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Abstract: Down syndrome (DS) is characterized by structural and functional anomalies that are 

present prenatally and that lead to intellectual disabilities. Later in life, the cognitive abilities of DS 

individuals progressively deteriorate due to the development of Alzheimer’s disease (AD)-

associated neuropathology (i.e., β-amyloid (Aβ) plaques, neurofibrillary tangles (NFTs), 

neurodegeneration, synaptic pathology, neuroinflammation and increased oxidative stress). 

Increasing evidence has shown that among these pathological processes, neuroinflammation 

plays a predominant role in AD etiopathology. In AD mouse models, increased neuroinflammation 

appears earlier than Aβ plaques and NFTs, and in DS and AD models, neuroinflammation 

exacerbates the levels of soluble and insoluble Aβ species, favoring neurodegeneration. The 

Ts65Dn (TS) mouse, the most commonly used murine model of DS, recapitulates many 

alterations present in both DS and AD individuals, including enhanced neuroinflammation. In this 

study, we observed an altered neuroinflammatory milieu in the hippocampus of the TS mouse 

model. Pro-inflammatory mediators that were elevated in the hippocampus of this model included 

pro-inflammatory cytokine IL17A, which has a fundamental role in mediating brain damage in 

neuroinflammatory processes. Here, we analyzed the ability of an anti-IL17A antibody to reduce 

neuroinflammation and prevent the progression of the cognitive and neuropathological alterations 

that are present in TS mice during early neurodevelopmental stages (i.e., hippocampal 

neurogenesis and hypocellularity) or that decline in later-life stages (i.e., cholinergic neuronal loss 

and increased cellular senescence, APP expression, Aβ peptide expression and 

neuroinflammation). Chronic administration of anti-IL17A partially improved the cognitive abilities 

of the TS mice, reduced the expression of several pro-inflammatory cytokines and normalized the 

APP and Aβ1-42 levels in the hippocampuses of the TS mice. These results suggest that IL17A-

mediated neuroinflammation is involved in several AD phenotypes in TS mice and provide a new 

therapeutic target to reduce these pathological characteristics. 

Keywords: Neuroinflammation, Down syndrome, Ts65Dn, anti-IL17A. 
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1. INTRODUCTION  

 

Down syndrome (DS), the most common genetic cause of intellectual disability (Shin et al., 2009), 

is caused by a partial or complete triplication of human chromosome 21 (Hsa21). This intellectual 

disability is primarily caused by prenatal changes in central nervous system growth and 

differentiation (Lott, 2012; Haydar and Reeves, 2012). However, later in life, the cognitive abilities 

of DS individuals progressively decline due to accelerated aging and the development of 

Alzheimer’s disease (AD)-associated neuropathology. The primary hallmarks of AD, such as the 

accumulation of amyloid plaques comprising β-amyloid (Aβ) peptides, neurofibrillary tangles 

(NFTs) formed by insoluble deposits of abnormally hyperphosphorylated tau, neuroinflammation, 

synapse and neuronal loss, and regional atrophy, are present in 100% of individuals with DS by 

the fourth decade of life (Wilcock and Griffin, 2013; Lott, 2012; Cenini et al., 2012; Sabbagh et al., 

2011; Lott and Dierssen, 2010; Teipel and Hampel, 2006). 

This high prevalence of AD neuropathology in DS is partially related to the overexpression of 

several AD-related genes encoded in Hsa21. One of these genes is APP (Amyloid Precursor 

Protein), and its triplication in DS leads to an increased production of Aβ peptides. An imbalance 

between Aβ production and clearance leads to high levels of these peptides, causing their fast 

aggregation and deposition in plaques. These events induce other AD-associated 

neuropathologies, such as an increase in oxidative stress, neuroinflammation, and neuronal 

death and an accelerated decline in learning and memory (Wilcok, 2012; Sipos et al., 2007; 

Eikeleboom et al., 2006; Hardy, 2006; Weldon et al., 1998; Chong, 1997; Gitter et al., 1995; 

Hardy and Higgins 1992). 

Brain inflammation is one of the most important risk factors for sporadic AD development 

(Guerreiro et al., 2013). Aβ peptides and APP activate glial cells (Barger and Harmon, 1997; 

Dickson et al., 1993), leading to cytokine and chemokine production (including Interleukin 1  
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(IL1 ) and Interferon gamma (IFNγ)) and, therefore, to increased cytokine and chemokine 

expression in the AD brain (Meager 2004; 2005; Ho et al., 2005). Cytokines can also induce Aβ 

generation, tau phosphorylation and oxidative stress (Steel et al., 2007; Blurton-Jones and 

Laferla, 2006; Sastre et al., 2003). The combination of the activities of some of these cytokines 

(e.g., IL1β and IFNγ) substantially elevates Aβ secretion and its cellular accumulation (Blasko et 

al., 2001). Therefore, inflammation can directly influence plaques and NFT formation, and these 

two neuropathological events can, in turn, increase inflammation. 

The neuroinflammatory changes present in the DS brain include microglial and astroglial 

activation and increased levels of pro-inflammatory cytokines (Wilcock and Griffin, 2013; Griffin, 

2006; Park et al., 2005; Griffin et al., 1989). This neuroinflammatory response exacerbates 

oxidative stress, synaptic dysfunction and neuronal death, and decreases neurogenesis (Lyman 

et al., 2014; Town et al., 2005; Llorens-Martin et al., 2014; Fuster-Matanzo et al., 2013). 

Specifically, cytokines affect proliferation, new neuron maturation and neuronal recruitment into 

relevant circuits (Rosi et al., 2012). Because neurogenesis is impaired in DS individuals (see 

Rueda et al., 2012), neuroinflammation increases their vulnerability to lesions that might 

contribute to the early onset of dementia (Teipel and Hampel, 2006). Thus, reducing 

neuroinflammation may be a therapeutic strategy for preventing AD pathology in DS and may 

contribute toward stimulating endogenous repair mechanisms, such as the formation of new 

neurons. 

The most commonly used model of DS is the partial trisomic mouse Ts65Dn (TS) (Sturgeon and 

Gardiner, 2011). TS mice replicate many DS phenotypes, including alterations in behavior, 

learning and memory, brain morphology and hypocellularity, neurogenesis, neuronal connectivity 

and electrophysiological and neurochemical processes (Rueda et al., 2012; Bartesaghi et al., 

2011). As in DS and AD individuals, the TS mouse shows age-dependent degeneration, including 

the loss of cholinergic and noradrenergic neurons and increased levels of APP, Aβ peptides and 
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oxidative stress, starting at the age of 6 months (Corrales et al., 2014; 2013; Lockrow et al., 2009; 

Shichiri et al., 2011). However, these animals do not show amyloid plaques or NFTs (see Rueda 

et al., 2012; Rueda et al., 2010; Netzer et al., 2010; Seo et al., 2005; Millan Sanchez et al., 2012). 

TS mice also exhibit increased neuroinflammation due to microglial activation in the hippocampus 

and medial septum and due to the altered expression of inflammatory cytokines in the brain 

(Lockrow et al., 2011; Hunter et al., 2004; Robertson et al., 2012). As in DS, the inflammatory 

events in TS mice can precede, or be simultaneous to, other degenerative processes. Microglial 

activation may play a significant role in cholinergic degeneration and other pathological hallmarks 

of AD, and reducing neuroinflammation may provide protection against neurodegeneration. In 

fact, the administration of minocycline, a synthetic tetracycline with anti-inflammatory properties, 

ameliorates the cognitive deficits and neurodegenerative phenotypes of TS mice (Hunter et al., 

2004). 

In the present study, we have observed increased levels of several pro-inflammatory mediators in 

the hippocampi of 12-month-old TS mice, and we have highlighted the increased levels of IL17A, 

due to its role in mediating brain damage through its potent pro-inflammatory actions (Meares et 

al., 2012; Zimmerman et al., 2013). IL17A is a homodimeric glycoprotein produced by Th17 

helper T cells; furthermore, IL17A participates in the development of autoimmunity, inflammation 

and tumoral immunity and plays a role in the host defense against bacterial and fungal infections 

(Wu et al., 2015; Murugaiyan et al., 2015; Flores-García and Talamás-Rohana, 2012). The 

increased production of IL17 is associated with several inflammatory disorders (Beringer et al., 

2016). However, the role of IL17A in AD pathophysiology is unclear. In a rat model of AD, the 

increased expression of IL17 in the hippocampus after Th17 cell infiltration into the brain 

parenchyma aggravates neuroinflammation and neurodegeneration (Zhang et al., 2013). In 

addition, in the APP/PS1 mouse model of AD, the infiltration of IL17-producing T cells after 

infection with a common human pathogen increases glial activation and amyloid-β deposition 
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(McManus et al., 2014). Conversely, Yang et al. (2017) have demonstrated that intracranial IL17A 

overexpression decreases cerebral amyloid angiopathy in another mouse model of AD. The 

mechanism of action of IL17A in astrocytes, microglia and neurons involves the binding of IL17A 

to its receptor, which activates inflammatory pathways, thereby inducing the expression of pro-

inflammatory genes through a signaling pathway that ends with the activation of the 

transcriptional factor NF-kβ.  NF-kβ is implicated in astrocytosis and microglial activation, inducing 

the expression of other pro-inflammatory cytokines, such as IL6, TNFα, and IL1β, and several 

chemokines (Korn et al., 2009). 

Because of its fundamental role in mediating the brain damage of neuroinflammatory processes 

(Meares et al., 2012; Zimmerman et al., 2013; Korn et al., 2009), blocking this cytokine has 

become a promising strategy for anti-inflammatory therapies. IL17A inhibitors have shown 

beneficial effects in different autoimmune pathologies, such as experimental autoimmune 

encephalitis (Uyttenhove and Van Snick, 2006; Mardiguian et al., 2013) and multiple sclerosis 

(Deif et al., 2013). In addition, the administration of anti-IL17A antibodies reduces inflammation 

and improves the neurological outcomes of different CNS pathologies, such as the recovery after 

stroke, ischemia or encephalic inflammation, in which an important inflammatory component 

exists (Dallenbach et al., 2015; Swardfager et al., 2013; Flores-García and Talamás-Rohana, 

2012; Gelderbrom et al., 2012). Accordingly, here, we have evaluated the effects of anti-IL17 

treatment with an anti-IL17A monoclonal antibody (mAb) on reducing neuroinflammation and on 

improving cognition, neuromorphological alterations and AD-like neurodegenerative features in 

the TS mouse model of DS. 

2. MATERIALS AND METHODS 

 

2.1. Animals and pharmacological treatments 
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Mice were generated by repeated backcrossing of TS females with C57C3HF1 males. To 

determine the presence of the trisomy, animals were karyotyped using real-time quantitative PCR 

(qPCR) as previously described (Liu et al., 2003). C3H/HeSnJ mice carry a recessive mutation 

that leads to retinal degeneration (Rd). Therefore, all animals were genotyped using standard 

PCR to detect the Rd mutation (Bowes et al., 1993). Experiments were conducted using wt/wt or 

Rd1/wt animals. Mice were housed under standard laboratory conditions with an inverted 

dark/light cycle (lights off at 8:00 A.M. and on at 8:00 P.M.). In all experiments, TS mice were 

compared to euploid littermates (CO). 

 

A total of 72 male mice, aged 7 months at the beginning of treatment, were used and assigned to 

one of six experimental groups: CO saline (n=10), TS saline (n=10), CO anti-IL17 (n=13), TS anti-

IL17 (n=13), CO IgG1-C (n=13) and TS IgG1-C (n=13). 

 

The hybridoma cell line MM17F3, which produced a murine IgG1 anti-mouse IL17A mAb, was a 

kind gift from Dr. Jacques Van Snick (Ludwig Institute for Cancer Research, Brussels, Belgium). 

Because polyclonal IgGs may have immunomodulatory activities that are independent of their 

antigen specificities and because polyclonal IgGs have been used to treat different immunological 

disorders, such as immunodeficiencies and various inflammatory autoimmune diseases 

(Zuercher et al., 2016), one group of TS mice and another group of CO mice were treated with a 

mouse IgG1 anti-TNP isotype control mAb (IgG1-C) and used as vehicle control groups. 

 

From 7 to 11 months of age, the mice in the six groups were injected intraperitoneally with saline 

or with 0.5 mg/week (in two injections per week) anti-IL17A or IgG1-C. 
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The behavioral experiments were initiated at 11 months of age and performed for 4 weeks. 

During this period, the animals received anti-IL17A, IgG1-C or saline until the end of the 

behavioral characterization, when they were sacrificed. 

 

In view of the lack of differences between the IgG1-C- and saline-treated groups in the behavioral 

assessment and cytokine analyses, the neuromorphological, APP and Aβ determinations were 

carried out only in CO and TS mice treated with the mAb (vehicle) or anti-IL17A. 

 

2.2. Sacrifice 

 

After completing the behavioral tests, all animals were perfused with saline. To perform 

histological analyses the left hemispheres of 7 animals from the CO IgG1-C, TS IgG1-C, CO anti-

IL17 and TS anti-IL17 groups were fixed overnight in 4% paraformaldehyde, transferred into 30% 

sucrose and frozen on dry ice. 

 

To perform the Western blot, ELISA and array experiments, the right hemispheres of the 7 

animals used for histological analyses and the whole brains of the animals that were used in the 

behavioral battery (but not in the histological experiments) were immediately dissected and 

frozen. 

 

2.3. Cytokine antibody array 

 

One-half of the right hippocampus of each of 10 animals from each of the six experimental groups 

was used to perform a cytokine protein array. Each array was performed on two independent 

groups of 5 mice from each experimental condition. Samples were homogenized, and protein 

concentrations were estimated using the BCA Protein Assay Kit (Pierce, Rockford, IL, USA). For 
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each independent group, a pooled protein extract for each experimental condition was prepared 

in a single tube. The total protein concentration was determined for each mouse to ensure an 

equal amount of protein corresponding to each animal in the prepared mixture. The mouse 

cytokine array (RayBio® C-series Mouse Cytokine Antibody Array C1000; Ray Biotech Inc., 

Norcross, GA, USA) consisted of 96 soluble signaling factors and cytokine antibodies spotted in 

duplicate onto a PVDF membrane. The membranes were blocked with 10% bovine serum 

albumin (BSA) in phosphate-buffered saline (PBS) and subsequently incubated with samples 

overnight at 4 °C. The membranes were washed with buffer supplied by the manufacturer and 

exposed to 500-fold diluted biotin-conjugated anti-cytokine antibodies at room temperature (RT) 

for 2 h. The membranes were then washed, incubated with 1000-fold diluted HRP-conjugated 

streptavidin for 1 h, and immersed for 1 min in a peroxidase substrate solution. For each spot, the 

net density of the gray level was normalized by subtracting the background from the total raw 

density using the Chemidoc XRS system and ImageJ analysis software. For each group of 

animals, the relative levels of each cytokine were calculated. 

 

2.4. Behavioral analysis 

 

2.4.1. Learning and memory 

 

To evaluate spatial learning and memory, the platform-relocation protocol of the Morris water 

maze was used (Saab et al., 2011; Chen et al. 2000; Steele and Morris 1999). This protocol was 

chosen because the Morris water maze is a more difficult task that provides better discrimination 

between cognitive performances in different experimental manipulations. 
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The apparatus consisted of a circular 110-cm-diameter tank filled with water (22-24 ºC) that was 

made opaque by the addition of powdered milk. Inside the tank, a platform was hidden 1 cm 

below the water level. Animals were tested in 12 consecutive daily sessions as follows: eight 

acquisition sessions (platform submerged), followed by four cued sessions (platform visible). All 

trials were videotaped with a camera located 2 m above the water level. The Anymaze 

computerized tracking system (Stoelting, Wood Dale, IL, USA) was used to analyze the mouse 

trajectories and measure the escape latency for each animal in the trial. 

In the acquisition sessions (S1-S8), the platform was hidden 1 cm below the water level. From 

one daily session to the next, the platform was placed in a different location (E, SW, center, and 

NW); each position was used once every four consecutive daily sessions. Each of the eight 

acquisitions and four cued sessions (one per day) consisted of four pairs of trials that were 30-45 

min apart. For each pair of trials, the mice were randomly started from one of four positions (N, S, 

E, W), which was held constant for both trials. The first trial of a pair was terminated when the 

mouse located the platform or when 60 s had elapsed. The second trial commenced following a 

period of 20 s, during which the animal was allowed to stay on the platform. Several fixed cues 

outside of the maze were constantly visible from the pool. 

During the cued sessions, the platform was visible, the water level was 1 cm below the platform, 

and its position was indicated with a flag. Eight trials were performed during each session using 

the same experimental procedure as in the acquisition sessions. The mean latency of all trials in 

all cued sessions is presented. 
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2.4.2. Side effects 

 

2.4.2.1 Motor abilities 

 

Spontaneous activity:  

The Acti-system II device (Panlab, Barcelona) was used to measure daily variations in the 

spontaneous locomotor activity of the animals during a complete 12/12 h light/dark cycle. 

 

Sensorimotor function and motor coordination:  

Sensorimotor function was evaluated with a battery of tests, and motor coordination was 

evaluated with the rotarod test, following the procedures described by Martínez-Cué et al. (2013). 

 

In the visual placing reflex test, cerebellar and vestibular functions were evaluated. In 3 

consecutive trials, mice were gently lowered by the tail toward a flat surface from a height of 15 

cm. The forepaw-extension response was scored on a 0-4 scale [4: forepaws extended when 

placed at the highest level; 3: forepaws extended before the vibrissae touched the surface; 2: 

forepaws extended after the vibrissae touched the surface; 1: forepaws extended after the nose 

touched the surface; or 0: no extension]. 

 

To evaluate auditory sensitivity, the startle response to a sudden auditory stimulus was 

measured. Mice were placed facing the wall of an unfamiliar cage, and the auditory stimulus was 

generated by clapping two stainless steel forceps (7 cm long) together. A score (0-3 points) was 

assigned based on the magnitude of the response: jumping more than 1 cm (3 points); jumping 

less than 1 cm (2 points); retracting the ears (Preyer reflex, 1 point); or no response (0 points). 
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The vibrissa-placing reflex was analyzed by noting the reflexive reaction to touching the vibrissae 

with a cotton stick. In three consecutive trials, a score of 1 was assigned to animals that touched 

the stimulated vibrissae with an ipsilateral paw, and a score of 0 was assigned if no response was 

evident.  

 

Grip strength was assessed by quantifying the resistance to being separated from a lid of 

aluminum bars (2 mm), when dragged by the tail (0: no resistance, total loss of grip strength; 1: 

slight resistance; 2: moderate resistance; 3: active resistance; or 4: extremely active resistance, 

normal grip strength). 

 

To evaluate the equilibrium, four 20-s trials of balance were performed on an elevated (40-cm-

high), horizontal (50-cm-long) rod. Trials 1 and 2 were performed on a flat wooden rod (9 mm 

wide), and trials 3 and 4 were performed on a cylindrical aluminum rod (1 cm in diameter). In 

each trial, the animals were placed in a marked central zone (10 cm) on the elevated rod. A score 

of 0 was assigned if the animal fell within 20 s, 1 if the animal stayed within the central zone for 

>20 s, 2 if the animal left the central zone, and 3 if the animal reached one of the ends of the bar. 

 

The prehensile reflex (three 5-s trials) was measured as the ability of the animal to remain 

suspended by the forepaws by grasping an elevated horizontal wire (2 mm in diameter). The 

maximum possible score of 3 was achieved when the animal remained suspended by the 

forepaws in all three trials (one point per trial). Traction capacity was scored at simultaneously by 

assessing the number of hind limbs that the animal raised to reach the wire (0: none; 1: one limb; 

or 2: two limbs). 
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Motor coordination: rotarod 

Motor coordination was evaluated using a rotarod device (Ugo Basile; Comerio, Italy), which 

consisted of a 37-cm-long, 3-cm-in-diameter plastic rod that rotated at different speeds. In a 

single session, 4 trials with a maximum duration of 60 s each were performed. In the first three 

tests, the rod was rotated at constant speeds of 5, 20 and 40 r.p.m., respectively. The last trial 

consisted of an acceleration cycle, in which the rod rotated progressively faster, and the animal 

had to adapt to the growing demands of the test. The length of time that each animal stayed on 

the rotarod during the acceleration cycle was recorded. 

 

2.4.2.2. Anxiety  

  

Anxiety and general activity in the open field and plus maze tests were evaluated according to the 

procedures described by Martínez-Cué et al. (2013). 

 

Open field:  

Exploratory behavior and anxiety were assessed using a square-shaped open field (55 cm x 55 

cm, surrounded by a 25-cm-tall fence), divided into 25 equal squares. The mice were placed in 

the center of the field, and the number of vertical (rearing) activities and horizontal crossings 

(from square to square, subdivided into center vs. peripheral crossings) was scored in a single 5-

min trial. 

 

Plus maze: 

The elevated plus maze consisted of two closed arms (5 cm x 30 cm, with clear perplex walls that 

were 15 cm high) and two open arms (5 cm wide x 30 cm long) that were raised 40 cm from the 

floor. In a single 5-min trial, the mice were placed in the center of the maze. The trials were 
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videotaped, and the number of arm entries, the time spent in the open and closed arms and the 

initial freezing time were measured with the Anymaze computerized tracking system. 

 

2.5. Histological and stereological procedures 

 

2.5.1. Tissue preparation 

 

The brains were coronally sliced using a cryostat. Fifty- and thirty-µm-thick sections of the 

hippocampal and medial septum areas, respectively, were collected into culture plates as 

previously described (Corrales et al., 2014). 

 

2.5.2. Nissl staining 

 

To calculate the total area of the subgranular zone (SGZ) of each mouse, a randomly chosen 

series was used to perform Nissl staining. The area of the SGZ was measured with the standard 

Cavalieri method using a semiautomatic system (ImageJ v.1.33, NIH, USA, 

http://rsb.info.nih.gov/ij/). 

 

2.5.3. Cell proliferation in the SGZ (Ki67 immunofluorescence) 

 

Slices were initially pre-incubated in phosphate buffer (PB) with 0.5% Triton X-100 and 0.1% 

BSA, and then, immunohistochemistry was performed. Briefly, free-floating slices were incubated 

with primary antibodies (rabbit anti-Ki67 (1:750; Abcam, Cambridge, UK)) diluted in PB with 0.5% 

Triton X-100 and 0.1% BSA (PBTBSA) for two days at 4ºC. Then, slices were incubated 

overnight at 4 ºC with the secondary antibody (donkey anti-rabbit-Alexa Fluor 488 (1:1,000, 
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Molecular Probes, Eugene, OR, USA). The sections were counterstained with 4’6-diamidino-2-

phenylindole (DAPI) and mounted onto gelatin-covered slides to be analyzed and photographed. 

The total number of Ki67-positive cells in the selected sections was counted with the help of an 

optical fluorescence microscope (Zeiss Axioskop 2 plus, 40x objective) using the previously 

described optical dissector method (Corrales et al., 2014). 

 

2.5.4. Mature granule cell count 

 

Mature granule cells in the hippocampal granule cell layer (GCL) were counted in a series of one-

in-nine sections stained with DAPI (Calbiochem, Billerica, MA, USA; 1:1,000) for 10 min in 0.1 M 

PB. Cell counts were performed using a previously described physical dissector system coupled 

with confocal microscopy (Llorens-Martin et al., 2006). Random numbers were generated to 

select the points at which to locate the dissectors. Six dissectors in each section were measured. 

At the selected points, the confocal microscope (Leica SPE, Leica Microsystems, Wetzlar, 

Germany) was directed toward a position previously established randomly inside the GCL. Next, 

at each point, a series of confocal images was serially recorded, keeping to the general rules of 

the physical dissector and the unbiased stereology. The confocal images were then analyzed on 

a computer with the aid of ImageJ software (ImageJ, v. 1.33, NIH, Bethesda, MD, USA, 

http://rsb.info.nih.gov/ij). Every successive pair of images was used, with one considered as the 

reference image and the other as the sample image. Next, the sample image became the 

reference image for the following pair of images, and so on. The cells were counted with the NIH 

ImageJ Cell Counter, labeling each cell on the screen the first appearance of the cell in the series 

of confocal images. The software generated the total number of cells when the dissector brick 

was completed. To count the mature granule neurons in the GCL, the dissector frame was 

configured into the shape of a square situated randomly inside the GCL. The number of cells was 
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then divided by the reference volume of the dissector (this parameter was the volume of a cube 

formed by the area of the frame multiplied by the height of the dissector) to obtain the number of 

cells per unit of volume (cell density). 

 

2.5.5. Immunocytochemical detection of ChAT  

 

The series of brain slices containing the medial septum randomly comprised 1 section out of 

every 6 slices. After inactivation of endogenous peroxidase for 30 min in 3% hydrogen peroxide, 

the slices were washed three times in PBS and blocked for 1 h in PBS containing 20% normal 

donkey serum (NDS) and 0.2% Triton X-100 prior to overnight incubation at RT with a mixture 

containing the primary antibody (goat polyclonal Anti-ChAT, Chemicon/Millipore; Billerica, MA, 

USA; 1:100). After 3 10-min rinses in PBS, the sections were incubated for 2 h in biotinylated 

secondary antibody (anti-goat, Vector Laboratories; Peterborough, UK; 1:250) diluted in 2% NDS/ 

PBS at RT. The sections were rinsed three times in PBS and incubated for 1 h at RT in a 

streptavidin-biotin complex (Vectastain ABC Kit, Vector Laboratories) in PBS for 1 h at RT. 

Following a thorough rinse with PBS, immunohistochemical staining was visualized by incubation 

with 3.3′-diaminobenzidine solution (Vector Laboratories). After immunostaining, the sections 

were mounted on Superfrost plus glass slides, dehydrated, cleared, and coverslipped with 

mounting medium. All ChAT-positive cells in the medial septum area were counted using a Zeiss 

Axioskop 2 plus microscope with a 40X objective. 

 

2.6. Senescence: histochemical detection of senescence-associated β-galactosidase 

 

To estimate the density of senescent cells in the SGZ of the dentate gyrus (DG) in the different 

groups of mice, we used the SA-β-gal (senescence-associated β-galactosidase) method 
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described by He et al. (2013). The hippocampal sections were washed twice with PBS and fixed 

for 15 min at RT with a 0.5% glutaraldehyde solution. Next, the sections were washed and 

incubated with a staining solution containing 5-bromo-4chloro-3-indolyl-β-D-galactopyranoside (X-

gal, Thermo Fisher Scientific, MA, USA) for 24 h at 37 °C, mounted on Superfrost plus glass 

slides, dehydrated, cleared, and coverslipped with mounting medium. The density of SA-β-gal- 

positive cells (showing a blue reaction product over the cell soma) was determined by counting all 

blue cells in the SGZ of the DG of each animal using a Zeiss Axioskop 2 plus microscope with a 

40X objective and dividing this number by the area of the SGZ. 

 

2.7. APP protein and Aβ-peptides levels 

 

The levels of APP protein and Aβ-peptides were measured in cortical and hippocampal tissues of 

TS and CO animals treated with IgG1-C or anti-IL17 (six animals per group) by Western blot and 

ELISA respectively as previously described by Corrales et al, (2013). 

 

2.7.1. APP levels: Western blotting 

 

The cortices and hippocampi from 11-12-month-old animals were dissected and stored at -80 ºC 

for the immunodetection of APP. Whole-cell lysates from the cortex or hippocampus were 

prepared as previously described (Rueda et al., 2010). The total protein content of each sample 

was determined using the method described by Lowry et al. (1951). Identical amounts of total 

protein (10 µg) from each sample were loaded on a 10% sodium dodecyl sulfate-polyacrylamide 

gel, electrophoresed, and transferred to a polyvinylidene difluoride (PVDF) membrane (Bio-Rad, 

Hercules, CA, USA) using a Mini Trans-Blot Electrophoresis Transfer Cell (Bio-Rad). The efficient 

transfer of proteins was confirmed by staining the PVDF membrane with Ponceau red (Sigma-
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Aldrich, St. Louis, MO, USA). Non-specific binding of antibodies was prevented by incubating the 

membranes in TBST buffer (10 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.05% Tween 20) containing 

5% non-fat milk powder. The blots were incubated with the monoclonal mouse primary antibody 

(raised against an N-terminal epitope of APP; 1:2000, Chemicon/Millipore; Billerica, MA, USA) 

diluted in TBST containing 2% non-fat milk powder overnight at 4 ºC. After extensive washing 

with TBST, the blots were incubated with the appropriate peroxidase-labeled secondary antibody 

(1:40.000, Jackson Labs, West Grove, PA, USA) for 1 h at RT in the TBST-dry milk buffer.  

 

After the membranes were washed, immunoreactivity was detected with an enhanced 

chemiluminescence Western blot detection system (ECL Advanced; Amersham-Biosciences, 

Arlington Heights, IL, USA) and visualized with an Image Quant 350 (GE Healthcare). The 

integrated optical densities of the bands were then estimated using Scion Image (Scion, 

Frederick, MD, USA) and normalized to background values. Relative variations between the 

bands of the TS and CO mice were calculated on the same film. Duplicates of each sample were 

run on each gel. At least four independent gels were run for each sample. Measurements were 

within the linear range. To ensure equal protein loading across samples, the blots were reprobed 

with a mouse monoclonal anti-GAPDH antibody. 

 

2.7.2. Quantification of Aβ1-40 and Aβ1-42 in brain tissue 

 

Sandwich Aβ ELISA was used to measure the hippocampal and cortex levels of Aβ1-40 and Aβ1-42 

in 6 animals from each group. Briefly, the tissue samples were weighed and homogenized in 8X 

cold 5 M guanidine hydrochloride buffer (pH 8.0) and incubated for 3 h at RT. Samples were 

diluted with standard dilution buffer (1:10) and centrifuged at 16,000 g for 20 min at 4 ºC to 

remove insoluble material. The supernatant fraction was collected and stored at −80 °C. To 
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quantify the Aβ levels, the supernatant fractions were analyzed with well-established mouse Aβ1-

40 and Aβ1-42 ELISA kits (KMB 3481 and KMB 3441, respectively; Invitrogen, Carlsbad, CA, USA), 

following the manufacturer’s instructions. Analyses were always performed in duplicate. OD450 

values were measured on a microplate reader (Multiskan EX, Thermo Electron Corporation). The 

Aβ1-40 and Aβ1-42 levels were calculated according to a standard curve. 

 

2.8. Statistical analysis 

 

The water maze data of the acquisition sessions (sessions 1-8) were analyzed using two-way 

ANOVA with repeated measures (RM) (‘session’ x ‘genotype’ x ‘treatment’ or ‘trial’ x ‘genotype’ x 

‘treatment’). The rest of the data were analyzed using two-way (‘genotype’ x ‘treatment’) ANOVA. 

The mean values of each experimental group were compared post hoc with Student’s t-tests if 

two groups were compared or with Bonferroni tests if more than two groups were compared. All 

analyses were performed using SPSS for Windows version 22.0. 
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3. RESULTS 

 

3.1. Inflammatory microenvironment in the hippocampus of TS mice: effect of anti-IL17 

treatment. 

 

Because increased neuroinflammation is implicated in AD neuropathology and in the 

characteristic neurodegeneration of DS and TS mice (Wilcock and Griffin, 2013; Hunter et al., 

2004; Robertson et al., 2012; Mulet et al., 2017), we first explored the expression pattern of a 

large panel of soluble immune mediators in the hippocampi of TS mice and CO mice. 

 

Of a panel of 96 immune mediators, only eight were significantly modified in the TS animals. 

Figure 1 shows the expression levels of the cytokines and chemokines that were altered in these 

mice, while Table 1 presents the results of the multivariate analysis of each immune mediator 

selected. 

 

The levels of the pro-inflammatory mediators IL17A, IFN-γ, IL1β, IL15, IL3, MIP3α (Macrophage 

Inflammatory Protein-3), and Granulocyte-colony stimulating factor (G-CSF) were significantly 

higher in the hippocampi of the TS mice than in the hippocampi of the CO animals. In addition, 

the expression of the chemokine CXCL12 was reduced in the hippocampi of the TS compared to 

the hippocampi of the CO mice. 

 

The hippocampal expression of these pro-inflammatory mediators was not modified by the 

chronic treatment of the TS or CO mice with IgG1-C compared to the saline-treated TS or CO 

mice (Table 1). 
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To explore whether the increased expression of IL17A observed in the hippocampi of the TS mice 

was involved in the inflammatory milieu observed in the hippocampi of these animals, we 

determined whether chronic inhibition of this cytokine with the anti-IL17A mAb normalized the 

levels of the cytokines and chemokines that were altered. The administration of anti-IL17A mAb, 

but not of IgG1-C, caused a notable reduction in the hippocampal expression levels of the pro-

inflammatory mediators IL17A, IFNγ, IL1β, IL15, MIP3α and G-CSF in the TS mice (figure 1, 

Table 1). In fact, the anti-IL17A treatment normalized the levels of these inflammatory mediators 

in the TS mice, evidenced by levels that were equivalent to those of the IgG1-C- or saline-treated 

CO mice. However, post hoc comparison showed that anti-IL17 did not modify the levels of these 

inflammatory mediators in the hippocampi of the CO mice (IL17A: p=0.65; IFN-γ: p=0.31; IL1β: 

p=0.55; IL15: p=0.28; IL3: p=0.90; MIP3α: p=0.085; G-CSF: p=0.33; and CXCL12: p=0.07). 

 

3.2. Anti-IL17 administration improved the cognitive performances of the TS and CO mice 

in the Morris water maze without affecting their motor or motivational abilities 

 

The difficulties in escaping from the water maze were greater for the TS animals under all 

treatments than for the CO mice (p<0.001; figure 2A). Anti-IL17 administration improved the 

learning abilities of both the TS and CO animals, as demonstrated by their reduced latencies in 

escaping from the water maze compared with those of the IgG1-C-treated animals of the same 

genotype (p=0.008; figure 2C). In addition, the performances of the TS and CO mice that 

received IgG1-C did not differ from those that received saline (figure 2B). Therefore, the 

treatment with the isotype control IgG1-C did not alter cognition in the animals. 

 

When the learning curves of each pair of groups (differing in phenotype or treatment) were 

analyzed post hoc, a large difference was found between the performance of the IgG1-C-treated 
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TS and that of the CO mice (p<0.001). However, the anti-IL17 treatment reduced these 

differences since the difference between the learning curves of the IgG1-C-treated CO animals 

and anti-IL17-treated TS animals was no longer significant (figure 2C). 

 

Next, the strategy used by the animals to search for the platform, namely, procedural learning, 

was analyzed. The TS animals spent more time swimming in the periphery of the maze than the 

CO animals (p<0.001; figure 2D). However, the time spent by the IgG1-C-treated TS and CO 

mice in the periphery did not differ from the time spent by the saline-treated mice of the same 

genotype (figure 1E), and the anti-IL17 treatment slightly reduced the thigmotactic behavior of 

the mice, although this effect was not statistically significant (p=0.057; figure 2F).  

 

During the cued trials the six groups of animals did not differ significantly in their latency to reach 

the platform when it was visible (figure 2G). In addition, no significant differences were found in 

the swimming speeds of the six groups of animals during the acquisition or cued trials (data not 

shown). Therefore, the differences in performance found between the groups of mice during the 

acquisition sessions were unlikely to be due to changes in their motor or motivational abilities. 

 

3.3. Anti-IL17 treatment ameliorated the deficits in cell proliferation and survival in the TS 

mice, without affecting their CO littermates 

 

The vehicle-treated TS group (TS IgG1-C) showed impaired proliferation in the SGZ of the DG, 

as demonstrated by a reduced density of Ki67+ cells in the area (p=0.012; figure 3B). Chronic 

administration of anti-IL17 increased the density of proliferating cells in the TS group (p=0.049), 

but no effect was evident in the CO group. Although the anti-IL17 treatment did not completely 

rescue the defective proliferation found in the vehicle-treated TS group, the density of proliferating 
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cells in the SGZ did not significantly differ between the anti-IL17-treated TS group and the CO 

vehicle group (p=0.084). 

 

When the number of DAPI+ cells was analyzed, the TS group showed a marked hypocellularity 

(p<0.001). After chronic treatment with anti-IL17, the TS group showed less marked 

hypocellularity, as demonstrated by the slight increase in the density of DAPI+ cells (figure 4), 

although this effect was not statistically significant. 

 

3.4. The cholinergic neurodegeneration and enhanced cellular senescence found in TS 

animals was ameliorated after anti-IL17 administration  

 

The vehicle-treated TS group (TS IgG1-C) showed a decreased density of cholinergic neurons in 

the basal forebrain compared to the CO group (p=0.027; figure 4). However, after treatment with 

anti-IL17, the density of ChAT+ cells become higher in the TS group than in the vehicle-treated 

group of the same genotype, but this effect was not statistically significant. 

 

The IgG1-C-treated TS group also displayed a larger population of cells with a senescent 

phenotype in the hippocampus than the CO group (p<0.01; figure 5). After the anti-IL17 

treatment, the TS group showed a reduction in the density of senescent cells compared to the 

vehicle-treated group; however, this effect was not statistically significant. 

 

Anti-IL17 administration did not modify the density of ChAT+ or senescent cells in the CO mice. 

 

3.5. Anti-IL17 administration normalized the protein expression levels of APP and the Aβ1-

42 peptide in the hippocampi, but not in the cortices, of TS mice 
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The TS group showed enhanced protein levels of APP in the cortex (p<0.001) and hippocampus 

(p=0.001; figure 7A). These levels were reduced by the anti-IL17 treatment in the hippocampi of 

the TS animals (p=0.003) but not in the cortices. 

 

In addition, the TS animals showed enhanced expression of Aβ1-42 in the hippocampi (p=0.023; 

figure 7B) that was completely rescued after the administration of anti-IL17. This treatment also 

reduced the levels of Aβ1-42 in the CO animals (p=0.001). However, the amount of Aβ1-42 found in 

the cortices did not differ significantly between the four groups of mice (figure 7B). 

 

The TS mice also showed increased levels of Aβ1-40 in the hippocampi (p=0.004; figure 7C) and 

cortices (p=0.001). However, chronic administration of anti-IL17 did not reduce the levels of this 

peptide in the TS or CO mice in either the hippocampus or the cortex. 

 

3.6. Side effects: chronic treatment with anti-IL17 did not affect the sensorimotor abilities, 

spontaneous activity, motor coordination or anxiety levels of the TS or CO mice 

 

In the different behavioral tests performed to assess the putative side effects of anti-IL17, the 

IgG1-C- and saline-treated animals achieved similar scores. Because IgG1-C administration did 

not modify the behaviors of the animals in any test (data not shown), we have only presented the 

performance data of the IgG1-C-treated mice and anti-IL17-treated mice.  

 

In the sensorimotor test battery, the aged TS mice demonstrated impaired equilibrium and motor 

coordination (latency to fall and number of crossings) in the coat hanger test. However, chronic 
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anti-IL17 administration did not affect equilibrium or the different reflexes of the motor abilities of 

the TS or CO mice (Table 2). 

 

In addition, the different groups of mice did not differ in the spontaneous activity performed in 

their home cage during a complete 24-hour cycle (dark hours: ‘genotype’, p=0.22; ‘treatment’, 

p=0.38; and ‘genotype x treatment’, p=0.96; light hours: ‘genotype’, p=0.61; ‘treatment’, p=0.19; 

and ‘genotype x treatment’, p=0.54; figure 8A). 

 

Motor coordination in the Rotarod was not affected by the genotype or treatment, as 

demonstrated by the similar latencies in falling from this apparatus that were displayed by the four 

groups of mice during the different constant speeds (20 r.p.m.: ‘genotype’, p=0.60; ‘treatment’, 

F(1,48)=1.11, p=0.29; and ‘genotype x treatment’, p=0.71; 40 r.p.m.: ‘genotype’, p=0.15; 

‘treatment’, p=0.55; and ‘genotype x treatment’, p=0.71; figure 8B) or during the acceleration 

cycle (‘genotype’, p=0.35; ‘treatment’, p=0.59; and ‘genotype x treatment’, p=0.77; figure 8C). 

 

Anti-IL17 treatment did not affect locomotor activity or anxiety in the TS or CO mice. In the open 

field test, there were no significant differences in the total distances traveled by the four groups of 

mice (‘genotype’, p=0.095; ‘treatment’, p=0.91; and ‘genotype x treatment’, p=0.60; figure 9A). 

The apparent anxiety levels were not different between the TS and CO mice under both 

treatments since these mice traveled similar distances in the center (ANOVA: ‘genotype’, p=0.08; 

‘treatment’, p=0.63; and ‘genotype x treatment’, p=0.40) and periphery of the maze (‘genotype’, 

p=0.15; ‘treatment’, p=0.96; and ‘genotype x treatment’:, p=0.75; figure 9A). The four groups of 

mice also displayed similar amounts of vertical activity, namely, attempts to escape from the 

maze (‘genotype’, p=0.62; ‘treatment’, p=0.48; and ‘genotype x treatment’, p=0.56; figure 9B). 
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Finally, in the plus maze test, the anxiety displayed by the animals was not modified by the 

administration of anti-IL17. The TS and CO mice treated with the vehicle or antibody performed 

similar numbers of entries into the open arms (‘genotype’, p=0.20; ‘treatment’, p=0.53; ‘genotype 

x treatment’, p=0.19), performed similar total numbers of entries (‘genotype’, p=0.55; ‘treatment’, 

p=0.65; and ‘genotype x treatment’, p=0.37; figure 10A), had similar durations of initial freezing 

times (‘genotype’, p=0.18; ‘treatment’, p=0.74; and ‘genotype x treatment’, p=0.50; figure 10B) 

and had similar percentages of time spent in the open arms (‘genotype’, p=0.10; ‘treatment’, 

p=0.23; and ‘genotype x treatment’, p=0.52; figure 10C). These results indicated that the anxiety 

displayed by the animals was not affected by the genotypes of the animals or the treatment 

received. 
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4. DISCUSSION 

Neuroinflammation contributes to the progression of cognitive decline in patients with AD and DS. 

In DS, neuroinflammation is an early event that precipitates and aggravates AD neuropathology 

and cognitive decline (Wilcock and Griffin, 2013; Wenk et al., 2000; Griffin et al., 1989). 

Accordingly, in this study, we observed the increased expression of several pro-inflammatory 

mediators in the hippocampi of 12-month-old TS mice. Among these mediators, we focused our 

attention on IL17 due to its role in mediating brain damage through its potent pro-inflammatory 

actions (Meares et al., 2012; Zimmerman et al., 2013). Here, using an anti-IL17 mAb that crosses 

the blood brain barrier (St-Amour et al., 2013), we report that the chronic inhibition of this cytokine 

reduced neuroinflammation, ameliorated cognitive and neuromorphological alterations and 

alleviated AD-like neurodegenerative features in the TS mouse model of DS. In particular, the 

anti-IL17 treatment ameliorated the deficits in hippocampal cell proliferation and survival, 

cholinergic neurodegeneration and cellular senescence. The anti-IL17 treatment also reduced 

hippocampal APP and Aβ1-42 peptide levels in the TS mice. 

The altered expression of pro-inflammatory cytokines and chemokines plays an important role in 

the appearance of AD neuropathological changes associated with the progression of cognitive 

decline in DS (Carta et al., 2002). We have demonstrated that TS mice present an altered 

hippocampal inflammatory milieu characterized by increased levels of pro-inflammatory mediators 

IL17A, IL1β, IFNγ G-CSF, MIP3α, IL3 and IL15, which may play important roles in the 

progression of AD neuropathology and cognitive decline of aged TS mice. Few studies have 

evaluated cytokine and chemokine alterations in the brains of DS mouse models, and these 

studies have reported controversial results. Although Lockrow et al. (2011) reported increased 

levels of IL1β in the hippocampi of TS mice, Roberson et al. (2012) found that the expression 

levels of this pro-inflammatory cytokine were reduced in these animals. Furthermore, some of the 

cytokines and chemokines that we found to be increased in the TS hippocampi of the present 
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study were either unchanged (IL15 or IFNγ) or undetectable (G-CSF and IL17) in the Robertson 

et al. (2012) study. However, consistent with our results, Hallan et al. (2000) observed increased 

levels of IFNγ in the whole-brain homogenates of a Ts16 model of DS. These discrepancies may 

be due to different methods used to quantify these cytokines, the age of the animals or the 

experimental manipulations preceding the assessments reported in the different studies. 

IL17 plays an important role in inflammatory brain disorders, as demonstrated by the increased 

levels of this cytokine in multiple sclerosis (Tzartos et al., 2008), infectious CNS diseases (Guiton 

et al., 2010) and stroke (Shichita et al., 2009; Li et al., 2005). The role of IL17 in mediating brain 

damage in neuroinflammatory processes has been associated with its ability to induce the 

expression of other pro-inflammatory chemokines and cytokines (Zimmerman et al., 2013; 

Meares et al., 2012; Korn et al., 2009). IL17 can work synergistically with IL1β and IFNγ to 

increase the production of other pro-inflammatory mediators (Onishi and Gaffen, 2010). In 

addition, IL1β and IL15, whose levels are increased in the hippocampi of TS mice, can also 

induce the expression of IL17 (Sutton et al., 2006; Ferretti et al., 2003) and potentiate its pro-

inflammatory effects (Flores-García et al., 2012; Ferretti et al., 2003), suggesting the existence of 

positive feedback circuits induced by IL17 and other cytokines (Flores-García et al., 2012). In this 

regard, we show herein that the enhanced expression of IFNγ, IL1β, IL15, MIP3α, G-CSF and 

IL17A observed in the hippocampi of the TS mice is significantly reduced by the chronic 

administration of an anti-IL17A mAb. 

Consistent with the cognitive alterations found in DS and AD and in the mouse models of these 

conditions (see Rueda and Martínez-Cué, 2015; Rueda et al., 2012; Bartesaghi et al., 2011), in 

the present study, aged TS mice displayed profound deficits in their abilities to learn a spatial 

task. Treatment with an anti-IL17A mAb induces protective effects in diverse murine models of 

degenerative and autoimmune neurological diseases, such as ischemic stroke (Gelderblom et al., 

2012) and experimental autoimmune encephalomyelitis (EAE), the most extensively studied 
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experimental model of multiple sclerosis (Uvttenhove and Van Snick, 2006). Consistent with 

these findings, our present study extended these observations to TS mice. Chronic administration 

of anti-IL17 ameliorated the spatial learning deficits of TS mice. This treatment also improved the 

performance of the CO mice in the same test. This beneficial effect is likely due to an 

enhancement in the cognitive abilities and not to an improvement in the motor or motivational 

abilities of the animals since the different groups of mice did not differ in their latency to reach the 

visible platform during the cued trials or in their swimming speed. Further support for this specific 

pro-cognitive effect of anti-IL17 administration comes from the finding that the administration of 

the IgG1-C isotype control did not induce an effect on the performances of the TS or CO animals 

in the water maze. 

In addition, the administration of anti-IL17 to the TS or CO mice did not induce behavioral side 

effects since the sensorimotor abilities, spontaneous activity, motor coordination and anxiety 

levels of the animals remained unaffected. 

Several non-mutually exclusive mechanisms may account for the beneficial effect of the anti-IL17 

treatment on the cognitive abilities of TS mice. Increased neuroinflammation in DS brains 

appears to be mainly mediated by the exacerbation of macrophage activation state 1 (M1) cells 

due to the triplication of some critical inflammatory-associated genes, including RCAN1, CXADR, 

ADAMTS1, ADAMTS5, TIAM1, and IFNGR2 (Wilcock and Griffin, 2013; Wilcock, 2012; Martin et 

al., 2012). M1 macrophages possess potent pro-inflammatory properties, which are characterized 

by the release of reactive oxygen species (ROS) and several cytokines, mainly comprising IFNγ 

and TNFα but also IL1β, IL6 and IL12. The expression of several of these M1 mediators (e.g., 

IL1β and IFNγ) is increased in the hippocampi of TS mice and decreases after anti-IL17 

administration. These findings suggest that the inflammatory profile found in the brains of TS 

mice can be associated with an increased M1 inflammatory response, as occurs in DS brains, 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 
 

30 
 

and that the anti-IL17 treatment may exert its therapeutic activity by modulating M1 macrophage 

polarization and/or activity. 

Neuroinflammation is one of the most potent inducers of the increased levels of APP and Aβ in 

AD and DS. An excess of cytokine production, especially of IL1β, leads to the overexpression of 

APP (Liu et al., 2011; Sheng et al., 1996) and accelerated formation of Aβ plaques (Sheng et al., 

1997). Furthermore, the high production of other cytokines, such as IFNγ, may also act in 

combination with IL1β to increase the production of intracellular Aβ in neurons and astrocytes 

(Blasko et al., 2001). In addition, in AD, activated astrocytes and microglia are located around 

amyloid plaques, which suggests that Aβ activates this inflammatory pathway. Thus, a positive 

feedback mechanism likely exists between pro-inflammatory cytokine production, the Aβ burden 

and the APP level (Wilcock and Griffin, 2013). In DS, the overexpression of the triplicated gene 

APP is accompanied by an increase in IL1β levels and in microglial and astrocytic activation, with 

increases in APP expression (Wilcock and Griffin, 2013; Sheng et al., 1996; Li et al., 1998). Such 

glial activation and cytokine overexpression in DS occurs years before the appearance of Aβ 

plaques (Wisniewski et al., 1985). Although the TS mouse contains an extra copy of the App 

gene, these mice do not develop amyloid plaques; however, these mice display increased 

expression of full-length APP mRNA and protein in the cortex and hippocampus (Corrales et al., 

2013; Rueda et al., 2010; Choi et al., 2009; Seo et al., 2005). Consistent with the enhanced App 

levels found in this study, the present study and numerous studies from other laboratories have 

demonstrated that the hippocampal and cortical levels of both peptides, namely, Aβ1-40 and Aβ1-

42, are increased in TS mice (Corrales et al., 2013; Netzer et al., 2010). These alterations may 

contribute to neuronal and cognitive degeneration in these animals because of the role of these 

peptides in the degeneration of cholinergic neurons. In fact, in normal rodents, cognitive 

alterations can be induced by intracerebral or intracerebroventricular infusion of Aβ peptides into 

the brain (for review, see Lawlor and Young, 2010), and in TS mice, chronic treatment with Aβ-
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lowering drugs restores their cognitive abilities (Netzer et al., 2010). Our present results are 

consistent with roles of inflammatory cytokines, particularly IL17A, in the enhanced expression of 

APP in the brains of TS mice. Indeed, the reduced expression of pro-inflammatory cytokines after 

the administration of anti-IL17 normalized the APP levels in the TS mice and the Aβ1-42 levels in 

the hippocampi of both the TS and CO mice. Because of the role of the Aβ load on cognitive 

deficits and because of the interrelation between Aβ, App and pro-inflammatory cytokine 

production, the enhanced cognitive abilities of the TS mice after anti-IL17 administration might be 

mediated by the ability of anti-IL17 to reduce these cytokines and normalize APP and Aβ levels. 

However, the cognitive improvement in the anti-IL17-treated TS animals was only partial, 

suggesting that other altered mechanisms implicated in their memory impairments are not 

rescued by this treatment. 

Another consequence of neuroinflammation is the exacerbation of neurodegeneration, particularly 

of basal forebrain-cholinergic neurons (BFCN), in AD and DS brains, (Griffin et al., 1989; Wenk et 

al., 2000; Wilcock and Griffin, 2013). In TS mice, several studies have demonstrated an age-

dependent decline in BFCN markers that correlates with cognitive deterioration (Granholm et al., 

2000; Hunter et al., 2004; Seo and Isacson, 2005). TNFα produces retrograde degeneration of 

BFCNs in TS mice. In addition, IL1β induces the synthesis and activity of acetylcholinesterase, 

thus favoring the breakdown of acetylcholine (Li et al., 2000), which plays a fundamental role in 

learning and memory (Levin et al., 1994). Moreover, BFCN degeneration activates inflammatory 

pathways, and thus, neurodegeneration and neuroinflammation also have interactive and 

escalating effects in these animals. In the present study, we found that 12-month-old vehicle-

treated TS mice showed a reduced density of BFCNs. Treatment with anti-IL17 attenuated this 

neuronal loss, although the effect was not very pronounced. These results suggest that reducing 

neuroinflammation is not sufficient to totally prevent cholinergic neurodegeneration in TS animals.  
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In human astrocytes (Bhat et al., 2012) and mouse neurons (Jurk et al., 2012), cells with a 

senescent phenotype, a process that is characterized by permanent arrest of cell proliferation 

(Vidal et al., 2012), may contribute to the dysfunction of the aging brain. Cell senescence is 

mainly induced by enhanced oxidative stress (Zhou et al., 2015; Rodríguez-Sureda et al., 2015; 

He et al., 2013). Fibroblasts with trisomy 21 present signs of premature cell senescence that is 

secondary to increased oxidative damage (Rodríguez-Sureda et al., 2015). Consistent with these 

findings, we have recently demonstrated that the hippocampus of adult TS mice show greater 

amounts of oxidative damage and increased densities of cells with a senescent phenotype 

(Parisotto et al., 2016; García-Cerro et al., 2017). IL17A releases ROS (Huppert et al., 2010), and 

thus, the blockade of IL17A can reduce oxidative stress, preventing the cells from acquiring a 

senescent phenotype. However, in the present study, the anti-IL17 treatment only partially 

attenuated the increased density of hippocampal cells with a senescent phenotype in the TS 

mice. Therefore, this effect cannot account for the pro-cognitive effect of the chronic 

administration of this antibody. 

Neuroinflammation also affects adult neurogenesis and has both detrimental and beneficial 

consequences, which can result in the enhancement and/or inhibition of neurogenesis (see 

Llorens et al., 2014). In particular, increased levels of IL1β or IFNγ, which are elevated in the 

hippocampi of TS mice, decrease proliferation, survival and neuronal differentiation (Fuster-

Matanzo et al., 2013; Villeda et al., 2011). Therefore, the enhanced levels of these pro-

inflammatory mediators might also be partially responsible for the altered neurogenesis found in 

the TS mouse. However, the reduced expression of IL1β and IFNγ after the anti-IL17 treatment 

did not correlate with the effect of this antibody on adult neurogenesis because the impaired 

proliferation found in the TS mice was not completely rescued after anti-IL17 administration. In 

addition, this treatment did not have a profound effect on the survival of hippocampal granular 
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cells. Once again, only a slight recovery from the hypocellularity found in the TS animals was 

evident after anti-IL17 administration. 

The results presented here suggest that IL-17A-mediated neuroinflammation is involved in 

several AD phenotypes in TS mice and provides a new therapeutic target toward reducing these 

pathological characteristics. Furthermore, the fact that the treatment with anti-IL17A mAb 

ameliorates some of these altered phenotypes in this model of DS offers new perspectives for the 

therapy of AD and DS by using anti-pro-inflammatory cytokine antibodies. However, many of the 

putative mechanisms underlying the cognitive abilities of the TS animals were only partially 

affected by chronic anti-IL17A administration, and the improvements induced by this treatment in 

terms of the learning and memory deficits of the TS mice were only partial. Therefore, future 

studies should explore the efficacies of other antibodies targeting other pro-inflammatory 

cytokines, such as IL1β. 
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FIGURE CAPTIONS 

Figure 1. Hippocampal inflammatory milieu of the different groups of mice treated with saline, 

IgG1-C or anti-IL17. Mouse cytokine protein arrays were performed on two identical independent 

groups comprising 5 mice from each experimental group. The figure shows only the pro-

inflammatory mediators with statistically significant differences between the experimental 

conditions. The values correspond to the % change with respect to the vehicle control group. *: 

p<0.05; **: p<0.01, TS vs. CO; Bonferroni tests after significance by ANOVA. 

Figure 2. Mean ± S.E.M. of the latency to reach the platform (A-C), the time spent in the 

periphery of the pool (D-F) during the 8 acquisition sessions and the latency to reach the platform 

during the cued sessions (G) in the Morris water maze of the TS and CO mice treated with saline, 

IgG1-C or anti-IL17. *: p<0.05, **: p<0.01, ***: p<0.001, TS vs. CO; #: p<0.05, ##: p<0.01, IgG1-C 

vs. anti-IL17; Bonferroni tests after significance by ANOVA.  

Figure 3. Representative images of Ki67+ cells (green) in the hippocampi of the TS and CO mice 

(A) and the mean ± S.E.M. of the density of Ki67+ cells (B) in the subgranular zone of the 

hippocampi of the TS and CO IgG1-C- and anti-IL17-treated mice. **: p<0.01, TS vs. CO; 

Bonferroni tests after significance by ANOVA. 

Figure 4. Representative images of DAPI+ cells (A) and the mean ± S.E.M. of the density of 

DAPI+ cells (B) in the DGs of the TS and CO IgG1-C- and anti-IL17-treated mice. ***: p<0.001, 

TS vs. CO; Bonferroni tests after significance by ANOVA. 

Figure 5. Representative images of ChAT immunostaining in the septum (A) and the mean ± 

S.E.M. of the density of ChAT+ cells (B) in the medial septum of the IgG1-C- and anti-IL17-

treated CO and TS mice. *: p<0.05, TS vs. CO; Bonferroni tests after significance by ANOVA. 

http://topics.sciencedirect.com/topics/page/Cytokines
http://topics.sciencedirect.com/topics/page/Protein_microarray
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Figure 6. Representative images of cells with a senescent phenotype (A) and the mean ± S.E.M. 

of the density of β-galactosidase+ cells (B) in the hippocampi of TS and CO IgG1-C- and anti-IL-

17-treated mice. **: p<0.01, TS vs. CO; Bonferroni tests after significance by ANOVA.   

Figure 7. Western blot analysis of APP levels (differences are expressed relative to the values of 

the vehicle-treated CO mice, defined as 100%) (A), ELISA analysis of the Aβ1-42 (B) and Aβ1-40 

(C) levels in the cortices and hippocampi of the vehicle- and anti-IL17-treated TS and CO mice. *: 

p<0.05, ***: p<0.001, TS vs. CO; #: p<0.05, ##: p<0.01, IgG1-C vs. anti-IL17; Bonferroni tests 

after significance by ANOVA. 

Figure 8. Mean ± S.E.M. of the average spontaneous activity of the TS and CO mice treated with 

IgG1-C or anti-IL-17 during 24 hours of the dark-light cycle (A), of the latency to fall from the 

rotarod at different constant speeds (B) and during the acceleration cycle (C). 

Figure 9. Mean ± S.E.M. of the distance traveled in the center and periphery, of the total distance 

traveled (A) and of the number of rearings performed by the TS and CO mice treated with IgG1-C 

or anti-IL-17 in the open field test. 

Figure 10. Mean ± S.E.M. of the number of entries into the open and closed arms (A), the initial 

freezing time (B) and the percentage of time spent in the open arms (C) by the TS and CO mice 

treated with IgG1-C or anti-IL17 in the Plus maze test. *: p<0.05, TS vs. CO; Bonferroni tests after 

significance by ANOVA. 
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Table 1 MANOVA p values (genotype x treatment) for inflammatory mediators in the 
hippocampus of the six animal groups. 
 
Inflammatory 
Mediator 

MANOVA GENOTYPE; 
F (1,6) 

MANOVA TREATMENT 

 IgG1-C; F (1,4) Anti-IL17A; F (1,4) 
 Treatment Genotype x 

treatment 
Treatment Genotype x 

treatment 

IL17A p=0.026 p=0.98 p=0.65 p=0.017 p=0.15 

IFNγ p=0.047 p=0.36 p=0.99 p=0.033 p=0.39 

MIP3A p=0.036 p=085 p=0.73 p=0.007 p=0.46 

IL-1β p=0.04 p=0.95 p=0.67 p=0.039 p=0.74 

IL-3 p=0.012 p=0.50 p=0.02 p=0.57 p=0.66 

IL-15 p=0.004 p=0.98 p=0.28 p=0.001 p=0.003 

G-CSF p=0.002 p=0.91 p=0.068 p=0.023 p=0.72 

CXCL12 p=0.012 p=0.19 p=0.53 p=0.29 p=0.86 
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Table 2. Score of vehicle- and anti-IL17-treated TS and CO mice in the sensorimotor test battery 
 
 

 
 

IgG1-C anti- IL17 F(1,48) 

 CO TS CO TS Genotype Treatment Genotype x 

treatment 

Vision 2.41   

± 0.14 

2.30   

± 0.13 

2.58   

± 0.14 

2.42    

± 0.13 

0.86, 

p=0.35 

1.02, p=0.31 0.02, p=0.87 

Startle reflex 1.00   

± 0.12 

1.53   

± 0.21* 

1.16   

± 0.11 

1.14   

± 0.36 

3.13, 

p=0.08 

0.32, p=0.43 3.74, p=0.06 

Righting reflex 3.00   

± 0.00 

3.00   

± 0.00 

3.00   

± 0.00 

3.00   

± 0.00 

   

Grip strength 2.66   

± 0.22 

2.07   

± 0.23 

2.25   

± 0.27 

2.00   

± 0.23 

2.86, 

p=0.09 

0.86, p=0.35 0.82, p=0.37 

 

 

Equilibriu

m 

Wooden bar 2.25   

± 0.17 

2.00   

± 0.00 

2.66 ± 

0.25 

1.92   

± 0.07* 

10.52 

p=0.002 

1.28, p=0.26 2.56, p=0.11 

Aluminum 

bar 

0.33   

± 0.22 

0.23   

± 0.23 

0.25   

± 0.25 

0.14   

± 0.09 

0.26, 

p=0.61 

0.17,   

p=0.67 

0.00, p=0.99 

Latency, wooden bar 20.00± 

0.00 

20.00 

± 0.00 

20.00± 

0.00 

19.46 

± 0.53 

0.82, 

p=0.37 

0.82, p=0.37 0.82, p=0.37 

Latency, aluminum bar 6.50 ± 

1.08 

4.61 ± 

0.81 

7.16 ± 

1.94 

6.21   

± 1.44 

1.05, 

p=0.30 

0.67, p=0.41 0.11, p=0.73 

Prehensile reflex 2.66   

± 0.25 

2.23   

± 0.23 

2.66   

± 0.14 

2.42   

± 0.20 

2.50, 

p=0.12 

0.21, p=0.64 0.21, p=0.64 

Traction capacity 1.5    ± 

0.59 

1.00   

± 0.35 

1.50   

± 0.43 

1.85    

± 0.49 

0.02 

p=0.88 

0.80, p=0.37 0.37, p=0.93 

 

 

Coat 

hanger 

Latency to 

fall 

 

26.91 

± 6.43 

13.61 

± 5.15 

34.91 

± 7.16 

16.57 

± 5.96 

6.53, 

p=0.01 

0.78, p=0.38 0.16, p=0.68 

Crossings 3.83   

± 0.75 

1.69   

± 0.63* 

4.50   

± 0.92 

2.64   

± 0.76 

6.65, 

p=0.013 

1.08, p=0.30 0.03, p=0.85 

Latency of 

arrival 

33.00 

± 6.28 

37.53 

± 7.62 

25.33 

± 6.23 

35.28 

± 6.76 

1.12 

p=0.29 

0.52, p=0.47 0.15, p=0.69 
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