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Net-StructureProximity Sensor: High-Speed and
Free-Form Sensor with Analog Computing Circuit

Hiroaki Hasegawa, Yosuke Suzuki, Aiguo Ming,Member, IEEE,Keisuke Koyama, Masatoshi Ishikawa,
and Makoto Shimojo

Abstract—This paper proposes a proximity sensing system,
which has advantages of wide sensing area and rapid response.
For the rapid and safe behavior of robots, high-speed detection
of nearby and non-contact objects is important because of
shorter time-to-contact. Here, we propose Net-Structure Prox-
imity Sensor (NSPS), which covers large sensing area and fulfills
1 millisecond response time. NSPS is an array of infrared
reflective proximity sensor elements integrated by a resistor
network circuitry. Executing analog computation on the electrical
circuitry, the sensing system outputs a few of meaningful signals,
from the reaction distribution of all the elements. The signals
mean the center position and approximate distance to the object.
This sensor requires only six external wires regardless of the
number of detecting elements. In this paper, we firstly show that
various sizes of NSPS are easily configured by only using standard
electronic parts. Next, we prototype NSPS with 25 elements in
5×5 matrix, and verify the output characteristics by experiments.
At last, we discuss the availability of NSPS for robot hand systems
and human-machine interface systems.

Index Terms—Proximity sensor, optical sensor, photoreflector,
mesh-structure, analog-circuitry, sensor integration.

I. I NTRODUCTION

ESSENCE of sensing for robotics is to provide useful
information to determine the next motion of the robot.

No matter how precise a sensor is, there is no worse if the
obtained information cannot generate valuable control of the
robot. Robot design should choose sensors in consideration of
whether the amount of information, precision and measuring
speed are appropriate for each stage of the target tasks or
processes.

This paper proposes a high-speed proximity sensory unit
using reflection of infrared light. This sensor unit contains
multiple photo-sensor elements connected by an analog com-
puting circuit. The large number of output signals are inte-
grated into a small number of meaningful signals. The sensor
can be mounted on a robot surface in free form with covering
large area, and so the blind area can be reduced. The most
important point is analog computation. It is carried out in the
electrical circuitry based on the photo-current distribution of
the elements. Due to the analog computation, the sensor unit
provides valuable information for robot control, that is, there
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Fig. 1. Appearance of Net-Structure Proximity Sensors ((a) is a basic
configuration on a plane, (b) is whole surface mounting on a cylindrical end-
effector, (c) is the sensor on a flexible substrate for free-form surface, and (d)
is a robot hand covered with the sensors on its palm and fingertips)

is no need for complicated information processing by CPU.
Moreover, the computation time is independent on the number
of the elements. We call the sensor unit as Net-Structure
Proximity Sensor (NSPS), derived from the geometrical shape
of the analog circuit, as shown in Fig. 1. The application fields
of NSPS are robot hands to grasp unknown objects quickly
and gently, and other robots to avoid collision with obstacles.
NSPS is especially useful when there is not much time before
contact with target objects, because it helps to determine the
next motion of the robot in short time.

Generally, proximity sensors are used to cover marginal
regions between detection ranges of vision sensors and tactile
sensors. For manipulator systems, sensory-based control using
proximity sensor feedback has been proposed since 1970s.
Grippers mounting proximity sensors using infrared [1], [2] or
ultrasound [3] were developed, and sensory-based robot con-
trol methods have been proposed [3], [4]. Recent researches
showed object shape recognition based on surface tracking
[5], [6], object tracking using electric-field proximity sensors
mounted on a multifingered robot hand [7], [8], and reactive
grasping controller combined with a probabilistic sensor model
[9]. Other than these literatures, as Volpe and Ivlev mentioned
in their survey [10], there are various kinds of detection
methods such as infrared reflection (intensity, time-of-flight
[11], triangulation [12]), ultrasound and capacitance [13].

Most of these sensors detects the distance to objects merely
at a single point. Thus. if we apply these sensors to cover
large area of surface of the robot such as robot hands,
manipulators and whole body, we have to integrate a large
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numberof sensory output. The common solution is combining
matrix-scanning method, embedded micro-controllers and field
network. For tactile sensors, this kind of sensor system archi-
tectures to integrate a large number of taxels toward robotic
skin are reported [14]–[16]. On the other hand, only a few
works reported such a sensor system for proximity sensors.
Lee et al. [13] devised16 × 16 capacitive tactile-proximity
sensor array. Ohmura et al. [17] developed a scalable tactile
sensor skin, that is potentially applicable to proximity sensing
because their sensor element detects applied force through
light scattering in polyurethane foam by using photo-reflectors.

However, these common methods with matrix-scanning and
field network are not suitable for the requirements of high-
speed dynamic manipulation, because higher density layout
of detectors requires more signal wires, data acquisition and
processing time. This trade off makes it difficult for a robot
system to behave fast and safely in a dynamic environment.

On the other hand, NSPS realizes both large surface cov-
ering and high update-rate for dynamic, high-speed sensor-
based controlled robotics applications. Previously our group
developed ultra high-speed grasping and manipulation system
with 1000 frames-per-second high-speed active vision and
Center-of-Pressure (CoP) tactile sensor. This system achieved
sensory-based control at 1 millisecond control cycle and
performed high-speed manipulation tasks such as pen-spinning
[18], and gripping force adjustment to prevent the grasped
object from slipping [19]. However, in these vision-tactile
controlled manipulation tasks, occlusion that the robot itself
hides the object to be manipulated was a major problem. Thus,
we focused on the proximity sensor system with high update
rate to match this control system.

The analog computation circuit of NSPS is very simple and
easy to construct, which consists of resistors connecting the
photo-elements and calculates the total amount and the center
position of the photocurrent distribution. Here, each amount
of photocurrent is mainly depending on the distance from
the photo-sensor element to the nearest point on the object
surface. Therefore, the output signal from NSPS indicates the
positional relationship between the sensor and the object, and
such information would be helpful for behavioral decision of
the robots grasping the object.

The following chapters describe the structure and principle
of NSPS, the meaning of the output from the sensor in a
geometrical relationship between the sensor and the object, and
experimental result to evaluate the detection characteristics of
the prototyped sensor.

II. SENSOR STRUCTURE AND PRINCIPLE

A. Sensor structure

Net-Structure Proximity Sensor (NSPS) is an optical prox-
imity sensor array integrated by two lattices of resistors. This
sensor outputs two dimensional position and distance of a
detected object. It has following features;

1) Requires only 4 readout wires.
2) Simple structure and small outline dimension.
3) Low-cost for large area covering application.

Photo
reflector
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r
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Fig. 2. Structure of the sensor; A detector layer is sandwiched by matrix
arrayed resistor layers. Two resistor lattices, Layer A and B have the function
to calculate primary moments of photocurrent distribution aboutx andy axis
respectively. Four read-out electrodes (E1, E2, E3 andE4) are connected
each side of the resistor lattices. This structure requires only 6 external wires;
four to readout plus 2 to drive LEDs.

The structure of this circuit is shown in Fig. 2. It consists
of three-layers similar to the mesh tactile sensor [20]:m× n
photo-reflector array and two resistor network layers (Layer A
and B).

A photo-reflector is a pair of an Infra-Red Light Emitting
Diode (IR-LED) and a phototransistor. Its principle of proxim-
ity detection is based on reflection and decay of light emitted
by IR-LEDs with distance to the object. Phototransistor detects
the reflected IR and conducts relevant photocurrent. In our
design, the arrayed photo-reflectors produce the photocurrent
distribution corresponding to the shape, size, position and
distance of the detected object.

Two resistor lattices, Layer A and B, have the function to
calculate primary moments of photocurrent distribution about
x and y axis in Fig. 2, respectively. In Layer A, collector
terminals of neighboring phototransistors are connected by
resistorsr. In order to calculate the primary moment about
the x-axis, electrodesE1 and E3 are placed on both ends
of the resistor lattice. As shown in Fig. 2, electrodeE1 on
the negative side in thex-axis is connected to the resistor
lattice throughr. This electrode is also connected to the
positive voltage source+V0 through an external resistorR0.
In the same manner, the positive side has the electrodeE3.
In Layer B, emitter terminals of photoreflectors are connected
by resistorsr. The difference from Layer A is that Layer B
is to calculate the primary moment about they-axis, and the
electrodesE2 and E4 are arranged on the both ends of the
y-axis: ElectrodeE2 is on the negative side, and electrode
E4 is on the positive one. In addition, they are connected to
the negative voltage source−V0 through external resistorsR0

respectively.
In this sensor structure, when the phototransistors detects

IR, the currents from the positive voltage source+V0 flow
through the two electrodesE1 and E3 into Layer A, then
flow through each phototransistors in response to detected
irradiance, and finally flow out of Layer B throughE2 and
E4 to −V0. FromVS1, VS2, VS3 andVS4, the voltages of the
four electrodes, NSPS calculates the primary moments of the
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Fig. 3. Position of Detector Elements and Electrical Boundary Conditions
of the Sensor.
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Fig. 4. Equivalent circuit at the neighborhood of a proximity sensor element
(phototransistor)

photocurrent distribution. These parameters represent relative
position between the sensor and a nearby object. The detailed
principle of the operation is expressed in following sections.

B. Position Coordinates of the Detector Elements

The coordinate system and the indicesi and j of the
detectors are defined in Fig. 3. The detectors are placed
on m × n grid, and a Cartesian coordinate systemo-xy
is defined as each corners of the grid has a coordinate
(x, y) = (1, 1), (−1, 1), (−1,−1), (1,−1) respectively. Each
detector has its index(i, j); starting at the element placed
(x, y) = (−1,−1), i = 1, 2, . . . ,m in x-axis direction, and
j = 1, 2, . . . , n in y-axis direction. When the detector elements
are placed at uniform intervals, the coordinate(xe, ye) of an
element(i, j) is determined as below.

xe(i, j) =
2i−m− 1

m− 1
ye(i, j) =

2j − n− 1

n− 1
(1)

As these equations form arithmetic progressions, equation (1)
are represented using constantsa, b, c, d.

xe(i, j) = ai+ b ye(i, j) = cj + d (2)

Applying this relationship, the Laplace operator becomes zero
as shown in (3) and (4).

∇2xe(i, j) = xe(i− 1, j) + xe(i+ 1, j)

+ xe(i, j − 1) + xe(i, j + 1)− 4xe(i, j)

= {a(i− 1) + b}+ {a(i+ 1) + b}
+ {ai+ b}+ {ai+ b}
− 4{ai+ b}

= 0 (3)

∇2ye(i, j) = ye(i− 1, j) + ye(i+ 1, j)

+ ye(i, j − 1) + ye(i, j + 1)− 4ye(i, j)

= {cj + d}+ {cj + d}
+ {c(j − 1) + d}+ {c(j + 1) + d}
− 4{cj + d}

= 0 (4)

This relationship will be used in II-E.

C. Circuit and Basic Equation around the Detector Element

Figure 4 shows the circuit at the neighborhood of a detector
element. The current flowing from Layer A (collector) to
Layer B (emitter) through a phototransistor(i, j) is set to
I(i, j). The voltageVa(i, j) andVb(i, j) are the voltage of the
corresponding nodes on layers A and B. Applying Kirchhoff’s
current law on the Layer A,I(i, j) has following relationship.

1

r
{Va(i− 1, j) + Va(i+ 1, j) + Va(i, j − 1)

+Va(i, j + 1)− 4Va(i, j)} = I(i, j) (5)

Replacing the left hand side of (5) with the discrete Laplace
operator∇2 in (6), it can be written as (7).

∇2Va(i, j) = Va(i− 1, j) + Va(i+ 1, j)

+ Va(i, j − 1) + Va(i, j + 1)− 4Va(i, j) (6)

1

r
∇2Va(i, j) = I(i, j) (7)

In the same manner, the following equation can be derived for
Layer B;

1

r
∇2Vb(i, j) = −I(i, j) (8)

D. Boundary Conditions of Resistor Network

Considering the electrical boundary conditions of the sensor
structure shown in Fig. 3, the boundariesS2 andS4 of Layer
A do not have any external connections so that these are
open terminals. Hence, no current flows from outside and the
voltage does not change. The boundary conditions therefore
are shown, as in (9).

Va(i, 0) = Va(i, 1) Va(i, n+ 1) = Va(i, n) (9)

Next, the boundariesS1 andS3 of Layer A are connected to
the electrodeE1 andE3, respectively, such that current flows
from the electrodes. This current passes through the external
resistorR0. Hence, this current can be measured from the
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voltage drop between the ends ofR0. Since the total of the
current that passes through the detectors is equal to the current
that flows throughR0, (10) and (11) are established as follows;

1

R0

(
V0 − VS1

)
=

1

r

n∑
j=1

(VS1 − Va(1, j)) (10)

1

R0

(
V0 − VS3

)
=

1

r

n∑
j=1

(
VS3 − Va(m, j)

)
(11)

Since i = 0 for the electrodeE1 and i = m + 1 for the
electrodeE3, boundary conditions are as;

Va(0, j) = VS1 Va(m+ 1, j) = VS3 (12)

Layer B situated similarly, the boundary conditions for this
layer are established as (13) - (16).

Vb(0, j) = Vb(1, j) Vb(m+ 1, j) = Vb(m, j) (13)

Vb(i, 0) = VS2 Vb(i, n+ 1) = VS4 (14)

1

R0

(
−V0 − VS2

)
=

1

r

m∑
i=1

(
VS2 − Vb(i, 1)

)
(15)

1

R0

(
−V0 − VS4

)
=

1

r

m∑
i=1

(
VS4 − Vb(i, n)

)
(16)

E. Primary Moment of Photocurrent

To determine the center of the photocurrent distribution of
them× n detectors, it is necessary to determine the primary
moments of the photocurrent distribution with respect to the
x andy direction. In thex direction, the primary momentIx
is defined as (17).

Ix =
m∑
i=1

n∑
j=1

I(i, j)xe(i, j) (17)

Substituting (17) for the currentI(i, j) gives (18), then the
equation can be deformed as (19) by expanding the Laplace
operator∇2.

Ix =
1

r

m∑
i=1

n∑
j=1

xe(i, j)∇2Va(i, j) (18)

=
1

r

{
m∑
i=1

n∑
j=1

Va(i, j)∇2xe(i, j)

+

n∑
j=1

(
xe(m, j)Va(m+ 1, j)− xe(m+ 1, j)Va(m, j)

)
+

n∑
j=1

(
xe(1, j)Va(0, j)− xe(0, j)Va(1, j)

)
+

m∑
i=1

(
xe(i, n)Va(i, n+ 1)− xe(i, n+ 1)Va(i, n)

)
+

m∑
i=1

(
xe(i, 1)Va(i, 0)− xe(i, 0)Va(i, 1)

)}
(19)

Next, let us apply the position coordinates and the boundary
condition for simplifying (19). The first item of (19) becomes

zero by (3). Sincexe(i, j) is the function of onlyi, it is con-
stant toward the direction ofj, that is,xe(i, n) = xe(i, n+1),
xe(i, 0) = xe(i, 1). Coupled with the boundary condition
given by (9), the fourth and fifth items also become zero.
Furthermore, applying the boundary conditions (10), (11) and
(12), (19) can be simplified as below.

Ix =
1

r


n∑

j=1

(
1 · Va(m+ 1, j)− m+ 1

m− 1
Va(m, j)

)

+

n∑
j=1

(
−1 · Va(0, j) +

m+ 1

m− 1
Va(1, j)

)
(20)

=
n

r
VS3 −

m+ 1

m− 1

{
n

r
VS3 −

1

R0
(V0 − VS3)

}
− n

r
VS1 +

m+ 1

m− 1

{
n

r
VS1 −

1

R0
(V0 − VS1)

} (21)

=
1

n− 1

(
2m

r
+

n+ 1

R0

)
(VS1 − VS3) (22)

Similarly Iy, the primary moment with respect to they
direction, is expressed as (23).

Iy =
1

m− 1

(
2n

r
+

m+ 1

R0

)
(VS2 − VS4) (23)

F. Total Current and Center of Current Distribution

The total currentIall flowing from Layer A to Layer B can
be calculated by adding two currents flowing through a pair
of external resistorsR0 of Layer A or Layer B by (24).

Iall =
m∑
i=1

n∑
j=1

I(i, j)

=

(
2V0 − VS1 − VS3

)
R0

=

(
2V0 + VS2 + VS4

)
R0

(24)

With the above, the centers of the current distributionxc and
yc are determined as

xc =
Ix
Iall

=
R0

n− 1

(
2m

r
+

n+ 1

R0

)
VS1 − VS3

2V0 − VS1 − VS3
(25)

yc =
Iy
Iall

=
R0

m− 1

(
2n

r
+

m+ 1

R0

)
VS2 − VS4

2V0 + VS2 + VS4
. (26)

Here,m,n, r,R0 andV0 are constants. Hence,Iall, xc and
yc can be computed by only measuring the voltages on the
four electrodesE1, E2, E3 andE4.

III. R EPRESENTATION OFSENSOR OUTPUTS

In this section, let us look into the relationship between the
current distribution of the photo-reflectors and the position of
the detected object. As we mentioned, the NSPS outputs the
center position and the total amount of the current distribution
from the four electrodes. This current distribution is derived
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from the irradiance of infrared rays detected by each pho-
totransistors. In reflective photo sensors, the output current
is inversely proportional to the square of the distance to the
detected object. We examine the meaning of the center position
output of this kind of sensor.

A. Center of the photocurrent distribution

Figure 5 shows the arrangement of the sensor and a detected
object. When NSPS onx-y Plane detects an object inz ≥ 0
region, the distribution of photocurrentI(x, y) is written as
follows over the domainD; orthographic projection of the
outline of the object.

I(x, y) = k · d(x, y)−2 (27)

whered(x, y) is the perpendicular length between the object
and the coordinate(x, y, 0), and k is a constant determined
by the reflectance of the object and the sensitivity of the
detector. To simplify the discussion, assuming the arrangement
of the detector elements is dense enough, we approximate the
summation of the photocurrent distribution by double integral.
Under this assumption, the primary momentsIx, Iy and the
total currentIall are expressed as

Iall =

∫∫
D

I(x, y)dxdy =

∫∫
D

kd(x, y)−2dxdy (28)

Ix =

∫∫
D

x · I(x, y)dxdy =

∫∫
D

x · kd(x, y)−2dxdy (29)

Iy =

∫∫
D

y · I(x, y)dxdy =

∫∫
D

y · kd(x, y)−2dxdy (30)

In the case of Fig. 5, a sphere with the center coordinates
(xo, yo, zo) and the radiusR is placed in front of detector
plane. The surface of the sphere and the distance from the
detectors to object is formulated as

(x− xo)
2 + (y − yo)

2 + (z − zo)
2 = R2 (31)

d(x, y) = zo − ζ (32)

ζ =
√
R2 − (x− xo)2 − (y − yo)2. (33)

In this situation, the integration domain is

D =
{
(x, y)|(x− xo)

2 + (y − yo)
2 ≤ R2

}
. (34)

1

1

-1

-1

O x

y

z

D

(x
o 
,y

o 
,z

o
)

z R
r

(x
o 
,y

o 
,0)

d (x
o 
,y

o 
)

Detected Object

Sensing Area

Fig. 5. Relationship between Position Output of NSPS and Object Positioning

From (27), the photocurrent is represented as

I(x, y) = k · d(x, y)−2 = k · (zo − ζ)−2 (35)

By applying integration by parts, the total current and the
primary moments are calculated as

Iall =

∫∫
D

k · d(x, y)−2dxdy (36)

=

∫∫
D

−kζ

(zo − ζ)2
dθdζ

= 2πk

∫ R

0

ζ(zo − ζ)−2dζ

= 2πk
[
ζ(zo − ζ)−1

]R
0
− 2πk

∫ R

0

(zo − ζ)−1dζ

= πR2k

{
2

R(zo −R)
+

2

R2
log

zo −R

zo

}
(37)

Ix =

∫∫
D

x · kd(x, y)−2dxdy

=

∫∫
D

(xo + r sin θ) · kd(x, y)−2rdθdr

=

∫∫
D

xokd(x, y)
−2rdθdr

+

∫∫
D

r2 sin θkd(x, y)−2dθdr

= xoIall + 0. (38)

From these results, the position output of NSPS is represented
as

xc =
Ix
Iall

= xo yc =
Iy
Iall

= yo. (39)

Thus, (xc, yc) stands for the center position of the detected
object, and the total currentIall indicates the distance of the
object providing the size is constant.

Through a simple example, we denoted the primary mo-
ments of photocurrent are determined by the position of the
detected object. This relation enables NSPS to detect the
position and distance of the object from the primary moment
and total of photocurrent.

In the above example, we assumed the following conditions.
1) The object has a symmetrical shape, and the whole of

the projection is inside of the sensing area.
2) The reflection is perfect diffuse reflection, and the re-

flection ratio is equal in all the object surface.
3) The directivity of the elements is sufficiently high. (The

half-value angle is sufficiently small.)
Actually equipped sensors have different characteristics due
to difference with these conditions. However, the character-
istics can be predicted and controlled theoretically. In the
next section, we show a prototyped NSPS and its output
characteristics.

IV. D ESIGN AND PROTOTYPING OF THESENSOR

In this section, we describe a prototype design of NSPS.
This sensor consists of an array of photo-reflectors, two
resistor network layers and amplifier which calculates from
(24)–(26). We designed these components then fabricated a
prototype of NSPS with5× 5 elements shown in Fig.6.
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A. Detection Characteristics of Photoreflectors
We applied RPR-220 (manufactured by ROHM Co., Ltd.)

as the photo-reflectors because of its long detection range,
availability of device and easy mounting on printed circuit
board (PCB) for prototyping. The basic specification of RPR-
220 is shown in Fig. 6. In this case, 25 photo-reflectors are
required for constructing 5×5 NSPS, but individual variability
of the photo-reflectors may lead to the bias of the position
output and degrade the output accuracy. Thus, we conducted
a preliminary test and selected the photo-reflectors within±0.1
mA difference of peak photocurrent and ±2.0 mm difference
of peak sensitivity distance.

B. Arrangement of Detector Elements
In this prototype design, the detector elements are arranged

in a rectangular pattern with 20-mm pitch. For more practical
detection performance, we have to optimize the arrangement of
the detectors from the design considerations such as maximal
detection distance, directionality of the detector element, size
of the detected objects and shape of the sensor attached
surface. It should be useful to employ the simulation-based
optical design using ray-tracing method as described in [21].

C. Parameters of Resistor Network
Next, we designed the parameters of the resistors r and

R0 considering the specification of the prototype and RPR-
220 photo-reflector. From the input voltage range of ADC
(bipolar ±10 V), the power supply of the circuit including
both amplifier and sensor is ±12 V, and the reference voltage
±V0 for NSPS is ±6 V. Here, the resistance values r and
R0 determine the output ranges of the electrode voltages
VS1 ∼ VS4. For matching them to the amplifier design
described below, we selected r = 1000Ω and R0 = 620Ω.

D. Amplifier
We designed an amplifier circuit which has following two

functions. The first is to calculate the differential voltages
between the electrodes and the total current of the NSPS
circuit. The second is to magnify the output signals to the
proper voltage range for data acquisition.

RPR-220

·Outline dimensions

      4.9mm×6.4mm×6.5mm

·Peak Wavelength:940nm

·Peak sensitivity wave length:800nm

Detector pitch 

= 20 mm
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Fig. 6. Prototype 5× 5 Net-Structure Proximity Sensor
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Fig. 8. Experimental Setup; Three lead-screw linear stages changes relative
position between the NSPS under the test and teaget objects. The sensor was
mounted on Misumi KUE14-A-320 manual linear motion unit (X-axis), the
detected object #1 was positioned by Sigma Koki motorized linear stages;
SGSP-33-200 (Y-axis) and SGSP46-500 (Z-axis) respectively.

Figure 7 shows the design using operational amplifier based
circuit with three stages. On the first stage, buffers are in-
terposed to keep latter stages from interfering the operation
of resistor network. The second stage calculates the voltage
drops by two external resistors R0. The last stage has a
summing amplifier with inputs from results of the second stage
(VS1−V0) and (VS3−V0) for calculating Iall output, and two
differential amplifiers subtract between the pairs of opposite
electrodes for calculating Ix and Iy output respectively.

V. EXPERIMENTS ON DETECTION PERFORMANCE

We evaluated object detection characteristics of the pro-
totype through some experiments. The experimental setup is
shown in Fig. 8, where our sensor and an object to be detected
were mounted on three linear stages (Y and Z-axis; Sigma
Koki SGSP Series, X-axis; a manual lead-screw stage). The
target object is φ12 mm of white board (Kodak R27 90% gray
card.) To avoid reflection by other devices such as the linear
stages and the table, the target was mounted at the end of black
polyacetal sticks (diameter = 12 mm, length = 200 mm).



7

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
X Position Output Xc

Y
 P

o
si

ti
o

n
 O

u
tp

u
t 
Y
c

Theoretical Value

d=10 mm

d=20 mm

d=30 mm

d=40 mm

d=50 mm

Fig. 9. Position output response directly upon detector elements.

Each LED was applied forward currentIf = 40 mA.
The output signals from the amplifier were measured by
National Instruments PXI-6251 analog-to-digital converter at
the settings of 16-bit bipolar±10 V, sampling rate 10 kHz.
Prior to the experiment we measured initial output without any
target object to compensate some errors caused by following
factors.

• IR crosstalk within photoreflector packages.
• Photocurrent induced by environmental light source.
• Output voltage offset error of operational amplifiers.

Then from the measured signals the differential voltagesVS1−
VS3 andVS2 −VS4 were calculated, and substituted for (24)–
(26) to obtain the position of the object(xc, yc) and the total
currentIall.

A. Position Measurement Performance

We investigated the relation between the position of a
detected object and the output of the prototype sensor. In this
experiment, a target is placed in front of one of the detector
elements, changes of position outputxc and yc by distance
between the surface of the element and the targetd [mm]
are recorded respectively. The results are shown in Fig. 9.
Within d = 30 mm, the position output(xc, yc) properly
represents the place of the photoreflector elements on the
sensor plane. With more distant targets, the position output
tends to move toward the center of the sensor. This is caused
by the directivity of the photo-elements. A part of radially
emitted/reflected light goes out of the sensing area, and so
the position output shifts toward the center compared to the
position just below the object.

B. Distance Measurement Performance

Next we investigated the distance output. The total current
Iall was measured while the target was placed in front of
the elementP (3, 3), and moved away from it. We tested the
distanced from 0 mm (the target contacts on the top surface of
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Fig. 10. Distance output response.

RPR-220) to 70 mm. Figure 10 shows the relationship between
the total currentIall mA and the distance to the targetd
mm. Iall decayed approximately inversely proportionally of
the square of the distance. We can see that this sensor is
capable to performs the distance measurement withind = 40
mm from the change ofIall.

C. Transient Response

Finally we tested the transient response of the sensor. To
investigate the response in worst case, the LEDs were driven
by a step input of forward currentIf = 10 mA and the target
was faced the detector elementP (3, 3) at 6 mm distance. The
response ofIall was measured as shown in Fig. 11. LEDs are
turned on or off at the timet = 1 ms. In these waveforms, the
rise time and fall time of the total current outputIall to 95%
are 0.424 ms and 0.380 ms, respectively. The results shows
that the design of out prototype satisfied 1 ms response time
in case of both approaching and leaving objects.

VI. D ISCUSSIONS

The experimental results in the last section showed that
the position outputs(xc, yc) correspond to the object position
along the sensor surface, and the total currentIall changes
according to the distance from the sensor to the object. In
this section, we discuss the points to be considered before
designing an actual NSPS.

Firstly, about the position output, it was shown that the
characteristic changes according to the distance from the
sensor to the object caused by the directivity of the photore-
flectors. The more obtuse the directivity is, the more widely
the phototransistors react, and some of the emitted light leaks
out of the sensing area. The effect becomes significant at larger
distance. Although the the directivity of RPR-220 is 10 degrees
in half-value angle, which is sharper than similar products,
the effect is hard to be ignored as shown in Fig. 9. However,
since the degree of the effect can be predicted by the theory
of reflection, it does not necessarily degrade the accuracy of
NSPS.

On the other hand, there is a merit when the directivity
is obtuse that each photo-element detects wide area. That is,



8

-2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

Time t ms

T
o
ta

l 
C

u
rr

en
t 

Ia
ll
 m

A

Iall response
90% of final response
LED drive pulse0.424 [ms]

(a) Turn-on transient response

Iall response
10% of final response
LED drive pulse

0.380 [ms]

-2

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5 3

Time t ms

T
o

ta
l 

C
u

rr
en

t 
Ia
ll
 m

A

(b) Turn-off transient response

Fig. 11. Step response ofIall at LED turn-on and turn-off

we can arrange the elements more sparsely without any dead
region. Although NSPS has an advantage that the number of
elements affects neither the sensing speed nor the external
wiring, reduction of the elements helps to cut production cost
and to design a total robot system with less structural con-
straint. Therefore, we should choose a photo-element which
has proper characteristics for the required detection range and
the mechanical design of the target robot system.

Secondly, about the total current, the output value changes
according to not only the distance from the sensor to the object
but also the size or the reflection ratio of the object. For precise
detection of the distance, it is effective to calibrate the output
value by using a calibration table if it is a known object, or
by measuring the size and the reflection ratio in advance with
another sensor if it is an unknown object.

The third point is the measurement resolution. The NSPS
outputs a continuous analog voltage signal which changes
according to the position of the target object. Thus, the mea-
surement resolution of the sensor depends on the resolution
of the A/D converter for reading the sensor and the noise
on the output signal. Although the noise size differs in the
experimental conditions, it has been observed to be less than
1% of the signal in most cases. If the A/D converter has
high resolution and sampling rate, the measuring resolution
of the sensor can be improved by averaging the successive
data. In theory, the resolution, precision and accuracy would
improve by arranging the photo-elements more dense, because
the amount of the light for sensing. Furthermore, the sensor
would be able to detect a smaller object. However, it has to
be carefully designed so that the elements do not be saturated

(a) Overview of the Human interface application of NSPS
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Fig. 12. Human Interface Application and Examples of Captured Trajectories

when an object is at the nearest range. On the other hand,
the demerit is increase of the power consumption and the
production cost.

The fourth point is cross-talk among multiple NSPS. When
two or more NSPS are mounted close or face-to-face, such as
the case of the robot hand shown in Fig. 1(d), it is necessary
that the light emitted from one sensor does not influence the
other sensors. In such cases, we should measure the signals
with time-sharing processing. This enables each of the sensors
to react to the light emitted by itself, without influence of the
other sensors. In addition, it is observed to be available to emit
the light in a certain frequency and apply a bandpass-filter to
the signal.

Finally, we discuss two applications of NSPS to make use
of its features, that is, simple structure and high-speed 3D-
position detection of the nearby object.

One application is the human interface device as shown in
Fig. 12. Figure 12 (a) illustrates the use scene of NSPS for 3D
finger trajectory input, (b) and (c) are examples of captured
finger trajectories during 1 second. To obtain the 3D coordi-
nates of the object attached on user’s fingertip, position outputs
of the NSPSxc, yc are used directly,z is estimated from
the total current outputIall. Approximately,Iall is inversely
proportional to square of the distance to the detected object and
is proportional to the area of the orthogonal projection of the
object shape to the sensor plane. Based on this characteristics,
we determined the object-specific transformation coefficientc
by using curve fitting to the distance vs total current output
characteristics, and defined the estimation equation as

ẑ = c · I −2
all (40)

where ẑ is the estimated value ofz position. Here, the
coefficientc differs by the size or the reflectance property of
the object. Thus, we have to input the information about the
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(c) Comparison between the Sensor Output and Object Position while the

Object Passes within the Sensing Area

Fig. 13. Object Trajectory vs Sensor output of 1000 mm/s moving target

object preliminary, at the present sensor configuration. We are
now developing a method for detecting distance independent
of the object size and reflectance, for example, mounting two
NSPS with different characteristics for distance detection on
the same surface.

The realtime target trajectory measurement by NSPS en-
ables quick gesture input to information devices. Compared
with competing methods such as 3D mouse, haptic device
and motion-capture, NSPS has the features of high-speed
and non-contact sensing. In comparison with 3D mouse and
haptic device, NSPS provides unrestrained movements of
hands and arms. In comparison with motion-capture based
on cameras or depth sensors, it performs overwhelming low
output latency. Therefore, NSPS would realize more stress-free

intuitive gesture input than these devices.
The other application is robotics. NSPS achieved high speed

response within 1 ms and scalable structure of circuitry that
covers from the fingertip to the whole body of a robot. These
features, combined with realtime feedback, enable robots to
response quickly to the environments, e.g. positioning, attitude
and shape adaptive grasping for manipulators, or collision
avoidance with moving obstacles for mobile robots. For in-
stance, Fig. 13 demonstrates the response speed to the moving
object. The 38 mm diameter white foam polystyrene sphere
mounted on the linear slider, passed 10 mm above the surface
of NSPS at 1 m/s velocity. Figure 13 (b) and (c) are the
comparison between the position output of NSPSxc and actual
positioning of the objectxo derived from the encoder output
of the linear motor stage. The object crossed above the sensing
area duringt = 260 ms to 340 ms. The output of the NSPSxc,
yc andIall are measured at 1 kHz sampling rate, as Fig. 13(c)
indicates, the position outputxc tracked the object position
withouts significant delay.

For robot hands, in addition, the NSPS covering fingers
and palms to contact with grasped objects detects the relative
positioning until they contact (i.e., the robot itself occludes the
object graped most severely). With previous sensing methods,
lack of information by occlusion and limited output response
speed made it difficult for robotic manipulators to approach
and grasp target objects quickly, the combination of NSPS and
simple control law would realize such quick grasping actions.

VII. C ONCLUSION

We presented Net-Structured Proximity Sensor that enables
high rate, near range object detection. Based on infrared reflec-
tive proximity sensor and simple analog calculation circuit, our
method efficiently integrate large number of photoreflectors.
To verify the principle, we prototyped5× 5 sensor array and
examined its basic characteristics of object detection and rapid
output response within 1 millisecond. Future work will focus
on its practical design for robots such as multifingered hand
and mobile robot and evaluating its performance in robotic
tasks.
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