
国立大学法人電気通信大学 / The University of Electro-Communications

GaN HEMT DC I-V Device Model for Accurate RF
Rectifier Simulation

著者（英） Tsukasa Yasui, Ryo Ishikawa, Kazuhiko Honjo
journal or
publication title

IEEE Microwave and Wireless Components Letters

volume 27
number 10
page range 930-932
year 2017-10
URL http://id.nii.ac.jp/1438/00008804/

doi: 10.1109/LMWC.2017.2746678

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Creative Repository of Electro-Communications

https://core.ac.uk/display/186661789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS 1

GaN HEMT DC I-V Device Model for Accurate
RF Rectifier Simulation

Tsukasa Yasui, Ryo Ishikawa, Member, IEEE, and Kazuhiko Honjo, Fellow, IEEE

Abstract—Recently, various high-efficiency RF rectifiers have
been proposed. In this article, to improve the simulation accuracy
of RF active rectifier circuits, a new device model for GaN
HEMTs is proposed that improves the reproducibility of ID-VDS

characteristics in the third-quadrant region (both drain voltage
and drain current are negative). Based on measured characteris-
tic data of an actual GaN HEMT, the device parameters for this
model have been decided, and the advantage of the new device
model has been confirmed.

Index Terms—GaN HEMT, RF rectifier, device model, third-
quadrant region.

I. INTRODUCTION

VARIOUS wireless power transmission systems have been
proposed for several applications, such as remote sens-

ing, wireless battery charging, and so on [1]–[3]. In recent
years, various high-efficiency rectifiers using an active device
such as a GaN HEMT have been proposed [4], [5]. Usually,
such high-efficiency active rectifiers are designed using an RF
circuit simulator. On the other hand, an active device in high-
efficiency rectifiers works in the “third-quadrant” region, in
which a reverse drain (or collector) voltage is applied and
a reverse drain current flows. Especially, DC-to-RF/RF-to-
DC interconversion systems [6] use both the first-quadrant
and third-quadrant regions of an active device. However, such
an operating mode of active devices is not seen in most
other kinds of RF circuits, so simulation device models are
considered to have insufficient reproducibility accuracy in the
third-quadrant region. Raffo et al. [13] show that microwave
intrinsic transistor characteristics can be expressed by nonlin-
ear capacitive elements and nonlinear DC characteristics. In
this letter, we attempt improving the DC characteristics of the
device model, especially, third-quadrant region. It will improve
the overall RF accuracy of the device model.

The look-up table approach [11] is a simple way to express
nonlinear characteristics of active devices including third-
quadrant region. In this approach, however, it is difficult to
provide differentiable functions including higher order deriva-
tives based on measured data. This is important problem to
simulate high-efficiency rectifiers using harmonic treatment
technique.

In this paper, first, the reproducibility accuracy of the EE-
HEMT1 device model on the third-quadrant region is shown
by measuring and modeling for an actual GaN HEMT, then
an improvement method for reproducibility is shown.

II. ID-VDS CHARACTERISTICS EXPRESSION ON
EEHEMT1 DEVICE MODEL

Keysight Technologies’ EEHEMT1 device model is one
of the common simulation models for HEMT devices in
the RF/Microwave field. Fig. 1 shows the internal equivalent
circuit of the EEHEMT1 device model [7]. In Fig. 1, drain

G’ G

Rg

Igd

Igs

D

S

Qgy Y

Rid

Qgc C

Ris

Rd
D’

Rs
S’

Ids
Rdb

B

Idb

Cbs
Cdso

ID

Fig. 1. EEHEMT1 internal equivalent circuit.

current ID is expressed some current sources. Ids generates
a dominant DC drain current that depends on gate-source
voltage VGS and drain-source voltage VDS , Igd and Igs
express the gate forward and breakdown currents, respectively.
Though Idb, Rdb, and Cbs express the dispersion effects at
low frequencies, it is not enough to express the complicated
dispersion effects in GaN HEMTs [12]. Even so, at least more
accurate DC model is needed to express these effects. In the
EEHEMT1 device model, Ids′, the no thermal effect version
of Ids, can be expressed by three terms, namely, U , V , and
W , as follows:

Ids′ = U · V ·W
U = Icomp

dso (VGS , VDS)
V = 1 +KAPA · VDS

W = tanh( 3VDS

V SAT )

(1)

where U or Icomp
dso is a complicated function with respect to

VGS and VDS , V is obviously a linear function with respect to
VDS , and W represents the saturation effect of drain current
by tanh function [8], [9]. Finally, Ids is derived from Ids′

with taking the thermal effect, as shown by

Ids =
Ids′

1 + Pdiss

PEFF

(2)

where Pdiss is the power dissipation of the device due to
Ids′ and VDS , and PEFF is a device model parameter that
determines the thermal effect of the device. The Ids must
be a differentiable function, and its derivatives should ideally
also be differentiable up to an infinite order. The Ids of the
EEHEMT1 device model is described as a continuous function
of at least 2nd order derivatives. Equation (1) is only used for
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the first-quadrant region. For the third-quadrant region, the
following equation is used instead of (2).

Ids(VDS<0) = −Ids(VGS − VDS ,−VDS) (3)

Equation (3) expresses the ID-VDS characteristics in the third-
quadrant region using the first-quadrant expression and the
same device model parameters based on the terminal trans-
formation technique with the device symmetry assumption, as
shown by Fig. 2. This simple symmetry assumption provides

Fig. 2. Transform the third-quadrant region to first-quadrand region.

a reasonable way to obtain the approximate characteristics in
the third-quadrant region for most RF applications. However,
in almost all actual FET devices such as GaN HEMTs, its
structure is not symmetrical for improvement of the drain
breakdown voltage [10]. This means that (3) does not give
accurate characteristics in the third-quadrant region. Thus, for
active RF rectifier simulation, more accurate device model is
needed to provide more accurate characteristics in that region.

III. COMPARISON OF MEASURED CHARACTERISTICS AND
EEHEMT1 DEVICE MODEL

In order to understand the reproducibility of the character-
istics in the third-quadrant region, we measured the ID-VDS

characteristics of an actual GaN HEMT device (WIN semi-
conductors’ 4×100µm gate width) based on stationary mode
measurement. Then, we attempted to decide the parameters for
the EEHEMT1 device model. As a result, it was impossible
to fit the measured ID-VDS curves to the EEHEMT1 model
in both the first-quadrant region and the third-quadrant region.
The result of model fitting is shown in Fig. 3. In this result, the
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Fig. 3. Measured ID-VDS , simulation result using EEHEMT1 model, and
model parameters.

fitted EEHEMT1 model shows good approximation in the first-
quadrant region, however, a difference was observed between

the model and measured data in the third-quadrant region. The
assumption of device symmetry is considered to be one of
the reasons for this difference. To improve this mismatch, we
introduced a new function named V ′ instead of V in (1).

V ′ = 1 +KAPA · VDS

+
1

A · (PHI − VGS)
B+D·VGS

· tanh(VDS

C
− 1) (4)

This equation corrects the Ids in the third-quadrant region
for better approximation, but there is almost no effect on
other regions. In (4), each A, B, and D is the parameter that
determines the influence of VGS on Ids. C is the roll-off factor
of V ′ around VDS = 0. A small offset PHI prevents the
divergence of V ′ on VGS ≥ 0. In addition, in (4) the device
symmetry assumption expressed as (3) is not applied. In other
words, each VGS and VDS in (4) means the actual gate and
drain voltage, respectively, even in the third-quadrant region.
A comparison example between V and V ′ is shown in Fig. 4.
Equation (4) is a differentiable function with respect to VGS
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and VDS with VGS < PHI , and at least 2nd order derivatives
are also differentiable with VGS < PHI , as shown in the
following equation:

∂V ′

∂VDS
= KAPA+

1

AC(PHI − VGS)B+D·VGS
·{

1− tanh2(VDS

C − 1)
}

(5)

∂2V ′

∂V 2
DS

= − 2

AC2(PHI − VGS)B+D·VGS
·

tanh(VDS

C − 1)
{
1− tanh2(VDS

C − 1)
}

(6)

∂V ′

∂VGS
= − 1

A(PHI − VGS)B+D·VGS
·{

D · ln(PHI − VGS)− B+D·VGS

PHI−VGS

}
· tanh(VDS

C − 1) (7)

∂2V ′

∂V 2
GS

=
1

A(PHI − VGS)B+D·VGS
·[{

D · ln(PHI − VGS)− B+D·VGS

PHI−VGS

}2

+

B+D·VGS

(PHI−VGS)2 + 2D
PHI−VGS

]
· tanh(VDS

C − 1) (8)

IV. FITTING RESULT USING THE IMPROVED MODEL

Using V ′ instead of V in (1), we produced an improved
version of the EEHEMT1 device model. The fitting result for
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the actual device which is described in section III, is shown
in Fig. 5.
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Fig. 5. Measured ID-VDS , simulation result using the improved model, and
model parameters.
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The improved device model gives good approximation in
the third-quadrant region without a large effect in the first-
quadrant region, as shown in Fig. 6 and Fig. 7. Fig. 8 shows an
example for 1GHz active RF rectifier design. Fig. 9 shows the
time-domain simulation result. In this simulation, the power
conversion efficiency was 58.9% for EEHEMT1 model and
49.7% for improved model, respectively.
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V. CONCLUSION

We described the reproducibility of the EEHEMT1 device
model in the third-quadrant region, and proposed an improved

EEHEMT1 or improved model

Model parameters:
VTOAC=−3.75[V]
GAMMAAC=

590.9 × 10−6[V−1]
VDELTAC=50 × 10−3[V]
GMMAXAC=100 × 10−3[S]
KAPAAC=36.28 × 10−3[S]
PEFFAC=8.671[W]
RDB=1 × 109[Ω]
CBS=1.6 × 10−13[F]
Unless otherwise specified,
values shown in Fig. 3
and Fig. 5 are used.

Fig. 8. 1GHz active RF rectifier simulation circuit.
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Fig. 9. Time-domain waveforms of the 1GHz active RF rectifier simulation.

device model. The improved device model gives better ID-
VDS curves in the third-quadrant region without much effect
in the first-quadrant region. This would be helpful in the design
of high-efficiency active rectifiers.
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