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Abstract

In this paper, the algebraic construction of quadrature formulas for weigh-
ted periodic integrals is revised. For this purpose, two classical papers ([10]
and [14]) in the literature are revisited and certain relations and connections
are brought to light. In this respect, the concepts of “bi-orthogonality” and
“para-orthogonality” are shown to play a fundamental role.
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1. Introduction

Let the integral In(f) =
∫
Γ

f(z)dµ(z) be given with Γ a certain curve in the
complex plane and dµ a positive measure on Γ. By an n-point quadrature rule
for this integral we mean an expression like In(f) =

∑n
j=1 Ajf(zj) with zj 6= zk

if j 6= k and {zj}n
j=1 ⊂ Γ so that the weights or coefficients {Aj}n

j=1 and nodes
{zj}n

j=1 are to be determined by imposing that In(f) exactly integrates i.e. In(f)
coincides with Iµ(f) for as many basis functions as possible in an appropriate func-
tion space S where the above integral exists. Two situations have been most widely
considered in the literature. Namely, on the one hand, the case when Γ coincides
with a subinterval of the real line, that is, Γ = [a, b], −∞ 6 a < b 6 ∞ and on
the other hand when Γ is the unit circle, i.e. Γ = T = {z ∈ C : |z| = 1}. Ob-
serve that the second case is equivalent to dealing with real integrals of the form∫ π

−π
f(θ)dµ(θ), f being a 2π-periodic function (here by a slight abuse of notation
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we write f(z) = f(θ), dµ(z) = dµ(θ) for z = eiθ). As for the first case, it is well
known that the construction of quadrature formulas to approximate integrals like∫ b

a
f(x)dµ(x) represents an interesting research topic which has been exhaustively

considered in the last decades and where orthogonal polynomials find one of their
most direct and natural applications. Indeed, if {Qk}∞k=0 denotes the sequence
of orthonormal polynomials for the measure µ, then In(f) =

∑n
j=1 Ajf(xj) with

{xj}n
j=1 the zeros of Qn(x) and λj =

(∑n
k=0 Q2

k(xj)
)−1 for j = 1, . . . , n (Christoffel

numbers) satisfies In(P ) =
∫ b

a
P (x)dµ(x) for any polynomial P of degree 2n − 1.

In this case, {In(f) : n = 1, 2, . . .} represent the well known sequence of Gaussian
or Gauss–Christoffel quadrature formulas (see e.g. [8] for a survey). On the other
hand, although quadratures on the unit circle and other related topics such as Szegő
polynomials and the trigonometric moment problem have been receiving much re-
cent attention because of their applications in rapidly growing fields of pure and
applied mathematics (Digital Signal Processing, Operator Theory, Probability The-
ory, . . .), there do not exist so many results about quadratures on the unit circle
as in the real case. In this respect, the main aim of this paper is to emphasize
the role played by certain sequences of orthogonal trigonometric polynomials in-
troduced by Szegő [14] in the construction of quadrature rules on the unit circle by
carrying out a comparision with the approach given by Jones et. al in [10]. In both
approaches, a fundamental tool will be the so-called Szegő polynomials or polyno-
mials which are orthogonal on the unit circle in the following sense: given n > 1,
it is known (see e.g. [13]) that a unique monic polynomial ρn(z) exists such that∫ π

−π
ρn(eiθ)e−ikθdµ(θ) = 0 for k = 0, 1, . . . , n − 1. Furthermore, if we assume that

the support of µ has infinitely many points, then
∫ π

−π
ρ2

n(eiθ)dµ(θ) =‖ ρn ‖2µ> 0.
Setting ρ0 ≡ 1, then {ρn}∞n=0 is called the orthogonal sequence of monic Szegő
polynomials. On the other hand, the sequence {ϕn}∞n=0 with ϕn(z) = ρn(z)

‖ρn‖µ
rep-

resents an orthonormal sequence of Szegő polynomials (observe that such a se-
quence is uniquely determined by assuming that the leading coefficient of ϕn(z) for
n = 0, 1, . . . is positive). Setting D = {z ∈ C : |z| < 1} (sometimes we will use
E = {z ∈ C : |z| > 1}, C = T ∪ D ∪ E) a fundamental property concerning the
zeros of ρn(z) for n > 1 (and apparently rather negative for our purposes) is the
following (see e.g. [1]): “For each n > 1, all the zeros of ρn(z) lie in D”. Thus, un-
like the Gauss–Christoffel formulas, now the zeros of Szegő polynomials can not be
directly used as nodes in our quadratures. Following two initially different paths,
throughout the paper we will see how this drawback can be overcome. The paper
is organized as follows. In Section 2, some preliminary results concerning trigono-
metric polynomials, Laurent polynomials and algebraic polynomials are presented.
Then, in Section 3 the problem of the interpolation by trigonometric polynomials is
analyzed whereas in Section 4 the so-called bi-orthogonal systems of trigonometric
polynomials are introduced and their most relevant properties studied. The con-
struction of quadrature rules exactly integrating trigonometric polynomials with
degree as large as possible is considered in Section 5 and a connection with the
unit circle presented in Section 6. Finally some illustrative numerical experiments
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are shown in Section 7.

2. Preliminary results

We will start by fixing some definitions and notations. Thus, for a nonnegative
integer n, Πn will denote the space of (in general complex) algebraic polynomials
of degree n at most and Π the space of all polynomials. On the other hand, a real
trigonometric polynomial of degree n is a function of the form

Tn(θ) = a0 +
n∑

k=1

(ak cos kθ + bk sin kθ) , ak, bk ∈ R, |an|+ |bn| > 0.

Clearly, when a0, ak and bk are in general complex numbers for k = 1, . . . , n, we
shall be dealing with trigonometric polynomials with complex coefficients. Thus,
when we refer to a trigonometric polynomial we are implicitly meaning with real
coefficients. We also denote by Tn the space of trigonometric polynomials of degree
n at most, i.e.

Tn = span{1, cos θ, sin θ, . . . , cosnθ, sin nθ}
and hence, dim (Tn) = 2n + 1. We occasionally deal with complex trigonomet-
ric polynomials, where a0, ak and bk are arbitrary complex numbers. By using
the transformation z = eiθ and Euler’s formulas, for any complex trigonometric
polynomial one can write Tn(θ) = Ln(eiθ) where

Ln(z) =
n∑

k=−n

ckzk. (2.1)

Then
c0 = a0, ck =

1
2

(ak − ibk) , k = 1, . . . , n,

and when the trigonometric polynomial Tn is real, a0, ak, bk are real and c−k = ck.
Functions Ln(z) as given above are called Laurent polynomials, or more generally,
given p and q integers such that p 6 q, a Laurent polynomial is a function of the
form

Ln(z) =
q∑

j=p

αjz
j , αj ∈ C. (2.2)

We also denote by Λp,q the space of Laurent polynomials (2.2). Observe that

Λp,q = span
{
zk : p 6 k 6 q

}
.

Hence, dim (Λp,q) = q − p + 1. Thus, Ln(z) given by (2.1) belongs to Λ−n,n.
Now, by recalling that a double sequence {µk}∞k=−∞ of complex numbers is said

to be “Hermitian” if µ−k = µk, a Laurent polynomial L ∈ Λ−n,n is called Hermitian
if the sequence of its coefficients is Hermitian. That is, with Ln(z) in (2.1) we have
ck = ck for k = 0, 1, . . . , n and the following trivially holds,
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Theorem 2.1. Let Tn(θ) be a complex trigonometric polynomial, and set Ln(eiθ)=
Tn(θ). Then Tn is real if and only if Ln is Hermitian.

Remark 2.2. If we define ΛH
n = {L ∈ Λ−n,n : L Hermitian} then ΛH

n is a real
vector space of dimension 2n + 1 and one can write

Tn =
{
T (θ) : T (θ) = L(eiθ) with L ∈ ΛH

n

}
.

Let us next consider the connection between trigonometric polynomials and
certain algebraic polynomials. For this purpose, let P (z) be an algebraic polynomial
of degree n, i.e.,

P (z) =
n∑

j=0

ajz
j , aj ∈ C, an 6= 0.

Then, the reciprocal P ∗(z) of P (z) is a polynomial defined by P ∗(z) = znP∗(z)
where P∗(z) represents the “sub-star” conjugate of P (z), i.e., P∗(z) = P (1/z̄).
Thus,

P ∗(z) = znP (1/z̄) = znP (1/z̄) =
n∑

j=0

an−jz
j

where P (z) =
∑n

j=0 ajz
j . Now, a usefull property of the polynomials that we shall

work with is the following: for k ∈ C\{0}, a polynomial P (z) is called “invariant”
or more precisely, “k-invariant” if

P ∗(z) = kP (z) ∀z ∈ C.

Some direct consequences of this definition are:

1. If P (z) is invariant, then P (0) 6= 0.

2. Let α be a zero of the invariant polynomial P (z). Then, 1/ᾱ is also a zero of
P (z).

3. Let P (z) be an invariant polynomial of odd degree n. Then, the number of
zeros of P (z) on T (counting multiplicities) is also odd. On the other hand,
if P (z) is an invariant polynomial with even degree n, it has an even number
of zeros on T.

4. Let P (z) be invariant and set P (z) =
∑n

j=0 cjz
j = cn

∏n
k=1(z − zk), then

|P (0)| = |c0| = |cn|
∏n

k=1 |zk| and taking into account that
∏n

k=1 |zk| = 1 it
follows that |c0| = |cn|. Consequently, cn = kc0 with |k| = 1. Set k = eiω,
ω ∈ R, and define Q(z) = λP (z), λ 6= 0. Then, Q∗(z) = λkP (z) = λ

λkQ(z),
that is, Q(z) is λ

λk-invariant. Set now λ = Reiγ , then λ
λk = ei(ω−2γ). Thus,

by taking γ ∈ R such that γ = ω
2 + mπ, with m ∈ Z, then λ

λk = 1 and Q(z)
is 1-invariant.
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Remark 2.3. The term “k-invariant” was introduced by Jones et. al. in [10],
whereas Szegő in [14] says that a polynomial P (z) is “autoreciprocal” if P ∗(z) =
P (z) (1-invariant). Hence, we see that “invariant” polynomials are essentially “au-
toreciprocal”.

Let P2n(z) be an invariant polynomial of degree 2n. Then, there exists λ2n ∈
C\{0} such that Q2n(z) = λ2nP2n(z) is 1-invariant and we can write:

Ln(z) =
Q2n(z)

zn
=

n∑

j=−n

cjz
j , c−j = cj , j = 0, 1, . . . , n

that is, Ln ∈ ΛH
n and by Theorem 2.1, Ln(eiθ) = Tn(θ) with Tn ∈ Tn. Thus, we

have
e−inθP2n(eiθ) = λ−1

2n Tn(θ).

Conversely, let Tn ∈ Tn. Then

Tn(θ) = Ln(eiθ), Ln ∈ ΛH
n .

Again, Ln(z) = P2n(z)
zn , where P2n(z) ∈ Π2n and 1-invariant. Indeed, P2n(z) =

znLn(z). Hence,

P ∗2n(z) = z2nP2n (1/z̄) = z2nz−nLn (1/z̄)
= zn

∑n
j=−n cjz

−j = zn
∑n

j=−n c−jz
−j = znLn(z) = P2n(z).

Next, we will see how the connection between trigonometric polynomials and
invariant algebraic polynomials allows us to recover some classical results about
zeros of trigonometric polynomials. Thus, let α and β be arbitrary constants, then
sin

(
θ−α

2

)
sin

(
θ−β

2

)
represents a trigonometric polynomial of degree one. Further-

more, it can be easily proved by induction that the function

T (θ) = C

n∏

j=1

sin
(

θ − θ2j−1

2

)
sin

(
θ − θ2j

2

)
, C 6= 0 (2.3)

where {θj}2n
j=1 are given constants, represents a trigonometric polynomial of degree

n. We will now show that a converse result also holds, i.e. any trigonometric
polynomial can be factorized as (2.3). Indeed, let Tn ∈ Tn, then Tn(θ) = Ln(eiθ),
Ln ∈ ∆H

n and one can write Ln(z) = P2n(z)
zn with P2n(z) an 1-invariant polynomial

of degree 2n. Therefore, P2n(z) = cn

∏2n
k=1(z−zk), cn 6= 0 (counting multiplicities)

with zj 6= 0 and if zj 6∈ T, then 1/z̄j is also a root of P2n(z). Let 2m denote the
number of zeros of P2n(z) on T (0 6 m 6 n). Then

P2n(z) = cn

2m∏

j=1

(z − zj)
n−m∏

k=1

(z − z̃k)
(

z − 1
z̃k

)
, cn 6= 0 (2.4)
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where zj = eiθj , θj ∈ R for 1 6 j 6 2m, are the zeros of P2m(z) on T and z̃k

and 1/z̃k for 1 6 k 6 n − m are the zeros not on T, so that z̃k = eiωk with
ωk ∈ C, wich implies that 1/z̃k = eiωk . Furthermore, it can be easily checked that
eiθ − eiω = 2i sin

(
θ−ω

2

)
ei( θ+ω

2 ). Therefore,

P2n(eiθ) = cn

∏2m
j=1

(
eiθ − eiθj

) ∏n−m
k=1

(
eiθ − eiωk

) (
eiθ − eiωk

)

= cn(−1)n22n
∏2m

j=1 sin
(

θ−θj

2

)
e
i
h

θ−θj
2

i
×

× ∏n−m
k=1 sin

(
θ−ωk

2

)
sin

(
θ−ωk

2

)
e
i
h
θ+

ωk+ωk
2

i
.

Then, it follows that,

P2n(eiθ) = λneinθ
2m∏

j=1

sin
(

θ − θj

2

) n−m∏

k=1

sin
(

θ − ωk

2

)
sin

(
θ − ωk

2

)
, λn 6= 0.

Consequently,

Tn(θ) = Ln(eiθ) = P2n(eiθ)

einθ

= λn

∏2m
j=1 sin

(
θ−θj

2

) ∏n−m
k=1 sin

(
θ−ωk

2

)
sin

(
θ−ωk

2

)
,

(2.5)

where λn 6= 0, θj ∈ R and ωk ∈ C such that <(ωk) = ψk + 2tπ, ψk ∈ (−π, π], t ∈ Z
and k = 1, . . . , n−m. Then, we have proved the following

Theorem 2.4. A real trigonometric polynomial Tn(θ) of the precise degree n has
exactly 2n real or complex zeros provided that we count them as usual with their
multiplicity and we restrict ourselves to the strip −π < <(θ) 6 π. Furthermore,
the non-real zeros appear in conjugate pairs.

Remark 2.5. The representation (2.3) is of course not unique.

Furthermore, from (2.3) and (2.5) it can be also proved

Theorem 2.6 (L.Fejér and F.Riesz). A real trigonometric polynomial T (θ) is
nonnegative for all real θ, if and only if, it can be written in the form

T (θ) = |g(z)|2, z = eiθ

where g(z) is an algebraic polynomial of the same degree as T (θ).

Proof. Assume T (θ) a trigonometric polynomial of degree n such that T (θ) =
P (eiθ)
einθ with P (z) a polynomial of degree 2n. Since T (θ) > 0 for all θ ∈ R, then

possible real zeros of T (θ) must have even multiplicity. Furthermore, if θ = α is a
real zero of T (θ) then z = eiα is a zero of P (z) on T. Hence, from (2.4), P (z) can
be expressed as:

P (z) = λnp2
m(z)qn−m(z)q∗n−m(z), λn 6= 0
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where pm(z) ∈ Πm for 0 6 m 6 n and qn−m(z) ∈ Πn−m. Since T (θ) > 0, for any
θ ∈ R,

T (θ) = |T (θ)| =
∣∣∣P (eiθ)

einθ

∣∣∣ = |λn|
∣∣p2

m(eiθ)
∣∣ ∣∣qn−m(eiθ)

∣∣
∣∣∣qn−m(eiθ)

∣∣∣
= |λn|

∣∣p2
m(eiθ)

∣∣ ∣∣qn−m(eiθ)
∣∣2 =

∣∣g(eiθ)
∣∣2

where g(z) =
√
|λn|pm(z)qn−m(z) ∈ Πn.

Conversely, let g(z) be an algebraic polynomial of degree n, then by setting
z = eiθ it follows that

|g(z)|2 = g(z)g(z) = g(z)g∗(z) =
g(z)g∗(z)

zn
=

P2n(z)
zn

where P2n(z) = g(z)g∗(z) is clearly an 1-invariant polynomial of degree 2n so that
|g(z)|2 = Ln(z) ∈ ΛH

n , and by Theorem 2.1, |g(z)|2 represents a trigonometric
polynomial of degree n which is clearly nonnegative for any θ ∈ R. ¤

3. Interpolation by Trigonometric Polynomials

As it is well known, polynomial interpolation finds in the construction of quadra-
ture formulas one of its most immediate applications. On the other hand, when
considering quadrature rules based on trigonometric polynomials, similar results
on interpolation will be needed. In this respect, some of the already known results
will now be proved by means of the close connection between trigonometric poly-
nomials and Hermitian Laurent polynomials shown in the preceding section. First
we have,

Theorem 3.1. Given (2n+1) distinct nodes {θj} ⊂ (−π, π], there exists a unique
Tn ∈ Tn such that

Tn(θj) = yj , j = 1, . . . , 2n + 1, (3.1)

{yj}2n+1
j=1 being a given set of real numbers.

Proof. Set T (θ) = a0+
∑n

k=1 ak cos kθ+bk sin kθ. We first show that the constants
{ak}n

k=0 ∪ {bk}n
k=1 are uniquely determined from conditions (3.1). Now, T (θ) =

L(eiθ) with L ∈ Λ−n,n so that (3.1) is equivalent to

L(zj) = yj , zj = eiθk , j = 1, . . . , 2n + 1. (3.2)

Now L(z) ∈ Λ−n,n implies that L(z) = P (z)
zn , P (z) ∈ Π2n so that (3.2) yields

P (zj) = zn
j yj , j = 1, . . . , 2n + 1. (3.3)

Since zj 6= zk, P (z) is uniquely determined by (3.3) and hence T (θ) has the desired
interpolation properties. It remains to show that T (θ) has real coefficients. This



12 R. Cruz-Barroso, L. Daruis, P. González-Vera and O. Njåstad

will be proved by showing that P (z) is 1-invariant. To see this we will show that
also P ∗(z) satisfies the interpolation conditions (3.3). Indeed,

P ∗(zj) = z2n
j P (1/z̄j) = z2n

j P (zj) = z2n
j zn

j yj = zn
j yj , yj ∈ R.

Hence, by virtue of the uniqueness of polynomial P (z), it follows that P ∗(z) = P (z)
and the proof is completed. ¤

As for an explicit representation of Tn ∈ Tn satisfying (3.1), because of unique-
ness, one can write

Tn(θ) =
2n+1∑

j=1

lj(θ)yj (3.4)

where lj(θ) = lj,n(θ) ∈ Tn such that lj(θk) = δj,k =
{

1 if j = k
0 if j 6= k

. Since

lj(θk) = 0 for k = 1, . . . , 2n + 1, k 6= j, clearly by (2.5),

lj(θ) = λj

2n+1∏

k=1,k 6=j

sin
(

θ − θk

2

)
, λj 6= 0,

λj being a normalization constant such that lj(θj) = 1. More precisely, setting

Wn(θ) =
2n+1∏

k=1

sin
(

θ − θk

2

)

then, it follows that

lj(θ) = λj
Wn(θ)

sin
(

θ−θj

2

) , j = 1, . . . , 2n + 1.

Thus,

lj(θj) = λj lim
θ→θj

Wn(θ)

sin
(

θ−θj

2

) = λj lim
θ→θj

Wn(θ)
θ−θj

2

= 2λjW
′
n(θj).

Hence, taking λj = 1
2W ′

n(θj)
one has lj(θj) = 1 and we can write

lj(θ) =
Wn(θ)

2W ′
n(θj) sin

(
θ−θj

2

) , j = 1, . . . , 2n + 1.

Furthermore, when dealing with the construction of certain quadrature formulas
exactly integrating trigonometric polynomials of degree as high as possible, the
following result will be required:
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Theorem 3.2. Let θ1 . . . θn+1 be (n + 1) distinct nodes on (−π, π]. Then there
exists a unique trigonometric polynomial Hn ∈ Tn satisfying

Hn(θj) = H
(k)
n (θj) = yj j = 1, . . . , n + 1

H
′

n (θj) = H
(k) ′
n (θj) = y

′
j j = 1, . . . , n + 1, j 6= k





(3.5)

where k ∈ {1, . . . , n + 1} is previously fixed and {yj}n+1
j=1 ∪ {y

′
j }n+1

j=1,j 6=k is a set of
(2n + 1) real numbers.

Proof. Set Hn(θ) = Ln(eiθ) ∈ Λ−n,n. Then (3.5) becomes Hn(θj) = Ln(eiθj ) =
Ln(zj) = yj with zj = eiθj ∈ T for all j = 1, . . . , n + 1 and zj 6= zk if j 6= k. On
the other hand, H

′
n (θ) = L

′
n(eiθ)ieiθ. Hence, L

′
n(zj) = −izjH

′
n (θj) = −izjy

′
j for

j = 1, . . . , n + 1 and j 6= k. Since Ln ∈ Λ−n,n, then Ln(z) = P2n(z)
zn with P2n(z) ∈

Π2n such that P2n(zj) = zn
j Ln(zj) = zn

j yj , yj ∈ R and zj ∈ T. Furthermore,
P

′
2n(z) = nzn−1Ln(z) + znL

′
n(z), hence

P
′

2n(zj) = nzn−1
j Ln(zj) + zn

j L
′
n(zj) = zn−1

j

(
nyj − iy

′
j

)
, j = 1, . . . , n + 1, j 6= k.

Thus our Hermite-type trigonometric interpolation problem reduces to finding
P2n(z) ∈ Π2n such that

P2n(zj) = zn
j yj j = 1, . . . , n + 1

P
′

2n(zj) = zn−1
j

(
nyj − iy

′
j

)
j = 1, . . . , n + 1, j 6= k





(3.6)

Now, since zj 6= zl for j 6= l, it is known that the interpolation problem (3.6) has a
unique solution P2n(z) and Tn(θ) = Ln(eiθ) = P2n(eiθ)

einθ will be the unique solution
to (3.5). As in Theorem 3.1, it remains to prove that Tn(θ) is a real trigonometric
polynomial. To do this, we will show that P ∗n(z) is also a solution to (3.6), hence
because of uniqueness we have P2n(z) = P ∗2n(z) and the conclusion follows. Indeed,

P ∗2n(zj) = z2n
j P2n (1/zj) = z2n

j P2n(zj)
= z2n

j zn
j yj = zn

j yj = P2n(zj), j = 1, . . . , n + 1.

Furthermore, (P ∗2n)
′
(z) = 2nz2n−1P2n(1/z) + z2n

(
P2n

)′
(1/z)

(−1
z2

)
, yielding:

(P ∗2n)
′
(zj) = z2n−2

j

[
2nzjP2n(zj)− P

′
2n(zj)

]
.

(Here we are making use of the fact
(
P

)′
(z) = (P ′)(z)). Therefore, for j =

1, . . . , n + 1, j 6= k:

(P ∗2n)
′
(zj) = z2n−2

j

[
2nzjzn

j yj − z
−(n−1)
j (nyj + iy

′
j )

]

= zn−1
j

[
2nyj − nyj − iy

′
j

]
= zn−1

j [nyj − iy
′

j ] = P
′

2n(zj).

¤
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As for an explicit representation of the interpolating trigonometric polynomial
Hn(θ) satisfying (3.5), by virtue of uniqueness we can write for any k ∈ {1, . . . , n+
1},

Hn(θ) = H(k)
n (θ) = t

(k)
k (θ)yk +

n+1∑

j=1,j 6=k

[
t
(k)
j (θ)yj + s

(k)
j (θ)y

′
j

]
(3.7)

where t
(k)
j (θ) and s

(k)
j (θ) are trigonometric polynomials in Tn, such that

t
(k)
j (θr) = δj,r 1 6 j, r 6 n + 1

(
t
(k)
j

)′
(θr) = 0 1 6 j, r 6 n + 1, r 6= k

s
(k)
j (θr) = 0 1 6 r 6 n + 1, j 6= k

(
s
(k)
j

)′
(θr) = δj,r 1 6 j, r 6 n + 1, r 6= k, j 6= k.

(3.8)

Define now Wn(θ) =
∏n+1

j=1 sin
(

θ−θj

2

)
. If we proceed as in the previous case,

after some elementary calculations we deduce the following expressions for such
trigonometric polynomials for 1 6 j 6 n + 1, j 6= k:

s
(k)
j (θ) =

W 2
n(θ) sin

(
θj−θk

2

)

2 sin
(

θ−θj

2

)
sin

(
θ−θk

2

)
[W ′

n (θj)]
2
∈ Tn, (3.9)

t
(k)
j (θ) = W 2

n(θ)

sin2
�

θ−θj
2

�
sin
�

θ−θk
2

�
[2W ′

n (θj)]2
×

×
[
sin

(
θj−θk

2

)
+ cos

(
θj−θk

2

)
sin

(
θ−θj

2

)]
∈ Tn

(3.10)

and

t
(k)
k (θ) =

[
Wn(θ)

2W ′
n (θk) sin

(
θ−θk

2

)
]2

∈ Tn. (3.11)

In the rest of the section we shall be concerned with certain interpolation prob-
lems using an even number of nodes, say 2n, in subspaces T̃n of Tn of dimension
2n. For instance, T̃n = Tn\span{cos nθ} or T̃n = Tn\span{sin nθ}. In this respect,
it should be recalled that a system of continuous functions {f0, . . . , fm} on an in-
terval [a, b] represents a Haar system on [a, b] if and only if for any k, 1 6 k 6 m,
{f0, . . . , fk} is a Chebyshev system on [a, b]. Clearly,

{1, cos θ, sin θ, . . . , cosnθ, sin nθ},
can not be a Haar system on [−π, π] (check simply that {1, cos θ} is not a Chebyshev
system). Hence, we can not initially assume that given 2n nodes {θj}2n

j=1 on (−π, π]
there exists Tn ∈ Tn\span{cosnθ} or in Tn\span{sin nθ} such that Tn(θj) = yj for
all j = 1, . . . , 2n. However, we can prove the following
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Theorem 3.3. Let {θj}2n
j=1 ⊂ (−π, π] be 2n distinct nodes, let {yj}2n

j=1 be arbitrary
real numbers, and consider the interpolation problem:

T̃n(θj) = yj , j = 1, . . . , 2n. (3.12)

Then the following hold:

1. If
∑2n

j=1 θj 6= kπ for all k ∈ Z, then there is a unique solution of (3.12) in
Tn\span{cosnθ} and a unique solution of (3.12) in Tn\span{sinnθ}.

2. If
∑2n

j=1 θj = kπ for an odd integer k, then there is a unique solution of (3.12)
in Tn\span{cos nθ}.

3. If
∑2n

j=1 θj = kπ for an even integer k, then there is a unique solution of
(3.12) in Tn\span{sin nθ}.

Proof. Assume first that we are trying to find T̃n(θ) ∈ Tn\span{sin nθ} satisfying
(3.12). Thus, we can write:

T̃n(θ) = a0 +
n−1∑

j=1

(aj cos jθ + bj sin jθ) + an cosnθ = Ln(eiθ) ∈ Λ−n,n

with Ln(z) =
∑n

j=−n cjz
j , where

cj =
aj − ibj

2
, c−j = cj , 1 6 j 6 n− 1, c0 = a0.

Thus, c−j = cj for all 0 6 j 6 n. Setting as usual zj = eiθj for all j = 1, . . . , 2n,
(zj 6= zk if j 6= k), (3.12) becomes

T̃n(θj) = Ln(eiθj ) = Ln(zj) = yj , j = 1, . . . , 2n

giving rise to the linear system

n−1∑

k=−(n−1)

ckzk
j + cn(zn

j + z−n
j ) = yj , j = 1, . . . , 2n. (3.13)

Now, the system (3.13) has a unique solution if and only if ∆n 6= 0, where

∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z
−(n−1)
1 z

−(n−2)
1 · · · 1 · · · zn−1

1

(
zn
1 + z−n

1

)

z
−(n−1)
2 z

−(n−2)
2 · · · 1 · · · zn−1

2

(
zn
2 + z−n

2

)

...
...

...
...

...

z
−(n−1)
2n z

−(n−2)
2n · · · 1 · · · zn−1

2n

(
zn
2n + z−n

2n

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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By introducing the Vandermonde determinant associated with z1, . . . , z2n, i.e.,

γn =

∣∣∣∣∣∣∣∣∣

1 z1 · · · z2n−1
1

1 z2 · · · z2n−1
2

...
...

...
1 z2n · · · z2n−1

2n

∣∣∣∣∣∣∣∣∣

it can be easily checked that

∆n = (z1 · · · z2n)n−1(1− z1 · · · z2n)γn. (3.14)

On the other hand, if we consider our interpolation problem in
T̃n(θ) ∈ Tn\span{cos nθ}, the associated determinant ∆̃n of the corresponding
system satisfies

∆̃n = (z1 · · · z2n)n−1(1 + z1 · · · z2n)γn. (3.15)

Since zj = eiθj , then z1 · · · z2n = eiλn with λn =
∑2n

j=1 θj . If λn 6= kπ for
any integer k, then clearly z1 · · · z2n 6= ±1 and from (3.14) and (3.15), both
determinants ∆n and ∆̃n are nonzero since γn 6= 0, which means that the in-
terpolation problem (3.12) has a unique solution both in Tn\span{sin nθ} and
Tn\span{cosnθ}. Next, assume that λn = kπ for some integer k. Thus, if k is
even, then eiλn = 1 and (3.15) is different from zero, whereas if k is odd, then
eiλn = −1 and (3.14) does not vanish. Thus, for instance, if ∆n 6= 0, we have
found a unique Ln ∈ Λ−n,n, Ln(z) =

∑n
j=−n cjz

j such that c−n = cn and satisfy-
ing Ln(zj) = yj for j = 1, . . . , 2n. Therefore, T̃n(θ) = Ln(eiθ) ∈ Tn\span{sinnθ}
and T̃n(θj) = yj for j = 1, . . . , 2n. To check that T̃n(θ) is actually a real trigono-
metric polynomial we proceed as in Theorem 3.1. ¤

Next, a Lagrange-type representation for the trigonometric polynomial T̃n(θ)
satisfying the conditions of Theorem 3.3 will be given. Indeed, set

ηn =
1
2

2n∑

j=1

θj =
1
2
λn

and assume that ηn 6= kπ for any integer k so that ∆n 6= 0. Thus, T̃n(θ) ∈
Tn\span{sinnθ} and by virtue of uniqueness, one has T̃n(θ) =

∑2n
j=1 t̃j(θ)yj where

t̃j ∈ Tn\span{sin nθ} and t̃j(θk) = δj,k for 1 6 j, k 6 2n. Fix j ∈ {1, . . . , 2n} and
define αj =

∑2n
k=1,k 6=j θj . Now, we can write s̃j(θ) = l̃j(e

iθ)
einθ where l̃j(z) ∈ Π2n

such that l̃j(zk) = zn
j δj,k where, as usual, zk = eiθk for k = 1, . . . , 2n. Since

t̃j ∈ Tn\span{sin nθ}, the leading coefficient of l̃j(z) must coincide with l̃j(0), and
one has l̃j(z) = cj(z − wj)

∏2n
k=1,k 6=j(z − zj) = cjz

2n + · · · + l̃j(0). But l̃j(0) =
cjwj

∏2n
j=1,j 6=k zj , hence

wj =
1∏2n

j=1,j 6=k zj

=
2n∏

j=1

zj = e−
P2n

j=1,j 6=k θj = e−iαj .
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Therefore, by (2.5) it follows that

s̃j(θ) = c̃j sin
(

θ + αj

2

) 2n∏

j=1,j 6=k

sin
(

θ − θj

2

)

where c̃j is to be determined such that s̃j(θj) = 1. Setting

Wn(θ) =
2n∏

j=1

sin
(

θ − θj

2

)
∈ Tn,

we have
s̃j(θ) = c̃j sin

(
θ + αj

2

)
Wn(θ)

sin
(

θ−θj

2

) .

Now,

1 = lim
θ→θj

c̃j sin
(

θ + αj

2

)
Wn(θ)

sin
(

θ−θj

2

) = 2c̃j sin
(

θj + αj

2

)
W

′
n (θj).

Observe that 1
2 (θj + αj) = 1

2

∑2n
j=1 θj = ηn 6= kπ for any integer k, so that

sin
(

θj+αj

2

)
= sin ηn 6= 0 and hence

s̃j(θ) =
1

2W ′
n (θj) sin ηn

sin
(

θ + αj

2

)
Wn(θ)

sin
(

θ−θj

2

) , j = 1, . . . , 2n. (3.16)

When dealing with the interpolant T̃n(θ) ∈ Tn\span{cos nθ} it can be easily verified
that the fundamental Lagrange-type trigonometric polynomials s̃j(θ) are now given
by

s̃j(θ) =
1

2W ′
n (θj) cos ηn

cos
(

θ + αj

2

)
Wn(θ)

sin
(

θ−θj

2

) , j = 1, . . . , 2n. (3.17)

with αj and ηn as previously given.

4. Bi-orthogonal systems

Let ω(θ) be a weight function on (−π, π], i.e., ω(θ) > 0 on (−π, π] and 0 <∫ π

−π
ω(θ)dθ < ∞. The main aim of this section is briefly collecting some results

by Szegő (see [14]) concerning properties of an orthogonal basis for the space T of
real trigonometric polynomials with respect to the inner product on T induced by
ω(θ), namely,

〈f, g〉ω =
∫ π

−π

f(θ)g(θ)ω(θ)dθ, ∀ f, g ∈ T (4.1)
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As indicated in [14], we might consider an arbitrary measure dµ(θ) on the unit
circle; in what follows, however we restrict ourselves for the sake of simplicity,
to the previously defined case, i.e. to the case when µ(θ) is absolutely continuous.
Furthermore, when only real functions are considered, complex conjugation in (4.1)
can be omitted. For this purpose, let us first consider the basis of Tn given by
{1, cos θ, sin θ, . . . , cos nθ, sin nθ} which is clearly orthogonal for ω(θ) ≡ 1 on [−π, π]
and let us see how this property can be extended to an arbitrary weight function
ω(θ). Certainly, this can be done by orthogonalizing the elementary functions

1, cos θ, sin θ, . . . , cos nθ, sin nθ

arranged in a linear order, according to Gram-Schmidt process. Thus, a set

{f0, f1, g1, . . . , fn, gn}
of trigonometric polynomials is generated such that f0 is a nonzero constant,

f1 ∈ span{1, cos θ}, g1 ∈ span{1, cos θ, sin θ}, f2 ∈ span{1, cos θ, sin θ, cos 2θ}
g2 ∈ span{1, cos θ, sin θ, cos 2θ, sin 2θ} . . . fn ∈ Tn\span{sin nθ}, gn ∈ Tn

and it holds that
〈fj , fk〉ω = κjδj,k , κj > 0
〈gj , gk〉ω = κ

′
j δj,k , κ

′
j > 0

〈fj , gk〉ω = 0, j = 0, 1, . . . , n , k = 1, . . . , n.

(4.2)

When the process is repeated for each n ∈ N, then f0 ∪ {fk, gk}∞k=1 represents an
orthogonal basis for T with respect to ω(θ). Now, if we set

f0 = a0,0 6= 0

fj = aj,0 +
∑j

k=1 (aj,k cos kθ + bj,k sin kθ)

gj = cj,0 +
∑j

k=1 (cj,k cos kθ + dj,k sin kθ)

(4.3)

then, because of the linear independence it clearly follows that
∣∣∣∣

an,n bn,n

cn,n dn,n

∣∣∣∣ 6= 0, n > 1.

Conversely, we also have (see [14])

Theorem 4.1. Let f0∪{fk, gk}∞k=1 be a system of trigonometric polynomials such
that f0(θ) ≡ c 6= 0 and for n > 1:

fn(θ) = an,0 +
∑n

k=1 (an,k cos kθ + bn,k sin kθ) ,
gn(θ) = cn,0 +

∑n
k=1 (cn,k cos kθ + dn,k sin kθ) .

Assume that for n > 1, ∣∣∣∣
an,n bn,n

cn,n dn,n

∣∣∣∣ 6= 0.

Then, f0 ∪ {fk, gk}∞k=1 is a basis for T .
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Now, according to Szegő (see [14]) we are in a position to state the following
definitions:

Definition 4.2. Two trigonometric polynomials of degree n, of the form

f(θ) = a cosnθ + b sin nθ + · · · , g(θ) = c cos nθ + d sin nθ + · · ·

are said to be linearly independent if and only if
∣∣∣∣

a b
c d

∣∣∣∣ 6= 0.

Definition 4.3. Given the weight function ω(θ) on [π, π], a system f0∪{fk, gk}∞k=1

of real trigonometric polynomials with f0 a nonzero constant will be called a bi-
orthogonal system for ω(θ) if the following holds:

1. For each n > 1, fn(θ) and gn(θ) are linearly independent.

2. The system is orthogonal with respect to the inner produc generated by ω(θ),
i.e., (4.2) is satisfied.

Next, let us see how a bi-orthogonal system can be constructed from a sequence
of orthogonal polynomials on the unit circle (Szegő polynomials) for ω(θ). To
fix ideas, let {ρn(z)}∞n=0 be the sequence of monic Szegő polynomials: ρn(z) =
zn + · · ·+ δn for n = 0, 1, . . . . Here, δn = ρn(0) (δ0 6= 0 ; |δn| < 1 for n = 1, 2, . . .)
represents the n-th reflection coefficient or Schur parameter. Let {ωn}∞n=0 be a
given sequence of nonzero complex numbers and consider ωnρ2n+1(z)

zn ∈ Λ−(n+1),n+1.
Here, one can write

ωne−inθρ2n+1(eiθ) = fn+1(θ) + ign+1(θ) (4.4)

where fn+1(θ) and gn+1(θ) are real trigonometric polynomials of degree n + 1
(n = 0, 1, . . .), and we have (see [3])

Theorem 4.4. Let {ωn}∞n=0 be a sequence of complex numbers such that for any
n > 0, ωn 6= 0 and ω2

n

∫ π

−π
eiθρ2n+1(eiθ)ω(θ)dθ is a real number. Then the real

trigonometric polynomials f0 ∪ {fn+1, gn+1}∞n=0 given by (4.4) with f0(θ) = f0 6= 0
is a bi-orthogonal system for ω(θ).

Remark 4.5. For an alternative construction of a bi-orthogonal system making
use of orthonormal Szegő polynomials of even instead of odd degree, see [14].

Example 4.6. Take ω(θ) ≡ 1 on [−π, π] (Lebesgue measure). It is known that
ρn(z) = zn for n = 0, 1, . . . so that, for any ωn ∈ C\{0}:

ω2
n

∫ π

−π

eiθρ2n+1(eiθ)ω(θ)dθ = ω2
n

∫ π

−π

ei(2n+2)θdθ = 0.
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Hence, we can take any nonzero complex number ωn. Set ωn = αn+iβn, αn, βn ∈ R
and |αn|+ |βn| > 0. Then,

fn+1(θ) = αn cos(n + 1)θ − βn sin(n + 1)θ
gn+1(θ) = βn cos(n + 1)θ + αn sin(n + 1)θ. (4.5)

Furthermore, by taking ωn = 1, for n = 0, 1, . . ., we obtain

f̃n+1(θ) = cos(n + 1)θ, g̃n+1(θ) = sin(n + 1)θ (4.6)

and the well known orthogonal properties of the functions

{1, cos θ, sin θ, . . . , cosnθ, sin nθ, . . .}

with respect to the weight function ω(θ) ≡ 1 are now recovered.

Remark 4.7. It should be noted that the relations (4.5) and (4.6) between two
bi-orthogonal systems for ω(θ) ≡ 1 hold for any arbitrary ω(θ). Indeed, let f0 ∪
{fk, gk}∞k=1 and f̃0 ∪ {f̃k, g̃k}∞k=1 be two bi-orthogonal systems for a given weight
function ω(θ). Since f̃n ∈ Tn and f0 ∪ {fk, gk}∞k=1 is a basis for Tn, one has

f̃n(θ) = α0f0 +
n∑

j=1

(αjfj(θ) + βjgj(θ)) .

On the other hand, because of the bi-orthogonality, 〈f̃ , T 〉ω = 0 for all T ∈ Tn−1,
yielding f̃n(θ) = αnfn(θ) + βgn(θ). Similarly, g̃n(θ) = γnfn(θ) + δgn(θ). Both
relations can be expressed in a matrix form as,

(
f̃n

g̃n

)
= Mn

(
fn

gn

)
, Mn =

(
αn βn

γn δn

)
.

with
αn = 〈f̃n,fn〉ω

‖fn‖2ω , βn = 〈f̃n,gn〉ω
‖gn‖2ω

γn = 〈g̃n,fn〉ω
‖f̃n‖2ω

, δn = 〈g̃n,gn〉ω
‖g̃n‖2ω .

By changing the roles of both systems, it follows that
(

f̃n

g̃n

)
= M̃n

(
fn

gn

)
, M̃n = M−1

n .

Furthermore, when dealing with bi-orthonormal systems i.e., ‖ fn ‖ω=‖ gn ‖ω=‖
f̃n ‖ω=‖ g̃n ‖ω= 1, then it can be verified that Mn = MT

n i.e., Mn is an orthogonal
matrix, as remarked in [14].

Example 4.8. Consider the weight function ω(θ) = 1
T (θ) , θ ∈ [−π, π], T (θ) being

a positive trigonometric polynomial of degree m (i.e., a rational modification of
the Lebesgue measure). From 2.6 we can write T (θ) = |h(z)|2, z = eiθ, where
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h(z) ∈ Πm without zeros on T. Moreover, we can assume without loss of generality
that h(z) is a monic polynomial. Hence, from [15] the monic Szegő polynomials
are given by ρn(z) = zn−mh(z) for n > m. Hence, as in Example 4.6 it holds that
ω2

n

∫ π

−π
eiθρ2n+1(eiθ)ω(θ)dθ = 0, and any nonzero complex number ωn can be used,

provided that n > E
[

m−1
2

]
+ 1 where E[x] denotes as usual the integer part of x.

Thus, if we set h(z) = zm + am−1z
m−1 + · · ·+ a0 and take ωn = 1, then

ωne−inθρ2n+1(eiθ) = ei(n+1−m)θh(θ) = ei(n+1−m)θ
(
eimθ + · · ·+ a0

)

= ei(n+1)θ + · · ·+ a0e
i(n+1−m)θ = fn+1(θ) + ign+1(θ).

Thus, for n > E
[

m−1
2

]
+ 1 a bi-orthogonal system is given by

fn+1(θ) = cos(n + 1)θ + · · ·+ a0 cos(n + 1−m)θ,
gn+1(θ) = sin(n + 1)θ + · · ·+ a0 sin(n + 1−m)θ.

Certainly, to have a bi-orthogonal system f0 ∪ {fk, gk}∞k=1 completely con-
structed, we must compute the Szegő polynomials ρ2k+1(z), 0 6 k 6 E

[
m−1

2

]
which can be recursively done by Levinson’s algorithm (see [7] or [12]).

In the rest of the section we shall be concerned with the zeros of a given bi-
orthogonal system. We observe from Example 1 that f0 ≡ c 6= 0, fn(θ) = cos nθ,
gn(θ) = sin nθ, n = 1, 2, . . . represent a bi-orthogonal system for ω(θ) ≡ 1. Now,
fn(θ) = 0 means θ = (2k+1)π

2n , k ∈ Z. Thus, taking −(n − 1) 6 k 6 n − 1 we
see that fn(θ) has exactly 2n distinct zeros on (−π, π]. Similarly, if a and b are
two real numbers, not both zero, it can be seen that afn(θ) + bgn(θ) has also 2n
distinct zeros on (−π, π]. This property can be generalized to any arbitrary weight
function ω(θ).

Theorem 4.9. Let f0 ∪ {fk, gk}∞k=1 be a bi-orthogonal system for ω(θ) and let a
and b be real numbers not both zero. Then the trigonometric polynomial T (θ) =
af(θ) + bg(θ) has 2n real and distinct zeros on any interval of length 2π.

Proof. To fix ideas we shall restrict ourselves to (−π, π]. By Theorem (2.4) we
know that Tn(θ) has 2n real or complex zeros in the strip −π < <(θ) 6 π. Further-
more, the non-real zeros appear in conjugate pairs. Le p be the number of zeros
of Tn(θ) on (−π, π] with odd multiplicity (0 6 p 6 2n). Since p should be even we
can set p = 2k, 0 6 k 6 n. Assume that k < n and define

Uk(θ) =
k∏

j=1

sin
(

θ − θ2j

2

)
sin

(
θ − θ2j−1

2

)
,

{θj}2k
j=1 being the zeros of Tn(θ) on (−π, π] with odd multiplicity (obviously, if k = 0

we take Uk(θ) ≡ 1). Then we can write Tn(θ) = afn(θ) + bgn(θ) = Uk(θ)Vn−k(θ),
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where Vn−k(θ) ∈ Tn−k and Vn−k(θ) has a constant sign on (−π, π]. Since k < n,
by virtue of orthogonality it follows on the one hand that

I =
∫ π

−π
Tn(θ)Uk(θ)ω(θ)dθ

= a
∫ π

−π
fn(θ)Uk(θ)ω(θ)dθ + b

∫ π

−π
gn(θ)Uk(θ)ω(θ)dθ = 0,

whereas on the other hand

I =
∫ π

−π

U2
k (θ)Vn−k(θ)ω(θ)dθ 6= 0

because ω(θ) is a weight function on (−π, π]. >From this contradiction it follows
that k = n. ¤

Furthermore, the following interlacing property of zeros holds:

Theorem 4.10. Under the same assumptions as in Theorem 4.9, the zeros of
afn(θ) + bgn(θ) and −bfn(θ) + agn(θ) interlace.

Proof. Since we are dealing with properties of zeros, we can assume, without loss
of generality that the system f0 ∪ {fk, gk}∞k=1 is bi-orthonormal. We introduce the
function

Kn(α, θ) = f0(α)f0(θ) +
n∑

k=1

(fk(α)fk(θ) + gk(α)gk(θ))

which satisfies the following reproducing property:

T (α) =
∫ π

−π

Kn(α, θ)T (θ)ω(θ)dθ, ∀T ∈ Tn.

On the other hand, from the paper by Szegő [14], the following Christoffel-Darboux
identity can be established,

Kn−1(α, θ) = 1
2

k2n−1
k2n

cot
(

θ−α
2

)
(fn(α)gn(θ)− fn(θ)gn(α))−

− (rnfn(α)fn(θ) + sngn(α)gn(θ))
(4.7)

where the coefficients kn, rn and sn are related to the orthonormal sequence
{ϕn(z)}∞n=0 of Szegő polynomials as follows: Set ϕn(z) = knzn + · · ·+ ln (kn > 0),
then 2sn = 1 + |l2n|

k2n
> 0 and 2rn = 1 − |l2n|

k2n
. Furthermore, since ρn(z) = ϕn(z)

kn
=

zn + · · ·+ ln
kn

, then |l2n|
k2n

< 1 and rn is also positive. Thus

Kn−1(α, α) = limθ→αKn−1(α, θ)
= k2n−1

k2n

(
fn(α)g

′
n(α)− f

′
n (α)gn(α)

)
− (

rnf2
n(α) + sng2

n(α)
)
.

Setting Mn(α) =
(
rnf2

n(α) + sng2
n(α)

)
we obtain for all α ∈ R:

fn(α)g
′

n(α)− f
′

n (α)gn(α) =
k2n−1

k2n
(Mn(α) +Kn−1(α, α)) > 0,
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since clearly Mn(α) > 0 and Kn−1(α, α) > 0. >From here it can be easily seen
that the zeros of fn(θ) and gn(θ) interlace. Finally, let us consider

Cn(θ) = afn(θ) + bgn(θ), Dn(θ) = −bfn(θ) + agn(θ), |a|+ |b| > 0.

Then

Cn(α)D
′

n(α)− C
′

n (α)Dn(α) = (a2 + b2)
(
fn(α)g

′
n(α)− f

′
n (α)gn(α)

)
> 0

and the proof follows. ¤

Remark 4.11. The two previous theorems were earlier proved by Szegő in [14]
making use of the fundamental property that the zeros of any Szegő polyno-
mial ρn(z) lie in D. Here, we have given alternative proofs involving only bi-
orthogonality properties.

As an immediate consequence of Theorems 4.9 and 4.10, we have

Corollary 4.12. Let f0 ∪ {fk, gk}∞k=1 be an orthogonal system for ω(θ). Then,

1. Both fn and gn have 2n distinct zeros on any interval of length 2π.

2. On any interval of length 2π, the zeros of fn and gn interlace.

5. Quadratures

In this section we start to properly deal with the main topic of the paper, i.e.,
the approximate calculation of integrals

Iω(f) =
∫ π

−π

f(θ)ω(θ)dθ (5.1)

with ω(θ) a weight function on (−π, π] and f a 2π-periodic function such that fω ∈
L1(−π, π]. Iω(f) is going to be approximated by means of an n-point quadrature
rule like:

In(f) =
n∑

j=1

λjf(θj), θj 6= θk, θj ∈ (−π, π]. (5.2)

Here, the nodes {θj}n
j=1 and weights {λj}n

j=1 are to be determined so that In(f) is
exact in certain subspaces of T with dimension as large as possible, i.e. it should
hold that Iω(T ) = In(T ) for any T ∈ Tm(n) ⊂ T with m(n) as large as possible.
For this purpose the following results should first be taken into account:

Theorem 5.1. There can not exist an n-point quadrature rule In(f) like (5.2)
which is exact in Tn, i.e., m(n) < n.

Proof. Proceed as in [11, pp. 73-74] for the case ω(θ) ≡ 1. ¤
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Now, making use of the interpolation results in Section 3 the following can be
proved:

Theorem 5.2. Given n distinct nodes {θj}n
j=1 ⊂ (−π, π], there exists a certain

subspace T̃n of Tn with dimension n such that weights {λj}n
j=1 satisfying

In(T ) =
n∑

j=1

λjT (θj)Iω(T ), ∀ T ∈ T̃n.

are uniquely determined.

Theorem 5.3. If there exists an n-point quadrature rule In(f) =
∑n

j=1 λjf(θj)
which is exact in Tn−1, then λj > 0 for all j = 1, . . . , n (see [11]).

Proof. Take tj(θ) =
∏n

k=1,k 6=j sin2
(

θ−θk

2

)
. Thus, tj(θ) ∈ Tn−1 and tj(θ) > 0.

Hence, 0 < Iω(tj) = In(tj) = λjtj(θj). Since tj(θj) > 0, the proof follows. ¤

After these preliminary considerations, we are now in a position to investigate
the following problem, namely: “For n ∈ N, n > 1, find θ1, . . . , θn with θj 6= θk if
j 6= k on (−π, π] and real numbers λ1, . . . , λn such that

In(f) =
n∑

j=1

λjf(θj) = Iω(f), ∀f ∈ Tn−1.
′′ (5.3)

Since dim (Tn−1) = 2n− 1, (5.3) leads to a nonlinear system with 2n− 1 equations
and 2n unknowns: θ1, . . . , θn; λ1, . . . , λn. Now, proceeding as in the polynomial
situation (see e.g. [6]), instead of directly attacking the system coming from (5.3)
we will try to analyze the properties of the real trigonometric polynomial whose
zeros are the nodes of In(f). For this reason we are forced to assume that the
number of nodes in our quadrature rules should be even. To fix ideas, assume that
this number is 2n. Then, in the sequel our rule will be of the form

I2n(f) =
2n∑

j=1

λjf(θj), {θj}2n
j=1 ⊂ (−π, π].

Set Tn(θ) =
∏2n

j=1 sin
(

θ−θj

2

)
∈ Tn. Then the following holds:

Theorem 5.4. Let I2n(f) =
∑2n

j=1 λjf(θj) be a quadrature rule such that
I2n(T ) = Iω(T ) for all T ∈ T2n−1 and let f0∪{fk, gk}∞k=1 be a bi-orthogonal system
for ω(θ). Set Tn(θ) =

∏2n
j=1 sin

(
θ−θj

2

)
. Then there exist real numbers an and bn

not both zero such that Tn(θ) = anfn(θ) + bngn(θ).

Proof. Set S ∈ Tn−1, then Tn(θ)S(θ) ∈ T2n−1. Hence

〈Tn, S〉ω = Iω(Tn · S) =
∫ π

−π
Tn(θ)S(θ)ω(θ)dθ

= In(Tn · S) =
∑2n

j=1 λjTn(θj)S(θj) = 0.
(5.4)
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On the other hand, since f0 ∪ {fk, gk}n
k=1 is a basis for Tn, one can write

Tn(θ) = a0 +
n∑

k=1

(akfk(θ) + bkgk(θ)) , ak =
〈Tn, fk〉ω
‖ fk ‖2ω

, bk =
〈Tn, gk〉ω
‖ fk ‖2ω

.

By (5.4), ak = 0 for k = 0, 1, . . . , n − 1 and bk = 0 for k = 1, . . . , n − 1 and the
proof follows. ¤

Conversely, we can prove the following

Theorem 5.5. Let f0 ∪{fk, gk}∞k=1 be a bi-orthogonal system for the weight func-
tion ω(θ). Let a and b be real numbers not both zero and let {θj}2n

j=1 be the 2n
zeros of Tn(θ) = afn(θ) + bgn(θ) on (−π, π]. Then, there exist positive numbers
λ1, . . . , λ2n such that

I2n(f) =
2n∑

j=1

λjf(θj) = Iω(f), ∀ f ∈ T2n−1.

Proof. Throughout the proof, T̃n will denote a subspace of trigonometric polyno-
mials coinciding either with Tn\span{cos nθ} or Tn\span{sinnθ}, so that
dim

(
T̃n

)
= 2n. Let θ1, . . . , θ2n be the 2n distinct zeros of Tn(θ) = afn(θ)+bgn(θ),

(|a| + |b| > 0). Then, by Theorem 5.2, there exist weights λ1, . . . , λ2n, uniquely
determined, such that

I2n(f) =
2n∑

j=1

λjf(θj) = Iω(f), ∀ f ∈ T̃n.

Let us next see that I2n(f) is also exact in T2n−1 (observe that T̃n ⊂ T2n−1). To do
that, we will follow the classical pattern. Indeed, take T ∈ T2n−1 and let Ln ∈ T̃n

such that
T (θj) = Ln(θj), j = 1, . . . , 2n.

Then T − Ln ∈ T2n−1 and (T − Ln) (θj) = 0 for all j = 1, . . . , 2n. Hence we can
write T (θ) − Ln(θ) = Tn(θ)V (θ), with V ∈ Tn−1 i.e., T (θ) = Ln(θ) + Tn(θ)V (θ).
Consequently

Iω(T ) =
∫ π

−π
T (θ)ω(θ)dθ =

∫ π

−π
(Ln(θ) + Tn(θ)V (θ)) ω(θ)dθ

=
∫ π

−π
Ln(θ)ω(θ)dθ = Iω(Ln),

since Iω(TnV ) = 0 (by definition, Tn(θ) is orthogonal to any function in Tn−1).
Therefore,

Iω(T ) = Iω(Ln) =
2n∑

j=1

λjLn(θj) =
2n∑

j=1

λjT (θj) = In(T ).
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Finally, the positive character of the weights {λj}2n
j=1 follows from Theorem 5.3.

However, we can also give an explicit integral representation. Thus, for j =
1, . . . , 2n, set

lj(θ) =
Tn(θ)

2T ′
n (θj) sin

(
θ−θj

2

)

so that lj(θk) = δj,k and l2j (θ) ∈ T2n−1 for j = 1, . . . , 2n. Thus

Iω

(
l2j (θ)

)
= I2n

(
l2j (θ)

)
=

2n∑

k=1

λkl2j (θk) = λj

yielding

λj =
∫ π

−π


 Tn(θ)

2T ′
n (θj) sin

(
θ−θj

2

)



2

ω(θ)dθ, j = 1, . . . , 2n. (5.5)

¤

Theorems 5.4 and 5.5 may be summarized in the following characterization result,

Corollary 5.6. Let I2n(f) =
∑2n

j=1 λjf(θj) so that θj 6= θk if j 6= k, and {θj} ⊂
(−π, π]. Then, I2n(f) = Iω(f) for all f ∈ T2n−1, if and only if,

1. I2n(f) is exact in a certain subspace T̃n of T2n−1 whith dimension 2n.

2. There exist real numbers a and b not both zero such that {θj}2n
j=1 are the zeros

of Tn(θ) = afn(θ) + bgn(θ), f0 ∪ {fk, gk}∞k=1 being a bi-orthogonal system for
the weight function ω(θ).

Furthermore, when these conditions are satisfied the weights {λj}2n
j=1 are positive.

Remark 5.7. The quadrature rules characterized in Corollary 5.6 were earlier
introduced by Szegő in [14] and they are sometimes refered as “quadratures with
the highest degree of trigonometric precision”.

Next, we will see how we can also give an explicit representation of the weights
{λj}2n

j=1 in Corollary 5.6, in terms of a bi-orthonormal system similar to the well
known Christoffel numbers for the Gaussian formulas (see e.g. [8]). Indeed, we
have

Theorem 5.8. Let f0 ∪ {fk, gk}∞k=1 be a bi-orthonormal system for ω(θ) and let
I2n(f) =

∑2n
j=1 λjf(θj) be a 2n-point quadrature rule with the highest degree of

trigonometric precision. Then, for j = 1, . . . , 2n,

λj =
1

f2
0 +

∑n−1
k=1 (f2

k (θj) + g2
k(θj)) +

(
1−|δ2n|

2

)
f2

n(θj) +
(

1+|δ2n|
2

)
g2

n(θj)
(5.6)

where, as usual, δ2n = ρ2n(0), ρ2n(z) being the monic Szegő polynomial of degree
2n and {θj}2n

j=1 being the zeros of Tn(θ) = afn(θ) + bgn(θ), |a|+ |b| > 0.
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Proof. Set Tn(θ) =
∏2n

k=1 sin
(

θ−θk

2

)
= afn(θ)+bgn(θ) ∈ Tn, |a|+|b| > 0. Suppose

without loss of generality that a 6= 0 so that fn(θj) = −b
a gn(θj) . Then, from the

Christoffel-Darboux identity (4.7) it follows

Kn−1(θ, θj) = 1
2

k2n−1
k2n

ctg
(

θj−θ
2

)
[fn(θ)gn(θj)− fn(θj)gn(θ)]−

− (rnfn(θ)fn(θj) + sngn(θ)gn(θj))
= 1

2a
k2n−1
k2n

gn(θj)ctg
(

θj−θ
2

)
Tn(θ)−

−
[

1−|δ2n|
2 fn(θ)fn(θj) + 1+|δ2n|

2 gn(θ)gn(θj)
]

and hence

Kn−1(θ, θj) +
[

1−|δ2n|
2 fn(θ)fn(θj) + 1+|δ2n|

2 gn(θ)gn(θj)
]

=
−1
2a

k2n−1
k2n

gn(θj) cos
(

θ−θj

2

)
Tn(θ)

sin
h

θ−θj
2

i .
(5.7)

As θ tends to θj , we get

f2
0 +

∑n−1
k=1

(
f2

k (θj) + g2
k(θj)

)
+

(
1−|δ2n|

2

)
f2

n(θj) +
(

1+|δ2n|
2

)
g2

n(θj) =
−1
a

k2n−1
k2n

gn(θj)T
′

n (θj).
(5.8)

Now, due to the orthogonality conditions it follows from (5.7) that

1 =
−1
2a

k2n−1

k2n
gn(θj)

∫ π

−π

cos
(

θ − θj

2

)
Tn(θ)

sin
(

θ−θj

2

)ω(θ)dθ. (5.9)

The combination of expressions (5.8) and (5.9) implies

1

f2
0 +
Pn−1

k=1 (f2
k(θj)+g2

k(θj))+
�

1−|δ2n|
2

�
f2

n(θj)+
�

1+|δ2n|
2

�
g2

n(θj)
=

1
2T ′

n (θj)

∫ π

−π
cos

(
θ−θj

2

)
Tn(θ)

sin
h

θ−θj
2

iω(θ)dθ
(5.10)

On the other hand, from Corollary 5.6 one knows that the weights λj can be
expressed as

λj =
∫ π

−π

s̃j(θ)ω(θ)dθ, j = 1, . . . , 2n

where s̃j(θ) are trigonometric polynomials of degree n at most given by (3.16) or
(3.17). Thus, from (3.16) it follows

s̃j(θ) =
1

2T ′
n (θj) sin ηn

sin
(

θ + αj

2

)
Tn(θ)

sin
(

θ−θj

2

) , j = 1, . . . , 2n,
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with ηn = 1
2

∑2n
j=1 θj and αj = ηn − θj

2 for j = 1, . . . , 2n. Hence, sin
(

θ+αj

2

)
=

sin
(

θ−θj

2 + ηn

)
= sin

(
θ−θj

2

)
cos ηn + cos

(
θ−θj

2

)
sin ηn and one can write

λj = 1
2T ′

n (θj) sin ηn

[
cos ηn

∫ π

−π
Tn(θ)ω(θ)dθ +

+ sin ηn

∫ π

−π
cos

(
θ−θj

2

)
Tn(θ)

sin
�

θ−θj
2

�ω(θ)dθ

]

= 1
2T ′

n (θj)

∫ π

−π
cos

(
θ−θj

2

)
Tn(θ)

sin
h

θ−θj
2

iω(θ)dθ.

(5.11)

Clearly, if we now start from (3.17) the same representation (5.11) is achieved.
Thus, from (5.10) and (5.11) the proof follows. ¤
Example 5.9. As a simple illustration of formula (5.6), let us consider ω(θ) ≡ 1.
As we have already seen, a bi-orthogonal system is given by {1}∪{cos nθ, sin nθ}∞n=1.
Thus, we have the following bi-orthonormal system:

f0 =
1√
2π

, fn(θ) =
cos nθ√

π
, gn(θ) =

sin nθ√
π

, n = 1, 2, . . . .

Taking a, b ∈ R, |a|+|b| > 0, the nodes of the corresponding (2n)-th quadrature rule
are the zeros of Tn(θ) = afn(θ)+bgn(θ). Thus, when a = 0 and b = 1, i.e., sin nθ =
0, the zeros are θk = kπ

n for all k ∈ Z, i.e., the 2n zeros θj = (j−n)π
n = −π + 2πj

2n ,
j = 0, 1, . . . , 2n−1, are equally spaced on the interval [−π, π] with step size, h = π

n .
Moreover, since now ρn(z) = zn for all n = 0, 1, . . ., then δ2n = ρ2n(0) = 0 and
formula (5.6) becomes, for all j = 1, . . . , 2n :

λj =
1

1
2π +

∑n−1
k=1

(
cos2(kθj)

π + sin2(kθj)
π

)
+ 1

2

(
cos2(nθj)

π + sin2(nθj)
π

) =
π

n
. (5.12)

Furthermore, from (5.12) we see that independently of the expression of the nodes
{θj}2n

j=1 all the weights {λj}2n
j=1 are equal to π

n . This result was deduced in a
different manner in [11].

Paralleling rather closely Gaussian quadrature formulas, we will give a final
result involving the Hermite-type interpolation problem stated in Theorem 3.2
which could be used to give an estimation of the error for I2n(f). Indeed, one has

Theorem 5.10. Let a and b real numbers not both zero and let {θj}2n
j=1 the zeros

of Tn(θ) = afn(θ) + bgn(θ), f0 ∪ {fk, gk}∞k=1 being a bi-orthogonal system. Let
H2n−1(f, ·) ∈ T2n−1 such that:

H2n−1(f ; θj) = f(θj) j = 1, . . . , 2n

H
′

2n−1(f ; θj) = f
′
(θj) j = 1, . . . , 2n, j 6= k ∈ {1, . . . , 2n}.

Then, Iω (H2n−1(f, ·)) coincides with the (2n)-th quadrature rule with the highest
degree of trigonometric precision with nodes {θj}2n

j=1. Furthermore, this formula
does not depend on the parameter k ∈ {1, . . . , 2n} previously fixed.
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Proof. The existence and unicity of the Hermite trigonometric interpolant
H2n−1(f, θ) is guaranteed by Theorem 3.2. Furthermore, by (3.7) we can write,

H2n−1(f, θ) =
2n∑

j=1

tj(θ)f(θj) +
2n∑

j=1,j 6=k

sj(θ)f
′
(θj) (5.13)

where tj(θ) and sj(θ) are trigonometric polynomials in T2n−1 satisfying the inter-
polation condition (3.8). Hence,

Iω (H2n−1(f, ·)) =
2n∑

j=1

Ajf(θj) +
2n∑

j=1,j 6=k

Bjf
′
(θj) (5.14)

where Aj = Iω(tj) for j = 1, . . . , 2n and Bj = Iω(sj), j = 1, . . . , 2n, j 6= k. Now,
taking into account that Tn(θ) = afn(θ) + bgn(θ) is orthogonal to Tn−1, it can be
deduced from (3.9) that

Bj =
sin

(
θj−θk

2

)

2 [T ′
n(θj)]

2 Iω


Tn(θ)

Tn(θ)

sin
(

θ−θj

2

)
sin

(
θ−θk

2

)


 = 0, j = 1, . . . , 2n, j 6= k.

Thus, Iω (H2n−1(f, ·)) =
∑2n

j=1 Ajf(θj) = Ĩ2n(f) and since for any T ∈ T2n−1,
H2n−1(T, θ) = T (θ), we have

Ĩ2n(T ) = Iω (H2n−1(T, ·)) = Iω(T ), ∀ T ∈ T2n−1.

Now the proof follows by Corollary 5.6. ¤
Remark 5.11. Quadrature rules of the form In(f) =

∑n
j=1 λnf(θj) to estimate

weighted 2π-periodic integrals Iω(f) have been constructed making use of the zeros
of certain trigonometric polynomials associated to a bi-orthogonal system. For this
reason we have been forced to deal with an even number of nodes and weights. Now,
we might wonder if a quadrature In(f) with n an arbitrary natural number and
with the highest degree of trigonometric precision (n−1) could be also constructed.
It seems clear that we can not use zeros of real trigonometric polynomials anymore,
since the number of these is always even. Actually, this question does not appear
in the paper by Szegő [14]. In a forthcoming paper a positive answer will be given
by introducing convenient technical modifications of Szegő‘s paper [14]. However
we can also find an answer in the paper by Jones et. al. [10] which, for the sake of
completeness, will be surveyed in the next Section. As a consequence, a connection
between the concepts of bi-orthogonality and para-orthogonality introduced in [14]
and [10] respectively will be also made.

6. A connection with the unit circle. Para-orthogo-
nal polynomials

In this Section we shall be concerned with the approximation of integrals on
the unit circle, i.e., integrals of the form

∫
T f(z)dµ(z), µ being a positive measure
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on T, by means of an n-point quadrature rule:

In(f) =
n∑

j=1

Ajf(zj), zj 6= zk, j 6= k, {zj}n
j=1 ⊂ T. (6.1)

By a slight abuse of notation we shall set µ(z) = µ(θ) for z = eiθ. As before, and
for the sake of simplicity, we will also assume that µ is an absolutely continuous
measure i.e., dµ(θ) = ω(θ)dθ so that we consider integrals of the form

Iω(f) =
∫ π

−π

f(eiθ)ω(θ)dθ (6.2)

where f(eiθ) is in general a complex function. Thus f(eiθ) = f1(θ) + if2(θ) with
fj(θ) for j = 1, 2, both real 2π-periodic functions. Here, taking into account the
basic fact that any continuous function on T can be uniformly approximated on T by
Laurent polynomials, the nodes {zj}n

j=1 and weights {Aj}n
j=1 are to be determined

by requiring that In(f) is exact in Λ−p,q (domain of validity) with p and q as large
as possible (clearly this means that Iω(L) = In(L), for all L ∈ Λ−p,q). Now, assume
that for the weight function ω(θ) and an even integer n we have found an n-point
quadrature rule In(f) =

∑n
j=1 λjf(θj) with the highest degree of trigonometric

precision (recall that λj > 0 and θj 6= θk if j 6= k, {θj}n
j=1 ⊂ (−π, π]). Take

L ∈ Λ−(n−1),n−1 so that L(eiθ) = L1(θ) + iL2(θ) with L1, L2 ∈ Tn. Then

Iω(L) =
∫ π

−π
L(eiθ)ω(θ)dθ =

∫ π

−π
L1(θ)ω(θ)dθ + i

∫ π

−π
L2(θ)ω(θ)dθ

=
∑n

j=1 λjL1(θj) + i
∑n

j=1 λjL2(θj)
=

∑n
j=1 λj (L1(θj) + iL2(θj)) =

∑n
j=1 λjL(eiθj )

=
∑n

j=1 λjL(zj), zj = eiθj , j = 1, . . . , n.

(observe that zj 6= zk if j 6= k). Thus, provided that n is even a quadrature rule
with domain of validity Λ−(n−1),n−1 for Iω(f) has been constructed.

Conversely, let In(f) =
∑n

j=1 Ajf(zj), zj 6= zk if j 6= k, be exact in Λ−(n−1),n−1

and set zj = eiθj , θj ∈ (−π, π], θj 6= θk if j 6= k. Set T ∈ Tn−1, then T (θ) = L(eiθ)
with L ∈ ΛH

n−1 so that
∫ π

−π

T (θ)dθ =
∫ π

−π

L(eiθ)ω(θ)dθ =
n∑

j=1

AjL(eiθj ) =
n∑

j=1

AjT (θj) = In(T )

with In(f) =
∑n

j=1 Ajf(θj). Thus, we see that the problem of constructing an n-
point quadrature formula for ω(θ) with the highest degree of trigonometric precision
with n arbitrary would be solved. As immediate consequences we would also have:

1. Any quadrature rule In(f) =
∑n

j=1 Ajf(zj) with distinct nodes on T which
is exact in Λ−(n−1),n−1 has positive weights Aj , j = 1, . . . , n.

2. There can not exist an n-point quadrature rule as before which is exact in
Λ−n,n.
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Thus, in the sequel, given the integral Iω(f) =
∫ π

−π
f(eiθ)ω(θ)dθ we shall be

concentrated on the construction of In(f) =
∑n

j=1 Ajf(zj) such that zj 6= zk if
j 6= k, zj ∈ T for j = 1, . . . , n by imposing

In(L) = Iω(L), ∀L ∈ Λ−(n−1),n−1. (6.3)

According to [10], Λ(n−1),n−1 will be called “the maximun domain of validity”
for In(f), provided that (6.3) holds. Now, set µk =

∫ π

−π
e−ikθω(θ)dθ for any k ∈ Z

(trigonometric moments) so that (6.3) gives rise to the equality

n∑

k=1

Akzj
k = µ−j , −(n− 1) 6 j 6 n− 1. (6.4)

This leads to a study of the solutions of (6.4) which represents a nonlinear system
with 2n unknowns and 2n − 1 equations. We will proceed as in the preceding
section by analyzing the properties of the nodal polynomial for In(f), Bn(z) =∏n

j=1(z − zj). First, take into account that in case the zeros {zj}n
j=1 of Bn(z)

satisfy zj 6= 0 and zj 6= zk if j 6= k, then by taking n consecutive equations in (6.4),
the weights {Aj}n

j=1 are to be uniquely determined in terms of the nodes {zj}n
j=1.

Indeed, let p and q be nonnegative integers suche that p + q = n − 1 and take in
(6.4) the n equations

n∑

k=1

Akzj
k = µ−j , −p 6 j 6 q. (6.5)

Clearly, (6.5) is a linear system for the unknowns A1, . . . , An admitting a unique
solution because the determinant of the matrix of the system satisfies

∣∣∣∣∣∣∣∣∣

z−p
1 z−p

2 · · · z−p
n

z−p+1
1 z−p+1

2 · · · z−p+1
n

...
...

...
zq
1 zq

2 · · · zq
n

∣∣∣∣∣∣∣∣∣
= (z1 · · · zn)p

∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zn

...
...

...
zn−1
1 zn−1

2 · · · zn−1
n

∣∣∣∣∣∣∣∣∣
6= 0.

(Recall that we are assuming zj 6= 0 and zj 6= zk if j 6= k). Secondly, we can also
deduce the following necessary conditions for the polynomials Bn(z):

Theorem 6.1. Let In(f) =
∑n

j=1 Ajf(zj) such that zj ∈ T and zj 6= zk if j 6= k

satisfying In(L) = Iω(L), for all L ∈ Λ−(n−1),n−1. Set Bn(z) =
∏n

j=1(z − zj).
Then,

1. Bn(z) is invariant.

2.

〈Bn(z), zk〉ω = 0, 1 6 k 6 n− 1, 〈Bn(z), 1〉ω 6= 0, 〈Bn(z), zn〉ω 6= 0. (6.6)

Proof. 1. It trivially follows since by hypothesis the zeros of Bn(z) lie on T.
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2. Set 1 6 k 6 n− 1. Then

〈Bn(z), zk〉ω =
∫ π

−π

Bn(eiθ)eikθω(θ)dθ =
∫ π

−π

L(eiθ)ω(θ)dθ

where L(z) = z−kBn(z) ∈ Λ−k,n−k ⊂ Λ−(n−1),n−1 and L(zj) = 0. Then,
because of the exactness of In(f) in Λ−(n−1),n−1 we have

〈B(z), zk〉ω =
∫ π

−π
L(eiθ)ω(θ)dθ = In(L)

=
∑n

j=1 AjL(zj) = 0, 1 6 k 6 n− 1.

If 〈Bn(z), 1〉ω = 0, then 〈Bn(z), zk〉ω = 0 for 0 6 k 6 n, yielding Bn(z) =
ρn(z), and hence the zeros lie in D, contrary to assumption. Similarly, if
〈Bn(z), zn〉ω = 0 then Bn(z) = ρ∗n(z) and hence the zeros lie in E, contrary
to assumption. Thus 〈Bn(z), 1〉ω 6= 0 and 〈Bn(z), zn〉ω 6= 0.

¤
Remark 6.2. From the above considerations including the fact that

〈Bn(z), 1〉ω 6= 0, 〈Bn(z), zn〉ω 6= 0

when In is exact in Λ−(n−1),n−1 and that the zeros of the n-th Szegő polynomial lie
in D, it follows that there can not exist an n-point quadrature formula with nodes
on T to be exact either in ∆−(n−1),n or in ∆−n,n−1.

Polynomials Bn(z) satisfying (6.5) will play a crucial role in the construction
of our quadratures In(f) with the maximun domain of validity. This caused (see
[10]) the following

Definition 6.3. A polynomial Bn(z) of exact degree n, n > 1, is said to be para-
orthogonal with respect to ω(θ) if and only if the orthogonality conditions (6.6)
are satisfied.

Now, several questions immediately arise. Indeed, for a given weight function
ω(θ) and a natural number n, does a para-orthogonal polynomial of exact degree
n exist? If so, how can it be characterized? What about its zeros? The two
first questions are answered in [10] where the concepts of “para-orthogonality” and
“invariancy” were earlier introduced. Thus, in [10] one can find the following

Theorem 6.4. A polynomial Bn(z) of exact degree n, n > 1, is para-orthogonal
and invariant if and only if

Bn(z) = Cn [ρn(z) + τρ∗n(z)] , Cn 6= 0, |τ | = 1. (6.7)

Now, by recalling that the sequences {ρn(z)}∞n=0 and {ρ∗n(z)}∞n=0 satisfy the
recurrence relations

ρ0(z) = ρ∗0(z) = 1

ρn(z) = zρn−1(z) + δnρ∗n−1(z) n = 1, 2, 3, . . .

ρ∗n(z) = δnzρn−1(z) + ρ∗n−1(z) n = 1, 2, 3, . . .

(6.8)
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where, as usual, δn = ρn(0) for all n = 1, 2, . . . (|δn| < 1), then we have

Bn(z) = Cn [ρn(z) + τρ∗n(z)] =
(
1 + τδn

)
Cn

[
zρn−1(z) +

(
τ + δn

1 + τδn

)
ρ∗n−1(z)

]
,

yielding (observe that |1 + τδn| 6= 0)

Bn(z) = C̃n

[
zρn−1(z) + λnρ∗n−1(z)

]
, C̃n 6= 0, |λn| = 1 (6.9)

(here, λn = τ+δn

1+τδn
∈ T). Conversely, any polynomial Bn(z) satisfying (6.9) can

be expressed as in (6.7), were now τ = δn−λn

δnλn−1
∈ T. In short, we have obtained

an alternative characterization of the para-orthogonal and invariant polynomials
as shown in the following

Theorem 6.5. A polynomial Bn(z) of exact degree n, n > 1, is para-orthogonal
and invariant if and only if

Bn(z) = Cn

[
zρn−1(z) + τρ∗n−1(z)

]
, Cn 6= 0, |τ | = 1.

Remark 6.6. >From this theorem we see that to compute a para-orthogonal poly-
nomial of degree n, only the Szegő polynomial of degree n− 1 is required.

Next, we will make a connection between certain sequences of para-orthogonal
polynomials and bi-orthogonal systems of trigonometric polynomials for the same
weight function ω(θ). For this purpose, let B2n(z) be a polynomial of degree 2n,
para-orthogonal and invariant. Then, from the begining of Section 2, one can write
(by virtue of invariance)

B2n(eiθ) = aneinθfn(θ), an 6= 0 (6.10)

fn(θ) being a real trigonometric polynomial of precise degree n.

Theorem 6.7. Let fn(θ) ∈ Tn as given by (6.10). Then 〈fn(θ), T (θ)〉ω = 0 for all
T ∈ Tn−1.

Proof. Clearly, it will be enought to show that, 〈ρn(z), zj〉ω = 0 for −(n − 1) <
j 6 n− 1 (z = eiθ). By (6.10) and since an 6= 0, the above becomes

〈e−inθB2n(eiθ), eijθ〉ω = 0 , −(n− 1) 6 j 6 n− 1. (6.11)

Now, by Theorem 6.4, B2n(z) = ρ2n(z)+τρ∗2n(z) (observe that the constant C2n 6=
0 is now irrelevant) so that (6.11) can be written as

〈e−inθ
(
ρ2n(eiθ) + τρ∗2n(eiθ)

)
, eijθ〉ω =

〈ρ2n(z), zn+j〉ω + τ〈ρ∗2n(z), zn+j〉ω = 0,

because both inner products are zero by the orthogonality properties of ρ2n(z) and
ρ∗2n(z). ¤
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Now, as a direct consequence of Theorem 4.9, we can establish the fundamental
property concerning the localization of the zeros of Bn(z). Indeed, one has

Theorem 6.8. Let Bn(z) be a para-orthogonal and invariant polynomial of degree
n. Then Bn(z) has exactly n distinct zeros on the unit circle T.

Proof. Assume first that n is even, say n = 2m so that by (6.10)

e−imθB2m(eiθ) = amhm(θ), am 6= 0, hm ∈ Tm.

Let f0∪{fk, gk}∞k=1 be a bi-orthogonal system of trigonometric polynomials. Then,
by Theorem 6.7, hm(θ) = αmfm(θ) + βmgm(θ), |αm| + |βm| > 0 and the proof
follows by Theorem 4.9. Suppose now that n is odd, i.e. n = 2m + 1. Since
B2m+1(z) is invariant, one knows that B2m+1(z) has at least one zero λ on T of
odd multiplicity. Thus, B2m+1(z) = (z − λ)B̃2m(z) with B̃2m(z) a polynomial of
degree 2m. Furthermore, it can be easily checked that B̃2m(z) is also invariant
and para-orthogonal for the weight function ω̃(θ) = |eiθ − λ|2ω(θ). Hence, B̃2m(z)
has 2m distinct zeros on T. Furthermore, any zero of B̃2m(z) is different from λ,
otherwise its multiplicity would be two. This concludes the proof. ¤

Remark 6.9. In [10] another different and longer proof of Theorem 6.8 is pre-
sented. Here we have taken advantage of the properties of bi-orthogonal systems
introduced in Section 4 to give a simpler proof.

Let {B2n(z)}∞n=0 be a sequence of para-orthogonal and invariant polynomials
such that for each n > 1, B2n(z) has exactly degree 2n. Because of invariance
again, it can be written

B2n(z) = aneinθfn(θ), an 6= 0, fn ∈ Tn.

Then, by Theorem 6.7, {fn(θ)}∞n=0 (f0(θ) = f0 6= 0) represents a nontrivial
orthogonal system of trigonometric polynomials, in the sense that for each n, fn(θ)
has the precise degree n and 〈fn(θ), fm(θ)〉ω = Knδn,m, Kn > 0. Now, we could
ask if it is possible to find another orthogonal system {gn(θ)}∞n=1 so that f0 ∪
{fn(θ), gn(θ)}∞n=1 constitutes a bi-orthogonal system of trigonometric polynomials.
To fix ideas, set

B2n(z) = B2n(z, τn) = ρ2n(z) + τnρ∗2n(z)

where {τn}∞n=1 is a sequence of complex numbers on T. Certainly, we can write
τn = γn

γn
, γn ∈ C, γn 6= 0 so that if τn = eiηn , then γn = rne−iηn/2, ηn ∈ R, rn > 0.

On the other hand, setting z = eiθ:

z−nB2n(z) = ρ2n(z)+τnρ∗2n(z)
zn = 1

γn

[
γnρ2n(z)+γnρ∗2n(z)

zn

]

= 1
γn

[
γnρ2n(z)+γnz2nρ(2n)∗(z)

zn

]

= 1
γn

[
γnz−nρ2n(z) + γnz−nρ2n(z)

]

= 2
γn
< (γnz−nρ2n(z)) .
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Consider now B2n(z,−τn) = ρ2n(z) − τnρ∗2n(z). Then, again by Theorem 6.7,
one has

e−inθB2n(eiθ,−τn) = λ̃ngn(θ), λ̃n 6= 0, gn ∈ Tn

and {gn(θ)}∞n=1 is an orthogonal system of trigonometric polynomials. Therefore
it holds that

〈gn(θ), gm(θ)〉ω = K̃nδn,m, K̃n > 0 ; 〈gn(θ), fm(θ)〉ω = 0, n 6= m.

Let us also see that 〈fn(θ), gn(θ)〉ω = 0 for n = 0, 1, . . .. As above, it can be easily
shown that

gn(θ) = C̃n=
(
γnz−nρ2n(z)

)
= C̃ng̃n(θ)

with C̃n 6= 0 and g̃n ∈ Tn. Hence,

〈fn(θ), gn(θ)〉ω = 0 ⇔ 〈f̃n(θ), g̃n(θ)〉ω = 0.

Now, for z = eiθ,

∫ π

−π
(γnz−nρ2n(z))2 ω(θ)dθ =

∫ π

−π

[
f̃n(θ) + ig̃n(θ)

]2

ω(θ)dθ

=
∫ π

−π
f̃2

n(θ)ω(θ)dθ − ∫ π

−π
g̃2

n(θ)ω(θ)dθ+
+ 2i

∫ π

−π
f̃n(θ)g̃n(θ)ω(θ)dθ.

Thus, by assuming that γ2
n

∫ π

−π
z−2nρ2

2n(z)ω(θ)dθ (z = eiθ) is a real number it
follows that ∫ π

−π

f̃n(θ)g̃n(θ)ω(θ)dθ = 〈f̃n(θ), g̃n(θ)〉ω = 0.

But
γ2

n

∫ π

−π
z−2nρ2

2n(z)ω(θ)dθ = γ2
n

∫ π

−π
ρ2n(z) z2n+···+δ2n

z2n ω(θ)dθ

= γ2
n

∫ π

−π
ρ2n(z) δ2n

z2n ω(θ)dθ

= γ2
nδ2n〈ρ2n(z), z2n〉ω.

Since 〈ρ2n(z), z2n〉ω = 〈ρ2n(z), ρ2n(z)〉ω =‖ ρ2n(z) ‖2ω> 0, then the positivity of

γ2
n

∫ π

−π

z−2nρ2
2n(z)ω(θ)dθ

reduces to γ2
nδ2n ∈ R, or equivalently γ2

nδ2n ∈ R. In terms of the parameter
τn = γn

γn
∈ T, this condition implies τnδ2n ∈ R. In other words, we have proved the

following

Theorem 6.10. Let {τn}∞n=1 be a sequence of complex numbers in T such that
τnδ2n ∈ R and consider the sequences of polynomials {B2n(z, τn)}∞n=1 and
{B2n(z,−τn)}∞n=1 so that for each n = 1, 2, . . ., B2n(z,±τn) is a para-orthogonal
and invariant polynomial of degree 2n . Then
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1. e−inθB2n(eiθ, τn) = λnfn(θ) and e−inθB2n(eiθ,−τn) = λ̃ngn(θ) with λn and
λ̃n nonzero complex numbers and fn(θ) and gn(θ) being trigonometric poly-
nomials of the precise degree n.

2. Choose f0 6= 0, then f0 ∪{fn(θ), gn(θ)}∞n=1 represents a bi-orthogonal system
for ω(θ).

Now, from Theorem 4.10 or Corollary 4.12 one immediately gets

Corollary 6.11. Under the same assumptions as in Theorem 6.10, the zeros of
the para-orthogonal polynomials B2n(z, τn) and B2n(z,−τn) interlace.

On the other hand, a converse to Theorem 6.10 can be also given. Indeed, we
have:

Theorem 6.12. Let f0 ∪ {fk, gk}∞k=1 be a bi-orthogonal system for ω(θ) and take
a and b real numbers not both zero. Then, for n > 1

Hn(θ) = afn(θ) + bgn(θ) = e−inθB2n(eiθ)

and B2n(z) is a para-orthogonal and 1-invariant polynomial of degree 2n.

Proof. We can write

fn(θ) = a0 +
n∑

j=1

(aj cos jθ + bj sin jθ) , gn(θ) = α0 +
n∑

j=1

(αj cos jθ + βj sin jθ)

with |an|+ |bn| > 0, |αn|+ |βn| > 0 and

fn(θ) =
n∑

k=−n

ckzk ∈ Λ−n,n, gn(θ) =
n∑

k=−n

dkzk ∈ Λ−n,n, z = eiθ

where for k = 1, . . . , n,

c0 = a0, ck = ak−ibk

2 c−k = ak+ibk

2

d0 = α0, dk = αk−iβk

2 , d−k = αk+iβk

2 .
(6.12)

Hence, by the transformation z = eiθ it follows that

B2n(θ) = zn
[
a

∑n
k=−n ckzk + b

∑n
k=−n dkzk

]
=

∑2n
j=0 (acj−n + bdj−n) zj

=
∑2n

j=0 ejz
j ∈ Π2n,

and it is clear from (6.12) that e2n−j = ej for j = 0, . . . , 2n. This proves the
1-invariance property. Now, from the orthogonality conditions satisfied by fn(θ)
and gn(θ) it follows for j = 1, . . . , 2n− 1 that

〈B2n(θ), eijθ〉ω = 〈einθ [afn(θ) + bgn(θ)] , eijθ〉ω =

= a〈fn(θ), ei(j−n)θ〉ω + b〈gn(θ), ei(j−n)θ〉ω = 0,
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i.e., 〈B2n(z), zj〉ω = 0 for all j = 1, . . . , 2n−1. We will prove next that 〈B2n(z), 1〉ω
6= 0 and 〈B2n(z), z2n〉ω 6= 0. Firstly observe that

〈B2n(z), 1〉ω = a〈fn(θ), e−inθ〉ω + b〈gn(θ), e−inθ〉ω,

〈B2n(z), z2n〉ω = a〈fn(θ), einθ〉ω + b〈gn(θ), einθ〉ω .
(6.13)

Writing cos nθ = einθ+e−inθ

2 , sinnθ = einθ−e−inθ

2i , fn(θ) = an cos nθ + bn sin nθ +
Hn−1(θ) and gn(θ) = αn cos nθ + βn sinnθ + H̃n−1(θ), where Hn−1(θ), H̃n−1(θ) ∈
Tn−1, we deduce that

〈fn(θ), fn(θ)〉ω = 〈fn(θ), an cos nθ + bn sin nθ + Hn−1(θ)〉ω =
= bn+ian

2i 〈fn(θ), einθ〉ω + −bn+ian

2i 〈fn(θ), e−inθ〉ω =
= hn > 0,

〈gn(θ), gn(θ)〉ω = βn+iαn

2i 〈gn(θ), einθ〉ω + −βn+iαn

2i 〈gn(θ), e−inθ〉ω =
= h

′
n > 0,

〈fn(θ), gn(θ)〉ω = 〈fn(θ), αn cosnθ + βn sin nθ + H̃n−1(θ)〉ω =

= βn+iαn

2i 〈fn(θ), einθ〉ω + −βn+iαn

2i 〈fn(θ), e−inθ〉ω = 0,

〈gn(θ), fn(θ)〉ω = bn+ian

2i 〈gn(θ), einθ〈+−bn+ian

2i 〈gn(θ), e−inθ〉ω = 0 .

These relations can be summarized as

A




〈fn(θ), einθ〉ω

〈fn(θ), e−inθ〉ω


 =




0

2ihn


 , A




〈gn(θ), einθ〉ω

〈gn(θ), e−inθ〉ω


 =




2ih
′
n

0


 ,

where

A =




βn + iαn −βn + iαn

bn + ian −bn + ian


 , det(A) = 2i[anβn − αnbn] 6= 0

since fn(θ), gn(θ) are linearly independent trigonometric polynomials. The solu-
tions of these systems are given by

〈fn(θ), einθ〉ω =
βn − iαn

anβn − αnbn
hn 6= 0, 〈fn(θ), e−inθ〉ω = 〈fn(θ), einθ〉ω,

〈gn(θ), einθ〉ω =
−bn + ian

anβn − αnbn
h
′
n 6= 0, 〈gn(θ), e−inθ〉ω = 〈gn(θ), einθ〉ω .

Now, from (6.13) it follows that

〈B2n(z), 1〉ω =
1

anβn − αnbn

[
(aβnhn − bβnh

′
n) + i(aαnhn − banh

′
n)

]
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and 〈B2n(z), z2n〉ω = 〈B2n(z), 1〉ω. Again, since fn(θ), gn(θ) are linearly indepen-
dent it is easy to observe that 〈B2n(z), 1〉ω 6= 0 and hence 〈B2n(z), z2n〉ω 6= 0. This
completes the proof. ¤

After having established certain connections between para-orthogonal polyno-
mials and bi-orthogonal trigonometric polynomials we are now in a position to
construct an n-point quadrature rule for Iω(f) with nodes on T and having the
“maximum domain of validity”, Λ−(n−1),n−1. Indeed, we have (see [10])

Theorem 6.13. Let z1, . . . , zn be the n distinct zeros of Bn(z) a given polynomial
of degree n, para-orthogonal and invariant. Then, there exist positive numbers
A1, . . . , An such that

In(f) =
n∑

j=1

Ajf(zj) = Iω(f) =
∫ π

−π

f(eiθ)ω(θ)dθ, ∀ f ∈ Λ−(n−1),n−1.

Now, by considering Theorems 6.1 and 6.13 together we obtain the following
characterization (see [2]):

Corollary 6.14. Let Iω(f) =
∫ π

−π
f(eiθ)ω(θ)dθ and let In(f) =

∑n
j=1 Ajf(zj)

such that zj ∈ T, j = 1, . . . , n with zj 6= zk if j 6= k and set Bn(z) =
∏n

j=1(z− zj).
Then In(L) = Iω(L) for all L ∈ Λ−(n−1),n−1 if and only if

1. In(L) = Iω(L), for all L ∈ Λ−p,q, p and q being nonnegative arbitrary integers
such that p + q = n− 1.

2. Bn(z) is para-orthogonal and invariant.

Furthermore, when the conditions are satisfied the weights {Aj}n
j=1 are positive and

independent of p and q.

Remark 6.15. The quadrature rules In(f), n = 1, 2, . . . as given above are called
“Szegő quadrature formulas” and were earlier introduced in [10]. They represent the
analogue on the unit circle of the Gauss-Christoffel formulas. For an alternative
approach of Szegő quadratures making use of the so-called orthogonal Laurent
polynomials on the unit circle, see the recent paper by the authors [3]. For further
details concerning these quadratures see also [4], [5] and [9].

To conclude, it should be remarked that given the integral
∫ π

−π
f(θ)ω(θ)dθ , f

being a 2π-periodic function, it clearly follows from Corollary 6.14 how to construct
an n-point quadrature rule with distinct nodes on [−π, π] which is exact in Tn−1, n
being an arbitrary natural number. As a simple illustration, let us consider again
the weight function ω(θ) ≡ 1. Then, Bn(z) = zn − τ , |τ | = 1 and the nodes of the
n-th Szegő formula are the n-th roots of τ , that is zj = n

√
τ , j = 1, . . . , n. Thus,

Aj =
1

B‘
n(zj)

∫ π

−π

Bn(z)
z − zj

dθ =
1

nzn−1
j

1
i

∫

T

zn − τ

z(z − zj)
dz =

2πτ

nzn
j

,

by the Residue Theorem. Since
zn
j = τ , we obtain Aj = 2π

n , j = 1, . . . , n as previously deduced in Example 5.9.
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7. Numerical examples

In order to illustrate the numerical effectiveness of the quadrature rules con-
sidered through the paper, in this section we are going to be concerned with the
computation of the two-parameter integral,

I(m,α) =
∫ π

−π

cosmθ

α + sin2 θ
dθ, m ≥ 0, m ∈ N, α > 0. (7.1)

Observe that for α = 0, the integral diverges. Thus, for values of α close to zero,
the denominator of the integrand is also close to zero as θ tends to ±π. Certainly,
this could generate some kind of unstability when undertaking the approximation
of I(m,α) by means of a certain quadrature rule with nodes close to ±π.

On the other hand, for m large enough, the integral is highly oscillating on
[−π, π]. Indeed, setting f(θ) = cos mθ

α+sin2 θ
, then f(θ) clearly changes sign at the points

for which f(θ) = 0, i. e., at θk = (2k+1)π
2m , −m ≤ k ≤ m− 1.

Under these considerations, we propose the following in order to compute ap-
proximately the integral I(m,α). Note that because of simmetry, one can write

I(m, α) = 2
∫ π

0

cosmθ

α + sin2 mθ
dθ. (7.2)

First, we have approximated (7.2) by means of the n−point Gauss-Legendre
formula for the interval [0, π] and the Trapezoidal rule for n = 10, 12, 14, 16. Here n
denotes both the number of nodes in the Gauss-Legendre formulas and the number
of subintervals in [0, π]. The results are displayed in the following tables.

Quadrature rules n=10 n=12 n=14 n=16
Gauss-Legendre 2.26414 0.300761 0.00937743 0.000154023
Trapezoidal 0.0224394 0.000660554 0.000194449 5.72404E-7

Table 1: (m = 14, α = 1)

Quadrature rules n=10 n=12 n=14 n=16
Gauss-Legendre 8.93136E-5 7.12412E-7 1.17708E-8 4.65022E-10
Trapezoidal 4.20833E-8 1.30695E-10 4.05799E-12 1.26807E-15

Table 2: (m = 8, α = 4)

Take into account that the trapezoidal rule coincides with the quadrature for-
mula with the highest degree of trigonometric precision (Szegő formula). This fact
might explain why the results provided by the Trapezoidal rule are better than
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those given by Gauss-Legendre formula. However, when α is closer to zero, the
results of both quadrature rules, as it could be expected, are rather poor. This is
shown in Table 3 corresponding to m = 12 and α = 0.25.

Quadrature rules n=6 n=8 n=10 n=12
Gauss-Legendre 5.05696 5.60122 0.516198 0.0190433
Trapezoidal 11.2748 1.64061 0.239269 0.0349069

Table 3: (m = 12, α = 0.25)

In order to overcome this drawback, we are going to take the factor 1
α+sin2 θ

as
a weight function. For this purpose, set T (θ) = α+sin2 θ, so that T (θ) is a positive
trigonometric polynomial of degree two. Then, by Theorem 2.6, one can write,

T (θ) =
∣∣g (

eiθ
)∣∣2 , g ∈ Π2.

Since T (θ) = α + sin2 θ = α + 1
2 (1 − cos 2θ), then by setting β = 2α + 1 > 1

and z = eiθ,

2T (θ) = β − 1
2
(z2 + z−2),

yielding,

4T (θ) =
−z4 + 2βz2 − 1

z2
.

Furthermore, since T (θ) > 0 and z ∈ T, then

4T (θ) = |4T (θ)| = |z4 − 2βz2 + 1|. (7.3)

If we set z4 − 2βz2 + 1 = 0, then z2 = β ±
√

β2 − 1. Let γ = β +
√

β2 − 1, then,
it is easy to check that 1

γ = β −
√

β2 − 1. Therefore, one has

z4 − 2βz2 + 1 = (z2 − γ)(z2 − γ−1). (7.4)

On the other hand, since z = eiθ and γ ∈ R, we have:

|z2 − γ−1|2 = (z2 − γ−1)(z2 − γ−1) = (z2 − γ−1)(z−2 − γ−1)
= (z2 − γ−1)

(
γ−z2

γz2

)
= − 1

γz2 (z2 − γ)(z2 − γ−1)

>From (7.3) and (7.4), one has:

0 < |z2 − γ−1|2 = − 1
γz2

4T (θ) =
∣∣∣∣−

1
γz2

4T (θ)
∣∣∣∣ =

4
γ

T (θ).

Thus,
T (θ) =

γ

4
|z2 − γ−1|2 =

γ

4
|g(z)|2, g(z) = z2 − γ−1, z = eiθ.
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Now, taking into account that for integrals of the form:
∫ π

−π
f(eiθ) dθ

2π|h(eθ)|2 ,

with h a monic polynomial with all its zeros in D, the coefficients of the n−point
Szegő quadrature formulas are explicitly known ([9]), we will transform our integral
I(m,α) as follows: (z = eiθ)

I(m, α) =
∫ π

−π
cos mθ

α+sin2 θ
dθ =

∫ π

−π
cos mθ dθ

γ
4 |g(z)|2

=
∫ π

−π

(
4π
γ (zm + z−m)

)(
dθ

2π|g(z)|2
)

.

Therefore, we can write:

I(m,α) =
∫ π

−π

f(eiθ)ω(θ)dθ, (7.5)

where f(z) = 4π
γ (zm + z−m) and the weight function is given by ω(θ) = 1

2π|g(z)|2 ,

with g(z) = z2 − γ−1 and z = eiθ.

In this case, from Corollary 6.14, one knows that the nodes {zj}n
j=1 of the

n−point Szegő quadrature formula are the zeros of the para-orthogonal polynomial
Bn(z) = ρn(z)+ τρ∗n(z), ρn(z) being the n− th monic Szegő polynomial for ω(θ) =

1
2π|g(z)|2 , with |τ | = 1. Thus, from Example 4.8, Bn(z, τ) = zn−2g(z) + τg∗(z) =
zn−2(z2 − γ−1) + τ(1− γ−1z2). On the other hand, the coefficients {λj}n

j=1 of an
n−point Szegő’s formula are given by [9]:

λ−1
j = |g(zj)|2

(
n− 2 +

1−
��� 1√

γ

���2
���zj− 1√

γ

���2
+

1−
���− 1√

γ

���2
���zj+

1√
γ

���2

)

= |g(zj)|2
(

n− 2 + (1− γ−1)

(
1���zj− 1√

γ

���2
+ 1���zj+

1√
γ

���2

))

= |g(zj)|2
(

n− 2 + (1− γ−1)

( ���zj− 1√
γ

���2+
���zj+

1√
γ

���2

|g(zj)|2

))

= |g(zj)|2
(

n− 2 + (1− γ−1)
(�

1− 2√
γ<(zj)+

1
γ

�
+
�
1+ 2√

γ<(zj)+
1
γ

�

|g(zj)|2

))

= |g(zj)|2
(
n− 2 + 2(1− γ−1)(1 + γ−1) 1

|g(zj)|2
)

= (n− 2)|g(zj)|2 + 2(1− γ−2), j = 1, . . . , n.

Note that, if m ≤ n − 1, then the n−point Szegő quadrature formula is exact
since the integrand f ∈ ∆−m,m.

Now, by (7.5), I(m,α) is going to be approximated by an n−point Szegő formula
In(f) =

∑n
j=1 λjf(zj) so that the absolute errors can be exactly computed since

I(m,α) can be calculated by the Residue’s Theorem.
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Indeed, since I =
∫ π

−π
sin mθ

α+sin2 θ
dθ = 0, then

I(m,α) =
∫ π

−π
cos mθ

α+sin2 θ
dθ + i

∫ π

−π
sin mθ

α+sin2 θ
dθ =

∫ π

−π
cos mθ+i sin mθ

T (θ) dθ

=
∫ π

−π
zm

γ
4 |g(z)|2 dθ = 1

2π

∫ π

−π

(
8π
γ zm

)
dθ

(z2− 1
γ )( 1

z2− 1
γ )

= 1
2π

∫ π

−π
(−8π) zm+2

(z2− 1
γ )(z2−γ)

dθ = 1
2πi

∫
T(−8π) zm+1

(z2− 1
γ )(z2−γ)

dz

= Res
(
h, 1√

γ

)
+ Res

(
h, −1√

γ

)
,

where h(z) = (−8π) zm+1

(z2− 1
γ )(z2−γ)

.

Now,

Res

(
h,

1√
γ

)
= −8π

1
(
√

γ)m+1

2√
γ

(
1
γ − γ

) =
4πγ

(
√

γ)m(γ2 − 1)
,

and

Res

(
h,
−1√

γ

)
= −8π

(−1)m+1

(
√

γ)m+1

−2√
γ

(
1
γ − γ

) = (−1)m+1 −4πγ

(
√

γ)m(γ2 − 1)
.

Hence,

I(m, α) =
4πγ(1− (−1)m+1)

(
√

γ)m(γ2 − 1)
=

{ 8πγ
(
√

γ)m(γ2−1) , if m is even,

0, if m is odd.

Taking now m = 12 and α = 0.25, the absolute errors for the corresponding
n−point Szegő formula are displayed in Table 4 (Compare with Table 3).

n Error- Szegő formula
n=4 3.18008
n=8 1.8473911237281646E-15
n=12 6.949821829035384E-15

Table 4: (m = 12, α = 0.25)

The excellent behaviour of Segő formulas can be explained from [9, Theorem
3.3] taking into account that the integrand f(z) in (7.5) has one only pole at the
origin.
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