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Abstract This paper proposes a Hadoop system that

considers both slave server’s processing capacity and

network delay for wide area networks to reduce the job

processing time. The task allocation scheme in the pro-

posed Hadoop system divides each individual job into

multiple tasks using suitable splitting ratios and then

allocates the tasks to different slaves according to the

computational capability of each server and the avail-

ability of network resources. We incorporate software-

defined networking (SDN) to the proposed Hadoop sys-

tem to manage path computation elements and network

resources. The performance of proposed Hadoop system

is experimentally evaluated with fourteen machines lo-
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cated in the different parts of the globe using a scale-

out approach. A scale-out experiment using the pro-

posed and conventional Hadoop systems is conducted

by executing both single job and multiple jobs. The

practical testbed and simulation results indicate that

the proposed Hadoop system is effective compared to

the conventional Hadoop system in terms of processing

time.

Keywords Hadoop · Heterogeneous clusters · Job-

tracker · Implementation.

1 Introduction

Internet usage is rapidly growing due to the explosive

expansion of social media. People use social media to

advertise their activities through live broadcasting and

video sharing. The size of the data in a network is enor-

mous and needs to be processed and stored in an effi-

cient manner [1]. The term “big data” is used to de-

scribe huge data sets that may be analyzed computa-

tionally to expose patterns, tendencies, and relations,

especially relating to human behavior and interactions.

Big data is defined by three Vs: volume, velocity, and

variety. Volume indicates that a huge amount of data is

generated and stored. Velocity indicates the data that

are often available in real time. Variety represents that

all types of data formats, including structured and un-

structured data, need to be processed. An efficient way

to manage this type of data is necessary [2].

Hadoop [3] is an open-source software used for stor-

ing and executing data in a distributed architecture

across clusters of commodity hardware [4–6]. Hadoop

provides huge storage capacity for any type of data, un-

limited processing power and the capability to manage
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virtually limitless parallel jobs or tasks. Hadoop sup-

ports scale-out properties by increasing the number of

slave servers to improve system performance. Hadoop

involves two main modules, namely, the Hadoop dis-

tributed file system (HDFS) and MapReduce. HDFS

[7–9] is a typical file structure in the Hadoop framework

that splits a huge job into a number of tasks to increase

the speed of the reading and writing processes. MapRe-

duce [10–14] is responsible for parallel job execution on

grids or computer clusters; a MapReduce job is a unit

of work that is identified for each user. Figure 1 shows

the workflow of MapReduce. Hadoop requires effective

task scheduling mechanisms to complete each transac-

tion submitted by users. The terms task and job repre-

sent two dissimilar aspects in the Hadoop system [15].

When a transaction is submitted by a user, Hadoop gen-

erates a job and places it in the queue of jobs pending

services. A job involves numerous activities, which are

managed in parallel. A task is executed when Hadoop

allocates it to a central processing unit (CPU). This

separation of jobs into tasks enables effective system

resource utilization.

client
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Fig. 1 Workflow of MapReduce [22].

Yet another resource negotiator (YARN) [3, 16],

which is also known as an operating system of Hadoop,

acts as a resource manager in the Hadoop system.

YARN manages and monitors workloads, maintains

a multi-tenant atmosphere by executing security con-

trols, and handles the high-availability behaviors of the

Hadoop system.

A homogeneous cluster is an environment that con-

sists of all the computers with the same specifications,

whereas in a heterogeneous cluster, the specifications of

all the computers are different. On university campuses,

a cluster typically consists of both outdated and mod-

ern resources for executing engineering and scientific

applications. Moreover, the performance of network

resources, which connect different computers through

switches, may be different. In the existing Hadoop sys-

tem, a job is split into equally sized tasks, which are

then allocated by a scheduler, for example, by YARN

in MapReduce 2.0 and jobtracker in MapReduce 1.0, to

different slaves. YARN is not responsible for node pro-

cessing. If the computational capabilities of the nodes

in a cluster differ [17–19], the time for executing a job

may not be shortened, even if the number of resources

is increased. This indicates that we cannot utilize the

advantages of Hadoop when low-performance computa-

tional resources are involved.

A resource-allocation scheme, which splits a job into

multiple tasks using unequal ratios and then allocates

these unequal-sized tasks to different slaves according

to the computational capability of each server and the

availability of network resources, was presented by T.

Matsuno et al. [20, 21] to resolve the shortcomings of

the current Hadoop. Thus, the processing time is re-

duced, even when outdated computational resources are

involved in the task allocation process. In previous re-

search, a theoretical analysis was performed to shorten

the longest processing time of the slaves, and a simula-

tion study was conducted to evaluate the performance

of the scheme presented in [21]. The scheme was not

assessed experimentally in a practical testbed scenario.

This paper proposes a Hadoop system that consid-

ers both the slave server’s processing capacity and the

network delay for wide area networks to shorten the

job processing time. The task allocation scheme in the

Hadoop system divides each individual job into differ-
ent tasks using suitable splitting ratios and then allo-

cates the different tasks to different slaves according

to the computational capability of each server and the

availability of network resources. The work presented

in [22] is extended in this paper along with various

additions; the extensions are mainly presented in the

following sections. We first broadly explain the cur-

rent literature on Hadoop systems. We then implement

the proposed Hadoop system in a testbed environment,

where the scale-out performance is experimentally eval-

uated using fourteen machines, which are placed in dif-

ferent locations around the world. Furthermore, the

scale-out experiment is conducted by executing mul-

tiple jobs. To measure the network delay, a layer 2 vir-

tual private network (L2-VPN) is created among The

University of Electro-Communications (UEC), Japan;

the National Institute of Information and Communi-

cations Technology (NICT), Japan; Keio University,

Japan; and the University of Virginia (UVA), USA. We

evaluate the performance of the proposed Hadoop sys-
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tem in terms of the processing time under different con-

ditions. The experimental results demonstrate that the

proposed Hadoop system outperforms the conventional

Hadoop system, in which a job is divided into equally

sized tasks that are assigned to slave servers without

consideration of processing performance and network

delay. A Hadoop system with software-defined network

(SDN) was described in [22]. The experiment of the

work in [22] was performed within a local network; it

did not consider the wide area network environment.

The main contributions of this work are as follows.

(i) We design a Hadoop framework based on computa-

tional resources and network delay.

(ii) We implement the proposed system in a testbed

Hadoop environment considering wide area net-

works.

(iii) We formalize the resource allocation scheme for het-

erogeneous Hadoop clusters.

(iv) We incorporate SDN to the Hadoop system in order

to manage path computation elements and network

resources.

The remainder of this paper is structured as fol-

lows. Section 2 describes the related work on Hadoop

systems. The task allocation scheme for heterogeneous

Hadoop clusters of the proposed Hadoop system is pre-

sented in section 4. Section 5 explains the design of

the proposed Hadoop system. The performance of the

proposed Hadoop system is evaluated in Section 6.2.1.

Finally, section 7 summarizes this paper.

2 Related work

The default Hadoop scheduler processes data for tasks

step-by-step and allocates them to idle nodes, thereby

increasing the job completion time. M. Zahari et al. [23]

presented a scheduling scheme that considers delay to

explore the conflict between fairness and data locality.

In their approach, when a job is scheduled, it is de-

layed for a small amount of time, allowing other jobs

to proceed. As a result, the delay scheduling achieves

nearly optimum data locality in a diversity of work-

loads; hence, the throughput in the network is im-

proved. However, the introduced delay leads to both

instability and under-utilization of network resources.

J. Tan et al. [24] observed that map and reduce

tasks are not jointly optimized in the current Hadoop

schedulers, which causes job starvation and unfavorable

data locality. To resolve this issue, they introduced a

coupling scheduler, where both map and reduce tasks

are combined by utilizing wait scheduling and random

peeking scheduling for MapTasks and ReduceTasks. As

Hadoop assumes that all clusters are devoted to a sin-

gle user, it is unable to ensure the highest performance

in an environment where resources are shared.

To resolve the issue introduced in [24], S. Seo et

al. [25] proposed prefetching and preshuffling schemes

to enhance the overall system performance in a shared

MapReduce scenario. The prefetching scheme performs

data locality, and the network overhead is significantly

reduced by the preshuffling scheme.

J. Jin et al. [26] introduced an effective task-

scheduling algorithm that considers data locality for the

cloud environment to reduce the job execution time. In

their work, an initial task allocation scheme is triggered

first, and then the job execution time is progressively

reduced by tuning the initial task allocations. Finally,

by considering the global view, the scheduling scheme

dynamically adjusts the data locality according to the

cluster workload and network state information.

M.J. Fischer et al. [27] presented a task allocation

scheme to effectively allocate tasks to different clus-

ters of Hadoop. They investigated task allocation in

Hadoop and presented an idealized Hadoop system to

estimate the cost of task allocation. They proved that

the Hadoop task allocation problem is NP-complete,

and presented a flow-based algorithm.

Software-defined networking (SDN) has recently

been incorporated into Hadoop and big data to improve

system performance. G. Wang et al. [28] investigated

the impact of an SDN controller for optical switching

to realize the tight integration of an application and the

control system. They focused on the run-time network

configuration for big data applications to optimize both

application performance and resource utilization. Simi-

larly, P. Qin et al. [29] presented a heuristic bandwidth-

aware scheduling scheme, which reduces the job pro-

cessing time in the network, to integrate Hadoop and

SDN.

The related research proposed different efficient task

allocation schemes. However, Hadoop task allocation

for heterogeneous clusters in wide area networks is not

considered. This paper designs a task allocation scheme

for wide area networks that considers each server’s com-

putational capability and the availability of network re-

sources.

3 Software-defined network

SDN makes the current application requirements pos-

sible [30, 31]. It allows network engineers and adminis-

trators to respond quickly to change requirements. The

network administrator can flexibly manage the network

with a centralized controller, which runs all the intelli-

gent control and management software. SDN separates



4 T. Matsuno, B.C. Chatterjee, N. Kitsuwan, E. Oki, M. Veeraraghavan, S. Okamoto, N. Yamanaka

the network control and data forwarding planes to make

it easier to optimize, regardless of vendors or model of

switches, as shown in Fig. 2. The control plane is moved

to a centralized controller, which performs a network

brain to make a decision and instruction for a new re-

quest. The switch remains the data forwarding plane.

The packet is processed by the data forwarding plane

of the switch, as the instruction from the controller.

Controller

Data

Control

Data

Control

Data

Control

Control plane

Data plane

OpenFlow protocol

(a) Conventional network (b) SDN

Fig. 2 Structure of conventional network and SDN network.

OpenFlow [32] is a common protocol used in SDN

to enable the controller to interact with the data for-

warding plane in the switches. A switch generates a

packet-in to inform the controller when links go down

or when a packet arrives without specified forwarding

instructions. The forwarding instructions are based on

a flow, which is defined by a set of specific parame-

ters, such as source and destination Ethernet/Internet

Protocol (IP) addresses, switch input port, virtual lo-

cal area network (VLAN) tag, etc, as shown in Fig. 3.

The controller specifies the set of parameters that define

each flow and how packets that match the flow should

be processed.

Ingress
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Fig. 3 Flow entry structure.

4 Task allocation scheme in heterogeneous

Hadoop clusters

This section presents the task allocation scheme in het-

erogeneous Hadoop clusters for the proposed Hadoop

system.

4.1 Concept of the proposed Hadoop system

The task allocation scheme of the proposed Hadoop sys-

tem is intended to enhance the performance, in terms

of processing time, by employing network and compu-

tational resources. If multiple servers with different per-

formance are used, and the job is split with appropriate

ratios according to the computer processing capability

and the availability of network resources to reduce the

overall processing time. The processing time is reduced

by minimizing the maximum processing time of all the

slaves. The task allocation scheme estimates the appro-

priate splitting ratios based on the availability of net-

work resources and the processing capabilities of the

slaves.

Table 1 Notation used in this paper

Symbol Meaning
I Set of tasks for a job
r Maximum processing time among all tasks

i ∈ I
xi Split ratio of task i ∈ I, where 0 ≤ xi ≤ 1
mi Indication whether to use resource i, where

mi = 1 if xi > 0 and mi = 0 otherwise
ci Processing capacity of resource i
D Delay, where D = {d1, d2, d3, ..., d|I|}
R Routes from master to slave via the net-

work, where R = {χ1, χ2, χ3, ..., χ|I|}
M Maximum number of used slave servers
f(xi, ci, di) Processing time of task i ∈ I
U Large value

Figure 4 illustrates the task allocation scheme, and

Table 1 summarizes the notation used in this paper.

1

2

M

3

Servers Job

Network

 !

 "

 #

 $

%"

%!

%#

%&

Fig. 4 Overview of the task allocation scheme [22].
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4.2 Mathematical formulation

This subsection presents an integer linear programming

(ILP) formulation [33] of the task allocation scheme

for the proposed Hadoop system. The objective of this

work is to minimize the longest processing time among

all slave servers. In the following, we define the objective

function.

min r (1a)

s.t. D = y(R) (1b)

f(xi, ci, di) ≤ r ∀i ∈ I (1c)∑
i∈I

xi = 1 (1d)

∑
i∈I

mi ≤M (1e)

xi ≤ mi ∀i ∈ I (1f)

mi ≤ Uxi ∀i ∈ I (1g)

0 ≤ xi ≤ 1 ∀i ∈ I (1h)

mi ={0, 1} ∀i ∈ I (1i)

Appropriate routes between the master and slaves

must be identified. Eq. (1b) indicates that the delay

depends on the selection of suitable routes between the

master and slaves. The processing time of task i does

not exceed r, which is expressed in Eq. (1c). To reduce

the job processing time f(xi, ci, di) of task i, ∀i ∈ I,

we divide the job with appropriate splitting ratios, as

mentioned previously. Eq. (1d) shows that the sum of
the proportions of the divided tasks must equal one.

Eq. (1e) states that the total number of used slaves

must be less than or equal to M . Eqs. (1f) and (1g)

express, in a linear form, that mi is equal to 1 if xi > 0

and is zero if xi = 0. Eq. (1h) shows that the splitting

ratio is between 0 and 1. Finally, the last constraint

in Eq. (1i) is used to express the binary variable. The

splitting ratio is obtained from this ILP formulation.

Note that the functions f() and y() of the intro-

duced model, which are presented in section 3.2, will

be mapped in our experiment. The delay will be as-

sessed considering the location: a higher delay indicates

a longer distance between the master and slave.

5 Design of the Hadoop system

This section presents the architecture and experimental

setup of the proposed Hadoop system.

5.1 Hadoop system architecture

Hadoop manages and analyzes the information in the

datacenter. To setup efficient Hadoop clusters, a col-

laboration among servers, networking, and application

teams is required. It may take several days to weeks if

the orchestration and robust tools are not well orga-

nized [34]. SDN and its associated management tools

are used to execute the job efficiently in the Hadoop

clusters. The management tool includes failure man-

agement [35], bandwidth-aware scheduling [36], and

Hadoop mapreduce [37].

An overview of the path setup between the mas-

ter and slaves is shown in Figure 5. OpenFlow switches

are placed on both sides, and these switches are con-

nected to an SDN controller. An SDN controller is con-

nected to a path computation element (PCE) [38–41],

which selects the routes. The master node and PCE

are connected to the Hadoop scheduler for job and task

scheduling. For master node communication with the

Hadoop clusters, the SDN switches, located on the two

sides, are connected through optical paths, L2-VPN or

the Internet. The SDN controller dynamically controls

the route from the master to slave to permit the master

to communicate with different slaves. Each slave has its

own SDN switch, which is connected to another SDN

switch placed on the master side. PCE determines the

routes based on traffic conditions.

Internet

SDN SW SDN SW

Master Slave

L2 VPN

Optical path

SDN controller

PCEHadoop scheduler

Slave

SDN controller

PCE Network manager

Fig. 5 Overview of the path setup from master to slaves [22].

We modified the Hadoop system to divide the job

with suitable splitting ratios according to the availabil-

ity of network resources and the processing capability

of the computers. The source code of Hadoop 2.7.1 [42],

which contains several directories, e.g. client, MapRe-

duce, HDFS, and assemblies, was installed for our ex-
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periment. The configurations of the tasktracker and

jobtracker in the HDFS directory were the focus of

the study. We modified the DFSConfigKeys.java file to

change the block size of the tasks; the default block size

of tasks is 64 MB. The modified DFSConfigKeys.java

file is shown in Fig. 6; the code displayed in a black box

was reconfigured. The default block size of the tasks in

DFSConfigKeys.java can be restructured using an auto-

mated function that depends on the input parameters.

Fig. 6 Source code modified in DFSConfigKeys.java.

5.2 Experimental setup for Hadoop

A virtual scenario was created with fourteen machines

using VMware Player software [43]. We considered one

machine among fourteen machines as the master server

and the remaining thirteen machines as slave servers, as

shown in Fig. 7. Windows 7 was used as the operating

system (OS) of the host. VMware Player [43,44] was in-

stalled as the guest OS on the host. The specifications

of the machines used in our experiments are shown in

Table 2. We used a Machin-like formula [45,46], which is

a standard technique for calculating an inverse trigono-

metric function. The sum of infinite series was also cal-

culated. One master server and ten slave servers were

used to evaluate 100 million digits of π. To create a het-

erogeneous cluster, we assigned the same π calculation

job as a load to the slave servers, except for the first

and second slave machines, to make them overloaded.

To compare our proposed Hadoop system with the

conventional Hadoop system, which splits a job into

equal tasks without considering the computer process-

ing performance, we consider a system with five ma-

chines: one master server and four slave servers. We con-

sider five cases, which are shown in Fig. 8. Case 1: Ho-

mogeneous cluster with the conventional Hadoop sys-

tem: 64 MB is considered as the block size for all tasks.

Case 2: Heterogeneous cluster with the conventional

Hadoop system: 64 MB is considered as the block size

Table 2 Virtual machine specifications

Master server
CPU Intel(R) Core(TM)2 Quad CPU

Q9400 @ 2.66GHz
Number of cores 2
Memory 2GB

Slave servers 01 to 10
CPU Intel(R) Core(TM)2 Quad CPU

Q9400 @ 2.66GHz
Number of cores 1
Memory 2GB

Slave server 11 at NICT
CPU Intel(R) Core(TM)2 Quad CPU

Q9400 @ 2.66GHz
Number of cores 1
Memory 2GB

Slave server 12 at Keio
CPU Xeon E5345 2.33 GHz
Number of cores 1
Memory 2GB

Slave server 13 at UVA
CPU Intel(R) Xeon(R) CPU E5620

@ 2.40GHz
Number of corers 1
Memory 2GB

slave01

master01

slave02

slave03

slave04

slave05

slave06

slave07

slave08

slave09

slave10

UEC

Slave11 

at NICT

Slave12 

at Keio

Slave13 

at UVA

Fig. 7 Network diagram.

for all tasks. Case 3: Heterogeneous cluster with the

modified Hadoop system. In this case, we adjust the

task block size with the constraints of 128 MB for first

and second slaves and 64 MB for the third and fourth

slaves. Case 4: Heterogeneous clusters with the modified

Hadoop system. In this case, we adjust the task block

size with constraints of 64 MB for the first and second

slaves and 32 MB for the third and fourth slaves. Case 5:

Heterogeneous clusters with the modified Hadoop sys-

tem. In this case, we adjust task the block size with

constraints of 128 MB for the first and second slaves,

64 MB for the third slave and 32 MB for the fourth

slave. The mathematical model determines the splitting
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Job

(b) Case 2 (current system)

Servers

(c) Case 3 (Adjusted block size according to the processing performance)

128MB

64MB

Servers Job

Servers

Job

(a) Case 1 (current system)

64MB

64MB

64MB

64MB

64MB

64MB

64MB

64MB

128MB

64MB

Job
128MB

128MB

64MB

32MB

Servers

(d) Case 4 (modified system)

64MB

64MB

32MB

32MB

Servers
Job

(e) Case 5 (modified system)

Fig. 8 Five experimental cases [22].

ratio of a task. These experiments confirm the impact of

changing the task size according to a simple ratio. The

slaves and master regularly exchange their survival in-

formation using the heartbeat. The slave’s processing

capacity can also be conveyed simultaneously with the

heartbeat.

5.3 Experimental setup among different campuses

A layer 2 network was setup among Keio University,

NICT, and UEC. UEC was connected to NICT through

SINET 5 and JGN-X. Through NICT, UEC was also

connected to Keio University. Finally, UEC was con-

nected to UVA through Keio University. We intention-

ally did not connect each location directly through the

layer 2 network because this network structure was used

to measure the network delay from the master located

at UEC to the slave located at UVA, as shown in Fig. 9.

We measured the round-trip time and throughput

using ping and iperf. The throughput and round-trip

time from UEC to NICT, from NICT to Keio Univer-

sity, and from UEC to Keio University via NICT were

383 Mb/s and 2.1 ms, 162 Mb/s and 5.7 ms and 126

Mb/s and 7.5 ms, respectively.

Table 3 shows the internet protocol (IP) address of

the machines at different locations around the world.

Table 3 IP Addresses

Network address 10.1.1.0/24
NICT 10.1.1.186
UEC master 10.1.1.254
UEC slave 10.1.1.253
Keio University 10.1.1.131
UVA 10.1.1.120

Slave node

NICT

Ten slave nodes
Master node

UEC

Slave node

UVA

Slave node

Keio

JGN-X

Access point

JGN-X

Access point

JGN-X

SINET5

INTERNET 2

Fig. 9 Network topology.

6 Performance analysis

This section evaluates the performance of the proposed

Hadoop system using both experimental and simulation

studies.

6.1 Simulation results

This subsection compares the processing times of the

conventional Hadoop system and the proposed Hadoop

system via simulation. In our simulation, we consider

18 computers as slave servers, of which nine are modern

high-performance computers and the other nine out-

dated low-performance computers. We summarize the

simulation parameters in Table 4. In this evaluation,

we assume that f(xi, ci, di) is proportional to xi, i.e.,

f(xi, ci, di) = g(ci, di)xi ∀i ∈ I, where the factor of

proportionality, g(ci, di), depends on ci and di. g(ci, di)

is a given parameter. r, xi and mi are decision variables.

The value of g(ci, di) is the lowest normalized process-

ing time, which is i=1. In this simulation, we consider

heterogeneous clusters, where the machines have differ-

ent specifications. We define a machine as a modern

machine when g(ci, di) ≤ 10; otherwise, it is treated as

an outdated machine.

The normalized processing times of r for conven-

tional Hadoop and the proposed Hadoop for different

numbers of slaves are shown in Fig. 10. We normalize
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Table 4 Simulation parameters

i g(ci, di) i g(ci, di)
1 1.000 10 10.000
2 1.527 11 11.054
3 2.054 12 12.108
4 2.581 13 13.162
5 3.108 14 14.216
6 3.635 15 15.270
7 4.162 16 16.324
8 4.689 17 17.378
9 5.216 18 18.432

the processing time of r by dividing by that of one slave

server. When the number of slave servers increases,

the normalized processing time of r for the proposed

Hadoop system decreases owing to the appropriate al-

location of the job to slave servers via splitting ratios.

Furthermore, at the ninth slave server, the normalized

processing time of r for the conventional Hadoop sys-

tem suddenly increases because the conventional sys-

tem does not work well when poor-performance slave

servers are included.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

N
o
rm

a
li

ze
d

 p
ro

ce
ss

in
g
 t

im
e 

 o
f 
r

Maximum number of used slave servers (M)

Conventional Hadoop system

Proposed Hadoop system

Fig. 10 Processing time of the proposed and conventional
Hadoop systems.

6.2 Experimental results for a single job

The functions f() and y() of the proposed model, pre-

sented in section 3.2, are mapped in our experiment. We

assessed the delay considering the location: a higher de-

lay indicates a longer distance between the master and

slave. In this subsection, we first focus our discussion on

the experimental results for a single job. Then, we dis-

cuss the performance of the proposed and conventional

schemes in the context of multiple jobs.
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Fig. 11 Comparison of the five cases.

6.2.1 Experimental results with five machines

This section presents the experimental results of our

proposed Hadoop system in terms of the job process-

ing time. Figure 11 compares the performances of the

five cases. In case 1, the job processing time decreases

as the number of slave servers increases due to the

proper distribution of the computational load among

slave servers with an appropriate task size in the con-

ventional Hadoop system. Nonetheless, when as num-

ber of slave servers increases, the processing time in

case 2 increases because the additional load is assigned

to the third and fourth slave servers. Therefore, the

scale-out operation with four slaves is not successful.

This issue is resolved by case 3, which divides a job

into different sized tasks according to the availability

of network resources and the computer processing ca-

pability. In case 3, the processing time decreases as the

number of slave servers increases. When the number of

slave servers increases in case 4, the processing time

decreases. The processing time in case 5 decreases as

the number of slave servers increases. The decreasing

processing times are a result of the appropriate load

distribution among slave servers achieved by the mod-

ified Hadoop system. Furthermore, in case 4, the pro-

cessing time is shorter than those of other cases with

heterogeneous Hadoop clusters as the tasks are allo-

cated appropriately among the four slave servers. To

extend this analysis, we measure the memory usage on

each slave server for case 4. The memory usage of the

first and second servers, which are high-performance

machines, is 87%, which is equivalent to 1.74 GB. The

memory usage of the third and fourth servers, which

are low-performance machines, is 51%, which is equiva-

lent to 1.02 GB. According to these measurements, the
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low-performance machines are given smaller tasks. In

heterogeneous clusters, the results of case 4 are better

than the results of the other cases. The results of case 4

are better than those of case 2 because the task size in

case 4 is properly distributed by an appropriate split-

ting ratio based on the specifications of the machines.

On the other hand, case 4 outperforms cases 3 and 5

because the task size in cases 3 and 5 is larger than that

of case 4; therefore, the overhead processing time is in-

creased in cases 3 and 5. By allocating smaller tasks to

the low-performance slaves, the advantages of Hadoop

are realized.

The processing time in case 1 is the best, followed

by those of case 4, case 2, case 3, and case 5. In this

experiment, only four slaves, which are placed at UEC,

are considered. An experiment with more slaves placed

in the different parts of the globe is desirable and is

performed in the following subsection.

6.2.2 Experimental results with thirteen slave machines

This subsection evaluates the performance of the pro-

posed Hadoop system and compares it to the conven-

tional Hadoop system. Case 1, case 2, and case 4 are

considered. Cases 3, 4, and 5 in the previous subsection

involve the proposed Hadoop system. Case 4 provides

the best performance among all cases using the pro-

posed system. Therefore, we select case 4 for compari-

son with the conventional system. We use fourteen ma-

chines in this experiment. The first machine is used as

a master and is located at UEC; the remaining thirteen

machines are used as slaves. The first ten slave machines

are located at UEC, and the eleventh, twelfth and thir-

teenth slave machines are located at NICT, Keio Uni-

versity, and the University of Virginia, respectively.

Figure 12 shows the experimental results of our pro-

posed Hadoop system. In case 1, when machines from

the additional locations are added, the processing time

decreases because the load is distributed among slave

servers with an appropriate task size in the conven-

tional Hadoop system. Case 2, implements heteroge-

neous clusters with the conventional Hadoop system;

the low-performance machines (i.e., the third to the

thirteenth) result in a heterogeneous cluster. In this

case, we observe three situations. (i) When we add the

third to sixth machines, the processing time increases

because these slave machines are heavily loaded. The

system does not scale-out using slave machines one to

six. The first and second slave machines wait until the

heavy load is completely processed by the third to sixth

slave machines. (ii) When we add the seventh to tenth

machines, the processing time decreases because the

heavy load is distributed among the other slave ma-

chines. The scale-out of the system works properly. (iii)

When we add the eleventh to thirteenth slave machines,

the processing time increases because network delay is

included in the processing time. Case 4 implements het-

erogeneous clusters with the proposed Hadoop system.

In this case, we adjust the task block size so that the

first and second slaves are given 64-MB blocks while

the third to thirteenth slaves are given 32-MB blocks.

When the other slave machines at the additional loca-

tions are added, the processing time decreases due to

the proper allocation of tasks among the slave servers.
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Fig. 12 Comparison of the single-job results for case 1, case
2, and case 4.

6.3 Experimental results for multiple jobs

This subsection performs a scale-out experiment con-

sidering multiple types of jobs: (i) π calculation, (ii)

WordCount [47], and (iii) TeraSort [48]. The experi-

mental environments are the same as those used for the

π calculation considered in subsection 6.2.

Figure 13 shows the experimental results of our pro-

posed Hadoop system considering multiple jobs. The

observation of case 1 for multiple jobs is the same as

that for a single job, see Fig. 12, except for the slave lo-

cated at UVA. When we use the slave located at UVA,

the TeraSort job, which has a larger impact on net-

work delay than that of the π calculation considered in

subsection 6.2, causes the processing time to increase.

The observation of case 2 for multiple jobs is the same

as that for a single job. The observation of case 4 for

multiple jobs is the same as that for a single job, ex-

cept for the slave located at UVA, because the impact

of the TeraSort job on the network delay is larger than
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that of the π calculation considered in subsection 6.2;

therefore, the incorporation of the slave located at UVA

increases the processing time.
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Fig. 13 Comparison of the multiple-job results for case 1,
case 2, and case 4.

6.4 Processing time measurement for various slave

locations

This subsection measures the processing times for vari-

ous slave locations and investigates how the processing

time is affected by the location. The master is placed at

UEC to measure the processing times. We consider two

slave servers with identical performance. The submitted

job is to determine 100 million digits of π.

The processing time for the π calculation is 22 min

21 sec when both slaves are placed at UEC. When one

slave is placed at UEC and the other is placed at NICT,

the processing time is 22 min 32 sec. When one slave is

placed at UEC and the other is placed at Keio Univer-

sity, the processing time is 22 min 46 sec. Finally, the

processing is 23 min 56 sec when one slave is placed at

UEC and the other is placed at UVA. As the distance

between the master and a slave increases, the process-

ing time also increases.

7 Conclusions

This paper proposed a Hadoop system to reduce the job

processing time by considering both the slave server’s

processing capacity and network delay for wide area

networks. The task allocation scheme in the Hadoop

system divides each individual job into different tasks

using suitable splitting ratios, and then allocates the

different tasks to different slaves according to the com-

putational capability of each server and the availabil-

ity of network resources. The performance of the pro-

posed Hadoop system was experimentally evaluated

with fourteen machines using the scale-out approach.

The configurations of the jobtracker and tasktracker

in Hadoop system were the focus of our experiment.

We allocated larger task blocks to high-performance

slaves and smaller task blocks to low-performance slaves

in heterogeneous Hadoop clusters. We created a sce-

nario where high-performance slave servers execute

more work than low-performance slave servers. The per-

formance of the proposed Hadoop system was evaluated

through experiments and simulations. In both cases, the

proposed Hadoop system outperforms the conventional

Hadoop system in terms of processing time.

In this work, we modified the DFSConfigKeys.java

file to change the block size of the tasks; the default

block size of the tasks in DFSConfigKeys.java is config-

ured manually based on system requirment. The default

block size of the tasks in DFSConfigKeys.java can be

restructured using an automated function that depends

on the input parameters, which is left as part of our fu-

ture work.
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