0 =
(I + sj · σ )/2. Let us define the difference �gλ

θ = λg1
θ + (1 −

λ)g2
θ − gλ

θ ; then it reads

�gλ
θ = λ(1 − λ)|n × (s1 − s2)|2. (42)

Therefore, the equality in convexity inequality (9) holds if
and only if the difference of the two Bloch vectors s1 − s2

is parallel to the rotation direction n. This is equivalent to
satisfying the condition s2 = s1 − 2(n · s1)n.

C. Variants of the proposed criterion

So far we have presented a simple yet very general criterion
upon detecting entangled states from parameter estimation of
quantum channels. In this section, we wish to provide several
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variants of the proposed criterion and to convince readers
that our criterion is indeed the most general one, including
all previous known criteria as variants. In the following we
provide three possible variations of the criterion and then
analyze the general structure behind this sort of entanglement
criterion based on quantum Fisher information. Proofs for
these variants are omitted because they follow almost the same
format as that of Theorem 1.

1. Average criterion

The first variant is to consider several families of quantum
channels:

�θ = {�(j )
θ

∣∣ θ ∈ �
}

(i ∈ IJ ), (43)

where the discrete index j ∈ IJ = {1,2, . . . ,J } distinguishes
different families of quantum channels. An extension to the
continuous-index-set case is straightforward and is omitted
below. Let us define the average SLD quantum Fisher
information about a given state ρ ∈ S(H⊗N ) with respect to
the index set IJ by

ḡθ [�θ (ρ)] :=
∑
j∈IJ

gθ

[
�

(j )
θ (ρ)

]
(44)

and the maximal SLD quantum Fisher information for the
single-input state by

ḡ∗
θ (�θ ) := max

ρ∈S(H)

⎧⎨
⎩∑

j∈IJ

gθ

[
�

(j )
θ (ρ)

]⎫⎬⎭. (45)

Then, the average criterion states the following.
Lemma 2. If state ρ ∈ S(H⊗N ) is separable, the following

inequality always holds:

ḡθ [�θ (ρ)] � Nḡ∗
θ (�θ ). (46)

Importantly, this variant provides a stronger criterion than the
original one after taking the average with respect to the index
set. This is because the following relation holds in general:

max
ρ∈S(H)

⎧⎨
⎩∑

j∈IJ

gθ

[
�

(j )
θ (ρ)

]⎫⎬⎭ �
∑
j∈IJ

max
ρ∈S(H)

{
gθ

[
�

(j )
θ (ρ)

]}
. (47)

In other words, ḡ∗
θ (�θ ) � g∗

θ (�θ ).
In Refs. [9–11], the authors pointed out that taking the

average with respect to different rotational axes sharpens
the entanglement criterion for the family of qubit unitary
channels. In this case the enhancement factor is 2/3, i.e.,
ḡ∗

θ (�θ ) = 2g∗
θ (�θ )/3, and the mathematical reason is clearly

explained here.

2. Approximation criterion

To apply the entanglement criterion studied in this paper, it
is necessary to compute SLD quantum Fisher information for
composite systems as well as the maximum value for a single-
input state. Although such a computation is straightforward
numerically, the analytical result cannot be expected except
in very special cases. Here we point out that an approximated
value enables us to detect entangled states.

Case 1 (bounds for the single-input state). Suppose we have
found a bound for the SLD quantum Fisher information about

single-input states by some function fθ as

gθ [�θ (ρ)] � fθ , (48)

which holds for each parameter value θ . Then, the variant
criterion states that if a state ρ is separable, then the following
inequality holds:

gθ [�θ (ρ)] � Nfθ . (49)

Equivalently, if gθ [�θ (ρ)] > Nfθ , then ρ is entangled.
Case 2 (bounds for the composite state). In many cases,

computation of the SLD quantum Fisher information become
harder as the number of composite systems increases. Suppose
we have an inequality for the SLD quantum Fisher information
about the output state �θ (ρ) as

gθ [�θ (ρ)] � Fθ (ρ); (50)

then, the second variant of the approximation criterion states
the following. For a given composite state ρ, if the inequality

Fθ (ρ) > Ng∗
θ (�θ ) (51)

holds, then state ρ is entangled.
An important example of the function of states Fθ (ρ) is the

inverse of the MSE. This is due to the SLD CR bound:

Eθ [�,θ̂ ] � {gθ [�θ (ρ)]}−1. (52)

This result enables us to conclude the simple fact that if the
inverse value of the MSE after estimating a given channel
exceeds a certain threshold Ng∗

θ (�θ ), then the composite state
must be entangled.

3. Nonidentical channel criterion

In the last variant of criteria, we consider nonidentical chan-
nels. For simplicity, let us consider two different parametric
families of quantum channels:{

�
(j )
θ

∣∣ θ ∈ �
}

(j = 1,2), (53)

acting on the same state space S(H). We now divide the N -
composite system into the first k system and the remaining
N − k system, corresponding to the splitting of the Hilbert
space: H⊗N = H⊗k ⊗ H⊗N−k . Let us apply the first channel
�

(1)
θ identically and independently to the k-partite states and

the second channel �
(2)
θ to the rest, that is, consider a quantum

channel of the form �θ := (�(1)
θ )⊗k ⊗ (�(2)

θ )⊗N−k . Then, the
variant criterion states the following.

Lemma 3. If a given state ρ ∈ S(H⊗N ) is separable, then
the SLD quantum Fisher information about �θ (ρ) satisfies the
inequality

gθ [�θ (ρ)] � kg∗
θ

(
�

(1)
θ

)+ (N − k)g∗
θ

(
�

(2)
θ

)
, (54)

where g∗
θ (�(j )

θ ) = max{gθ [�(j )
θ (ρ)]} is the maximum value of

the SLD quantum Fisher information for the j th channel.
We note that an extension to more than two channels is

straightforward.

4. General structure

In this section, we analyze the general structure behind the
proposed criterion based on quantum Fisher information. The
key ingredients for our discussion are as follows. The existence
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of the “information quantity” I (ρ), which is a functional of
states, satisfies three axioms: (1) positivity, i.e., I (ρ) � 0 for
all states ρ ∈ S(H), (2) additivity about product states, i.e.,
I (ρ ⊗ σ ) = I (ρ) + I (σ ), and (3) convexity about the states,
i.e., I [λρ + (1 − λ)σ ] � λI (ρ) + (1 − λ)I (σ ) for λ ∈ [0,1].
An additional element is boundedness: supρ∈S(H){I (ρ)}<∞.
With these assumptions, we have the following general
theorem.

Theorem 2. If a state ρ ∈ S(H⊗N ) is (completely) separa-
ble, then the information quantity is always bounded as

I (ρ) � NI ∗, (55)

where I ∗ = supρ∈S(H){I (ρ)} is the maximum information for
a single-input state.

The proof of this theorem is along the same lines as that of
Theorem 1.

One of the main achievements of information theory is to
establish nontrivial equality between the information quantity
defined via calculus and the operationally defined quantity. The
general form (55) emphasizes that this class of entanglement
criteria is not meant to detect any entangled states but
to pick up useful entanglement for a given information
processing task. To put it differently, if a given composite
state ρ passes through the above criterion, then entanglement
presented in state ρ provides an advantage over a state without
entanglement. In the case of quantum Fisher information
studied in this paper, the proposed criterion can detect useful
entanglement upon estimating the value of a parameter for
a given quantum channel. Additional analysis of the above
general criterion is required before any conclusive statement
can be made about whether it is useful or not. That is beyond
the scope of this paper and will be performed in due course.

IV. EXAMPLES

In this section we analyze several examples to illustrate
the proposed criterion to detect entanglement, in particular,
criterion (19). To get analytical results, we simplify the setting
to the two-qubit case, that is, N = 2 and dimH = 2. The input
states analyzed in this section are the Bell-diagonal states
defined by

ρBD(c1,c2,c3) := 1

4

⎛
⎝I +

3∑
j=1

cjσj ⊗ σj

⎞
⎠. (56)

Here σj are the usual Pauli spin operators, and the coefficients
are restricted from the positivity condition as

1 − c1 − c2 − c3 � 0,

1 − c1 + c2 + c3 � 0,

1 + c1 − c2 + c3 � 0,

1 + c1 + c2 − c3 � 0. (57)

This state space is geometrically represented by a tetrahedron
in the (c1,c2,c3) coordinate system. All separable states for the
two-qubit case are given by the well-known positive partial
transpose (PPT) criterion [39,40]. For the Bell-diagonal states,
it is given by a simple inequality:

ρDB is separable ⇔ |c1| + |c2| + |c3| � 1, (58)

FIG. 1. Two-dimensional cross sections of state space for Bell-
diagonal states (56): c1 (vertical axis) vs c3 (horizontal axis) for (a)
case (a), c1 = c2, and (b) case (b), c1 = −c2. In Fig. 1(a), the largest
triangle shows the state space, and two smaller triangles indicate
entangled regions. The same convention holds for (b).

which is geometrically represented by an octahedron located
inside the tetrahedron. In the following, we mainly analyze
two-dimensional cross sections of the Bell-diagonal states
to draw two-dimensional plots rather than three-dimensional
ones. The first is to set c1 = c2 [case (a)], and the other is to
set c1 = −c2 [case (b)]. For case (a), the state space is given
by a triangle in Fig. 1(a), and the entangled regions are shown
by the gray areas. Similarly, the matter for case (b) is shown
in Fig. 1(b).

Further simplification arises if we restrict the following two
subfamilies for case (a):

ρ+
λ = ρBD(λ,λ,−λ),

ρ−
λ = ρBD(−λ,−λ,−λ). (59)

States ρ±
λ are also written as

ρ±
λ = λ|ψ±〉〈ψ±| + 1

4 (1 − λ)I, (60)

where |ψ±〉 = (|01〉 ± |10〉)/√2 are the Bell states. ρ−
λ is

known as the Werner state, and ρ+
λ is locally equivalent to

it. For λ in � := (−1/3,1), both states ρ±
λ are strictly positive.

Further, ρ±
λ are entangled if and only if λ ∈ �ent := (1/3,1].

The difference between ρ±
λ is that ρ−

λ is a rotationally invariant
state (spin-singlet state), whereas ρ+

λ is only invariant around
the z axis.

Our concern is to find a set of entangled states which
can be detected by a given quantum channel. This quantity
is represented by Eq. (17) or Eq. (18).

A. Unitary channels

1. Rotation around the z axis

We first consider a rotation around the z axis on a single-
qubit system as

Uz(θ ) = eiθσz/2, (61)

with θ ∈ � = [0,2π ). The maximum variance of the generator
σz/2 is 1. In this case, Theorem 1 reduces to the Pezzé-Smerzi
criterion that compares the value of SLD quantum Fisher
information about the rotated state UN

z (θ )ρ[UN
z (θ )]† with

the total number of qubit systems, i.e., N . Here UN
z (θ ) =
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FIG. 2. Entangled regions detected by unitary channels for Bell-
diagonal states (56): (a) Case (a), c1 = c2, and (b) case (b), c1 = −c2.
State space and entangled regions follow the same convention as in
Fig. 1. The dotted curve corresponds to the boundary due to a rotation
around the z axis, and dashed curves are those due to a rotation around
the x axis.

⊗N
k=1 eiθσz/2 = eiθJz , with Jz being the z component of the

total angular momentum operator. The SLD quantum Fisher
information for the two-qubit Bell-diagonal states is

gz
θ := gθ

[
U 2

z (θ )ρBD

(
U 2

z

)†] = 2
(c1 − c2)2

1 + c3
, (62)

and hence, the Pezzé-Smerzi criterion states that ρBD is
entangled if

2
(c1 − c2)2

1 + c3
> 2. (63)

For case (a), this condition cannot be satisfied since the
numerator is always zero. Thus, the above criterion does not
detect entangled states at all. Case (b), on the other hand, reads
4c2

1 > 1 + c3, and the entangled region detected by this unitary
is shown in Fig. 2(b). In this figure, the dotted curve represents
the parabola 4c2

1 = 1 + c3, and the entangled region is outside
of this curve. Due to the symmetry c1 ↔ −c1, the result is
symmetric with respect to reflection about the c3 axis. This is
in contrast to the case of the unitary channel generated by a
rotation around the x axis.

As noted before, the SLD quantum Fisher information for
states ρ±

λ is zero due to the fact that Jz commutes with ρ±
λ .

Thus, one cannot get any useful information about ρ±
λ by

applying any global rotation around the z axis.

2. Rotation around the x axis

We next consider a rotation around the x axis as

Ux(θ ) = eiθσx/2. (64)

The SLD quantum Fisher information for the two-qubit Bell-
diagonal states is

gx
θ := gθ

[
U 2

x (θ )ρBD

(
U 2

x

)†] = 2
(c2 − c3)2

1 + c1
, (65)

and thus, the Pezzé-Smerzi criterion is that ρBD is entangled
if

2
(c2 − c3)2

1 + c1
> 2. (66)

For case (a), this is expressed as (c1 − c3)2 > 1 + c1, and the
detected entangled region is plotted in Fig. 2(a). Case (b) reads
(c1 + c3)2 > 1 + c1 and is shown in Fig. 2(b). In these figures,
the dashed curves represent parabolas (c1 ± c3)2 = 1 + c1, and
the entangled regions are outside of these curves. Comparing
two unitary channels, we see that Ux can detect entangled
states only within the regions c1 > 0 and c1 < 0 for cases (a)
and (b), respectively. The unitary channel Uz, on the other
hand, can detect entangled states only for case (b) within the
region with the reflection symmetry c1 ↔ −c1.

Upon considering the one-parameter case, the SLD quan-
tum Fisher information about ρ+

λ is calculated as

gθ

[
U 2

x ρ
(
U 2

x

)†] = 8λ2

1 + λ
. (67)

Since the maximum SLD quantum Fisher information for the
single system is 1, as discussed in Sec. III B, the Pezzé-Smerzi
criterion states that state ρ+

λ is entangled if the following
inequality holds:

8λ2

1 + λ
> 2 ⇔ 4λ2 − λ − 1 > 0. (68)

Solving this inequality leads to the sufficient condition for the
entangled region:

Rent =
(√

17 + 1

8
,1

)
. (69)

The numerical value (
√

17 + 1)/8 � 0.64 is larger than the
true boundary 1/3, as it should be.

This example shows that entanglement in state ρ−
λ cannot

be detected by a rotation around any axis. For state ρ+
λ ,

on the other hand, a rotation around the x axis can detect
entanglement.

B. Dephasing channel

We consider the following dephasing channel:

�
Dph

θ (ρ) := 1 + θ

2
ρ + 1 − θ

2
σzρσz, (70)

where the channel parameter θ represents the strength of de-
phasing: θ ∈ � = (0,1), e.g., no error ⇔ θ = 1 and complete
dephasing ⇔ θ = 0. The maximum value of the SLD quantum
Fisher information for a single-input state is given by

g∗
θ

[
�

Dph

θ

] = 1

1 − θ2
. (71)

The SLD quantum Fisher information is calculated for the
Bell-diagonal state (56) as

gθ

[
�

Dph

θ (ρBD)
]

= θ2

[
(c1 + c2)2

1 − c3 − θ2(c1 + c2)
+ (c1 + c2)2

1 − c3 + θ2(c1 + c2)

+ (c1 − c2)2

1 − c3 − θ2(c1 − c2)
+ (c1 − c2)2

1 − c3 + θ2(c1 − c2)

]
.

(72)

Thus, the proposed entangled criterion is gθ [�Dph

θ (ρBD)] >

2g∗
θ [�Dph

θ ] = 2/(1 − θ2).
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To visualize the above result, we consider case (a) (c1 = c2) first. This reduces the expression gθ [�Dph

θ (ρBD)] > 2/(1 − θ2)
as

θ2

[
4c2

1

1 − c3 − 2θ2c1
+ 4c2

1

1 − c3 + 2θ2c1

]
>

2

1 − θ2
⇔ 4θ4c2

1 + 4θ2(1 − θ2)c2
1(1 − c3) − (1 − c3)2 > 0

⇒ c3 > 1 − 2θ2
[
(1 − θ2)c2

1 + |c1|
√

1 − (1 − θ2)2c2
1

]
,

within the parameter regions for (c1,c3) allowed by positivity of the Bell-diagonal state. Therefore, varying the parameter θ yields
criterion (19) as follows:

c3 > min
θ∈[0,1]

{
1 − 2θ2

[
(1 − θ2)c2

1 + |c1|
√

1 − (1 − θ2)2c2
1

]} = 1 − 2 max
θ∈[0,1]

{
θ2
[
(1 − θ2)c2

1 + |c1|
√

1 − (1 − θ2)2c2
1

]}
= 1 − 2|c1|, (73)

where the maximization is a straightforward exercise. We note
that condition (73) does not detect entangled states since it is
equivalent to the boundary of positivity of the state.

We next consider case (b) (c1 = −c2). The result is exactly
the same as that for case (a) due to the symmetry c2 ↔ −c2

in the setting. Hence, no entangled state is detected. To
understand this better, we finally consider states ρ±

λ . In this
case, the above criterion before carrying out the minimization
procedure is

4θ2(1 − θ2)λ3 − (1 − 4θ2)λ2 − 2λ − 1 > 0 (74)

for both ρ±
λ . The left-hand side of this inequality is always

negative as a function of λ ∈ (−1/3,1) and θ ∈ (0,1).

C. Depolarizing channel

The depolarizing channel for a two-dimensional quantum
system is defined by

�θ (ρ) := θρ + 1 − θ

2
tr(ρ)I. (75)

Here the channel parameter θ represents the probability of
errors taking values in � = (0,1), e.g., no error ⇔ θ = 1 [41].

Optimal parameter estimation strategies for this channel
were studied based on various figures of merit. See, for
example, Refs. [18,42,43]. It was shown that this channel is
programmable and hence θ cannot be estimated with quantum
metrological enhancement [20]. The maximum value of the
SLD quantum Fisher information for a single-input state is
given by an arbitrary pure state as

g∗
θ [�DP

θ ] = 1

1 − θ2
. (76)

The SLD quantum Fisher information for the Bell-diagonal
state (56) is easily computed as

gθ

[
�DP

θ (ρBD)
]

= θ2

[
(c1 + c2 + c3)2

1 − θ2(c1 + c2 + c3)
+ (−c1 + c2 + c3)2

1 + θ2(−c1 + c2 + c3)

+ (c1 − c2 + c3)2

1 + θ2(c1 − c2 + c3)
+ (c1 + c2 − c3)2

1 + θ2(c1 + c2 − c3)

]
. (77)

A difference from the dephasing channel is that the channel
parameter θ also appears as a multiplication factor for c3.
From this we expect that the SLD quantum Fisher information

changes depending on c3 by varying θ . The proposed entan-
glement criterion is expressed as gθ [�DP

θ (ρBD)] > 2g∗
θ [�DP

θ ],
which can be easily checked numerically. To get analytical
insight into this entanglement criterion, we consider two
cases [cases (a) and (b)] as before. First, consider case (a)
(c1 = c2). From expression (77), the entanglement criterion
gets simplified as

c2
1 >

1 − θ2c3

4θ2

1 − θ2(2 − θ2)c2
3

1 + θ2(2 − θ2)c3
=: f (θ,c3). (78)

We next consider an optimization for the right-hand side of
Eq. (78) by varying the channel parameter θ . With thorough
analysis we can show that

c2
1 > min

θ∈(0,1)
f (θ,c3)

=
{

f ∗(c3) if c3 < − 1+√
17

6 ,

1
2 (1 − c3) otherwise,

where f ∗(c3) is a very complicated function of c3 whose
explicit expression is omitted in this paper. It is easy to see that
the condition c2

1 > (1 − c3)/2 cannot detect entangled states
at all. Therefore, entangled states can be detected only for the
region −1 < c3 < −(1 + √

17)/6. Upon analyzing the above
optimization, we observe that the channel parameter θ needs to
be in the set θ ∈ (1/

√
3,1) in order to detect entangled states.

Otherwise, inequality (78) only provides the region that is
outside the state space. Physically speaking, the channel cannot
be too noisy to detect entangled states. Figure 3(a) shows
the optimal curves c1 = ±√

f ∗(c3) detecting entanglement
located in two corners of the triangle-shaped state space.
(Entangled regions are outside of these curves.) In Fig. 3(b),
we also plot several curves c1 = √

f (θ,c3) for four different
values of θ , θ = 0.3,0.5,0.7,0.9 (from the dotted curve to
the dashed ones). Case (b) is omitted due to the symmetry
c3 ↔ −c3.

We finally consider the case of one-parameter subfamilies
ρ±

λ . The SLD quantum Fisher information is the same for the
two input states ρ±

λ and is calculated as

gθ

[
�2

θ (ρ±
λ )
] = θ2

[
3

λ2

1 − θ2λ
+ (3λ)2

1 + 3θ2λ

]

= 12θ2λ2

(1 − θ2λ)(1 + 3θ2λ)
.
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FIG. 3. Entangled regions detected by the depolarizing channels
for Bell-diagonal states (56). (a) The threshold curves detecting
entangled states, c1 = ±√

f ∗(c3), corresponding to criterion (19).
(b) Entanglement detection curves [Eq. (78)] for four different values
of θ = 0.3,0.5,0.7,0.9 (from the dotted curve to the dashed ones).

Thus, a sufficient condition for entanglement obtained from
Theorem 1 is gθ [�2

θ (ρ±
λ )] > 2g∗

θ [�θ ], or, equivalently,

3θ2(2 − θ2)λ2 − 2θ2λ − 1 > 0. (79)

This inequality then gives the entangled region for λ as

rent(θ ) =
(

θ +
√

2(3 − θ2)

3θ (2 − θ2)
,1

)
, (80)

which depends explicitly on the value of the channel parameter
θ . As before, an important remark is that the parameter θ

needs to satisfy θ ∈ [θc,1] in order for the depolarizing channel
to detect entanglement successfully. Otherwise, the criterion
cannot tell if the states are entangled or not. Here the threshold
is found analytically as θc = 1/

√
3.

Since this sufficient condition holds for any θ ∈ (θc,1), the
most useful one is given by the union as

Rent =
⋃
θ∈�

rent(θ ) = (λDP ,1), (81)

where λDP is the minimum of the function appearing in
expression (80) and is readily calculated as

λDP := min
θ∈�

θ +
√

2(3 − θ2)

3θ (2 − θ2)
= 1 + √

3

3
, (82)

which is attained with θ∗ = [(3 − √
3)/2]1/2. The numerical

value λDP � 0.910 is larger than the one from a rotation
around the x axis.

We note that the authors of Ref. [44] analyzed a parameter
estimation problem of the depolarizing channel based on a
specific measurement and an estimator. They observed that
entangled states are superior to separable states for a certain
subfamily of the Werner state. The numerical value found in
Ref. [44] is close to the value reported in this paper, yet they
differ by the nature of problem.

D. Transpose channel

In this last example, we shall analyze a rather unusual
channel defined in terms of a transpose operation. It is known
that transposition operations are not completely positive,
only 1-positive. Here a key point is that the derivation of

entanglement criteria does not rely on complete positivity but
on monotonicity of SLD quantum Fisher information, which is
true for arbitrary 1-positive maps. Thus, trace preserving and
a 1-positive map are also capable of detecting entanglement.

We consider the following channel from S(C2) to itself:

�T P
θ (ρ) := 1 + θ

2
ρ + 1 − θ

2
ρT , (83)

with T being the transpose operation. Here the parameter
θ takes values in � = (−1,1). We call the above channel a
transpose channel in this paper. The maximum value of the
SLD quantum Fisher information when one uses a single-qubit
input state is

g∗
θ

[
�T P

θ

] = 1

1 − θ2
, (84)

which is attained with the eigenstates of σy . The SLD quantum
Fisher information for the Bell-diagonal input state is

gθ

[
�T P

θ (ρBD)
]

= θ2c2
2

(
1

1 − c1 − θ2c2 − c3
+ 1

1 − c1 + θ2c2 + c3

× 1

1 + c1 − θ2c2 + c3
+ 1

1 + c1 + θ2c2 − c3

)
. (85)

In contrast to the previous examples, θ dependence only
appears in front of the state parameter c2.

To understand the criterion gθ [�T P
θ (ρBD)] > 2g∗

θ [�T P
θ ], let

us consider case (a) (c1 = c2). A straightforward calculation
gives

c2
1 >

βθ (c3) − [βθ (c3)2 − αθ (c3)γ (c3)]1/2

αθ (c3)
=: F (θ,c3),

αθ (c3) = (1 − θ2)[(1 + θ2)3 − 4θ2(1 − c3)],

βθ (c3) = (1 + θ2)
(
1 + c2

3

)+ 4θ2c3,

γ (c3) = (
1 − c2

3

)2
. (86)

One can show that αθ (c3),βθ (c3) > 0 within our parameter
regions [θ ∈ (0,1),|c1| < 1,|c3| < 1] and the right-hand side
of inequality (86) is in the range (0,1). We next optimize
inequality (86) by changing the channel parameter θ . In a
manner similar to what we did before, we obtain the following
result:

c2
1 >

{
1 − |c3| if −1 < c3 � − 1

3 ,
1
2 (1 − c3) if − 1

3 < c3 < 1.
(87)

Thus, the entanglement criterion is useful only when the state
parameter satisfies −1 < c3 � −1/3. Figure 4(a) shows the
entangled region detected by the transpose channel (entangled
regions are outside of the lines). In Fig. 4(b), we plot several
curves c1 = √

F (θ,c3), which appear in inequality (86), for
four different values of θ , θ = 0.1,0.4,0.7,0.9 (from the dotted
curve to the dashed ones).
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FIG. 4. Entangled regions detected by the transpose channels
for Bell-diagonal states (56). (a) Entanglement detection lines and
(b) the curves c1 = √

F (θ,c3) [Eq. (86)] for fixed values of θ =
0.1,0.4,0.7,0.9 (from the dotted curve to the dashed ones).

Last, we consider the one-parameter family of input states
ρ

pm

λ . The SLD quantum Fisher information is the same for the
both states, and it is given by

gθ

[
�T P

θ (ρ±
λ )
] = θ2λ2

[
2

1

1 − θ2λ
+ 1

1 + (2 + θ2)λ

+ 1

1 − (2 − θ2)λ

]

= 2θ2λ2 1 + 2θ2λ − 4λ2

(1 − θ2λ)[(1 + θ2λ)2 − 4λ2]
.

A sufficient condition for entangled states gθ [�PT
θ (ρ+

λ )] >

2g∗
θ [�T P

θ ] is expressed after some calculation as

Hθ (λ) := 4θ2(1 − θ2)λ4 + θ2(θ4 − 2θ2 + 4)λ3

+ (θ4 − 2θ2 − 4)λ2 + θ2λ + 1 < 0. (88)

A detailed analysis of the quartic equation Hθ (λ) = 0 shows
that there are four real roots for all values of θ ∈ �.

The relevant entangled region is then found as

rent(θ ) =
(

λ2(θ ),
1

2 − θ2

)
. (89)

Here λ2(θ ) is the second largest solution to the quartic equation
Hθ (λ) = 0, whose explicit form is omitted because of its
lengthy expression. We see that λ2(θ ) varies from 1/2 to 1
depending on the value of θ . As in the depolarizing channel,
we take the union of rent(θ ) to get the most useful criterion:

Rent =
⋃
θ∈�

rent(θ ) = (λT P ,1), (90)

where λT P = minθ∈� λ2(θ ) = 1/2 is calculated analytically.

E. Comparison and discussion

In this section, we compare the five different channels
studied in the previous section and discuss our result. They

are (1) rotation around the z axis (Uz) �z
θ , (2) rotation around

the x axis (Ux) �x
θ , (3) the dephasing channel (Dph) �

Dph

θ ,
(4) the depolarizing channel (DP) �DP

θ , and (5) the transpose
channel (TP) �T P

θ . Mathematically, their actions are

�z
θ (ρ) = eiθσz/2ρ e−iθσz/2,

�x
θ (ρ) = eiθσx/2ρ e−iθσx/2,

�
Dph

θ (ρ) = 1 + θ

2
ρ + 1 − θ

2
σzρσz,

�DP
θ (ρ) = θρ + 1 − θ

2
tr(ρ)I,

�T P
θ (ρ) = 1 + θ

2
ρ + 1 − θ

2
ρT .

From the entanglement detection perspective, first of all,
unitary channels detect entangled states without any depen-
dence on rotational angles θ . This is because the SLD quantum
Fisher information is independent of parameter values in
general (see Lemma 1). In contrast, nonunitary channels
do depend on the parameter values θ . In particular, it was
demonstrated that some parameter regions are only useful for
entanglement detection. From examples studied in this paper,
noise level should not be too high; otherwise, output states do
not carry useful information about input states. Comparing the
five channels indicates that TP works better than other channels
and Dph does not perform any function. However, one cannot
say which channel is superior among Uz,Ux , and DP for the
Bell-diagonal states in general. It always depends on the nature
of the states under study. An interesting question might be the
reverse-engineering question: For a given entangled state ρ,
is there a quantum channel �θ such that the SLD quantum
Fisher information gθ [�θ (ρ)] > Ng∗

θ if and only if state ρ

is entangled? The example of the transposed channel and
preliminary analysis suggest that another unphysical channel
(not completely positive) could be a candidate. This line of
research may open up another approach on how to quantify
the entanglement from state estimation perspectives. From the
channel-parameter estimation perspective, as demonstrated by
these examples, there are several differences between unitary
channels and nonunitary ones. We first note these nonunitary
channels, except for the transpose channel, are typical noise
models. Estimating the value of noise is also an important issue
for any practical quantum information processing task. It is
rather unexpected that all Bell-diagonal states are useless upon
estimating the dephasing channel. This means separable states
have the best performance when compared to the Bell-diagonal
states. It also happens that most of the Bell-diagonal states do
not provide an advantage for the depolarizing channel since
the entangled region in Fig. 3(a) is rather small. However, as an
important reminder, a specific entangled state is more useful
for a particular channel but not others. For example, the singlet
state, which is a maximally entangled state, is located in the
bottom left corner of Fig. 1(a), and its neighborhood states are
completely useless for unitary channels but are good for the
depolarizing channel.

Next, let us compare the one-parameter family ρ+
λ . The

results for ρ+
λ are summarized in Table I. In Table I, the

symbol ∅ indicates that a channel cannot be used to detect
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TABLE I. Summary of entanglement detection for state ρ+(λ) for
five different channels: two unitary channels (Uz,Ux), the dephasing
channel (Dph), the depolarizing channel (DPC), and the transpose
channel (TPC). Entanglement region rent(θ ) is defined in Eq. (17),
and its union is denoted by Rent, defined by Eq. (18). The symbol ∅
represents the empty set. Numerical values are (1 + √

3)/3 � 0.91 >

(
√

17 + 1)/8 � 0.64 > 1/2.

θ Dependence rent(θ ) Rent

Uz No ∅ ∅
Ux No (

√
17+1
8 ,1) (

√
17+1
8 ,1)

Dph Yes ∅ ∅
DPC Yes ( θ+

√
2(3−θ2)

3θ(2−θ2)
,1) ( 1+√

3
3 ,1)

TPC Yes (λ2(θ ), 1
2−(1−2θ)2 ) ( 1

2 ,1)

entangled states. λ2(θ ) is the second largest solution to the
quartic equation Hθ (λ) = 0 [Eq. (88)]. Numerically, λ2(θ )
varies from 1/2 to 1 depending on the value of θ .

As noted before, the rotation around any axis is not
useful for the Werner state ρ−

λ since SLD quantum Fisher
information about the output states is always zero. As we can
see from Table I, for ρ+

λ , the rotation around the x axis can
be used to detect entanglement which performs better than the
depolarizing channel. Interestingly, the (unphysical) transpose
channel can detect entangled states better than other examples
analyzed in this paper.

The main difference between unitary channels and nonuni-
tary channels is that SLD quantum Fisher information is θ

independent for the unitary case. This might be an advantage
in a realistic situation if one wishes to detect entangled states
with an unknown unitary channel. From our point of view,
however, this is not a problem since we are willing to detect
entangled states by engineering appropriate quantum channels.

Experimentally, we prepare a family of quantum channels
�θ with a controllable parameter θ . We next apply this family
of channels to an unknown multipartite state and perform
a good measurement on the output state. The measurement
results then give probability distributions depending on the
value of the parameter θ . We can then calculate classical
Fisher information, which coincides with the SLD quantum
Fisher information if the measurement is chosen to be the
optimal one. By comparing the value of Fisher information for
multipartite states with the optimal Fisher information for a
single-input state, which is exploited in advance, one can tell
if the states are entangled or not based on the criterion given
in Theorem 1.

Last, we show that for a certain parameter range (low-
noise regime), the depolarizing cannel can be estimated more
efficiently if we use entangled input states. Although we
cannot get the full benefit from entanglement to attain quantum
metrological enhancement, entanglement indeed brings the
estimation error lower than the separable input states. Whether
this effect is significantly important depends on how accurately
one wishes to estimate the value of a parameter of a given
channel. More analysis of other quantum channels as well as
various entangled input states is needed to make any general
statement.

V. EXTENSION TO NON-i.i.d. QUANTUM CHANNELS:
AN APPLICATION TO OPEN QUANTUM SYSTEMS

So far we have mainly been concerned with only the i.i.d.
extension of quantum channels. In this section, we shall extend
the proposed criterion to the non-i.i.d. case first and then
discuss briefly how to apply it to open quantum systems. The
open quantum system is, in general, described by the dynamics
of a subsystem of a large quantum system, typically a small
system coupled with another large quantum system (bath).
Mathematically, it can be described by the Lindblad-type
master equation. Many such dynamics in open quantum
systems cannot be written as the i.i.d.-extended form of a single
channel, but rather take a more general expression. It is clear
that if a given quantum noise is capable of generating entangled
states, one cannot use this channel to detect entanglement
contained in an input state. Therefore, we study a restricted
class of quantum noises that does not create any entangled
states from any separable state in the following.

Let �θ be a quantum channel from quantum states on
HN := H1 ⊗ H2 ⊗ · · · ⊗ HN to itself. We say that a quantum
channel is separable if all separable states remain separable
under the action of this channel. We consider a further
restricted class of separable channels such that all product
states remain product states. We call these channels completely
separable, meaning that they do not create any classical
correlation. Mathematically, a completely separable quantum
channel �sep satisfies the following condition: For all possible
states ρ(j ) ∈ S(Hi), there exist some output states σ (j ) ∈
S(Hi) such that

�sep(ρ(1) ⊗ ρ(2) ⊗ · · · ⊗ ρ(N)) = σ (1) ⊗ σ (2) ⊗ · · · ⊗ σ (N)

(91)

holds.
When considering completely separable channels, we have

the following theorem.
Theorem 3. Consider a completely separable channel �θ :

S(HN ) → S(HN ) parametrized by a single parameter θ . Let
g∗

θ (�θ ) be the largest value of SLD quantum Fisher information
defined by

g∗
θ (�θ ) := max

i
max

ρ(i)∈S(Hi )
Tr
j �=i

× {�θ

(
ρ

(1)
CM ⊗ · · · ⊗ ρ(i) ⊗ · · · ⊗ ρ

(N)
CM

)}
, (92)

with ρ
(i)
CM being the completely mixed state on Hi . For each

value θ , if a density operator ρ on S(HN ) is separable, then the
SLD quantum Fisher information gθ [�θ (ρ)] is smaller than or
equal to the value Ng∗

θ (�θ ).
The proof of this theorem goes exactly the same as that for

Theorem 1 as follows.
Proof. Consider arbitrary separable states on S(HN ) of the

form

ρsep =
∑

i

pjρ
(1)
i ⊗ ρ

(2)
i ⊗ · · · ⊗ ρ

(N)
i . (93)
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Then, we have the following inequalities:

gθ [�θ (ρsep)] = gθ

[∑
i

pi�θ

(
ρ

(1)
i ⊗ · · · ⊗ ρ

(N)
i

)]

= gθ

[∑
i

piσ
(1)
θ,i (θ ) ⊗ · · · ⊗ ρ

(N)
θ,i (θ )

]

�
∑

i

pigθ

[
σ

(1)
θ,i (θ ) ⊗ · · · ⊗ ρ

(N)
θ,i (θ )

]
=
∑

i

pi

∑
k

gθ

[
σ

(k)
θ,i (θ )

]
�
∑

i

pi

∑
k

g∗
θ [�θ ]

= Ng∗
θ [�θ ].

The first inequality follows from the convexity of SLD
quantum Fisher information. The second inequality follows
from the definition of g∗

θ [�θ ] and the identification g∗
θ (�θ ) =

maxk maxρ(i) gθ [σ (k)
θ,i (θ )]. �

As a note, it is possible to generalize the above theorem
to any separable channel with additional terms. Details of the
general formalism will be presented elsewhere together with
examples.

Example: N-qubit master equation

To gain insight into the result of Theorem 3, let us consider
an open quantum system of N qubits described by the
following Lindblad master equation:

∂

∂t
ρ(t) = i[ρ(t) ,Hθ ] − 1

4

N∑
i=1

3∑
j=1

γj

[[
ρ(t) , σ

(i)
j

]
, σ

(i)
j

]
,

(94)

where Hθ = 1
2

∑
j θσ

(i)
3 is the free Hamiltonian describing a

global rotation about an angle θ , γj are the damping parameters
that may depend on the parameter of interest θ , and σ

(i)
j =

I ⊗ · · · ⊗ σj ⊗ · · · ⊗ I is the j th Pauli matrix for the ith qubit
system. This kind of master equation has been investigated by
several authors under the name of noisy quantum metrology
(see, for example, Ref. [45]). It is straightforward to see that
the solution to this master equation is regarded as a completely
separable channel for a given initial state. Thus, we can apply
Theorem 3 to detect entanglement even in the presence of
quantum noises described by the above master equation. The
quantity g∗

θ [�θ ] for this channel is calculated by

g∗
θ [�θ ] = max

ρ0∈S(C2)
gθ [ρθ (t)], (95)

where ρθ (t) is the solution to the master equation for the single-
qubit system:

∂

∂t
ρθ (t) = i

[
ρθ (t) ,

1

2
θσ3

]
− 1

4

3∑
j=1

γj [[ρθ (t) , σj ] , σj ],

(96)

with the initial state ρ(t = 0) = ρ0.

The master equation (96) can be solved analytically, but the
resulting SLD quantum Fisher information gets complicated
in general, in particular when the damping coefficients depend
on θ . Below we consider an isotropic noise γ1 = γ2 = γ3 = γ ,
and γ is independent of θ to simplify the result. In this case,
the obtained maximum SLD quantum Fisher information over
all possible initial states is

g∗
θ [�θ ] = t2 e−2γ t (97)

at some later time t . Thus, the proposed criterion to detect
entangled states is as follows. For a given initial state ρ0 on
S(H⊗N ) with H = C2, ρ0 is entangled if the inequality

gθ [ρθ (t)] > Nt2 e−2γ t (98)

holds for later time t . Here ρθ (t) is the solution to the master
equation (94) with the initial state ρ0. Here two remarks on
this result are in order.

First, the above criterion seems counterintuitive at first
sight. Since the right hand becomes exponentially small for
fixed N as the time t increases, this criterion states that almost
all states with nonzero SLD quantum Fisher information at
the later time are entangled. A simple explanation for this
observation is that as time grows, the solution to the master
equation (96) approaches the θ -independent state, typically to
the completely mixed state, for any initial state. It is then clear
that the amount of SLD quantum Fisher information decreases
in time as well. Therefore, the inequality (98) still provides
useful information to detect entangled states.

The second remark is that the above criterion can be
weakened by replacing exp(−2γ t) by 1 [note exp(−2γ t) < 1
holds for all t > 0]. This provides a valid criterion by applying
the approximation criterion discussed in Sec. III C 2. Hence, if
the simplified inequality

gθ [ρθ (t)] > Nt2 (99)

holds, then state ρ0 is entangled. This reduction is, of course,
not surprising because of the monotonicity of quantum Fisher
information. That is, the effect of the above master equation
is equivalent to applying a channel �γ . It is then clear that all
separable states satisfy the following inequality:

gθ

(
�γ

{
U 2

z (θ )ρsep
[
U 2

z (θ )
]†}) � gθ

{
U 2

z (θ )ρsep
[
U 2

z (θ )
]†}

.

(100)

Since the right-hand side is bounded by 2, we can verify
the criterion (99) after rescaling the phase parameter θ →
θt . Criterion (99) is certainly simple; in particular, it is
independent of the external noise parameter γ . However, it
is obvious that this weaker version becomes useless for the
large-t regime. More importantly, the monotonicity argument
cannot be applied if quantum noise depends on the parameter
θ itself, whereas our Theorem 3 is still valid in such a case.

As an example, we now study the time evolution of the
N -qubit Greenberger-Horne-Zeilinger state,

|ψN 〉 := 1√
2

(|0〉⊗N + |1〉⊗N ) (101)

under the master equation (94). In the absence of quantum
noise, it is well known that this state is an optimal input
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FIG. 5. The SLD quantum Fisher information per number of
qubits (in units of t2) as a function of time (in units of γ −1) for
N = 2,3,4,5,6,7 qubits (from the dotted line to the dashed lines). The
black solid line shows the entanglement criterion due to inequality
(99), and the dash-dotted curve shows the one from inequality (98).
The inset magnifies these curves near crossing points.

state upon estimating the rotation angle θ , and its SLD
quantum Fisher information is gθ [ψN ] = (Nt)2. Solutions for
the isotropic noise case can be found analytically, and in the
following we only show the SLD quantum Fisher information
for up to seven qubits. It is independent of the parameter θ and
is given by

gN
θ = (Nt)2

pN ( e−4γ t )
e−2γNt , (102)

where the functions pN (s) are

p2(s) = 1
2 (1 + s),

p3(s) = 1
4 (1 + 3s),

p4(s) = 1
8 (1 + 6s + s2),

p5(s) = 1
16 (1 + 10s + 5s2),

p6(s) = 1
32 (1 + 15s + 15s2 + s3),

p7(s) = 1
64 (1 + 21s + 35s2 + 7s3).

The physical meaning of pN ( e−4γ t ) is a residual component
of the subspace spanned by |0〉⊗N,|1〉⊗N at the later time.
Thus, pN (1) = 1 (t = 0) and limt→∞ pN ( e−4γ t ) = 2−(N−1)

hold. Figure 5 provides numerical plots of the above SLD
quantum Fisher information together with two entanglement
detection criteria. The first one is our contribution (98), and the
second is the approximated one (99). We plot the SLD quantum
Fisher information per number of qubits (in units of t2) as a
function of time (in units of γ −1) for N = 2,3,4,5,6,7 qubits
(from the dotted line to the dashed lines). The dash-dotted line
corresponds to the criterion (98), and the solid line shows (99).
The inset in Fig. 5 magnifies these curves near the crossing
points.

It is clear that useful entanglement vanishes after a
typical decoherence time ∼O(γ −1). For the two-qubit
case, the threshold time detected by the criterion (98) is

γ t = − ln(2 − √
3)/2 � 0.658. However, a gap exists be-

tween the two criteria, and the approximated one failed
to detect entanglement even though there is still useful
entanglement. Another observation is a tendency for this gap
to become smaller as the number of qubits increases. This is
because the more qubits the state is composed of, the faster
states decohere in the noise described by Eq. (94) in general.

In the experiment reported in Ref. [7], the authors applied
the weaker version of the entanglement criterion even though
non-negligible decoherence effects are present. The above
simple example implies that a stronger criterion can be applied
to their experimental data by analyzing the effects of quantum
noises to detect entangled states faithfully.

VI. CONCLUSION

We have derived a general criterion to detect entanglement
based on the SLD quantum Fisher information for any one-
parameter family of quantum channels. This criterion includes
all previously known criteria based on the SLD quantum Fisher
information or other variants. One of the main messages is that
our formulation is free of specific channels such as unitary
channels. The second important finding is the revelation of
the general structure behind this sort of entanglement criterion
based on quantum Fisher information, which was presented in
Sec. III C 4.

We have applied our criterion to detect entanglement in the
Bell-diagonal states based on the unitary channel, dephasing
channel, depolarizing channel, and transpose channel and
have analyzed them in detail. Our result shows that even the
depolarizing channel can be used to detect entangled states for
a certain parameter range. To put it differently, entanglement
is still useful for lowering the estimation errors even though
channels cannot be estimated with quantum metrological
enhancement.

In the last section, we derived a more general criterion
that can be applied to the setting of estimation of the channel
parameter in a certain class of open quantum systems, that is,
to detect entanglement in the input state even though states
are affected by some unavoidable quantum noise. The only
requirement is that a given quantum noise does not create any
entanglement for any separable states. Then, the formalism can
be straightforwardly extended to this class of open quantum
systems, which is described by a quantum master equation.
As an example, we briefly discussed how to apply it to the
multiqubit case (from two to seven qubits) in the presence of
a coupling to an environment, which is described by a simple
Lindblad equation. It was demonstrated that our criterion
provides a stronger one than the previous one. A more detailed
discussion of entanglement detection in open quantum systems
deserves further studies, and it will be analyzed in due course.
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A 85, 022321 (2012).
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