
Hera Object Storage: A Seamless, Automated 
Multi-Tiering Solution on Top of OpenStack Swift 

Remo Höppli, Thomas Michael Bohnert, Leonardo Militano 
ICCLab, InIT, Zürich University of Applied Sciences, Winterthur, Switzerland 

e-mail: ​remo.hoeppli@gmail.com​, ​thomas.bohnert@zhaw.ch​, ​ leonardo.militano@zhaw.ch 
 
 

Abstract​ —Over the last couple of decades, the demand for         
storage in the Cloud has grown exponentially. Distributed Cloud         
storage and object storage for the increasing share of         
unstructured data, are in high focus in both academic and          
industrial research activities. At the same time, efficient storage         
and the corresponding costs are often contrasting parameters        
raising a trade-off problem for any proposed solution. To this          
aim, classifying the data in terms of access probability became a           
hot topic. This paper introduces Hera Object Storage, a storage          
system built on top of OpenStack Swift that aims at selecting the            
most appropriate storage tier for any object to be stored. The           
goal of the multi-tiering storage we propose is to be ​automated           
and ​seamless, guaranteeing the required storage performance at        
the lowest possible cost. The paper discusses the design         
challenges, the proposed algorithmic solutions to the scope and,         
based on a prototype implementation it presents a basic         
proof-of-concept validation. 

Keywords—Cloud Computing, Object Storage, OpenStack,     
Multi-tiering. 

I.  INTRODUCTION  
Distributed Cloud storage solutions have gained high       

momentum over the recent years where we witnessed an         
exponentially increasing demand for data storage. With the        
widespread deployment of modern high computational      
empowered devices in a context of an       
always-to-Internet-connected world, the ability to create huge       
amounts of data caused this trend. The result of this is a            
massive volume of heterogeneous and rapidly changing data,        
also known as Big Data [1]. Indeed, modern applications are          
making deep use of the available technology, but at the same           
time they raise huge concerns about how to handle, and in           
particular, how to store all the data being produced and shared.           
To give some exemplifying numbers: Facebook requires each        
week extra 60TB of storage just for new photos [2], YouTube           
requires 1 Petabyte of new storage every day [3] and globally           
the digital universe is about doubling every two years,         
growing 50-fold from 2010 to 2020. The analysis presented in          
[4] reports also that the digital universe is expected to reach           
the impressive number of 40,000 exabytes in 2020. About         
40% of the digital data will be stored or processed in a Cloud             
somewhere in its journey from originator to disposal. With a          
more cautious look at the data being produced, one can          
observe that the lion’s share is taken by unstructured data          
(e.g., video, audio, pictures/illustration, messaging, text files       

and similar). This is the reason for the high interest we are            
witnessing in object storage for distributed storage systems in         
the Cloud. This form of storage foresees that a file and its            
respective metadata are encapsulated as an object. The        
metadata hosts information about the application the object is         
associated, level of protection, number of replicas, and        
geographic location.  

Noteworthy, not all data is to be treated in the same way            
and not all storage has the same features and cost. Therefore,           
an efficient, cost-effective use of resources is definitely of         
interest. To this scope, a differentiation in the data         
management can be made based on how often data are          
accessed, how performing the storage devices are and the         
costs. A data temperature model classifies data according to         
the frequency of accessing it, with ​hot and ​cold data being           
very frequently and rarely accessed data respectively. Recent        
studies reported that the relation of the cold and hot data is in             
the order of 10-20% for hot data and the remaining for cold            
data 80%, with this latter growing with the fastest pace [6].           
Optimizing the data storage allocations based on the        
temperature model is the objective of a so-called ​multi-tiered         
storage​ . This assigns the different categories of data to         
different types of storage media to optimize the cost. Tiered          
storage policies place the most frequently accessed data on the          
best performing storage and rarely accessed data on        
low-performing cheaper storage. 

This paper is presented in the aforementioned context and         
introduces Hera Object Storage (HOS in short hereafter) as an          
agile ​automated and ​seamless multi-tiering storage system.       
The proposed HOS is built on top of OpenStack Swift,          
exploits its features and extends it in two main aspects: 

● Stored objects can be moved between different       
storage tiers in a ​seamless way, so that availability,         
access performance and storage costs are optimized; 

● Stored objects move to the best suited storage tier in          
an ​automatic​  way. 

The remainder of the paper will discuss these aspects in          
details and is organized as follows. Section II presents the          
current state-of-the-art discussing some of the most relevant        
related projects. The architecture for HOS is presented in         
Section III, whereas Section IV introduces the proposed        
solutions for a seamless multi-tiering storage and object        

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/186660116?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:remo.hoeppli@gmail.com
mailto:thomas.bohnert@zhaw.ch
mailto:leonardo.militano@zhaw.ch


lookup. Section V presents an algorithm for the automated         
multi-tiering. Section VI presents a validation analysis based        
on a prototype implementation, whereas Section VII       
concludes the paper with future works and possible        
extensions. 

II. RELATED WORK   

Several commercial products for object storage have seen        
the light over the last years. Among them are Microsoft Azure,           
Amazon S3, IBM Cloud Object Storage, NetApp       
StorageGRID just to mention some of the main market actors.          
Several solutions have been driven in parallel as open source          
initiatives such as Lustre, MogileFS, and OpenIO; in [7] a          
detailed overview on all object storage projects is reported.         
Among the open-source solutions, OpenStack Swift has been        
proven to work in large distributed environments. ​Objects and         
files in Swift are written to multiple disk drives spread          
throughout servers in the data center and the OpenStack         
software is responsible for ensuring data replication and        
integrity. ​Its success is witnessed by its availability in many          
OpenStack distros from big vendors such as IBM, Rackspace,         
Cisco, Oracle, and VMware. The popularity and wide        
adoption of OpenStack Swift is further supported by software         
defined storage vendors such as Ceph and Nexenta which         
provide  Swift-compatible APIs to their projects.  

An alternative to OpenStack Swift that attracted very much         
of interest from industries and academia is Ceph [8]. Ceph is           
as a unified, distributed storage system implementing block,        
file, and object storage. The RBD, Radosgw, and Ceph FS          
service interfaces decide, whether a block, file, or object         
storage is accessed. Even if several Ceph-based solutions        
appeared on the market in recent years (e.g., the software          
defined storage solution from SUSE), the architecture has a         
monolithic structure on the functional level, where Rados is         
the single service handling any kind of storage. This makes the           
effective construct and operation of Ceph complex to        
understand. Additionally, the only way to use Ceph as an          
object storage is to use the complete stack with no possibility           
of using another storage system as backend or as an additional           
storage [8].  

A main difference between Ceph and Swift is that Ceph          
promotes consistency and partition tolerance over availability,       
whereas Swift promotes availability and partition tolerance but        
is eventually consistent. This practically means that in Ceph,         
differently than in Swift, for every data write operation an          
acknowledgment is sent to the client only after ​all the replicas           
are correctly written. To determine where and how to store the           
data on the storage nodes, Ceph uses the CRUSH algorithm,          
whereas Swift uses an approach based on hash rings (see [5]           
and [8] for more details). Both mechanisms have the         
advantage that no lookup tables have to be maintained.         
However, Ceph has the advantage that it already provides a          
sort of storage-tiering, whereas Swift only provides       
mechanisms to implement a storage-tiering-like solution.  

In the context of multi-tiered storage, one main concern is          
placing an object to be stored into the right tier to satisfy the             
latency requirements while minimizing the storage cost. The        
solution to this problem is not trivial as different data types           
with various access patterns exist. Consider for example        
collected meteorology data that needs to be elaborated as fast          
as possible to obtain timely weather forecast. After processing         
the data it can be archived. Another example are large          
streaming platforms, where a new movie or music will be          
accessed extensively only immediately after creation while       
other objects will be popular for a long time. Also online map            
services, satellite imagery of popular cities may be accessed         
thousands of times per day, whereas rural areas might be          
viewed only a few times a week. Creating a system that           
automatically determines the right storage level for the data         
objects is not trivial and should be highly customizable. 

OpenStack Swift offers the possibility to define storage        
policies (e.g. replication or erasure coding) through definition        
of different object rings so that different devices can belong to           
different rings [5]. The policies are implemented at the         
container level when it is created and for the whole lifetime.           
Once a container has been created with a specific policy, all           
objects stored in it will be stored in accordance with that           
policy. Even if this option actually provides a basic storage          
multi-tiering, unfortunately, it introduces complexity and      
overhead. For instance, multiple containers need to be created,         
at least one container for each storage policy. Then the          
decision where to put an object is to be taken and, information            
about the exact ring to address is needed when accessing the           
object. Nonetheless, the availability of storage policies in        
Swift supported our decision to design HOS on top of          
OpenStack Swift to inherit its features and extend it with          
others. To reduce the intrinsic complexity and overhead of         
Swift, an ​automatic and ​seamless decision on the data tier is           
set as the main objective of HOS. The system autonomously          
needs to decide whether an object should be moved to a           
slower cold storage or to an expensive hot storage tier. At the            
same time HOS will allow to access the stored object by           
simply accessing a single initial container, independently from        
the storage tier it belongs to at the moment of access. 

III. HERA OBJECT STORAGE ARCHITECTURE DESIGN 

The HOS architecture is defined within a wider software         
defined storage system for cloud environments, named Hera as         
part of the Solidna project . The general goal of Hera is to            1

build the storage foundation for cloud infrastructures by using         
latest open source technologies. A first part of the project is           
Hera block storage (HBS), which provides highly available        
and scalable iSCSI block storage​s. HBS is based on ZFS [9]           
and uses ​erasure coding for high resilience. The block storage          
can be used by hypervisors and servers, as well as containers.           
HOS is built on the foundation of HBS. ​Although, i​t is out of             
the scope of this paper to give an in-depth description of HBS,            

1 https://blog.zhaw.ch/icclab/category/transfer-2/solidna/ 



a design requirement for HOS coming from the underlying         
HBS is that it should be able to use iSCSI block storage in its              
backend. Indeed, storage volumes presented by HBS are        
available as iSCSI LUNs. ​HBS’ distributed architecture       
ensures that there is no single point of failure and no           
performance bottleneck. Therefore, it can perfectly satisfy the        
requirements of an object storage system like Swift. For the          
next higher layer, the iSCSI LUNs, provided by HBS, do not           
differ from any normal iSCSI LUNs. This offers the         
opportunity to replace this layer with other open source or          
proprietary block storage systems. This has the advantage that         
even legacy storage systems could be used with HOS. 

Further design constraints for HOS derive from OpenStack        
Swift on which it is built. ​To support authentication,         
authorization, and accounting in HOS, we adopt ​OpenStack        
Keystone​ [10] as it is natively supported by Swift and it is well             
supported by other OpenStack products. Obviously, other       
proprietary authentication systems, such as SwiftStack Auth,       
SwiftStack LDAP, or SwiftStack Active Directory, could be        
used to integrate HOS with other already existing        
authentication systems. 

 
Fig. 1 - HOS architecture design (in blue the novel proposed microservice). 
  

A key architecture design choice for HOS is the logical          
level of interaction with OpenStack Swift. In particular, three         
options are evaluated and compared: 

● Integrating HOS below Swift’s logical level: this       
would mean that for standard object access, the        
normal Swift API is used, whereas for extended        
functions, such as moving objects between different       
tiers, Swift would be bypassed with HOS. The major         
benefit would be that HOS does not depend on the          
Swift implementation, as long as the object       
placement algorithms in Swift do not change. The        
main drawback of this solution is that the whole         
object placement logic of Swift and the proxy logic in          
distributed systems need to be implemented also in        
HOS. Moreover, it would also require a solution to         
ensure that the data within Swift remains consistent        
when dealing with objects below Swift’s logic, so        
that neither data nor state are corrupted. 

● Integrating HOS as a middleware in Swift: this        
option is a supported feature in Swift and would         
allow to use Swift internal libraries, leveraging the        
already existing functionalities. Nevertheless, being     
Swift under active development, with frequent      
changes to its internal libraries, it would lead to         
updates needed in HOS for compatibility with Swift.  

● Deploying HOS as a ​microservice on top of Swift: the          
main advantage of this loosely coupled solution is        
that there is no dependency on Swift-internal libraries        
although it exploits its functionalities. In the unlikely        
case that Swift REST APIs are changed, only the         
HOS backend would need to be redesigned.       
Furthermore, the whole set of features provided by        
Swift can be used within HOS with as little effort as           
doing the specific REST call. In terms of the system          
architecture, this option has the advantage that Swift        
and HOS could even be used side by side in the same            
environment running on independent VMs.     
Alternative object storage backends could also be       
adopted with moderate effort, as long as they provide         
the necessary basic functionality (e.g., Amazon S3).       
Moreover, the microservice design enables the      
system for better ​scalability​  if demand increases. 

Considering the pros and cons of the three possible         
HOS-Swift integration design options, the solution best fitting        
to our scope is to deploy HOS as a microservice on top of             
Swift as sketched in Fig. 1.  

The design and implementation of the HOS microservice        
can be divided in three main sub-problems: a) ​seamless         
multi-tiering storage and object lookup;​ b) automated storage        
tiering;​ c) ​REST APIs and command line implementation​ for         
programmatic interaction with HOS. To ensure that changes to         
the external components of the system do not impact the          
whole application, the design is created on a modular base, see           
Fig. 2. Each interface connecting HOS with the outside world          
is implemented as an adapter providing a defined set of          
functions to the core controller. If there are changes to one of            



the external components, only the specific adapter will need to          
be adjusted. 

 
Fig. 2 - ​HOS modular structure. 

IV. SEAMLESS MULTI-TIERING STORAGE AND OBJECT LOOKUP 

For the multi-tiering functionality, we define three storage        
tiers which are supported by the the HBS backend: ​hot          
storage, default storage​ and cold storage​ (in decreasing order         
of disk performance). These storage tiers are made available to          
HOS exploiting the ​storage policies feature defined by        
OpenStack Swift. More specifically, adopting the storage       
policies feature we are able to define multiple object rings in           
Swift. Each of the storage rings can be configured to use           
different storage volumes and different replication levels.       
Additionally, storage policies allow to configure erasure       
coding for storing passive data that is less frequently accessed.          
The policies are defined at the container level which can be           
placed on a particular ring by applying that ring’s storage          
policy to it. Every object stored in that specific container is           
then stored on the volumes associated to the specific ring [5].  

To allow a seamless multi-tiering storage, we introduce an         
abstraction on top of the container defined in Swift. This          
abstraction requires that every container created on HOS        
needs to be created on each of the three storage tiers in Swift.             
More specifically, OpenStack Swift defines three storage       
volumes with different performance and redundancy      
characteristics. On each of the volumes, an object ring,         
configured with a specific storage policy, places its data. The          
three containers created in Swift are labeled with the storage          
policy specific of the ring it resides on. These three containers           
are then combined and abstracted by HOS providing a single          
container to the end-user as shown in Fig 3. An end-user can            
have multiple objects stored in a container while spreading         
them across all three storage tiers in the backend.  

When objects have been stored into a specific tier, the          
HOS should be able to retrieve it again from a container when            

needed without necessarily providing information of the tier it         
resides on. A first “naive” implementation we tested out is to           
make HOS look for the desired object in every tier, starting           
with the hot storage, then checking the default tier and at least            
the cold tier, until the object is found. This solution is referred            
to as ​Naive REST Lookup (NRL) in the remaining of the paper.            
The drawback of this algorithm is that retrieving an object in           
the worst case where the object is not present requires up to            
four REST calls made to Swift. In fact, besides the three           
REST calls for to the three storage tiers, a fourth call is always             
needed at the beginning to authenticate the user at the AAA           
system and retrieve a session token. In the best case, where the            
requested object is on the hot tier two REST calls are needed.  

 
Fig. 3 - ​Container abstraction in HOS exploiting Swift storage policies. 
 

As an advanced efficient alternative to the ​NRL solution,         
we propose an SQLite-based solution. The SQLite database        
will provide a lookup directory for the stored objects. After the           
first REST call for authentication, the database is queried to          
get information about the Swift container storing the requested         
object. If the object is found in the database, the core           
controller obtains the information about the object’s location        
and directly queries the correct Swift container (see Fig. 2 for           
the HOS modular structure). This solution is referred to as          
Advanced SQLite Lookup (ASL) in the remaining of the paper.          
ASL reduces the REST calls needed to retrieve an object to at            
most two in all cases. In fact, the number of REST calls for             
objects that are not present reduces from four to one, for cold            
tier objects from four to two, for default tier objects from three            
to two, whereas the number of REST calls for objects in the            
hot storage remains two. If the object retrieval was not          
successful, the lookup database is most likely in an         
inconsistent state and a repair task will be invoked.  

A. Need for atomic operations in ASL 

When adopting the ​ASL solution, database updates need to         
be atomic operations to keep the state of the database          
consistent with the state in Swift. Updating the objects in          
Swift and updating the record in the database are two separate           
transactions that cannot happen simultaneously. This could       



cause inconsistency issues. To face the problem, we        
introduced an object lock that only applies to update         
operations. The implementation of this update lock is done at          
the database level. Every request updating an object, reads and          
sets the update lock in an atomic transaction. If the update           
lock is already set, an exception will be thrown, indicating that           
this object cannot be altered at the given time. Otherwise, the           
update lock is set and the current process is the only one            
allowed to change the object state until the lock is released.           
Simple requests, which only retrieve information or data, will         
not be affected in any way by these update locks. Therefore,           
the read availability of the locked objects is assured. 

V. AUTOMATED STORAGE TIERING 

HOS should provide functionalities to move objects along        
the storage tiers according to the current access behavior. This          
allows for often accessed objects to reside on hot storage and           
rarely accessed objects to be moved on cold storage         
dynamically​ . At the same time, changes in an object’s access          
behavior over time should lead to an adapted object tiering. In           
HOS, whenever a tier change is prompted, a Swift REST API           
call will be made to copy an object from one container to            
another within the Swift layer. After copying the object, the          
object should be removed from the old container. To support          
such an automated storage tiering, the access to the stored          
objects has to be monitored in order to dynamically evaluate          
the access characteristics and implement a wished tiering        
policy. As concerns the proposed HOS modular architecture,        
this can be supported by the SQLite database, where requests          
to create, update, delete or retrieve an object can be recorded           
along with the respective instant in time. Based on the          
collected information the smart automated storage tiering we        
have in mind has the following features: 

1. The proposed algorithm should be ​dynamic so that an         
object can be moved between storage tiers as soon as          
the given rule settings dictates that; 

2. The proposed algorithm should ​not overreact to       
prevent unnecessary object moving operations. This      
could be the case of an object in the hot storage tier            
having a short time frame where it is rarely accessed; 

3. The proposed algorithm should be able to identify        
cases where an object is to be moved ​promptly to the           
hot storage tier, i.e., objects which suddenly become        
popular and are accessed extensively. 

A first simple and straightforward solution for the        
automated tiering is to define for each storage tier boundary          
access rate values. The number of accesses to an object within           
an ​observation period (OP)​ will give this access rate value​.​ At           
the end of each ​OP the objects will then be associated to one             
of the three available tiers. Unfortunately, although ​dynamic​ ,        
such a simple approach does not meet all the wished features           
listed above. When the ​OP​ is short, objects might be moved           
between the tiers quite often. Moreover, it might also happen          
that the algorithm ​overreacts​ . An object that should basically         

reside in hot storage could have a single ​OP with only very            
few access attempts and thus, being moved to cold storage.          
Every further access attempt will then be very slow until the           
OP​ ends and the object is moved back to the hot storage tier.             
One could try to smartly tune the length of the ​OP​ to cope             
with this issue. But a longer timeframe which results in a more            
stable average in the access attempts, reduces the ​dynamicity         
of the multi-tiering storage, since objects can only be moved at           
the end of the given ​OP. However, in no case the third            
requirement listed above is addressed. For all these reasons, an          
advanced ad-hoc algorithmic solution has been designed as        
described in the remaining of this Section. 

A. The object auto-tier value for multi-tier storage 
Let us define the ​auto-tier value associated to each     va i    

object ​i​ as the parameter that determines the new tier for           
object ​i at the end of each ​OP. The value for​ is increased            va i    
or decreased in every ​OP​ , as a function of the last access rate             
to object ​i​ and the current storage tier the object is stored in​.             
The value for ​OP​ is determining how often the ​auto-tier value           
is updated. This can be tuned according to design preferences          
about how quick the system should react to object access          
variations. The shorter ​OP​ is the more agile the algorithm          
becomes, but the more computational power is used to check          
and move objects. The decision about the new tier for an           
object is based on the schematic tier division and the          
respective boundaries set to the different tiers, i.e., ​cold limit,          
default limit​ and ​hot limit​ . When is lower than the ​cold     va i      
limit object ​i will be associated to the cold tier, when is           va i  
higher than the ​cold limit but lower than the ​default limit           
object ​i will be in the default tier, otherwise it will be in the              
hot tier.  

The number of access attempts for object ​i during an ​OP           
are classified as either low access, medium access, high access          
or ​boost access,​ based on predefined policies. In our         
implementation we classify the objects into the four access         
classes considering also the overall behavior of all objects. In          
particular, we define , , and as the fractions of  p b ph pm pl     
objects associated to boost, high, medium and low access         
respectively. Our proposed approach foresees the following       
steps to be implemented: 

1. Collect all access rates for the objects within the last          
OP​ ; 

2. Order all the collected access rates in a decreasing         
order; 

3. Classify the top objects of the ordered list as ​boost   pb        
access​ ; 

4. Classify the subsequent objects of the ordered list   ph      
as ​high access​ ; 

5. Classify the subsequent objects of the ordered list   pm      
as ​medium access​ . 

6. Classify the remaining objects as ​low access​ . 



The combination of the current tier and the so-updated         
access type for the object will dictate the increase/decrease of          

. In its turn this may trigger a change in the tier for objectva i               
i​ . A special case is considered for objects showing a ​boost           
access as the will immediately be set to be equal to the ​hot   va i           
limit​ . The diagram of auto-tier value update is reported in Fig.           

4.  
Fig. 4 - Auto-tier value update diagram. 

To avoid ping-pong effects between neighboring tiers (i.e.,        
cold-default tier, default-hot tier), due to small changes in the          
access type, the default tier is further split into a ​default- zone            
and a ​default+ zone. Correspondingly a ​default-​ limit and a          
default+​ limit are introduced, as plotted in Fig. 5. For the final            
object placement, objects in the ​default- and ​default+ zones         
will then both lead to the default tier. The arrows in Fig. 5             
report conceptually the object transition directions between       
tiers according to the current access type and the auto-tier          
value. A dashed arrow indicates that the object is moving into           
the arrow’s direction over multiple ​OPs​ , whereas the not         
dashed arrow represents an object being instantly moved to the          
hot tier.  

 
Fig. 5 - Schematic object placement. 
 

TABLE I.   ​GENERIC AUTO-TIER UPDATE SCHEME 

 

Still to define is how to update the after every ​OP​ .       va i    
Several policies can be defined to this scope. In Table 1 we            
report a general model we have in mind, where we adopt a 3x4             
matrix parameter ​x representing the increment/decrement for       
the auto-tier value according to the three access modes and the           
four storage zones. 

This general scheme offers the opportunity to implement        
different policies and fine-tune the values for the elements of          
x​. In our specific prototype implementation, the elements of ​x          
are proportional to the boundaries set for the different tiers and           
a speed factor. The speed factor represents the speed         
(measured in number of ​OPs​ ) for an object to move across a            
given tier if it keeps the current access type​.​ To this scope, we             
define as “length” of a zone associated the difference between          
the upper and the lower boundaries for the specific zone. As           
an example the length of the cold zone corresponds to the cold            
limit value, the length of the ​default- zone is equal to the            
difference between the ​default- limit value and the ​cold limit          
value, and so on. We also define the mentioned speed factors           
as ,​ and for hot, medium and low access types sh  sm    sl         
respectively. The rationale behind the proposed solution is to         
take into account that a frequently accessed object which is          
currently in a cold tier has a larger impact on the application            
requiring the object, than a less frequently accessed object that          
currently is stored in a hot tier. The proposed algorithm for the            
auto-tier value update is summarized in  Algorithm 1. 

 

VI. PROOF-OF-CONCEPT IMPLEMENTATION AND VALIDATION 

For the proof-of-concept implementation of the proposed       
solutions, HOS has been provided with a set of REST APIs.           
These include functions to handle object storage operations        
(e.g., move objects in another container or storage tier), handle          
the authentication procedure in an efficient and seamless way         
for the end-user, monitor and maintain the storage system.         
Also a command line client has been implemented bringing         
the full functionality of the HOS REST APIs to the terminal.           
These can be used in a similar way to the OpenStack Swift            
client and can be installed on any machine running Linux.          
Adopting the REST APIs, all dependencies on Hera-internal        



libraries are removed the syntax of the OpenStack Swift client          
is followed.  

The HOS prototype we worked on is a minimal installation          
that presented the smallest scaling possible. However, since        
HOS is designed as a microservice system, it does scale in a            
horizontal, distributed manner. To build a scalable system, a         
load balancer would have to be introduced for accessing HOS.          
Furthermore, HOS’ persistent lookup database would need to        
be deployed in a new database server where multiple HOS          
nodes can access. To avoid the database server resulting in a           
single point of failure, we suggest to set it up as a high             
availability cluster, as provided for example MySQL [12].        
Considering that OpenStack Swift and HOS are designed to         
run as scalable systems, no further adjustments are necessary. 

The proposed automated tiering policy was validated on        
the implemented HOS prototype in a set of simulated         
scenarios. To this aim, system parameters are set as reported          
in Table II. The reasoning behind the listed settings is that           
frequently accessed objects would move quickly to better tiers         
and less frequently objects sink slowly to lower tiers. Several          
object access behaviors have been simulated to ensure that the          
designed concept works in a practical scenario. The system         
worked as expected and this gave us confidence that our          
concept works also in a real-life scenario. Nevertheless,        
further validation and improvement is needed before the        
automated storage tiering can be used in a productive         
environment. On the other hand, alternative policies and        
parameters tuning can be proposed in our HOS prototype for          
an optimized multi-tiering solution.  

TABLE II.   ​NOTATIONS AND VALUES 
Parameter Notation  Value 

observation period 
low fraction of objects  

medium fraction of objects  
hot fraction of objects  

boost fraction of objects  
cold limit 

default- limit 
default+ limit 

hot limit 
trans. speed hot access 

trans. speed medium access  
trans. speed low access 

OP 
pl  
pm  
ph  
pb  
  

 
 

sh  
sm  
sl  

20 s 
60% 
20% 
15% 
5% 
50 
100 
150 
200 

2 
5 

10 

B. Object Lookup performance evaluation 
In this Section we report on the evaluation of object lookup           

solutions we introduced in Section IV. To this aim, two          
different analysis are presented which focus on the time to          
retrieve objects from the storage system. Noteworthy, the        
results reported in this paper strictly depend on factors such as           
memory, CPU and NIC of the HOS node, of the Swift           
backend and the HBS, network connections between the parts         
and the disks attached to the HBS. Therefore, the measured          
results yield as an example and are valid for the specific           

system we considered in our prototype implementation.       
However, we don’t lose generality in our analysis since we          
compare the two object lookup solutions against each other on          
the same system configuration.  

In the analysis we present, each scenario is repeated 20          
times and the results are then averaged. To this scope, the           
unittest Python module was adopted [10]. In our first analysis          
we wish to compare the ​NRL and ​ASL solutions in terms of            
time to retrieve an object from a container when this is stored            
on the different available tiers. The results are reported in Fig.           
6 and include also the case where the queried object is not            
present in any of the tiers.  

 
Fig. 6 - Average object lookup time for ​NRL and ​ASL solutions in retrieving              
an object from the different storage tiers. 

 
Fig. 7 - Distribution object lookup time tests for ​NRL​  and ​ASL​ . 

As we clearly can see from the plots, the ​ASL always           
outperforms the ​NRL solution. The introduced gain ranges        
between a minimum of 5% when the requested object is on the            
hot tier, to a maximum of 51% when the object is not present.             
A further interesting observation can be made when looking at          
the distribution of the performed test results as reported in Fig.           
7. In particular, we can observe that the results are more           
distributed for the ​NRL​ solution. We see a connection for this           



behavior to the number of REST calls made for the different           
tested cases, as the cases where four REST calls are needed           
are more sparse (see for instance the ​NRL​ tests for the object            
not found and cold tier cases). 

The second analysis we present has the focus on three          
different scenarios where 20 containers are populated with a         
given number of objects. The tests consists in retrieving the          
headers for all the objects’ using REST calls. The collected          
data is then processed to build a tree-like structure of          
containers and objects to give a human a readable overview of           
the storage. The three test scenarios we considered are: 

● Retrieving the information from 20 containers      
populated with 0 objects, labeled with 20/0 in the         
plot; 

● Retrieving the information from 20 containers, each       
having 1 object on a random tier, labeled with 20/20          
in the plot; 

● Retrieving the information from 20 containers, each       
having 1 object on each of the three tiers, labeled          
with 20/60 in the plot. 

The results are reported in Fig. 8. As we can observe, the            
ASL solution is in all cases outperforming the ​NRL,​ which is           
what we expected. This is particularly evident in scenarios         
20/0 and 20/20 where the introduced gain reaches respectively         
a 84% and a 60% value. Noteworthy, these two scenarios can           
be completed with the ​ASL algorithm using one and twenty          
one REST calls, respectively. This shows how the final time is           
directly proportional to the number of REST calls to perform.          
Moreover, as expected pretty close results are observed for the          
NRL and ​ASL algorithms in the 20/60 scenario as in both cases            
sixty-one REST calls are required to finish.  

 
Fig. 8 - Average object lookup time for ​NRL​  and ​ASL​  in different test cases. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we introduced HOS as a storage system based           
on OpenStack Swift which implements additional features for        
object lookup and multi-tiering object storage. The       
implemented solution simplifies the usage of the storage        

policies implemented as different rings in Swift and additional         
functionalities have been designed following the microservice       
design principles. The proposed solution has been       
implemented in a prototype used for basic analysis and         
performance evaluation. The obtained results validated the       
proposed solution in a sample system setting and in real          
scenarios where multi-tiering object storage is adopted.  

In our future work we plan to further investigate the          
proposed policies to further enhance scalability and efficiency        
in the multi-tiering solution. The automated storage-tiering       
algorithms could be, for instance, extended using       
machine-based learning technologies to automatically train      
HOS to move objects to the best-fitting storage tier. Adopting          
NoSQL distributed databases as for instance MongoDB would        
be a direction of investigation to follow to better support          
distributed cloud storage. A further research direction is the         
implementation of on-storage computation, to enable HOS to        
run operations directly on the stored objects instead of         
downloading the data for later computation. This could        
significantly reduce the time for the computation of large         
archived objects.  

REFERENCES 
[1]  R. Nachiappan, B. Javadi, R.N. Calheiros, and K. M. Matawie, ​Cloud           

storage reliability for Big Data applications: A state of the art survey.            
Journal of Network and Computer Applications, 97, 35-47, 2017. 

[2]  D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel, Finding a Needle               
in Haystack: Facebook's Photo Storage​ . In OSDI,​ v​ ol. 10, pp. 1-8, 2010. 

[3]  B. Baesens, ​Analytics in a big data world: The essential guide to data             
science and its applications​ . John Wiley & Sons, 2014. 

[4]  J. Gantz, and D. Reinsel, ​The digital universe in 2020: Big data, bigger             
digital shadows, and biggest growth in the far east. IDC iView: IDC            
Analyze the future, 1-16, 2012. 

[5]  OpenStack Swift. URL: http://docs.openstack.org/developer/swift/ 
[6]  R. Borovica-Gajić, R. Appuswamy, and A. Ailamaki, ​Cheap data         

analytics using cold storage devices.​ Proceedings of the VLDB         
Endowment, 9(12), 1029-1040, 2016. 

[7]  P. Nicolas ​The History Boys: Object storage… from the beginning​ . URL:           
http://www.theregister.co.uk/2016/07/15/the_history_boys_cas_and_obje
ct_storage_map/ 

[8]  Ceph. URL: https://ceph.com/ 
[9]  Oracle Solaris ZFS–What Is ZFS. URL:  

http://docs.oracle.com/cd/E23823_01/html/819-5461/zfsover-2.html 
[10]  
 
[11] 
 
[12]  

OpenStack Keystone. URL:   
http://docs.openstack.org/developer/keystone/ 
Python Documentation – Unittest. URL:     
https://docs.python.org/2.7/library/unittest.html 
M. Rys, "​scalable SQL​ " Communications of the ACM 54.6: 48-53, 2011. 

 

http://docs.openstack.org/developer/keystone/

