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The main contribution of this paper is to derive an explicit expression for the
fundamental precision bound, the Holevo bound, for estimating any two-parameter
family of qubit mixed-states in terms of quantum versions of Fisher information.
The obtained formula depends solely on the symmetric logarithmic derivative (SLD),
the right logarithmic derivative (RLD) Fisher information, and a given weight ma-
trix. This result immediately provides necessary and su�cient conditions for the
following two important classes of quantum statistical models; the Holevo bound
coincides with the SLD Cramér-Rao bound and it does with the RLD Cramér-Rao
bound. One of the important results of this paper is that a general model other
than these two special cases exhibits an unexpected property: the structure of the
Holevo bound changes smoothly when the weight matrix varies. In particular, it
always coincides with the RLD Cramér-Rao bound for a certain choice of the weight
matrix. Several examples illustrate these findings. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4945086]

I. INTRODUCTION

One of the fundamental questions in quantum statistical inference problem is to establish the
ultimate precision bound for a given quantum statistical model allowed by the laws of statistics and
quantum theory. Mainly due to the non-commutativity of operators and nontrivial optimization over
all possible measurements, this question still remains open in full generality. This is very much
in contrast to the classical case where the precision bounds are obtained in terms of information
quantities for various statistical inference problems.

The problem of point estimation of quantum parametric models is of fundamental importance
among various quantum statistical inference problems. This problem was initiated by Helstrom in
the 1960s and he devised a method to translate the well-known strategies developed in classical
statistics into the quantum case.1 A quantum version of Fisher information was successfully intro-
duced and the corresponding precision bound, a quantum version of Cramér-Rao (CR) bound, was
derived. It turned out, however, that the obtained bound is not generally achievable except for trivial
cases.

A clear distinction regarding the quantum parameter estimation problem arises when exploring
possible estimation strategies since there is no measurement degrees of freedom in the classical
estimation problem. Consider n identical copies of a given quantum state and we are allowed to
perform any kinds of quantum measurements according to quantum theory. A natural question is
then to ask how much can one improve estimation errors by measurements jointly performed on the
n copies when compared to the case by those individually performed on each quantum state. The
former class of measurements is called collective or joint and the latter is referred to as separable in
the literature. It is clear that the class of collective measurements includes separable ones and one
expects that collective measurements should be more powerful than separable ones in general. Since
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one cannot do better than the best collective measurement, the ultimate precision bound is the one
that is asymptotically achieved by a sequence of the best collective measurements as the number of
copies tends to infinity. This fundamental question has been addressed by several authors before.2–14

It was Holevo who developed parameter estimation theory of quantum states by departing
from a direct analogy to classical statistics. He proposed a bound, known as the Holevo bound,
in the 1970s aiming to derive the fundamental precision limit for quantum parameter estimation
problem, see Chap. 6 of his book.15 At that time, it was not entirely clear whether or not this bound
is a really tight one, i.e., the asymptotic achievability by some sequence of measurements. Over
the last decade, there have been several important progresses on asymptotic analysis of quantum
parameter estimation theory revealing that the Holevo bound is indeed the best asymptotically
achievable bound under certain conditions.10–13 These results confirm that the Holevo bound plays
a pivotal role in the asymptotic theory of quantum parameter estimation problem. Despite the fact
that we now have the fundamental precision bound, the Holevo bound has a major drawback: It
is not an explicit form in terms of a given model, but rather it is written as an optimization of a
certain nontrivial function. Therefore, unlike the classical case, where the Fisher information can be
directly calculated from a given statistical model, the structure of this bound is not transparent in
terms of the model under consideration.

Having said the above introductory remarks, we wish to gain a deeper insight into the structure
of the Holevo bound reflecting statistical properties of a given model. To make progress along
this line of thoughts, we take the simplest quantum parametric model, a general qubit model, and
analyze its Holevo bound in detail. Since explicit formulas for the Holevo bound for mixed-state
models with one and three parameters and pure-state models are known in the literature, the case
of two-parameter qubit model is the only one left to be solved. The main contribution of this paper
is to derive an explicit expression for the Holevo bound for any two-parameter qubit model of
mixed-states without referring to a specific parametrization of the model. Remarkably, the obtained
formula depends solely on a given weight matrix and three previously known bounds: The sym-
metric logarithmic derivative (SLD) CR bound, the right logarithmic derivative (RLD) CR bound,
and the bound for D-invariant models. This result immediately provides necessary and su�cient
conditions for the two important cases. One is when the Holevo bound coincides with the RLD
CR bound and the other is when it does with the SLD CR bound. We also show that a general
model other than these two special cases exhibits an unexpected property, that is, the structure of the
Holevo bound changes smoothly when the weight matrix varies. We note that similar transition has
been obtained by others10,13 for a specific parametrization of two-parameter qubit model. Here we
emphasize that our result is most general and is expressed in terms only of the weight matrix and
two quantum Fisher information.

The main result of this paper is summarized in the following theorem (the detail of these quan-
tities will be given later): Consider a two-parameter qubit model of mixed states, which changes
smoothly about variation of the parameter. Denote the SLD and RLD Fisher information matrix by
G✓ and G̃✓, respectively, and define the SLD and RLD CR bounds by

C
S

✓ [W ] = Tr
�
WG

�1
✓

 
, (1)

C
R

✓ [W ] = Tr
�
WRe G̃

�1
✓

 
+ TrAbs

�
W Im G̃

�1
✓

 
, (2)

respectively. Here, W is a given 2 ⇥ 2 positive definite matrix and is called a weight matrix.
(TrAbs {} is defined after Eq. (22).) Introduce another quantity by

C
Z

✓ [W ] B Tr {WRe Z✓} + TrAbs {W Im Z✓} , (3)

where Z✓ is a 2 ⇥ 2 hermite matrix defined by

Z✓ B
⇥
z
i j

✓

⇤
i, j 2{1,2}, z

i j

✓ B tr
⇣
⇢✓L

j

✓L
i

✓

⌘
. (4)

Here L
i

✓ are a linear combination of the SLD operators; L
i

✓ =
P

j g
i j

✓ L✓, j with gi j✓ denoting the (i, j)
component of the inverse of SLD Fisher information matrix and L✓, i SLD operators. With these
definitions, we obtain the following result.
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Theorem 1.1. The Holevo bound for any two-parameter qubit model under the regularity

conditions is

C
H

✓ [W ] =
8>>><>>>:

C
R

✓ [W ] if C
R

✓ [W ] �
C

Z

✓ [W ] + C
S

✓ [W ]
2

C
R

✓ [W ] + S✓[W ] otherwise
, (5)

where the function S✓[W ], which is nonnegative, is defined by

S✓[W ] B
⇥ 1

2 (C
Z

✓ [W ] + C
S

✓ [W ]) � C
R

✓ [W ]
⇤2

C
Z

✓ [W ] � C
R

✓ [W ]
. (6)

Note that the condition C
R

✓ < (CZ

✓ + C
S

✓ )/2 implies C
Z

✓ � C
R

✓ > 0 so that S✓[W ] is well defined. (See
the discussion after Eq. (75).)

Main result 1.1 sheds several new insights into the quantum parameter estimation problems.
First note that the form of the Holevo bound changes according to the choice of weight matrices.
This kind of transition phenomenon has never occurred in the classical case. Second surprise is to
observe the appearance of the RLD CR bound in the generic two-parameter estimation problem.
As we will provide in Subsection II C 2, the RLD CR bound has been shown to be important for
a special class of statistical models, known as a D-invariant model. Here, we explicitly show that
it also plays a major role for non-D-invariant models. Last, in many of previous studies parameter
estimation problems, the precision bound is either expressed in terms of the SLD or RLD Fisher
information, but the second case of expression (5) depends both on the SLD and RLD Fisher
information. To see this explicitly, we can rewrite it as

C
R

✓ [W ] + S✓[W ] = Tr
�
WG

�1
✓

 
+

1
4

�
TrAbs

�
W Im G̃

�1
✓

 �2

Tr
�
W (G�1

✓ � Re G̃
�1
✓ )

 . (7)

All these findings will be discussed in detail together with examples.
The rest of this paper continues as follows. Section II provides definitions and some of known

results for parameter estimation theory within the asymptotically unbiased setting. In Sec. III, a
useful tool based on the Bloch vector is introduced and then the above main theorem is proved.
Discussions on the main theorem are presented in Sec. IV. Section V gives several examples to
illustrate findings of this paper. Concluding remarks are listed in Sec. VI. Most of the proofs for
lemmas are deferred to Appendix A. Supplementary materials are given in Appendix B.

II. PRELIMINARIES

In this section, we establish definitions and notations used in this paper. We then list several
known results regarding the Holevo bound to make the paper self-contained.

A. Definitions

Consider a d-dimensional Hilbert space H (d < 1) and a k-parameter family of quantum
states ⇢✓ on it,

M B {⇢✓ | ✓ = (✓1,✓2, . . . ,✓k) 2 ⇥ ⇢ Rk}, (8)

where ⇥ is an open subset of k-dimensional Euclidean space. The family of states M is called a
quantum statistical model or simply a model. Models discussed throughout the paper are assumed
to satisfy certain regularity conditions for the mathematical reasons.16 For our purpose, the relevant
regularity conditions are as follows: (i) The state ⇢✓ is faithful, i.e., ⇢✓ is strictly positive. (ii) It is
di↵erentiable with respect to these parameters ✓ su�ciently many times. (iii) The partial derivatives
of the state @⇢✓/@✓ i are all linearly independent. In the rest of this paper, the regularity conditions
above are taken for granted unless otherwise stated.
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For a given quantum state ⇢ 2 S(H ), we define the SLD and RLD inner products by

hX,Y i⇢ B
1
2

tr (⇢(Y X
⇤ + X

⇤
Y )) = Re {tr (⇢Y X

⇤)},

hX,Y i+⇢ B tr (⇢Y X
⇤) , (9)

respectively, for any (bounded) linear operators X,Y onH . Here, ⇤ denotes the hermite conjugation.
Given a k-parameter model M = {⇢✓ | ✓ 2 ⇥ ⇢ Rk}, the SLD operators L✓, i and RLD operators
L̃✓, i are formally defined by the solutions to the operator equations,

@

@✓ i
⇢✓ =

1
2
(⇢✓L✓, i + L✓, i⇢✓),

@

@✓ i
⇢✓ = ⇢✓ L̃✓, i. (10)

The SLD Fisher information matrix is defined by1

G✓ B
⇥
g✓, i j

⇤
i, j 2{1, ...,k}, (11)

g✓, i j B hL✓, i,L✓, ji⇢✓ = tr
 
⇢✓

1
2
�
L✓, iL✓, j + L✓, jL✓, i

�!
,

and the RLD Fisher information is15,17

G̃✓ B
⇥
g̃✓, i j

⇤
i, j 2{1,2, ...,k},

g̃✓, i j B hL̃✓, i, L̃✓, ji+⇢✓ = tr
�
⇢✓ L̃✓, j L̃

⇤
✓, i

�
. (12)

Define the following linear combinations of the SLD and RLD operators:

L
i

✓ B
kX

j=1

(G�1
✓ ) j iL✓, j and L̃

i

✓ B
kX

j=1

(G̃�1
✓ ) j i L̃✓, j .

From these definitions, the following orthogonality conditions hold

hLi

✓,L✓, ji⇢✓ = �i
j
, and hL̃i

✓, L̃✓, ji+⇢✓ = �i
j
. (13)

These operators with upper indices are referred to as the SLD and RLD dual operators, respectively.
Consider nth independently and identically distributed (i.i.d.). extension of a given state and we

define nth extended model by

M(n) B {⇢⌦n✓ | ✓ 2 ⇥ ⇢ Rk}. (14)

The main objective of quantum statisticians is to perform a measurement on the n tensor state ⇢⌦n✓
and then to make an estimate for the value of the parameter ✓ based on the measurement outcomes.
Here measurements are described mathematically by a positive operator-valued measure (POVM)
and are denoted as ⇧(n). An estimator, which is a purely classical data processing, is a (measurable)
function taking values on ⇥ and is denoted as ✓̂n. They are

⇧(n)= {⇧(n)
x | x 2 Xn, 8⇧(n)

x � 0,
X

x2Xn

⇧(n)
x = I

⌦n},

✓̂n = (✓̂1
n
, ✓̂2

n
, . . . , ✓̂k

n
) : Xn ! ⇥,

where I is the identity operator on H and we assume that POVMs consist of discrete measurement
outcomes. For continuous POVMs, we replace the summation by an integration. A pair (⇧(n), ✓̂n) is
called a quantum estimator or simply an estimator when it is clear from the context and is denoted
by ⇧̂(n).18

The performance of a particular estimator can be compared to others based on a given figure
of merit and then one can seek the “best” estimator accordingly. As there is no universally accepted
figure of merit, one should carefully adopt a reasonable one depending upon a given situation. For
example, when a specific prior distribution for the parameter ✓ is known, the Bayesian criterion
would be meaningful to find the best Bayesian estimator. If one wishes to avoid bad performance
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of estimators, the min-max criterion provides an optimal one that suppresses such cases. In this
paper, we are interested in analyzing estimation errors at specific point ✓ 2 ⇥, that is, the pointwise
estimation setting. For given model (14) and an estimator ⇧̂(n) = (⇧(n), ✓̂n), we define a bias at a
point ✓ as

b
(n)
✓ [⇧̂(n)]B

X

x2Xn

(✓̂n(x) � ✓)p(n)✓ (x) = E(n)
✓ [✓̂n] � ✓,

with p
(n)
✓ (x) B tr

⇣
⇢⌦n✓ ⇧

(n)
x

⌘
, (15)

where E(n)
✓ [X (n)] denotes the expectation value of a random variable X

(n) with respect to the prob-
ability distribution p

(n)
✓ . Note that the bias b

(n)
✓ [⇧̂(n)] is a k-dimensional real vector. An important

class of estimators when estimating the specific point of the model is the locally unbiased estimator.
This is to restrict estimators such that the bias vanishes at the true point ✓ up to the first order in the
Taylor expansion. Mathematically, an estimator ⇧̂(n) is called locally unbiased at ✓ if

b
(n)
✓ [⇧̂(n)] = 0 and

@

@✓ i
E(n)
✓ [✓̂ j

n] = � j

i
(16)

hold for all i, j = 1,2, . . . , k and at ✓ 2 ⇥. It is known that the quantum CR bounds hold for any
locally unbiased estimator.1,15

Upon analyzing performance of estimators within the asymptotic regime, we should impose
some conditions that restrict the class of estimators. In statistics, a sequence of estimators is said
(weakly) consistent, if it converges to the true value in probability for every value ✓ 2 ⇥, i.e.,

8✏ > 0, lim
n!1

Pr{|✓̂n � ✓ | > ✏} = 0

holds for all ✓ 2 ⇥. In this expression, |v | = (P v2
i
)1/2 denotes the standard Euclidean norm and the

right hand side means that error probability can be made arbitrary small. As a good estimator must
converge to the true value as n goes to infinity, it is reasonable to look for the class of consistent esti-
mators in quantum parameter estimation as well. In classical statistics, this condition of consistency
alone turns out to be weak in order to exclude artificial estimators. There are several approaches to
handle these problems in the classical case.19 Rather than going into mathematical discussions, we
simply look for the following class of estimators to avoid such a situation. A sequence of estimators
{⇧̂(n)}1

n=1 is called asymptotically unbiased if it satisfies

lim
n!1

p
nb

(n)
✓ [⇧̂(n)] = 0, lim

n!1

@

@✓ i
E(n)
✓ [✓̂ j

n] = � j

i
, (17)

for all i, j 2 {1,2, . . . , k} and for all ✓ 2 ⇥, that is, to require locally unbiased condition (16) in the
n ! 1 limit.

To quantify estimation errors of a given estimator, we consider the mean-square error (MSE)
matrix defined by

V
(n)
✓ [⇧̂(n)]B

f
v i j✓,n[⇧̂

(n)]
g
i, j 2{1,2, ...,k}

,

v i j✓,n[⇧̂
(n)]B

X

x2Xn

(✓̂ i
n
(x) � ✓ i)(✓̂ j

n(x) � ✓ j)p(n)✓ (x).

By definition, the MSE matrix is a k ⇥ k real symmetric matrix and it is straightforward to show
that it is nonnegative. As stated in the Introduction, we wish to find the best precision bound
allowed by the laws of quantum theory and statistics, which is achievable in the n ! 1 limit. In the
classical case, one can directly minimize the MSE matrix as a matrix inequality over the class of
asymptotically unbiased estimators and to find the lowest MSE error achievable as n ! 1. This line
of approach does not work in the quantum case. One way to tackle this question is to deal with a
weighted trace of the MSE matrix, which is a scalar quantity, and it is defined by

MSE(n)
✓ [⇧̂(n)|W ] B Tr

(
WV

(n)
✓ [⇧̂(n)]

)
.

Here the matrix W is called a weight matrix and can be chosen arbitrary as long as it is real and
strictly positive. Since the weight matrix is one of the important ingredients for our discussion, let us
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denote the set of all possible weight matrices by

W B {W 2 Rk⇥k | W > 0}. (18)

By changing the weight matrix, one can explore trade-o↵ relations in estimating di↵erent parameter
components ✓ i. We note that the weight matrix can depend on the value of the estimation parameter
✓ as well. For example, it can be chosen as the SLD Fisher information matrix.

Defining these terminologies, we now state the problem: For a specific point of a given i.i.d.
model M(n), what is the best sequence of estimators {⇧̂(n)}1

n=1 and the minimum value of the
weighted trace of MSE? To put it di↵erently, one wishes to find an optimal sequence of estimators
that attains the minimum of the first order coe�cient C✓[W ] in the large n expansion,

MSE(n)
✓ [⇧̂(n)|W ] ' C✓[W ]

n
+ O(n�2), (19)

i.e., the fastest decaying rate for the MSE. Mathematically, we define the CR type bound for the
MSE by the following optimization problem:

C✓[W ] B inf
{⇧̂(n)}:a.u.

�
lim sup
n!1

n MSE(n)
✓ [⇧̂(n)|W ]

 
,

where the infimum is taken over all possible sequences of estimators {⇧̂(n)}1
n=1 that is asymptoti-

cally unbiased (a.u.). Note that this bound depends both on the weight matrix W and the model ⇢✓
at ✓. The symbol ✓ appearing in the bound C✓[W ] represents the model ⇢✓ at ✓. Unlike the Bayesian
or the min-max settings mentioned before, we are interested in understanding statistical properties
of a given parametric model. This would be important in particular study of quantum states from
geometrical point of view.20

B. The Holevo bound

To define the Holevo bound, we need some definitions first. For a given quantum statistical
model on H , denote a k array of hermite operators on H by ~X = (X1,X2, . . . ,X k), X

i 2 Lh(H ),
i.e., (X i)⇤ = X

i, for all i = 1,2, . . . , k, and define the setX✓ by

X✓ B { ~X | 8i X
i 2 Lh(H ),8i tr

�
⇢✓X

i
�
= 0,8i, j tr

 
@⇢✓
@✓ i

X
j

!
= � j

i
}. (20)

The Holevo function21 in the quantum estimation theory is defined by

h✓[~X |W ] B Tr
(
WRe Z✓[~X]

)
+ TrAbs

(
W Im Z✓[~X]

)
, (21)

where the k ⇥ k hermite matrix Z✓[~X] is

Z✓[~X] B
⇥
tr
�
⇢✓X

j
X

i
� ⇤

i, j 2{1, ...,k} (22)

and TrAbsX denotes the sum of the absolute values of � j with X = Tdiag(�1,�2, . . . ,�m)T�1 for
some invertible matrix T . We note that the following relation also holds for any anti-symmetric
operator X :

TrAbs {W X} =
X

i

|�i | = Tr
�
|W 1/2

XW
1/2|

 
, (23)

where |X | =
p

X ⇤X denotes the absolute value of a linear operator X .
The Holevo bound is defined through the following optimization:

C
H

✓ [W ] B min
~X 2X✓

h✓[~X |W ]. (24)

The derivation of the above optimization is well summarized in the work of Hayashi and Mat-
sumoto.10 Holevo showed that this quantity is a bound for the MSE for estimating a single copy of
the given state under the locally unbiased condition,15

MSE(1)
✓ [⇧̂ |W ] � C

H

✓ [W ], (25)
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which holds for any locally unbiased estimator ⇧̂. The nontrivial property of the Holevo bound is
the additivity,10

C
H

✓ [W, ⇢⌦n✓ ] = n
�1

C
H

✓ [W, ⇢✓], (26)

where the notation C✓[W, ⇢⌦n✓ ] represents the Holevo bound about nth extended model.
The following theorem establishes that the Holevo bound is the solution to the problem of our

interest.

Theorem 2.1. For a given model satisfying the regularity conditions, C✓[W ] = C
H

✓ [W ] holds

for all weight matrices.

There exist several di↵erent approaches upon proving the above theorem. Hayashi and Mat-
sumoto10 proved the case for a full qubit model first. Guţă and Kahn11 introduced a di↵erent tool
based on (strong) quantum local asymptotic normality to prove the qubit case. This was further
generalized to full models on any finite dimensional Hilbert space.12 However, all these proofs
depend on a specific parametrization of quantum states. More general proof has been recently
established by Yamagata, Fujiwara, and Gill.13

This theorem implies that if we choose an optimal sequence of estimators, the MSE behaves as

Tr
(
WV

(n)
✓ [⇧̂(n)]

)
'

C
H

✓ [W ]
n

+ O(n�2), (27)

for su�ciently large n. That is, the Holevo bound is the fastest decaying rate for the MSE.
Although the Holevo bound stands as an important cornerstone to set the fundamental precision

bound, definition (24) contains a nontrivial optimization. The main motivation of our work, as stated
in the Introduction, is to perform this optimization explicitly for any given model for qubit case. The
result shows several nontrivial aspects of parameter estimation in quantum domain. Before going to
present our result, we summarize several known results.

C. Holevo bound for one-parameter and D-invariant models

In this subsection, we consider two special cases where analytical forms of the Holevo bound
are known.

For a given k-parameter model on the Hilbert space H , let us denote SLD and RLD Fisher
information matrices by G✓ and G̃✓, respectively, Eqs. ((11) and (12)). Define the SLD and RLD CR
bounds by

C
S

✓ [W ] B Tr
�
WG

�1
✓

 
, (28)

C
R

✓ [W ]B Tr
�
WRe G̃

�1
✓

 
+ TrAbs

�
W Im G̃

�1
✓

 
, (29)

respectively. Throughout the paper, we use the notation Re G̃
�1
✓ = Re {G̃

�1
✓ } (Im G̃

�1
✓ = Im {G̃

�1
✓ })

representing the real (imaginary) part of the inverse matrix of the RLD Fisher information matrix.
The well-known fact is that the SLD and RLD CR bounds cannot be better than the Holevo bound.

Lemma 2.2. For a given model satisfying the regularity conditions, the Holevo bound is more

informative than the SLD and the RLD CR bound, i.e., C
H

✓ [W ] � C
S

✓ [W ] and C
H

✓ [W ] � C
R

✓ [W ] hold

for an arbitrary weight matrix W.

Proof can be found in the original work by Holevo that is summarized in his book.15 More
compact proof was stated by Nagaoka,21 see also the work of Hayashi and Matsumoto.10

1. One-parameter model

When the number of parameters is one, the problem can be reduced significantly. In this
case, there cannot be any imaginary part for matrix (22) and thus the minimization is reduced to
minimizing the MSE itself.
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Theorem 2.3. For any one-parameter model, the Holevo bound coincides with the SLD CR

bound, i.e.,

C
H

✓ =
1
g✓

(30)

holds for all ✓ 2 ⇥, where g✓ is the SLD Fisher information at ✓.

Note that there is no weight matrix since we are dealing with a scalar MSE for the one-
parameter case. Importantly, there is no gain from collective POVMs for one-parameter models.
Existence of a POVM whose MSE is equal to this bound is discussed independently by several
authors.22–24

2. D-invariant model

Consider an arbitrary k-parameter modelM and let L✓, i (i = 1,2, . . . , k) be the SLD operators
at ✓. The linear span of SLD operators with real coe�cients is called the SLD tangent space of the
model at ✓,

T✓(M) B spanR{L✓,1,L✓,2, . . . ,L✓,k}. (31)

Any elements of the SLD tangent space, X 2 T✓(M), satisfy tr (⇢✓X) = 0 and it is not di�cult to
see that the space T✓(M) is essentially a real vector space with the dimension k. Holevo introduced
a super-operator D⇢, called a commutation operator, as follows. Given a state ⇢ on H , let L(H )
be the set of linear operators on H , then D⇢ is a map from L(H ) to itself defined through the
following equation:

hY,D⇢(X)i⇢ = [Y, X]⇢, 8X,Y 2 L(H ). (32)

Here, hX,Y i⇢ = Re tr (⇢X
⇤
Y ) is the SLD inner product and [X, Y ]⇢ = tr (⇢[X ⇤, Y ]) /(2i) is a sesqui-

linear form. (Here, the definition is di↵erent from the original one by a factor.) When considering a
parametric model, we denoteD⇢✓ = D✓ for simplicity. We say that a model is D-invariant at ✓ if the
SLD tangent space at ✓ is invariant under the action of the commutation operator. Mathematically,
this definition is expressed as

M is D-invariant at ✓
def, D✓(X) 2 T✓(M), 8X 2 T✓(M).

When a model is D-invariant for all ✓ 2 ⇥, we say that the model M is globally D-invariant.
Lemma B.1 in Appendix B 2 characterizes equivalent conditions for D-invariant models.

From the definitions of two inner products (9) and the commutation operator, the relationship

hX,Y i+⇢ = hX, (I + iD⇢)(Y )i⇢ , hX,D⇢(Y )i⇢ = �i(hX,Y i+⇢ � hX,Y i⇢) (33)

holds for all linear operators X,Y onH . For a given model, another important relation

tr (@i⇢✓X) = hX,L✓, ii⇢✓ = hX, L̃✓, ii+⇢✓ (34)

holds for 8X 2 L(H ). Combining them gives hX,L✓, ii⇢✓ = hX, (I + iD✓)(L̃✓, i)i⇢✓, and hence, we
obtain

L✓, i = (I + iD✓)(L̃✓, i). (35)

Two more useful relations are

hLi

✓,D✓(L j

✓)i⇢✓ = Im z
i j

✓ , (36)

hL̃i

✓,D✓(L j

✓)i
+
⇢✓
= �i(g̃i j✓ � g

i j

✓ ), (37)

which can be checked directly from the definitions.
It is well known that the Holevo bound gets simplified significantly if the model is D-

invariant.15 Importantly, D-invariant model enjoys the following proposition, which is due to
Holevo.
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Proposition 2.4. Let L
i

✓ (L̃
i

✓) be the SLD (RLD) dual operator and G✓ (G̃✓) be the

SLD (RLD) Fisher information matrix, respectively. Define a k ⇥ k hermite matrix by

Z✓ = [hLi

✓,L
j

✓i+⇢✓]i, j 2{1, ...,k}. When the model is D-invariant at ✓, Z✓ = G̃
�1
✓ holds at ✓ and further the

Holevo bound is expressed as

8W 2W C
H

✓ [W ] = C
R

✓ [W ] = h✓[~L |W ]. (38)

This statement can be proven in several di↵erent manners.10,13,15

In passing, we note that the expression h✓[~L |W ] in the above proposition is also expressed
as h✓[~L |W ] = Tr {WRe Z✓} + TrAbs {W Im Z✓} in terms of the matrix Z✓. When the model is not
D-invariant, h✓[~L |W ] does not seem to play any important role. This is because the quantity

C
Z

✓ [W ] B Tr {WRe Z✓} + TrAbs {W Im Z✓} (39)

is always greater or equal to the Holevo bound, i.e., C
Z

✓ [W ] � C
H

✓ [W ] for all weight matrices.
Nevertheless, as will be shown in this paper, this is an important quantity and we call it as the
D-invariant bound in our discussion. We note that this quantity (39) was also named as the gener-

alized RLD CR bound by Fujiwara and Nagaoka25 in the following sense. When a model fails to
satisfy some of the regularity conditions, the RLD operators do not exist always. Even in this case,
when the model is D-invariant, then bound (39) is well defined and provides the achievable bound
for a certain class of models, known as the coherent model.25

Another remark regarding this proposition is that the converse statement also holds.

Theorem 2.5. For any k-parameter model M on any dimensional Hilbert space under the

regularity conditions, the following equivalence holds:

M is D-invariant at ✓

, 8W 2W C
H

✓ [W ] = C
R

✓ [W ]
, 8W 2W C

H

✓ [W ] = C
Z

✓ [W ]. (40)

This equivalence for the D-invariant model might have been known for some experts, but it was not
stated explicitly in the literature to our knowledge.26 Sketch of proof is given in Appendix B 3 for
the sake of reader’s convenience.

We remark that the Holevo bound for a general model, which is not D-invariant, exhibits a gap
among C

Z

✓ [W ], C
R

✓ [W ], and C
S

✓ [W ]. The following relation holds in general:

C
Z

✓ [W ] � C
H

✓ [W ] � max{C
S

✓ [W ],CR

✓ [W ]}, (41)

for all weight matrices W . From this general inequality, it is clear that the condition of D-invariance
shrinks the gap between C

Z

✓ [W ] and C
R

✓ [W ] to zero. The Holevo bound then coincides with the RLD
and D-invariant bounds.

III. THE HOLEVO BOUND FOR QUBIT MODELS

In this section, we consider models for quantum two-level system, qubit models. For mixed-
state models, where parametric states are rank-2 for all ✓ 2 ⇥, possible numbers of the parameters
are from one to three. As stated in Sec. II C, the Holevo bound for one-parameter qubit model is
solved and is given by Theorem 2.3. When the number of parameters is equal to three, on the other
hand, it is easy to show that the model becomes D-invariant as follows. Since three SLD operators
are linearly independent, they expand the set of all linear operators X satisfying the condition
tr (⇢✓X) = 0. In other words, the SLD tangent space is same as this space and hence the SLD
tangent space is always D-invariant. In this case, the Holevo bound is given as Eq. (29). Therefore,
the two-parameter case needs to be solved explicitly. In the following, we consider two-parameter
qubit models of mixed states. Further, the regularity conditions mentioned before are assumed
throughout our discussion.

Upon performing this optimization to derive an explicit formula for the Holevo bound, it is
convenient to utilize the Bloch-vector formalism. A similar technique has been used by Watanabe,
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where all operators are expanded in terms of a basis of Lie algebras.27 In Subsection III A, we
present necessary machinery and then solve the two-parameter case.

A. Bloch-vector formalism for qubit estimation problem

In this subsection, we present a formalism in which SLD operators are represented by three-
dimensional real vector. This is motivated by the well-known one-to-one mapping between a given
qubit state and three-dimensional real vector. Thus, any qubit model can be represented by a family
of three-dimensional real vectors as

MB =
�
s✓ = (s1

✓, s
2
✓, s

3
✓) 2 B | ✓ 2 ⇥

 
, (42)

with B = {x 2 R3 | |x | < 1} the interior of the Bloch ball. To simplify notations, we define the
standard inner product and the outer product for three-dimensional complex vectors by

ha|bi =
X

i=1,2,3

āibi, |aihb| =
f
aib̄j

g
i, j 2{1,2,3}

,

respectively, where ā denotes the complex conjugation of a. The outer product is a 3 ⇥ 3 matrix
whose action onto a vector c 2 C3 is |aihb|c = hb|cia.

We first observe the one-to-one correspondence between the SLD operator and a
four-dimensional vector when it is expanded in terms of the basis {I,�1,�2,�3} with � j usual
Pauli spin matrices for spin-1/2 particles. Since the SLD operators belong to the SLD tangent space,
the relation tr (⇢✓L✓, i) = hI,L✓, ii⇢✓ = 0 holds, i.e., they are orthogonal to the identity operator with
respect to the SLD inner product. This leads to the following constraint:

tr (L✓, i) = �hs✓ |`✓, ii, (43)

where `✓, i = (`1
✓, i,`

2
✓, i,`

3
✓, i)T with ` j✓, i = tr

�
� jL✓, i

�
is a three-dimensional real vector. Thus, we have

a one-to-one mapping from the SLD operator L✓, i to the three-dimensional real vector `✓, i. The
vector `✓, i shall be referred to as the SLD Bloch vector in this paper.

It is straightforward to solve operator equation (10), which defines the SLD operators, and the
SLD Bloch vector is

`✓, i = @is✓ +
h@is✓ |s✓i
1 � s

2
✓

s✓, (44)

where s✓ = |s✓ | denotes the length of the Bloch vector and @i = @/@✓ i is the ith partial derivative. To
proceed further, we find it convenient to introduce a 3 ⇥ 3 matrix,

Q✓ B 1 +
|s✓ihs✓ |
1 � s

2
✓

, (45)

with 1 the identity matrix acting on the three-dimensional vector space C3. It follows from the
definition that Q✓ is a real and positive matrix with eigenvalues 1,1, (1 � s

2
✓)�1 and its inverse is

Q
�1
✓ = 1 � |s✓ihs✓ |. (46)

The SLD Bloch vector is then expressed as

`✓, i = Q✓@is✓ (, Q
�1
✓ `✓, i = @is✓). (47)

The (i, j) component of the SLD Fisher information is

g✓, i j = h`✓, i |Q�1
✓ `✓, ji = h@is✓ |Q✓@js✓i. (48)

Let gi j✓ = (G�1
✓ )i j be the (i, j) component of the inverse SLD Fisher matrix and we define the SLD

Bloch dual vector `i✓ by

`i✓ =
X

j

g j i

✓ `✓, j . (49)
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Then, the following orthogonality condition holds

h`i✓ |Q�1
✓ `✓, ji = �i

j
, (50)

which corresponds to Eq. (13). The inverse of SLD Fisher information matrix is also expressed as

gi j✓ = h`i✓ |Q�1
✓ ` j✓i. (51)

The same line of arguments holds for RLD operators and RLD Fisher information. The only
di↵erence here is that the RLD Bloch vector becomes complex in general. Define a 3 ⇥ 3 complex
matrix,

Q̃✓ B
1

1 � s
2
✓

(1 � iF✓) , (52)

where (F✓)i j B
P

k ✏ ik js✓,k with ✏ ik j the completely antisymmetric tensor. The action of F✓ is to
give the exterior product of two vectors, i.e., F✓a = s✓ ⇥ a for a 2 C3. From this definition, Q̃✓ is also
strictly positive and its inverse is given by

Q̃
�1
✓ = 1 � |s✓ihs✓ | + iF✓ = Q

�1
✓ + iF✓. (53)

The RLD Bloch vector is
˜̀
✓, i = Q̃✓@is✓ (, Q̃

�1
✓

˜̀
✓, i = @is✓), (54)

and the RLD Fisher information matrix is

g̃✓, i j = h ˜̀
✓, i |Q̃�1

✓
˜̀
✓, ji = h@is✓ |Q̃✓@js✓i. (55)

Define the RLD Bloch dual vector by

˜̀i
✓ =

X

j

g̃ j i

✓
˜̀
✓, j, (56)

then we have

h ˜̀i
✓ |Q̃�1

✓
˜̀
✓, ji = �i

j
. (57)

Other useful relations are listed below without detail calculations. First, there is a one-to-one
correspondence between SLD and RLD Bloch vectors. This is given by

`✓, i = (1 + iF✓) ˜̀
✓, i (, ˜̀

✓, i =
�
Q
�1
✓ � iF✓

�
`✓, i). (58)

Second, the vector `✓, i � ˜̀
✓, i is orthogonal to the Bloch vector s✓. Defining

�✓, i B hs✓ |`✓, ii, �̃✓, i B hs✓ | ˜̀✓, ii, (59)

this is expressed as

�✓, i = �̃✓, i. (60)

Third, the SLD Fisher information and real part of the RLD Fisher information are related by

1
1 � s

2
✓

g✓, i j � Re g̃✓, i j = �✓, i�✓, j . (61)

In other words, the matrix (1 � s
2
✓)�1

G✓ � Re G̃✓ is rank one.

B. Two-parameter qubit model

In this subsection, we consider an arbitrary two-parameter qubit model, that is, the parameter to
be estimated is ✓ = (✓1,✓2) 2 ⇥. In order to derive an explicit expression for the Holevo bound, we
first rewrite Holevo bound (24) in terms of the Bloch vectors.

A linear operator which satisfies tr
�
⇢✓X

i
�
= 0 can be expressed as

X
i = �hs✓ |xiiI + xi · �. (62)
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Let T
?
✓, i = {x 2 R3 | hx |@is✓i = 0} be the orthogonal space to the ith derivative of the Bloch vector

and an element of the set appearing in definition (20) takes the form of ~X = (X1,X2) with

X
i = �hs✓ |xiiI + xi · �,

xi 2 T
?
✓, j for j , i and hxi |@is✓i = 1. (63)

Thus, the set of operators ~X can be mapped to the set of vectors ~x = (x1,x2)T 2 R6. Using this form
of Bloch vector representation, the (i, j) component of the Z✓[~x] matrix and the Holevo function
read

z
i j

✓ [~x] = hxi |Q̃�1
✓ x ji, (64)

h✓[~x |W ] =
2X

i, j=1

f
wi jhxi |Q�1

✓ x ji +
p

det W
�
hxi |F✓x ji

�g
,

for a given 2 ⇥ 2 weight matrix W = [wi j]i, j 2{1,2}.
We note that Holevo function (64) is a quadratic function of the six-dimensional vector ~x. The

minimization of this function under constraints (63) can be handled with a standard procedure. The
only point needs to be taken is that the function is not di↵erentiable for all points. Since the number
of free variables for the optimization is 6 � 4 (the number of independent constraints) = 2, we take
the following substitution:

xi = `i✓ + ⇠ i`?✓ , (65)

where `?✓ = @1s✓ ⇥ @2s✓ is a vector orthogonal to both @1s✓ and @2s✓ and ~⇠ = (⇠1, ⇠2)T 2 R2 is a
free variable without any constraint. With this substitution, the Holevo function is significantly
simplified as follows.

Lemma 3.1. For a two-parameter qubit model, the Holevo bound takes the following minimiza-

tion form without any constraint:

C
H

✓ [W ] = min
~⇠2R2

h✓[~⇠ |W ], (66)

where the function h✓[~⇠ |W ] is defined by

h✓[~⇠ |W ] = Tr
�
WG

�1
✓

 
+ h`?✓ |Q�1

✓ `?✓ i(~⇠ |W ~⇠) + 2
p

det W
���h`1

✓ |F✓`
2
✓i + (1 � s

2
✓)(~�✓ |~⇠)

��� . (67)

In this expression, we introduce the standard inner product for two-dimensional real vector space by
(~a|~b) = a1b1 + a2b2 and ~�✓ = (�✓,1,�✓,2)T is given by Eq. (59). The derivation for this lemma is given
in Appendix A 1.

C. Main result

In the following, we carry out the above optimization to derive the main result of this paper,
Theorem 1.1. We first list several definitions and lemmas.

Definition. For a given two-parameter qubit mixed-state model, the SLD CR, RLD CR, and
D-invariant bounds are defined by

C
S

✓ [W ] = Tr
�
WG

�1
✓

 
, (68)

C
R

✓ [W ] = Tr
�
WRe G̃

�1
✓

 
+ TrAbs

�
W Im G̃

�1
✓

 
,

C
Z

✓ [W ] = Tr {WRe Z✓} + TrAbs {W Im Z✓} ,
respectively, where G✓ is the SLD Fisher information matrix, G̃✓ is the RLD Fisher information
matrix, and Z✓ B

⇥
z
i j

✓

⇤
i, j 2{1,2} with z

i j

✓ B tr
⇣
⇢✓L

j

✓L
i

✓

⌘
as before.

Lemma 3.2. For any two-parameter qubit mixed-state model, the following relations hold.
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1. h`?✓ |Q�1
✓ `?✓ i = (1 � s

2
✓) det G✓ = (1 � s

2
✓)2 det G̃✓.

2. 2
p

det W
�
h`1

✓ |F✓`
2
✓i
�
= TrAbs

�
W Im G̃

�1
✓

 
= TrAbs {W Im Z✓}.

3. (~�✓ |W�1~�✓) =
det W

�1
G✓

1 � s
2
✓

�
C

Z

✓ [W ] � C
R

✓ [W ]
�
.

Lemma 3.3. For any two-parameter qubit modelM, the following conditions are equivalent.

1. M is D-invariant at ✓.

2. Re G̃
�1
✓ = G

�1
✓ at ✓.

3. �✓,1 = �✓,2 = 0 at ✓.

Furthermore, we have the following equivalent characterization for global D-invariance.

4. M is globally D-invariant.

5. Re G̃
�1
✓ = G

�1
✓ for all ✓ 2 ⇥.

6. |s✓ | is independent of ✓.

Three remarks regarding the above lemmas are listed: First, imaginary parts of the inverse of the
RLD Fisher information matrix and the Z✓ matrix are always identical for two-parameter qubit
mixed-state models, i.e., Im G̃

�1
✓ = Im Z✓, see proof in the Appendix. Second, if a model expressed

as the Bloch vector contains the origin (0,0,0), the model is always D-invariant at this point. This is
because the condition �✓, i = hs✓ |`✓, ii = 0 is met at s✓ = (0,0,0). Last, a globally D-invariant model
is possible if and only if the state is generated by some unitary transformation. This is because
condition 3.3-6 in Lemma 3.3 is equivalent to the preservation of the length of the Bloch vector.

Finally, we need the following lemma for the optimization.

Lemma 3.4. For a given positive 2 ⇥ 2 matrix A, a real vector ~b 2 R2
, and a real number c, the

minimum of the function

f (~⇠) = (~⇠ |A~⇠) + 2 ���(~b|~⇠) + c
���

is given by

min
~⇠2R2

f (~⇠) =
8>>>><>>>>:

2|c| � (~b|A�1~b) if |c| � (~b|A�1~b)
|c|2

(~b|A�1~b)
if |c| < (~b|A�1~b)

,

where the minimum is attained by

~⇠⇤ =

8>>><>>>:
�sign(c)A�1~b if |c| � (~b|A�1~b)

� c

(~b|A�1~b)
A
�1~b if |c| < (~b|A�1~b) ,

where sign(c) is the sign of c.

Proofs for the above three lemmas are given in Appendices A 2–A 4.

1. Proof for Theorem 1.1

We now prove Theorem 1.1. From the expression of Holevo function (67), we can apply
Lemma 3.4 by identifying

A = h`?✓ |Q�1
✓ `?✓ iW, (69)

~b = (1 � s
2
✓)
p

det W~�✓, (70)

c =
p

det W h`1
✓ |F✓`

2
✓i. (71)

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  220.210.178.31
On: Thu, 07 Apr 2016 22:12:42



042201-14 Jun Suzuki J. Math. Phys. 57, 042201 (2016)

We need to evaluate (~b|A�1~b) and |c| and they are calculated as follows:

(~b|A�1~b)= (1 � s
2
✓)2 det W (~�✓ |(h`?✓ |Q�1

✓ `?✓ iW )�1~�✓)

=
(1 � s

2
✓)2 det W

h`?✓ |Q�1
✓ `?✓ i

(~�✓ |W�1~�✓)

= C
Z

✓ [W ] � C
R

✓ [W ],

where Lemma 3.2-1 and 3.2-3 are used to get the last line. Lemma 3.2-2 immediately gives

2|c| = TrAbs {W Im Z✓} = C
Z

✓ [W ] � C
S

✓ [W ]. (72)

Therefore, we obtain if

|c| � (~b|A�1~b), C
R

✓ [W ] � 1
2
(CZ

✓ [W ] + C
S

✓ [W ])

is satisfied, the Holevo bound is

C
H

✓ [W ] = C
S

✓ [W ] + (CZ

✓ [W ] � C
S

✓ [W ]) � (CZ

✓ [W ] � C
R

✓ [W ])
= C

R

✓ [W ]. (73)

If |c| < (~b|A�1~b), C
R

✓ [W ] < (CZ

✓ [W ] + C
S

✓ [W ])/2 is satisfied, on the other hand, the Holevo
bound takes the following form:

C
H

✓ [W ] = C
S

✓ [W ] +
⇥
(CZ

✓ [W ] � C
S

✓ [W ])/2
⇤2

C
Z

✓ [W ] � C
R

✓ [W ]

= C
R

✓ [W ] + 1
C

Z

✓ [W ] � C
R

✓ [W ]
*
,

C
Z

✓ [W ] + C
S

✓ [W ]
2

� C
R

✓ [W ]+-
2

= C
R

✓ [W ] + S✓[W ], (74)

where the function S✓[W ] is defined in Eq. (6). This proves the theorem. ⇤
We remark that from Lemma 3.2 and the positivity of W , we always have the relation

C
Z

✓ [W ] � C
R

✓ [W ], (75)

and the equality if and only if (~�✓ |W�1~�✓) = 0,M is D-invariant at ✓ by Lemma 3.3-3. Note
that if M is D-invariant at ✓ (�✓,1 = �✓,2 = 0), the condition C

R

✓ [W ] < (CZ

✓ [W ] + C
S

✓ [W ])/2,
0  TrAbs{W Im G̃

�1
✓ }/2 < C

Z

✓ [W ] � C
R

✓ [W ] cannot be satisfied. Thus, the obtained Holevo is well
defined for all ✓ and for arbitrary weight matrix W .

The optimal set of hermite operators attaining the Holevo bound can be given by Lemma 3.4 as
follows. Define a hermite matrix by

L
?
✓ B �hs✓ |`?✓ iI + `?✓ · �, (76)

and the function ⇣(W ) by

⇣✓(W ) B det W
�1/2

G
�1
✓

8>>>>><>>>>>:

sign(Im z
12
✓ ) if C

R

✓ [W ] � 1
2
(CZ

✓ [W ] + C
S

✓ [W ])
W

1/2Im z
12
✓

C
Z

✓ [W ] � C
R

✓ [W ]
otherwise

.

Then, we have ~X⇤ = (X1
⇤ ,X

2
⇤) = arg min h✓[~X |W ] as

X
1
⇤ = L

1
✓ + ⇣✓(w22�✓,1 � w12�✓,2)L?✓ ,

X
2
⇤ = L

2
✓ + ⇣✓(�w21�✓,1 + w11�✓,2)L?✓ . (77)

Before moving to discussion and consequence of the main result, we present the following
two-alternative expressions. Define a function,

H(x) B
8><>:

2|x | � 1 if |x | � 1

x
2 if |x | < 1

, (78)
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which is continuous and the first derivative is also continuous for all x 2 R. Then, the Holevo bound
is written in a unified manner,

C
H

✓ [W ] = C
S

✓ [W ] + (CZ

✓ [W ] � C
R

✓ [W ])H *
,
(CZ

✓ [W ] � C
S

✓ [W ])/2
C

Z

✓ [W ] � C
R

✓ [W ]
+
- . (79)

This expression needs a special care when C
Z

✓ [W ] � C
R

✓ [W ]! 0. This case should be understood as
the limit lima!0 aH(b/a) = 2|b|.

The other expression shown in Eq. (7) follows from the first line of Eq. (74) by noting
C

Z

✓ [W ] � C
R

✓ [W ] = Tr{W (G�1
✓ � Re G̃

�1
✓ )} and C

Z

✓ [W ] � C
S

✓ [W ] = TrAbs{W Im G̃
�1
✓ }.

IV. DISCUSSION ON THEOREM 1.1

In this section, we shall discuss the consequences of Theorem 1.1. This brings several impor-
tant findings of our paper. First is two conditions that characterize special classes of qubit models.
Second is a transition in the structure of the Holevo bound depending on the choice of the weight
matrix.

A. Necessary and su�cient conditions for special cases

The general formula for the Holevo bound for any two-parameter model is rather unexpected
in the following sense. First of all, it is expressed solely in terms of the three known bounds and
a given weight matrix. Second, a straightforward optimization for a nontrivial function reads to the
exactly same expression as the RLD CR bound when the condition C

R

✓ [W ] � (CZ

✓ [W ] + C
S

✓ [W ])/2
is satisfied. As noted before, this condition explicitly depends on the choice of the weight matrix
W . At first sight, this seems to be in contradiction with general theorem 2.5 stating that the RLD
CR bound can be attained if and only if the model is D-invariant. Therefore, we must examine
that the Holevo bound is identical to the RLD CR bound if and only if the model is D-invariant
based on Theorem 1.1. The following proposition confirms that this is indeed so. We note that this
statement is a special case of Theorem 2.5. Here, its proof becomes extremely simple with the
obtained formula.

Proposition 4.1. For any two-parameter qubit model, the Holevo bound at ✓ becomes same as

the RLD CR bound for all positive weight matrices if and only if the model is D-invariant at ✓. That

is,

8W 2W C
H

✓ [W ] = C
R

✓ [W ] , M is D-invariant at ✓. (80)

Proof. When the model is D-invariant, the condition C
R

✓ [W ] < (CZ

✓ [W ] + C
S

✓ [W ])/2 cannot be
satisfied. (See the remark after Eq. (75).) Therefore, the Holevo bound is always identical to the
RLD CR bound in this case.

Next we show the left condition implies the right in Eq. (80). If C
H

✓ [W ] = C
R

✓ [W ] holds
for all W , the relation

p
det W

�
h`1

✓ |F✓`2
✓i
�
� Tr{W (G�1

✓ � Re G̃
�1
✓ )} must be true for all W . But, if

G
�1
✓ � Re (G̃�1

✓ ) , 0, this is impossible. To show it, let us suppose B B G
�1
✓ � Re G̃

�1
✓ > 0, then we

can change W ! B
�1/2

W
0
B
�1/2 to get
p

det W 0

Tr {W 0}
�
h`1

✓ |F✓`
2
✓i
�
det B

�1 � 1, 8W 0 2W . (81)

It is easy to show that f (W 0) =
p

det W 0/Tr {W
0} as a function of positive matrix W

0 satisfies
1/2 � f (W 0) > 0 as changing positive matrix W

0. That is, f (W 0) can be made arbitrary small by
choosing W

0 and hence condition (81) cannot hold. This gives B = 0, G
�1
✓ = Re G̃

�1
✓ and hence

this is equivalent to the D-invariant condition from Lemma 3.3. ⇤

Using Theorem 1.1, we now state one more important condition characterizing the model
where the Holevo bound coincides with the SLD CR bound.
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Proposition 4.2. For any two-parameter qubit model, the Holevo bound coincides with the SLD

CR bound for all positive weight matrices if and only if the imaginary part of Z✓ vanishes. Further,

this condition is equivalent to the existence of a weight matrix W0 such that the Holevo bound and

the SLD CR bound are same with this particular choice W0.
30

Mathematically, we have

8W 2W C
H

✓ [W ] = C
S

✓ [W ] (82)
, Im Z✓ = 0 (83)
, 9W0 2W C

H

✓ [W0] = C
S

✓ [W0]. (84)

Proof. (83)) (82): The condition Im Z✓ = 0, Im hL✓,1,L✓,2i+⇢✓ = 0 implies TrAbs{W Im G̃
�1
✓ }

= 0 for all W 2W . In this case, the condition C
R

✓ [W ] < (CZ

✓ [W ] + C
S

✓ [W ])/2 is always satisfied,
and hence, the Holevo bound coincides with the SLD CR bound for all choices of the weight matrix.
This follows from the second line of expression (74).

(82) ) (84): Condition (82) implies an existence of a weight matrix satisfying C
H

✓ [W ] =
C

S

✓ [W ].
(84)) (83): Next let us assume C

H

✓ [W0] = C
S

✓ [W0] for some weight matrix W0 2W . Expres-
sion (79) immediately implies TrAbs {W0Im Z✓} = 2

p
det W0|Im hL✓,1,L✓,2i+⇢✓ | = 0 which gives Im

Z✓ = 0. Therefore, three conditions are all equivalent. ⇤

We have three remarks regarding this proposition. First, in terms of the SLD Bloch vectors,
necessary and su�cient condition (83) is also written as

Im Z✓ = 0, tr (⇢✓ [L✓,1, L✓,2]) = 0

, hs✓ |`✓,1 ⇥ `✓,2i = 0

, hs✓ |@1s✓ ⇥ @2s✓i = 0,

which is easy to check by calculating the Bloch vector of a given model.
Second, we note that given a symmetric matrix A, Tr {W A} � 0 for all positive weight matrix

W implies A � 0 as a matrix inequality. When the Holevo bound is same as the SLD CR bound, we
see that the MSE matrix V

(n)
✓ [⇧̂(n)] for any asymptotically unbiased estimators satisfies the SLD CR

inequality,

lim
n!1

nV
(n)
✓ [⇧̂(n)] � G

�1
✓ , (85)

as a matrix inequality. Moreover, there exists a sequence of estimators that attains this matrix
equality. This is rather counter-intuitive since two SLD operators L✓,1 and L✓,2 do not commute in
general. Therefore, the condition Im hL✓,1,L✓,2i+⇢✓ = 0 seems to grasp asymptotic commutativity of
two SLD operators in some sense. Indeed, this condition can be written as tr (⇢✓ [L✓,1, L✓,2]) = 0,
i.e., commutativity of L✓,1 and L✓,2 on the trace of the state ⇢✓. When this holds, the quantum
parameter estimation problem becomes similar to the classical case asymptotically. In the rest of
the paper, we call a model asymptotically classical when this condition is satisfied. A similar termi-
nology, “quasi-classical model,” was used by Matsumoto in the discussion of parameter estimation
of pure states.28 Here, we emphasize that classicality arises only in the asymptotic limit, and hence,
this terminology is more appropriate. We also note that the equivalence between (82) and (83) was
stated in the footnote of the paper9 based on the unpublished work of Hayashi and Matsumoto. Here
our proof is shown to be simple owing to the general formula obtained in this paper.

Last, a great reduction occurs in the structure of the fundamental precision bound for this class
of models. We note that achievability of the SLD CR bound for specific models has been reported in
the literature in discussion on quantum metrology.31,32 Here, we provide a simple characterization,
the necessary and su�cient condition, of such special models in the unified manner.

Having established the above two propositions, we can conclude that a generic two-parameter
qubit model other than D-invariant or asymptotically classical ones exhibits the nontrivial structure
for the Holevo bound in the following sense: The structure changes smoothly as the weight matrix
W varies. For a certain choice of W , it coincides with the RLD CR bound and it becomes di↵erent
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expression for other choices. Put it di↵erently, consider any model that is not asymptotically clas-
sical, then we can always find a certain region of the weight matrix set W such that the Holevo
bound is same as the RLD CR bound. This point is examined in detail in Subsection IV B and
examples are provided in Sec. V for illustration.

B. Smooth transition in the Holevo bound

Let us consider a two-parameter qubit model that is neither D-invariant nor asymptotically clas-
sical. In this case, the set of all possible weight matricesW = {W |W is 2 ⇥ 2 real positive definite}
is divided into three subsets. The first two sets are W+ and W� in which C

R

✓ [W ] � (CZ

✓ [W ] +
C

S

✓ [W ])/2 is positive and negative, respectively. The last is the boundary W@ that consists of a
family of weight matrices satisfying the equation,

B✓[W ] B C
R

✓ [W ] � 1
2
(CZ

✓ [W ] + C
S

✓ [W ]) = 0. (86)

According to this division, the Holevo bound takes the form C
H

✓ [W ] = C
R

✓ [W ] for W 2W+ and it is
expressed as C

H

✓ [W ] = C
R

✓ [W ] + S✓[W ] for W 2W�, whereas C
H

✓ [W ] = C
R

✓ [W ] = S✓[W ] holds for
the boundary W 2W@.

In the following, we characterize these sets explicitly. To do this, we first note that the de-
gree of freedom for the weight matrix in our problem is three due to the condition of W being
real symmetric. Second, we can show that a scalar multiplication of the weight matrix does not
change anything except for the multiplication of over all expressions of the Holevo bound. Thus, we
can parametrize the 2 ⇥ 2 weight matrix by two real parameters. For our purpose, we employ the
following representation up to an arbitrary multiplication factor:

W = U✓
*
,

1 ww2

ww2 w2
2

+
-U
⇤
✓ , (87)

where w2 > 0 and det W = w2
2(1 � w2) > 0) |w | < 1 are imposed from the positivity condition and

the real orthogonal matrix U✓ is defined in terms of Eq. (59) by

U✓ =
1

q
�2
✓,1 + �

2
✓,2

*
,
�✓,1 ��✓,2
�✓,2 �✓,1

+
- . (88)

The assumption of the model under consideration then yields

B✓[W ]= |h`1
✓ |F✓`

2
✓i|
p

det W � Tr
�
W (G�1

✓ � Re G̃
�1
✓ )

 
=

f
|h`1

✓ |F✓`
2
✓i|
p

1 � w2 � Tr
�
G
�1
✓ � Re G̃

�1
✓

 
w2

g
w2.

Therefore, by defining a constant solely calculated from the given model ↵✓ B |h`1
✓ |F✓`2

✓i|/
Tr

�
G
�1
✓ � Re G̃

�1
✓

 
, we obtain the setsW±,W@ as follows:

W+ =
8><>:c U✓

*
,

1 ↵✓ww2

↵✓ww2 ↵2
✓w

2
2

+
-U
⇤
✓
��� w2

2 + w2 < 1
9>=>; ,

W� =
8><>:c U✓

*
,

1 ↵✓ww2

↵✓ww2 ↵2
✓w

2
2

+
-U
⇤
✓
��� w2

2 + w2 > 1
9>=>; ,

W@ =
8><>:c U✓

*
,

1 ↵✓ww2

↵✓ww2 ↵2
✓w

2
2

+
-U
⇤
✓
��� w2

2 + w2 = 1
9>=>; , (89)

where the common conditions w2 > 0, |w | < 1, and c > 0 also need to be imposed to satisfy the
positivity of the weight matrix.
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C. Limit for pure-state models

So far we only consider models which consist of mixed states. It is known that collective
measurements do not improve the MSE for pure-state models.4,13,28 In other words, the Holevo
bound is same as the bound achieved by separable measurements as far as pure-state models are
concerned.

In this subsection, we examine the pure-state limit for our general result. When a mixed-state
model is asymptotically classical, the Holevo bound is identical to the SLD CR bound. This should
be true in the pure-state limit, and this agrees with the result of Matsumoto.28 When a model is
D-invariant, on the other hand, it is shown that the RLD CR bound can be achieved. This also holds
in the pure-state limit and we examine the pure-state limit for a generic mixed-state model below.

We first note that we cannot take the limit for SLD and RLD operators directly.25,29 This is
because there are the terms 1 � s

2
✓ appearing in the denominators. However, the SLD and RLD dual

operators are well defined even in the pure-state limit. By direct calculation, we can show that SLD
and RLD dual vectors ((49) and (56)) are written as

`1
✓ = �

Q
�1
✓ `?✓ ⇥ @2s✓
h`?✓ |Q�1

✓ `?✓ i
,

`2
✓ =

Q
�1
✓ `?✓ ⇥ @1s✓
h`?✓ |Q�1

✓ `?✓ i
,

˜̀1
✓ = �

(1 � iF✓)(`?✓ ⇥ @2s✓ � ihs✓ |`?✓ i@2s✓)
h`?✓ |Q�1

✓ `?✓ i
,

˜̀2
✓ =

(1 � iF✓)(`?✓ ⇥ @1s✓ � ihs✓ |`?✓ i@1s✓)
h`?✓ |Q�1

✓ `?✓ i
,

for any two-parameter qubit model. Thus, as long as h`?✓ |Q�1
✓ `?✓ i , 0, they converge in the pure-state

limit. This condition is also expressed as |`?✓ ⇥ s✓ |2 � (1 � s
2
✓)2|`?✓ |2 , 0 and hence is equivalent to

`?✓ ⇥ s✓ , 0 in the pure-state limit., i.e.,M is not asymptotically classical. Second, the same warn-
ing applies to the SLD and RLD Fisher information.25,29 However, the inverse of the SLD Fisher
information matrix is well defined even for the pure-state limit. This is because the (i, j) component
of the inverse of SLD Fisher information matrix is h`i✓ |Q�1

✓ ` j✓i and this has the well-defined limit.
The same reasoning can be applied to the inverse of the RLD Fisher information matrix in the
pure-state limit.

Last, let us examine the general formula. It is straightforward to show that function (6) van-
ishes in the pure-state limit. In other words, the general formula given in Theorem 1.1 becomes
C

H

✓ [W ] = C
R

✓ [W ] for all weight matrices. Therefore, the Holevo bound becomes the RLD CR
bound in the pure-state limit. This is, of course, expected because any pure-state model can be
expressed as a unitary model, which is D-invariant from Lemma 3.3.

V. EXAMPLES

In this section, we consider several examples for two-parameter qubit models to illustrate our
result. The first one is a D-invariant model whose Holevo bound is identical to the RLD CR bound.
The second one is a asymptotically classical model which gives the SLD CR bound. As the last
example, we analyze a generic model, in particular, the behavior of the Holevo bound depending on
the weight matrix.

Within the setting of pointwise estimation, we note that it is su�cient to specify the following
three vectors to define a model locally:

{s✓, @1s✓, @2s✓} at ✓. (90)

Equivalently, the set {s✓,`✓,1,`✓,2} or {s✓, ˜̀
✓,1, ˜̀

✓,2} can be used to define the model at ✓ uniquely.
One-to-one correspondences among these three specifications of the model are easily established by
the Bloch vector representation discussed in Sec. III A.
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The D-invariant condition is now expressed in terms of the vectors of the set (90) as

D-invariant , hs✓ |@1s✓i = hs✓ |@2s✓i = 0. (91)

The asymptotically classical condition is equivalent to

Asymptotically classical , hs✓ |@1s✓ ⇥ @2s✓i = 0. (92)

All models other than satisfying the above two conditions are generic ones.

A. D-invariant model

Consider a simple unitary model where the parametric state is generated by a two-parameter
unitary U(✓) (✓ = (✓1,✓2)),

⇢✓ = U(✓)⇢0U(✓)⇤. (93)

It is easy to show that the norm of the Bloch vector is independent of ✓, and hence, this model is
globally D-invariant. The Holevo bound is C

H

✓ [W ] = C
R

✓ [W ] for all weight matrices W .
We note that this kind of D-invariant models possesses symmetry and has been studied by many

authors, see, for example, Ch. 4 of Holevo’s book15 and Hayashi7 and references therein.

B. Asymptotically classical model

Consider the following model:

MB =
�
s✓ = f

1(✓)u1 + f
2(✓)u2 | ✓ 2 ⇥

 
, (94)

where ui are unit vectors, which are not necessarily orthogonal to each other, and f
j(✓) are scalar

(di↵erentiable) functions of ✓ = (✓1,✓2). The parameter region ⇥ is specified by an arbitrary open
subset of the set: {(✓1,✓2) | s✓ < 1}. We can show that this model is asymptotically classical because
of s✓ ? @1s✓ ⇥ @2s✓ / u1 ⇥ u2, and the Holevo bound is C

H

✓ [W ] = Tr
�
WG

�1
✓

 
8W > 0.

For the asymptotically classical case, we can easily compare this result with the bound achieved
by an optimal estimator comprised of separable POVMs. In this case, the Nagaoka bound is known
to be achievable that is calculated as21

C
N

✓ [W ] = Tr
�
WG

�1
✓

 
+ 2

q
det WG

�1
✓ . (95)

Therefore, the gain due to use of collective POVMs is 2
q

det WG
�1
✓ .

As a special case, let us set u j to be orthogonal normal vectors and f
j(✓) = ✓ j. Then, the

inverse of the SLD Fisher information matrix reads

G
�1
✓ =

*
,
1 � (✓1)2 �✓1✓2

�✓1✓2 1 � (✓2)2
+
- , (96)

and the gain mentioned above is 2
p

det W

q
1 � s

2
✓. Thus, the role of collective POVMS becomes

important as the state becomes more mixed.

C. Generic model

In this subsection, we analyze a generic model other than the previous two examples. In this
case, the structure of the Holevo bound changes when the weight matrix W varies, that is, it takes
the same form as the RLD CR bound for certain choices of W whereas it becomes di↵erent form
for other cases. This is explicitly demonstrated in Section IV B and here we consider a simple yet
nontrivial example to gain a deeper insight into this phenomenon of transition.

Consider a two-parameter qubit model,

MB =
�
s✓ = (✓1,✓2,✓0)T | ✓ 2 ⇥

 
, (97)
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where ✓0 is a fixed parameter which satisfies 0 < |✓0| < 1. The parameter region is specified by a
subset of {(✓1,✓2)|(✓1)2 + (✓2)2 < 1 � ✓2

0}. This model is neither D-invariant nor asymptotically clas-
sical when ✓0 , 0 and ✓1✓2 , 0 are satisfied. This model becomes asymptotically classical for ✓0 = 0
as discussed before. We can also regard this model as a sub-model embedded in the three-parameter
qubit model:

�
s✓ = (✓1,✓2,✓3)T | ✓ 2 ⇥ ⇢ R3 .

The inverse SLD and RLD Fisher information matrices at ✓ are

G
�1
✓ =

1
1 � ✓2

0

*
,
1 � ✓2

0 � (✓1)2 �✓1✓2

�✓1✓2 1 � ✓2
0 � (✓2)2

+
- ,

G̃
�1
✓ =

1 � s
2
✓

1 � ✓2
0

*
,

1 �i✓0

i✓0 1
+
- , (98)

with s✓ = [(✓1)2 + (✓2)2 + ✓2
0]1/2, respectively, and the three bounds appearing in Theorem 1.1 read

C
S

✓ [W ]= Tr {W} � 1
1 � ✓2

0
(~✓ |W~✓),

C
R

✓ [W ]=
1 � s

2
✓

1 � ✓2
0
Tr {W} + 2

s
1 � s

2
✓

1 � ✓2
0
|✓0|
p

det W ,

C
Z

✓ [W ]= Tr {W} � 1
1 � ✓2

0
(~✓ |W~✓) + 2

s
1 � s

2
✓

1 � ✓2
0
|✓0|
p

det W ,

where |~✓) = (✓1,✓2)T is introduced for convenience.
In the following, let us analyze the structure of the Holevo bound using the following parame-

trization of a weight matrix:

W (w,!) = R(!)
*..
,

1
2
(1 + w) 0

0
1
2
(1 � w)

+//
-

R(!)T , with R(!) = *
,
cos! � sin!
sin! cos!

+
- , (99)

where we normalize the trace of W to be one and w 2 (�1,1), ! 2 [0,2⇡). This parametrization is
di↵erent from the one analyzed in Sec. IV B, yet is convenient for the purpose of visualization. It is
easy to see that the e↵ect of the matrix R(!) is to mix two parameters ✓1 and ✓2 by rotating them
about an angle !. Since det W = (1 � w2)/4 for this particular parametrization, we see that the RLD
CR bound is independent of the weight parameter !. The other bounds depend on two parameters
(w,!).

We are interested in how the Holevo bound C
H

✓ [w,!] changes when we vary the weight param-
eters w,!. Upon plotting, we fix the direction of the estimation parameter ~✓ as ~✓ = |✓ |(1,1)/

p
2

with |✓ | = (✓ |✓)1/2. We plot the Holevo bound for two sets of the state parameters: (a) ✓0 = 0.2,~✓ =
0.346(1,1)/

p
2 and (b) ✓0 = 0.275,~✓ = 0.476(1,1)/

p
2 for illustration. Figure 1(a) shows the Holevo

FIG. 1. The Holevo bound for the state parameter (a) ✓0= 0.2, ~✓ = 0.346(1,1)/
p

2 and (b) ✓0= 0.275, ~✓ = 0.476(1,1)/
p

2
as a function of the wight-matrix parameter (w,!) given in Eq. (99). The gray areas indicate the case for C

H

✓ [W ]=
C

R

✓ [W ]+S✓[W ], whereas the white-meshed region indicates the case for CH

✓ [W ]=CR

✓ [W ].
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FIG. 2. The Holevo bound for the weight matrix W0= diag(0.55,0.45) and ✓0= 0.35 as a function of the state parameter
~✓ = (✓1,✓2). The gray area indicates the case for CH

✓ [W ]=CR

✓ [W ]+S✓[W ], whereas the white-meshed region indicates the
case for CH

✓ [W ]=CR

✓ [W ].

bound for the state parameter (a) as a function of the weight-matrix parameter w,!. In this plot, the
gray areas indicate the case for C

H

✓ [W ] = C
R

✓ [W ] + S✓[W ], whereas the white-meshed region indi-
cates the case for C

H

✓ [W ] = C
R

✓ [W ]. We also show the other state parameter setting (b) in Fig. 1(b)
with the same convention. In both figures, we observe smooth transitions between two-di↵erent
expressions discussed in Sec. IV B.

From these figures, we see that the Holevo bound coincides with the RLD CR bound for
relatively large choice of the weight matrix in Fig. 1(a), whereas the opposite observation holds for
Fig. 1(b). To gain a deeper insight, let us calculate the value of quantities �✓, i B hs✓ |`✓, ii (i = 1,2).
Then, we get �✓,1 = �✓,2 = 0.292 for the case (a) and �✓,1 = �✓,2 = 0.483 for the case (b). Since
vanishing of these quantities is equivalent to the D-invariance of a model (Lemma 3.3), we naively
expect that the smaller values of them imply that a model behaves more D-invariant-like. Indeed, the
examples presented here agree with our intuition, yet more detailed analysis is needed to make any
conclusion.

D. Transition in the parameter space

We briefly discuss another important observation of this paper. A generic model, other than
special cases discussed before, exhibits a transition in the structure of the Holevo bound for a fixed
weight matrix when we change the estimation parameter ✓. A rough sketch of this argument is that a
change in the weight matrix is amount to that in the parameter and vice versa. This is a well-known
fact in the pointwise estimation setting.25,33 Below we briefly show such an example. The model is
same as generic model (97) analyzed in Subsection V C.

As noted before, a change in the weight-matrix parameter !0! !0 + ! is equivalent to
rotate the parameter (✓1,✓2) by the angle !. Depending upon the choice of the weight matrix,
we can also observe a similar transition when we change the parameter ✓ in the set ⇥. We set
the weight matrix to be a diagonal matrix W0 = diag(0.55,0.45) and ✓0 = 0.35. Figure 2 plots the
Holevo bound as a function of the state parameter ✓ = (✓1,✓2). The gray area indicates the region
where C

H

✓ [W0] = C
R

✓ [W0] + S✓[W0] holds, whereas the white-meshed region indicates the case for
C

H

✓ [W0] = C
R

✓ [W0]. This shows that the Holevo bound coincides with the RLD CR bound for a
certain subset of the parameter space.

VI. CONCLUDING REMARKS

In this paper, we have derived a closed formula for the fundamental precision bound, the
Holevo bound, for any two-parameter qubit estimation problem in the pointwise estimation setting.
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This bound is known to be asymptotically achievable by the optimal sequence of estimators consist-
ing of jointly performed measurements under some regularity conditions. Since there exist explicit
formulas for the Holevo bound for the pure-state qubit model, qubit mixed-state models with one
and three parameters, our result completes a list of the fundamental precision bounds in terms
of quantum versions of Fisher information, which is calculated from a given quantum parametric
model, as far as qubit models are concerned. The obtained formula shows several new insights into
the property of the Holevo bound for quantum parameter estimation problems. In the following, we
shall list concluding remarks together with outlook for future works.

First, the necessary and su�cient conditions for the asymptotic achievability of the SLD
and RLD CR bounds are derived when estimating any two-parameter family of qubit states. In
particular, the notation of asymptotically classical models is proposed, in which all SLD operators
commute with each other on the trace of a given parametric state. In this case, the weight matrix
can be eliminated and the problem becomes similar to the classical statistics in the asymptotic limit,
where the SLD Fisher information plays the same role as the Fisher information. We note that the
notion of asymptotic classicality can be extended to any models on any finite-dimensional system
and the same statement obtained for the qubit case holds: The Holevo bound coincides with the SLD
CR bound if and only if the model is asymptotically classical. The detail of this result shall be given
in the subsequent paper.

Second, the RLD CR bound is shown to be achieved for a certain choice of the weight ma-
trix even though the model is not D-invariant. This result emphasizes the importance of the RLD
Fisher information for general qubit parameter estimation problems. Since the imaginary parts
of the inverse of the RLD Fisher information matrix and the Z✓ matrix are always identical for
two-parameter qubit mixed-state models, we cannot immediately conclude that this is the general
statement or not. It might well be that the only real part of the inverse of RLD Fisher information
matrix plays an important role in higher dimensional systems. This deserves further studies and
shall be analyzed as an extension of the present work.

Third, our result also provides the (unique) minimizer to the optimization problem appearing
in the definition of the Holevo bound. This set of observables, which are locally unbiased in the
sense of Eq. (16), can be used to construct an optimal sequence of POVMs that attains the Holevo
bound asymptotically. This line of approach has been proposed by Hayashi, who reported a theorem
without proof to realize the construction of POVMs on the tensor product states.6 His approach
is di↵erent from other approaches given in Refs. 10, 11, and 13 and it may need more refined
arguments to complete his theorem.

Last, smooth transitions in the structure of the Holevo bound are shown to occur in general.
Since this happens in the simplest quantum system, we expect similar phenomena to occur in higher
dimensional systems as well. However, we do not know whether or not the number of di↵erent
forms is always two as demonstrated here. The techniques used in this paper can be applied to
two-parameter estimation problems in higher dimensional systems, and we shall make progress in
due course.
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APPENDIX A: PROOFS FOR LEMMAS

1. Lemma 3.1

Proof follows from a straightforward calculation. We substitute xi = `i✓ + ⇠ i`?✓ into the second
line of Eqs. (64). The first term reads
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hxi |Q�1
✓ x ji = h`i✓ |Q�1

✓ ` j✓i + ⇠ i⇠ jh`?✓ |Q�1
✓ `?✓ i

= gi j✓ + ⇠ i⇠ jh`?✓ |Q�1
✓ `?✓ i, (A1)

where the relation h`i✓ |Q�1
✓ `?✓ i = 0 for i = 1,2 and Eq. (51) are used. Note that ha|F✓ai = 0 for all

a 2 R2, then the second term is calculated as
2X

i, j=1

|hxi |F✓x ji| = 2|hx1|F✓x2i| (A2)

= 2|h`1
✓ |F✓`

2
✓i + ⇠1h`?✓ |F✓`

2
✓i + ⇠2h`1

✓ |F✓`
?
✓ i|

= 2|h`1
✓ |F✓`

2
✓i + ⇠1(1 � s

2
✓)�✓,1 + ⇠2(1 � s

2
✓)�✓,2|,

where h`?✓ |F✓`2
✓i = (1 � s

2
✓)�✓,1 and h`?✓ |F✓`1

✓i = �(1 � s
2
✓)�✓,2 are used. Combining the above

expressions, we get the expression of this lemma. ⇤

2. Lemma 3.2

1. h`?✓ |Q�1
✓ `?✓ i = (1 � s

2
✓) det G✓ = (1 � s

2
✓)2 det G̃✓.

For convenience, let us define

n✓ B @1s✓ ⇥ @2s✓, (A3)
m✓ B `✓,1 ⇥ `✓,2,

which are related by n✓ = (1 � s
2
✓)Q✓m✓. The standard vector analysis shows

hm✓ |m✓i= h`✓,1|`✓,1ih`✓,2|`✓,2i � (h`✓,1|`✓,2i)2,

s✓ ⇥m✓ = �✓,2`✓,1 � �✓,1`✓,2.

From expression (48), the components of the SLD Fisher information matrix are expressed as
g✓, i j = h`✓, i |`✓, ji � �✓, i�✓, j. Then, the determinant of the SLD Fisher information matrix is calcu-
lated as

det G✓ = (h`✓,1|`✓,1i � �2
✓,1)(h`✓,2|`✓,2i � �2

✓,2) � (h`✓,1|`✓,2i � �✓,1�✓,2)2

= h`✓,1|`✓,1ih`✓,2|`✓,2i � (h`✓,1|`✓,2i)2 � |�✓,2`✓,1 � �✓,1`✓,2|2

= hm✓ |m✓i � hs✓ ⇥m✓ |s✓ ⇥m✓i

= (1 � s
2
✓)hm✓ |Q✓m✓i

=
1

1 � s
2
✓

hn✓ |Q�1
✓ n✓i,

and hence, we obtain h`?✓ |Q�1
✓ `?✓ i = (1 � s

2
✓) det G✓.

Next, we use the relation for the RLD Fisher information: g̃✓, i j = (1 � s
2
✓)�1[h`✓, i |`✓, ji � (2 �

s
2
✓)�✓, i�✓, j � ih`✓, i |F✓`✓, ji] to calculate the determinant det G̃✓ as

(1 � s
2
✓)

2 det G̃✓

= (h`✓,1|`✓,1i � (2 � s
2
✓)�

2
✓,1)(h`✓,2|`✓,2i � (2 � s

2
✓)�

2
✓,2) � |h`✓,1|`✓,2i � (2 � s

2
✓)�✓,1�✓,2 � ih`✓,1|F✓`✓,2i|2

= hm✓ |m✓i � (2 � s
2
✓)hs✓ ⇥m✓ |s✓ ⇥m✓i � |hs✓ |m✓i|2

= (1 � s
2
✓)

2hm✓ |Q✓m✓i.

This proves the relation: (1 � s
2
✓) det G̃✓ = det G✓. ⇤

2. 2
p

det W
�
h`1

✓ |F✓`2
✓i
�
= TrAbs{W Im G̃

�1
✓ } = TrAbs{W Im Z✓}.

From the definition for the matrix Z✓, the imaginary part is expressed as

Im Z✓ = h`1
✓ |F✓`

2
✓i *,

0 1
�1 0

+
- , (A4)
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and the straightforward calculation yields

TrAbs {W Im Z✓} = 2
p

det W
�
h`1

✓ |F✓`
2
✓i
�
. (A5)

The imaginary part of the RLD Fisher information matrix is

Im G̃✓ =
h`✓,1|F✓`✓,2i

1 � s
2
✓

*
,
0 �1
1 0

+
- , (A6)

and the imaginary part of the inverse is

Im {G̃
�1
✓ } = h`✓,1|F✓`✓,2i

det G✓

*
,

0 1
�1 0

+
- , (A7)

where we use (1 � s
2
✓) det G̃✓ = det G✓. It is easy to show that h`1

✓ |F✓`2
✓i = h`✓,1|F✓`✓,2i/ det G✓ and

thus we obtain the important relationship, Im Z✓ = Im G̃
�1
✓ . This proves the claim. ⇤

3. (~�✓ |W�1~�✓) = det W
�1

G✓

�
C

Z

✓ [W ] � C
R

✓ [W ]
�
/(1 � s

2
✓).

This can be shown by the following calculations:

det W ⇥ (~�✓ |W�1~�✓)= w22�
2
✓,1 + w11�

2
✓,2 � 2w12�✓,1�✓,2

= (1 � s
2
✓)
�1(w22g✓,11 + w11g✓,22 � 2w12g12) � Re (w22g̃✓,11 + w11g̃✓,22 � 2w12g̃12)

= (1 � s
2
✓)
�1 det G✓Tr

(
WG

�1
✓

)
� det G̃✓Tr

(
WRe G̃

�1
✓

)
=

det G✓

1 � s
2
✓

Tr
(
W (G�1

✓ � Re G̃
�1
✓ )

)

=
det G✓

1 � s
2
✓

⇣
C
Z

✓ [W ] � C
R

✓ [W ]
⌘
.

⇤

3. Lemma 3.3

Since the imaginary parts of the inverse of the RLD Fisher information matrix and the matrix
Z✓ are always identical for two-parameter qubit models, equivalence between 1 and 2 is the direct
consequence of Lemma B.1. We next note the following relation:

G
�1
✓ � Re G̃

�1
✓ =

1
det G̃✓

*
,

�2
✓,2 ��✓,1�✓,2

��✓,1�✓,2 �2
✓,1

+
- ,

which follows from Eq. (61) and Lemma 3.2-1. Thus, G
�1
✓ � Re G̃

�1
✓ = 0 if and only if �✓,1 = �✓,2 =

0.
To show the statement about global D-invariance, we only need to show �✓,1 = �✓,2 = 0 for

all ✓ 2 ⇥ if and only if s✓ = |s✓ | is independent of ✓. When �✓, i = hs✓ |`✓, ii = 0, hs✓ |@is✓i =
(1/2)@i |s✓ |2 = 0 holds, the integration of this condition gives |s✓ | which is independent of ✓ =
(✓1,✓2). Conversely, |s✓ | does not depend on ✓, and we obtain �✓, i = 0 (i = 1,2) for all ✓ 2 ⇥. ⇤

4. Lemma 3.4

When ~b = ~0, the function to be minimized is f (~⇠) = (~⇠ |A~⇠) + 2|c|. Since A is positive-definite,
the minimum is 2|c| and is attained by ~⇠⇤ = ~0.

For the other case (~b , ~0), introducing the new variables through

~⌘ = BA
1/2~⇠, with B =

*...
,

~bT A
�1/2

~bT A
�1/2 *

,
0 �1
1 0

+
-
+///
-
,
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we can express the function f (~⇠) as

f (~⌘) = 1
↵
(⌘2

1 + ⌘
2
2) + 2|⌘1 + c|, (A8)

where ↵ = (~b|A�1~b) is a positive constant. The minimum of this simple quadratic function is ob-
tained by analyzing the case ⌘1 + c > 0 and ⌘1 + c  0 separately. The result is

min
~⌘2R2

f (~⌘) =

8>>>>><>>>>>:

�↵ + 2c ifc � ↵

c
2

↵
if |c| < ↵

�↵ � 2c ifc  �↵

, (A9)

and the unique minimizer ~⌘⇤ = (⇣⇤,0)T is

⇣⇤ =

8>>>><>>>>:

�↵ ifc � ↵

�c if |c| < ↵

↵ ifc  �↵
. (A10)

This solution can be translated into the original variables ~⇠ to prove the lemma. ⇤

APPENDIX B: SUPPLEMENTARY MATERIALS

1. Canonical projection and invariant subspace

In this appendix, we summarize the concept of canonical projection and invariant subspace for
an inner product space on real numbers. These results can be generalized to more general settings to
be applied to the quantum estimation problem.

Consider an n-dimensional vector space V on R and an inner product on it h·, ·i : V
2! R. Let

w1, w2, . . . , wk 2 V (k < n) be a set of linearly independent vectors and define the subspace W =
spanR{w1, w2, . . . , wk} ⇢ V spanned by these vectors. We define a real positive semi-definite matrix
G = [hwi, w ji]i, j 2{1,2, ...,k} and its inverse by G

�1 = [gi j]i, j. A set of vectors {w i =
P

j g
j iw j}ki=1

forms the dual basis of {wi}ki=1.
Given a vector v 2 V , the canonical projection of v onto the subspace W is a map ⇡W : V ! W

such that

⇡W(v) =
kX

i=1

hv,w iiwi 2 W. (B1)

This canonical projection is unique and it preserves the inner product as

h⇡W(v), wi = hv,wi 8w 2 W, 8v 2 V. (B2)

Consider any element v 2 V and the condition v 2 W is equivalently expressed as follows:

v 2 W, ⇡W(v) = v

, 8v 0 2 W
? hv 0, vi = 0

, 8v 0 2 V hv 0 � ⇡W(v 0), vi = 0

, 8(v1, v2, . . . , vk) 2 V
k, 8i(⇡W(v i) = w i ) hv i � w i, vi = 0),

where W
? = {v 2 V | hv,wi = 08w 2 W} is the (unique) orthogonal complement of W .

Next, consider a linear map A from V to itself. The subspace is said invariant under the map A

if the image of W is a subset of W , i.e., A(w) 2 W holds for 8w 2 W . Using the above equivalence,
this can be written as follows:

W is an invariant subspace under A, 8i A(wi) 2 W (B3)
, 8i8v 0 2 W

? hv 0, A(wi)i = 0
, 8(v1, v2, . . . , vk) 2 V

k, 8i, j(⇡W (v i) = w i ) hv i � w i, A(w j)i = 0).
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2. Characterization of D-invariant model

Lemma B.1. Let L
i

✓ (L̃
i

✓) be the SLD (RLD) dual operator and G✓ (G̃✓) be the

SLD (RLD) Fisher information matrix, respectively. Define a k ⇥ k hermite matrix by

Z✓ = [hLi

✓,L
j

✓i+⇢✓]i, j 2{1, ...,k}, then, the following conditions are equivalent.

1. M is D-invariant at ✓.

2. D✓(Li

✓) =
P

j(Im Z✓) j iL✓, j, 8i 2 {1,2, . . . , k}.

3. Z✓ = G̃
�1
✓ .

4. L
i

✓ = L̃
i

✓, 8i 2 {1,2, . . . , k}.

5. 8X
i 2 Lh(H ), X

i � L
i

✓ ? T✓(M) with respect to h·, ·i⇢✓ ) X
i � L

i

✓ ? T✓(M) with respect to

h·, ·i+⇢✓.

In the above lemma, hX,Y i⇢✓ B Re tr (⇢✓Y X
⇤) and hX,Y i+⇢✓ B tr (⇢✓Y X

⇤) denote the SLD and RLD
inner products, respectively.

Proof. We prove this lemma by the chain, 1) 2) 3) 4) 5) 1. Suppose that a given
model is D-invariant, this is equivalent to say that the action of the commutation operator on the
SLD dual operators is expressed as

D✓(Li

✓) =
X

j

c
j i

L✓, j, (B4)

with some real coe�cients c
i j. These coe�cients are expressed as

c
j i = hLi

✓,D✓(L j

✓)i⇢✓, (B5)

which directly follows from orthogonality condition (13). Using relation (36), the right hand side is
also expressed as Im z

i j

✓ , and if the model is D-invariant at ✓,

D✓(Li

✓) =
X

j

(Im Z✓) j iL✓, j . (B6)

Hence we show 1) 2.
Next, if condition Eq. (B6) holds, the SLD inner product between D✓(Li

✓) and the RLD dual
operator L̃

j

✓ gives

hL̃i

✓,D✓(L j

✓)i⇢✓ =
X

k

c
k jhL̃i

✓,L
k

✓i⇢✓ = c
j i. (B7)

The left hand side is also calculated from Eq. (37) as �i(g̃i j✓ � g
i j

✓ ). Therefore, we show that

c
j i = Im z

i j

✓ = �i(g̃i j✓ � g
i j

✓ ) , G̃
�1
✓ = Z✓ (B8)

holds if condition (B6) holds, that is, 2) 3.
Consider an arbitrary linear operator X and assume condition (B8). In this case, the RLD inner

product between X and L̃
j

✓ is calculated as

hX, L̃ j

✓i
+
⇢✓
=

X

k

g̃k j✓ hX, L̃✓,ki+⇢✓

=
X

k

z
k j

✓ hX, L̃✓,ki+⇢✓

=
X

k

z
k j

✓ hX,L✓,ki⇢✓

=
X

k

(gk j✓ hX,L✓,ki⇢✓ + iIm z
k jhX,L✓,ki⇢✓)

= hX,L j

✓i⇢✓ + ihX,D✓(L j

✓)i⇢✓
= hX,L j

✓i
+
⇢✓
,
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where Eq. (B8) and the several equations presented in Sec. II C 2 are used. Since X 2 L(H ) is
arbitrary, it implies

L
i

✓ = L̃
i

✓ folds for all i 2 {1,2, . . . , k}. (B9)

Therefore, we show 3) 4.
Next, let us assume condition (B9) and we show that this implies condition 5, that is, 8X

i 2
Lh(H ), X

i � L
i

✓ ? T✓(M) with respect to h·, ·i⇢✓ ) X
i � L

i

✓ ? T✓(M) with respect to h·, ·i+⇢✓. This is
because

X
i � L

i

✓ ? T✓(M)w.r.t.h·, ·i⇢✓, 8 jhX i � L
i

✓,L✓, ji⇢✓
, 8 jhX i � L

i

✓, L̃✓, ji+⇢✓
) 8 jhX i � L

i

✓, L̃
j

✓i
+
⇢✓

, 8 jhX i � L
i

✓,L
j

✓i
+
⇢✓

, X
i � L

i

✓ ? T✓(M)w.r.t.h·, ·i+⇢✓.

The remaining to be shown is that the condition,

8X
i 2 Lh(H ), 8i(X i � L

i

✓ ? T✓(M)w.r.t.h·, ·i⇢✓ ) X
i � L

i

✓ ? T✓(M) w.r.t. h·, ·i+⇢✓), (B10)

implies the D-invariance of the model. Consider a set of hermite operators ~X = (X1,X2, . . . ,X k) and
suppose condition (B10). Since X

i � L
i

✓ ? T✓(M)w.r.t.h·, ·i⇢✓ is equivalent to ⇡T✓(X i) = L
i

✓ with ⇡T✓
the canonical projection on T✓(M), we can rewrite it as

8X
i 2 Lh(H ), 8i, j(hX i � L

i

✓,L✓, ji⇢✓ ) hX i � L
i

✓,L✓, ji+⇢✓). (B11)

The use of Eq. (35) leads to hX i � L
i

✓,L✓, ji⇢✓ ) hX i � L
i

✓,L✓, ji+⇢✓ ) hX i � L
i

✓,L✓, ji⇢✓ ) hX i �
L
i

✓,D✓(L✓, j)i⇢✓. Then, equivalent condition (B3) can be applied to conclude that the subspace
T✓(M) is invariant under the action of linear operatorD✓, that is, the model is D-invariant. ⇤

3. Proof for Theorem 2.5

(i) Proof for the RLD CR bound case.
The su�ciency (D-invariant model ) C

H

✓ [W ] = C
R

✓ [W ] for all W > 0) follows from Proposition
2.4. If the Holevo bound is identical to the RLD CR bound for all weight matrices, then all the
RLD dual operators must be hermite, i.e., (L̃i

✓)⇤ = L̃
i

✓ for all i = 1,2, . . . , k. To see this, we note that
~X = (X1,X2, . . . ,X k) 2 X✓ implies ~X 2 X̃✓ B { ~X | 8i X

i 2 L(H ), tr
�
⇢✓X

i
�
= 0, 8i, j tr

�
@i⇢✓X

j
�
=

� j

i
}. By rewriting tr

�
@i⇢✓X

j
�
= � j

i
, hX i � L̃

i

✓, L̃✓, ji+⇢✓ = 0, we see that X
i � L̃

i

✓ (i = 1,2, . . . , k) are
orthogonal to the complex span of the RLD operators, T̃✓(M) B spanC{L̃✓, i}. It is straightforward
to show that Z✓[~X] = Z✓[~X � ~̃L✓] + Z✓[~̃L✓] holds for ~X 2 X̃✓, where ~̃

L✓ = (L̃1
✓, L̃

2
✓, . . . , L̃

k

✓) is the
collection of the RLD dual operators. Since the matrix Z✓[~X � ~̃L✓] is positive semi-definite, and
hence, we obtain

~X 2 X̃✓ ) Z✓[~X] � G̃
�1
✓ , (B12)

and the equality if and only if 8i X
i = L̃

i

✓ holds. Thus, all L̃
i

✓ need to be in the setX✓.
Next, we use the relation between the SLD and RLD operators, (I + iD✓)(L̃✓, i) = L✓, i (see

Eq. (35)), to get

(I + iD✓)(L̃i

✓) =
X

j

g̃ j i
L✓, j . (B13)

Then, the conditions (L̃i

✓)⇤ = L̃
i

✓ for all i imply

L̃
i

✓ =
X

j

Re {g̃ j i}L✓, j, (B14)
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D✓(L̃i

✓) =
X

j

Im {g̃ j i}L✓, j . (B15)

Since G̃✓ is positive definite, so as Re G̃✓. With these relations, the action of the commutation
operator on the SLD operators is calculated as

D✓(L✓, i) =
X

j,k

[(Re {G̃
�1})�1] j iIm {g̃k j}L✓,k . (B16)

This proves that D✓(L✓, i) 2 T✓(M) = spanR{L✓, i}. Therefore, if C
H

✓ [W ] = C
R

✓ [W ] for all W 2W ,
then the model is D-invariant.
(ii) Proof for the D-invariant bound.
This equivalence is a direct consequence of Proposition 2.4 (Z✓ = G̃

�1
✓ ) and the property of the

canonical projection given in Appendix B 1. First, let us note

8W 2W C
H

✓ [W ] = C
Z

✓ [W ], 8~X 2 X✓ Z✓[~X] � Z✓. (B17)

This is because ~L✓ is an element of the set X✓ and Z✓[~L✓] = Z✓. If condition of Lemma B.1-5 holds,
it is easy to show ~X 2 X✓ ) 8i, jhX i � L

i

✓,L✓, ji⇢✓ = 0) 8i, jhX i � L
i

✓,L✓, ji+⇢✓ = 0. Therefore, we
obtain the matrix inequality,

Z✓[~X] = [hX i,X ji+⇢✓]i, j
= [hX i � L

i

✓,X
j � L

j

✓i
+
⇢✓
]i, j + [hLi

✓,L
j

✓i
+
⇢✓
]i, j

� [hLi

✓,L
j

✓i
+
⇢✓
]i, j = Z✓, (B18)

which holds for all ~X 2 X✓ because of the semi-definite positivity of the matrix [hX i � L
i

✓,X
j �

L
j

✓i+⇢✓]i, j.
Conversely, let us assume 8~X 2 X✓ Z✓[~X] � Z✓ is true. This is possible if and only if 8~X 2

X✓ ) 8i, j hX i � L
i

✓,L✓, ji+⇢✓ = 0, otherwise we can always find some ~X 2 X✓ such that the matrix
inequality Z✓[~X] � Z✓ is violated. Thus, Lemma B.1-5 and equivalence (B17) prove this theorem. ⇤
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14 R. D. Gill and M. I. Guţă, From Probability to Statistics and Back: High-Dimensional Models and Processes, IMS Collec-

tions (IMS, 2013), Vol. 9, p. 105.
15 A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed. (Edizioni della Normale, Pisa, 2011).
16 An important consequence of regularity conditions is to avoid any singular behavior for the quantum Fisher information.

See Refs. 13 and 15 for more rigorous mathematical details.
17 H. Yuen and M. Lax, IEEE Trans. Inf. Theory 19, 740 (1973).
18 We remark that it is also possible to analyze POVMs whose measurement outcomes take values in ⇥. See, for example,

Ch. 6 of Holevo.15

19 A. W. van der Vaart, Asymptotic Statistics (Cambridge University Press, 1998).
20 S. Amari and H. Nagaoka, Methods of Informatioon Geometry, Translations of Mathematical Monograph Vol. 191 (AMS

and Oxford University Press, 2000).
21 H. Nagaoka, IEICE Technical Report IT 89-429 (1989). Reprinted in the book.7
22 T. Y. Young, Inf. Sci. 9, 25 (1975).

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  220.210.178.31
On: Thu, 07 Apr 2016 22:12:42



042201-29 Jun Suzuki J. Math. Phys. 57, 042201 (2016)

23 H. Nagaoka, in Proceedings of 10th Symposium on Information Theory and Its Applications (1987), p. 241. English trans-
lation is available in the book.7

24 S. L. Braunstein and C. M. Caves, Phys. Rev. Lett. 72, 3439 (1994).
25 A. Fujiwara and H. Nagaoka, J. Math. Phys. 40, 4227 (1999).
26 H. Nagaoka, A series of seminars at the University of Electro-Communications, 2013.
27 Y. Watanabe, Ph.D. thesis, the University of Tokyo, 2012.
28 K. Matsumoto, J. Phys. A: Math. Gen. 35, 3111 (2002).
29 A. Fujiwara and H. Nagaoka, Phys. Lett. A 201, 119 (1995).
30 This equivalence, the third line of Eq. (82), was suggested by H. Nagaoka, private communication (2015).
31 P. J. D. Crowley, A. Datta, M. Barbieri, and I. A. Walmsley, Phys. Rev. A 89, 023845 (2014).
32 M. D. Vidrighin, G. Donati, M. G. Genoni, X.-M. Jin, W. S. Kolthammer, M. S. Kim, A. Datta, M. Barbieri, and I. A.

Walmsley, Nat. Commun. 5, 3532 (2014).
33 H. Nagaoka, Trans. Jpn. Soc. Indust. Appl. Math. 1, 43 (1991). English translation is available in the book.7

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  220.210.178.31
On: Thu, 07 Apr 2016 22:12:42


