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Abstract 
 
We propose a method for assessing the accuracy of Pseudo-random Number Sampling Methods 
(PNSMs) for evacuation modelling purposes. It consists of a systematic comparison between 
experimental and generated distributions. The calculated weighted relative error (Ew_rel) is based 
on the statistical parameters as central moments (mean, standard deviation, skewness and kurtosis) 
to shape the distribution. The case study involves the Box Muller transform, the Kernel- 
Epanechnikov, the Kernel-Gaussian and the Picewise linear generating samples from eight 
evacuation datasets fitted against normal, lognormal and uniform distributions. Keeping in mind 
that the Bos Muller method has two potential sources of error (i.e. distribution fitting and 
sampling), this method produces plausible results when generating samples from the three types 
of distributions (Ew_rel < 0.30 for normal, lognormal and uniform distributions). We also fund that 
the Kernel Gaussian and the Kernel Epanechnikov methods are well accurate in generating 
samples from normal distributions (Ew_rel < 0.1) but potentially inaccurate when generating 
samples from uniform and lognormal distributions (Ew_rel > 0.80). Results suggest that the Picewise 
linear is the most accurate method (Ew_rel = 0.01 normal; Ew_rel = 0.04 lognormal; Ew_rel = 0.009 
uniform). This method has the advantage of sampling directly from empirical datasets i.e. no 
previous distribution fitting is needed. While the proposed method is used here for evacuation 
modelling, it can be extended to other fire safety engineering applications.  
 
Keywords: Evacuation modelling, Pseudo-random Number Sampling Methods, Empirical 
evacuation data 
 
1 Introduction 
 
Computer models are being used to simulate, visualize, manipulate and gain information of 
evacuation process. It is greatly accepted that evacuation is a random process due to the variability 
in occupant characteristics, reactions and behaviours [1-4]. A key point is the way current and 
future computer evacuation models address this randomness. Evacuation models may be based 
upon “best fit curves” to represent a set of data. In other words, a distribution giving a close fit is 
supposed to lead to more accurate predictions. This involves two main issues that can increase or 
decrease the deviation of the behaviour of the potential-actual evacuation from the desired 
behaviour of the simulated evacuation. 
 
The first issue is the selection of the appropriate Probability Density Function (PDF) that suits the 
data well. Most computer evacuation models allow the user to introduce random inputs by a 
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defined set of PDFs. Normal, lognormal and uniform are the most commonly used distributions 
[5-13]. Also, other distributions (exponential, polynomial, gamma, beta, triangular, Weibull and 
Gumbel) have been observed in models [5, 8-13]. Some models allow the users to build a PDF 
based on their own sampling [6, 9, 11-14]. In addition, data to shape the random variables in 
evacuation models is scarce and limited. We can find a number of works in the literature collecting 
data [15]. Datasets are usually presented in the following format: average, standard deviation, 
maximum and minimum values. Information such as sample sizes, data collection techniques and 
the background conditions are occasionally provided [16, 17]. Nevertheless, in most cases, neither 
the raw data is available nor the type of PDF is defined. Within this context, the user has two 
options to configure the model for evacuation analysis: 1) choose a PDF (from a library of standard 
distributions available in the model) and use the parameters from the literature (mean, standard 
deviation, max. and min. values) or 2) process and use empirical data. The first choice is commonly 
applied. For instance, the selection of positively skewed distributions for pre-evacuation times and 
normal distributions for walking speeds is suggested in [18-20]. Another approach suggests also 
the use of uniform distributions [21]. The second one is the most plausible choice (process and use 
empirical data) as it uses distributions derived from the scenario of analysis.  
 
The second issue is related with the degree to which a random variable (or a set of random 
variables) within a computer evacuation model conforms to a true value or referent. In other words, 
the way computer evacuation models generate pseudo-random numbers that are distributed 
according to a given probability distribution. Although some works have attempted to address 
uncertainty in evacuation modelling [2, 22, 23], the analysis of Pseudo-random Number Sampling 
Methods (PNSMs) potentially applied to evacuation models has been ignored. Furthermore, to the 
author’s knowledge, current evacuation models do not specify the mathematical and computational 
basis for generating stochastic inputs of the variables. It is well known that the applications for 
random numbers cover several fields such as simulation [24], chemistry [25] or cryptography [26]. 
There are several methods for the assessment of the accuracy and robustness of pseudo-random 
sampling in the literature [26,27]. Studies have focused on randomness testing to analyse whether 
or not the generated data by random number generator (RNG) is “patternless” and therefore the 
RNG used is suitable for a particular application. Evacuation modellers can choose validated 
RNGs from reputable sources. The PNSMs are typically based on the availability of a RNG 
producing numbers X that are uniformly distributed. Computational algorithms are then used to 
manipulate a single random variate, X, or often several such variates, into a new random variate Y 
such that these values have the required distribution. This paper focuses on PNSMs defined here 
as a transformation from an independent uniform sample or samples [0,1] to a sample of another 
given distribution. 
Given the importance of using random variables and understanding the issues associated with the 
inputs and the intrinsic algorithms of models, our primary objective in this paper is to provide a 
comprehensive method for assessing the accuracy of different PNSMs when sampling from 
evacuation datasets. The paper is intended for those involved in evacuation modelling - from model 
users to model developers - to better understand and improve current and future developments.  
 
2 Method 
 
This section presents the analysis of different PNSMs when sampling from evacuation datasets. It 
includes an overview of the proposed method, a description of the evacuation datasets, the PNSMs 
selected and the description of the software developed for the application case. 
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2.1. Overview of the proposed method 
 
Sampling in the statistical sense means to retrieve a value. The value we get is decided by the 
probability distribution we are trying to sample from. Accuracy is defined here as the closeness of 
a modelled/computed value to its “true” value. The “true” value is the value it would have if we 
had perfect information. Hence, we establish the following postulate: the smaller the relative error 
between the shape of the observed distribution and the shape of the generated distribution, the 
more accurate the PNSM used.  
 
Figure 1 shows an overview of the proposed method to assess the accuracy of PNSMs for 
evacuation modelling purposes. It mainly consists of a systematic comparison between 
experimental and generated distributions including both Analytical and Empirical PNSMs. 
Analytical PNSMs are based on algebraic equations using a RNG (Random Number Generator). 
Empirical PNSMs are other non-parametric alternatives for sampling of a random variable based 
on observed data. The accuracy of PNSMs is given by the following two steps. The first step is the 
calculation of the relative error of each statistical parameter (mean, standard deviation, skewness 
and kurtosis):  

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥�𝑚𝑚 = �𝑥𝑥𝑟𝑟−𝑥𝑥𝑔𝑔
𝑥𝑥𝑟𝑟

�           (1) 
 
Where: 
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑥𝑥 – relative error of the parameter x; 
𝑥𝑥𝑟𝑟 – statistical parameter from the observed variable; 
𝑥𝑥𝑔𝑔 – statistical parameter from the generated variable; 
m – the PNSM used. 
 
The second step is the calculation of the weighted relative error of the statistical parameters: 

 
 𝐸𝐸𝑤𝑤_𝑟𝑟𝑟𝑟𝑟𝑟�𝑚𝑚 = 4𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀+3𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆.𝐷𝐷.+2𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆𝑆𝑆+1𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝐾𝐾

10
�
𝑚𝑚

      (2) 
 

Where:  
 
𝐸𝐸𝑤𝑤_𝑟𝑟𝑟𝑟𝑟𝑟 – weighted relative error; 
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑀𝑀 – relative error of the mean value; 
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆.𝐷𝐷. – relative error of the standard deviation value; 
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑆𝑆 – relative error of the skewness value; 
𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝐾𝐾 – relative error of the kurtosis value. 

 
The coefficients in equation (2) are based on the order of statistical parameters as central moments 
and their importance as estimators of a given distribution (4 mean, 3 standard deviation, 2 
skewness and 1 kurtosis).  
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Fig. 1. Overview of the proposed method for assessing the accuracy of different PNSMs.  

 
2.2. Datasets 
 
As mentioned, data to shape the random variables in evacuation models is scarce and limited. A 
deliberate effort was made to use representative datasets derived from evacuation experiments and 
fire drills conducted in different evacuation scenarios: passenger train, school building and 
transport station. Given the practical scope of this paper, datasets corresponded to several 
variables, with different sample sizes and fitted against different distributions. The datasets used 
are already published and further information can be found in the references of each experiment. 
However, the data are presented in this section independently, given the different possible uses of 
this data. We also describe the collection techniques and the background conditions to better 
understand how the data was obtained.  
 
The fire drills in passenger trains consisted of a relocation procedure inside the train (coach by 
coach) and the evacuation by a single exit once the train has stopped (see Figures 2 and 3). The 
Drill 1 and the Drill 2 involved 83 and 218 participants respectively. Participants were railroad 
employees. They had no luggage, but could gather personal belongings and carry them out during 
the drills [28, 29]. Video-cameras were used to capture passengers’ behaviours. Video images 
were collected at a frequency of 30 frames/sec and were analysed using the Avidemux 2.5.2 
software that allows the footage to be manually advanced frame by frame. The data collected 
consisted of the response time (tres1), the stop time (tstop), the exit time (texit) and the walking speed 
within the aisle (Saisle). The response time (collected from Drill 1) is defined as the time from the 
moment at which the evacuation is announced (alarm) through public address system until the 
passenger is stood up and starts the preparation activities. The stop time (collected from Drill 1) is 
the time spent by some passengers blocking the aisle to collect belongings, wait others, etc. The 
exit time (collected from Drill 2) is the time spent by each passenger to negotiate the train steps.  
Finally, the walking speed within the aisle (collected from Drill 2) is defined as the unimpeded 
walking speed of each passenger through the aisle inside the train. Collected from Drill 2. Figure 
4 shows the histograms of the observed data.  
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Fig. 2. Evacuation procedures applied to Drill 1 and Drill 2. Only one exit was used in both evacuations.  

 

 
Fig. 3. Relocation procedure onboard the train and evacuation of passengers to the walkway inside the 

tunnel during the evacuation Drill 2.  
 

  
a) Response time b) Stop time 

  
c) Exit time d) Walking speed within the aisle 

Fig. 4. Histograms of observed variables during evacuation from passenger trains. 
 

The analysis also included datasets collected during a semi-announced evacuation trial in a school 
building [16, 17] (i.e. students had no warning, while the teaching staff had some prior warning in 
the trial). The video-cameras were positioned at ceiling height to improve the vantage point and 
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reduce the impact of the cameras on the evacuation process (see Figure 5). Video images were 
analysed frame by frame using the Avidemux 2.5.2 software as well. Figure 6 shows the 
histograms of the observed response times and walking speeds downstairs. Datasets consist of the 
response time (tres2) defined as the time from the alarm to the child is stood up and starts evacuation 
movement (students from 6 to 7 years old) and the walking speed downstairs (Sstair) defined as 
walking speed of each child on a stair (students from 12 to 16 years old).  
 

 
Fig. 5. Snapshots of students (6-7 years old) inside a classroom when the alarm went off and students 

(12-16 years old) walking downstairs during the evacuation trial in the school building. 
 

  
a) Response time b) Walking speed downstairs 

Fig. 6. Histograms of observed response time in a classroom (students 6-7 years old) and walking speed 
downstairs (students 12-13 year sold) during the evacuation trial in the school building. 

 
We also use datasets from evacuation trials in an underground bus concourse [30]. Participants 
were recruited by a casting agency. They were told that they were going to take part in transport 
comfort and mobility tests. Each participant was given a slip of paper with the number of a 
boarding gate to go and was instructed to remain there. When all participants were at their 
respective location, the alarm went off. The trials were finished when all participants had 
evacuated the bus concourse trough the available emergency exits (see Figure 7).  
 
Two response time data samples were selected from the 15 trials conducted, namely tres3 and tres4. 
Here, the response is also defined as the time from the sounding of the alarm (voice message) to 
deliberate evacuation movement(s). Figure 8 shows the histograms of the response time variables 
(tres3 and tres4).  
 
Table 1 summarizes the statistical characteristics of the data samples used (mean, standard 
deviation, kurtosis and skewness).  
 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fr
eq

ue
nc

y

Time [s]

tres2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Fr
eq

ue
nc

y

Walking speed [m/s]

Sstair



7 
 

 
Figure 7. Participants evacuating the bus concourse during the evacuation experiments in a multimodal 

station. 
 

  
Fig.8. Histograms of observed response times in the station. 

 
Table 1. Statistical characteristics of the observed evacuation datasets used for the analysis.  

 
Scenario Passenger trains School Station 

Variable tres1 tstop Saisle texit tres2 Sstair tres3 tres4 

# data-points 79 48 88 74 29 104 25 25 

Mean 11.91 4.37 0.99 2.27 5.27 1.00 26.44 26.51 

Standard deviation 16.25 2.14 0.27 1.27 1.26 0.18 7.63 10.72 

Kurtosis 2.74 1.32 0.20 1.45 0.38 0.37 -0.14 -0.14 

Skewness 8.07 1.98 -0.60 2.48 -0.22 -0.55 -0.51 -1.59 
 
The statistical treatment of the samples described allowed the probability distribution laws to be 
obtained. For assessing whether a given distribution is suited to dataset, the following Goodness-
of-fit tests and their underlying measures were used: the D’ Agostino’s K-square normality test 
(Omnibus K2 statistic) [31,32], the Hypothetical log-normal test applying the normality test 
(yi=ln(xi)) and the Modified Anderson-Darling test for Uniformity (modified normality test) [33]. 
Specific tests were considered because they have more power.  
 
Table 2 shows the results of the Goodness-of-fit tests conducted. Data from tres1, tstop and texit 
variables fitted against lognormal distribution, and data of Saisle, Sstair and tres2 variables fitted 
against normal distribution and data of tres3 and tres4 variables fitted against uniform distribution. 
 

Table 2. Results of the Goodness-of-fit tests for the selected evacuation variables.  
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Scenario Passenger trains School Station 

Variable tres1 tstop texit Saisle tres2 Sstair tres3 tres4 

# data-points 79 48 74 88 29 104 25 25 

Test D’ Agostino’s K2 
normality test 

Hypothetical log-normal test 
applying D’ Agostino’s K2 

normality test 
Anderson-Darling 

Critical value (α=0.05) K2
(crit) = 5.991 A2

(crit) = 2.492 

Statistic 0.816 0.088 4.415 2.031 1.012 4.434 1.246 1.632 

Distribution Law^ LN LN LN N N N U U 

^ Distribution Law: fitted against Normal (N), Lognormal (LN) or Uniform (U) distribution. 
 
2.3. Selected PNSMs 
 
As mentioned, PNSMs are defined as a transformation given a source of uniformly distributed 
random numbers [0,1] generated by RNGs to a sample of another given distribution. There are 
several PNSMs in the literature. Note that the aim of this study was to test the validity of the 
proposed method. The criteria for selecting the PNSMs for this analysis was based on authors 
judgment but considering representative methods of both analytical and empirical approaches for 
generating samples from normal, lognormal and uniform distributions. Note that the proposed 
method can be applied to other PNSMs. 
 
2.3.1 Analytical methods 
 
Generation of normally distributed numbers 
 
Analytical methods are based on algebraic equations to generate normal random variables 
involving the use of a RNG (Random Number Generator) that provides a sequence of uniform 
random variables on [0,1]. There are 4 main ways of converting them into N (0,1): the Box-Muller 
method [34], the Inverse CDF transformation [34], the Marsaglia’s polar method [36] and the 
Marsaglia’s ziggurat method [37]. Although all available PNSMs are suitable for the proposed 
method, we selected the Box Muller transform. This method was developed as more 
computationally efficient alternative to the inverse transform sampling method and it is commonly 
used for generating normally and log normally distributed numbers and very similar to Marsaglia’s 
polar method.  
 
The Box Muller takes R1 and R2, two independent uniformly distributed random variables on [0,1] 
and defines: 
 
𝑧𝑧 = �−2ln (𝑅𝑅1) ∙ cos (2𝜋𝜋𝑅𝑅2) (3) 

 
Where: 
𝑧𝑧 – random number normally distributed (mean 0 and standard deviation 1); 
𝑅𝑅1,𝑅𝑅2- two different random numbers uniformly distributed between 0 and 1 (generated by the 
RNG). 
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Then, to generate a random input from a normal distribution with specific statistical parameters: 
 
𝑦𝑦 = 𝑠𝑠 ∙ 𝑧𝑧 + 𝑚𝑚 (4) 

 
Where: 
𝑦𝑦 – random variable from a specific normal distribution (mean m and standard deviation s); 
𝑚𝑚 – mean value of the normal distribution; 
𝑠𝑠 – standard deviation of the normal distribution; 
 
Generation of log-normally distributed numbers 
 
It is well known that a lognormal distribution function is a continuous probability distribution of 
a random variable with a logarithm normally distributed: 
 
𝑥𝑥 = ln (𝑦𝑦)  (5) 

 
Where: 
𝑥𝑥 – random variable from a specific lognormal distribution (mean µ and standard deviation σ); 
𝑦𝑦 – random variable from the specific normal distribution (mean m and standard deviation s). 
 
Based on this relationship, the method defined in the previous section can be applied for generating 
Lognormal distributions. However, the following transformations will be employed to get the 
mean m and standard deviation s values from the normal distribution. 
 
𝑚𝑚 = ln 𝜇𝜇 −  1

2𝑙𝑙𝑙𝑙�1+𝜎𝜎
2

𝜇𝜇2
�

   (6) 

 

𝑠𝑠 = �𝑙𝑙𝑙𝑙 �1 + 𝜎𝜎2

𝜇𝜇2
�  (7) 

 
Where: 
𝜇𝜇 – mean value from the lognormal distribution; 
𝜎𝜎 – standard deviation value from the lognormal distribution; 
𝑚𝑚 – mean value from the normal distribution (obtained from the Lognormal distribution); 
𝑠𝑠 – standard deviation value from the normal distribution (obtained from the lognormal 
distribution). 
 
Generation of uniformly distributed numbers 
 
The selected method is based on the RNG to generate a random number R uniformly distributed 
[0,1]. The following transformation is considered to obtain a random input from a uniform 
distribution between a minimum value a and a maximum value b: 
 

𝑦𝑦 = 𝑅𝑅 ∙ (𝑏𝑏 − 𝑎𝑎) + 𝑎𝑎 (8) 
 
Where: 
𝑦𝑦 – Number uniformly distributed between a and b. 
 
 

http://en.wikipedia.org/wiki/Probability_distribution
http://en.wikipedia.org/wiki/Random_variable
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Normal_distribution
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2.3.2 Empirical methods 
 
There are also non-parametric alternatives to generate pseudo-random numbers directly from 
evacuation datasets, namely Empirical methods. In other words, no previous distribution fitting is 
needed. Here we describe those methods selected for the case study; the Piecewise linear [38], the 
Kernel-Gaussian and the Kernel-Epanechnikov [39]. 
 
Piecewise linear function 
 
Given a sample data x - from drill, experiment or actual emergency-: 
 

𝑥𝑥 = {𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛−1 } 
 
The Piecewise linear function F(x) is composed of straight-line sections (see Figure 9) with CDF 
values calculated by  
 
𝑓𝑓𝑖𝑖 = (𝑖𝑖 + 0.5)/𝑛𝑛         0≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1) 
 
and a random number Ri uniformly distributed on interval [0,1] is possible to choose a series k, 
such that:  
 
𝑓𝑓𝑘𝑘−1 ≤ 𝑅𝑅𝑖𝑖 ≤ 𝑓𝑓𝑘𝑘 (9) 

 
the expression for generating a random variable y from the sample data x is: 
 

𝑦𝑦𝑖𝑖 = 𝑥𝑥𝑘𝑘−1 + (𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1)(𝑛𝑛𝑅𝑅𝑖𝑖 + 𝑘𝑘 + 0.5)  (10) 
 

 
Fig. 9. Piecewise linear estimation for X variable. 

 
Kernel estimation  
 
Equation (10) shows the general expression for the generation of a random input by using a Kernel 
estimation: 
 

𝑓𝑓𝑛𝑛� (𝑥𝑥) = 1
𝑛𝑛
∑ 𝐾𝐾ℎ(𝑥𝑥 − 𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1   (11) 

 
Where: 
𝑛𝑛 – the size of the initial sample whose PDF is estimated; 
𝑥𝑥 = {𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2, … . , 𝑥𝑥𝑛𝑛−1 } - the initial sample; 
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𝐾𝐾ℎ - Kernel function; 
ℎ - bandwidth. 
 
and 

𝐾𝐾ℎ(𝑥𝑥 − 𝑥𝑥𝑖𝑖) = 1
𝑛𝑛ℎ
𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
�  (12) 

 
We propose the analysis of the following kernel functions: 
 
Gaussian: 

𝐾𝐾(𝑈𝑈) = 1
√2𝜋𝜋

𝑒𝑒−
1
2𝑢𝑢

2
  (13) 

 
Epanechnikov. 

𝐾𝐾(𝑈𝑈) = 3
4
 (1 − 𝑈𝑈2) ∙ 1(|𝑈𝑈|≤1)  (14) 

 
Based on the previous equation, the generation of stochastic inputs from an estimated PDF through 
Kernel is implemented to generate a random number j between [1, n] and to generate a random 
number fitted to the Kernel function – Gaussian or Epanechnikov - centred in xj. Firstly, the 
bandwidth is obtained according to Silverman’s rule of thumb to minimize the AMISE (asymptotic 
mean integrated squared error) as [40]: 

 
ℎ = 1.06 𝑠𝑠

𝑛𝑛0.2 – Gaussian (15) 
 

ℎ = 2.34 𝑠𝑠
𝑛𝑛0.2 – Epanechnikov (16) 

 
Secondly, the random input yi using the corresponding Kernel is obtained as Gaussian and 
Epanechnikov. For Gaussian:  

 
𝑦𝑦𝑖𝑖 = ℎ𝑁𝑁𝑖𝑖 + 𝑥𝑥𝑗𝑗   (17) 
 
Where: 
𝑁𝑁𝑖𝑖 – random number normally distributed between 0 and 1 (using Box-Muller transform). 

 
For Epanechnikov, considering: 
 
𝐾𝐾(𝑈𝑈) = 𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
� = 3

4ℎ
 �1 − (𝑥𝑥−𝑥𝑥𝑖𝑖)2

ℎ2
�   (18) 

 
Based on equation (18) and solving the corresponding integral, the generation of the random input 
𝑦𝑦𝑖𝑖 using Kernel –Epanechnikov is completed thusly: 
 
𝑦𝑦𝑖𝑖 = ℎ𝐸𝐸𝑖𝑖 + 𝑥𝑥𝑗𝑗     (19) 
 
Where: 
𝐸𝐸𝑖𝑖 = 2𝑠𝑠𝑠𝑠𝑠𝑠 �1

3
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(2𝑅𝑅1𝑖𝑖 − 1)�; (20) 

𝑅𝑅1𝑖𝑖 – Random number normally distributed between 0 and 1 (using Box-Muller transform). 
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2.4. Software for PNSMs accuracy 
 
As mentioned, the smaller the relative error between the shape of the observed distribution and the 
shape of the generated distribution, the more accurate the PNSM. To test this, we developed a 
software in C# Object Oriented Programming language by using Visual Studio. As Figure 10 
shows, the software operates following four main steps. In the first step, the software imports and 
processes statistically the experiment data. The software provides distribution fitting and estimated 
central moments. It uses the following Goodness-of-fit tests (α = 0.05): D’ Agostino’s K-square 
normality test, Hypothetical log-normal test applying the normality test and Anderson-Darling 
uniformity test (modified normality test). In the second step, the software generates samples of 
data using each PNSM described in section 2.3 (i.e. based on distribution parameters). The RNG 
used by the software is based on the modified version of Donald E. Knut’s subtractive random 
generator algorithm [24]. In the third step, the software calculates the relative error for the 
statistical parameters described in equation (1). Finally, in the fourth steps the software calculates 
the weighted relative error for each PNSM based on the order of the statistical parameters as central 
moments (4 mean, 3 standard deviation, 2 skewness and 1 kurtosis) as described in equation (2).   
 

 
Fig. 10. Model flowchart for assessing the accuracy of different PNSMs. 

 
3 Results  
 
The software allows generating preudo-random numbers with different sample sizes. A previous 
analysis was conducted to check the sensitivity of results to number of data under consideration. 
Sample sizes of 250, 500, 1.000 and 1.500 were generated to do an explanatory check of if (and to 
what extend) this affects results. The absolute errors for the weighted relative errors produced 
when compare 250 and 1.500 are presented in Table 3. It is apparent from Table 3 that very few 
differences are produced with different sample sizes except for the variable tres1 by using the Box 
Muller method. Despite the changes in the generated sample size is out of the purpose of this paper, 
this comparison helps drawing more solid conclusions in the following results.  
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According to the Law of Large Numbers, the larger the sample size the narrower the confidence 
interval of the central moments (mean, standard deviation, skewness and kurtosis). The dedicated 
software was used for generating samples using each PNSMs: the Box-Muller, the Piecewise 
linear, the Kernel-Gaussian and the Kernel-Epanechnikov. The results presented here correspond 
to a generated sample sizes of 1.500 values. The distributions were statistically analysed and the 
relative errors for the central moments were calculated to compare the accuracy of the selected 
PNSMs. 
 

Table 3. Absolute errors of the weighted relative errors comparing generated samples of 250 and 1.500 
values (BM = Box Muller transform; PL = Piecewise linear; KG = Kernel-Gaussian; KE = Kernel-

Epanechnikov). Cells in grey show relative errors higher than 1. 
 

PNSM tres1 tres2 tres3 tres4 Saisle Sstair texit tstop 
BM 0.491 0.009 0.007 0.002 0.002 0.004 0.059 0.037 
PL 0.007 0.000 0.002 0.005 0.000 0.002 0.008 0.004 
KG 0.003 0.002 0.008 0.001 0.002 0.003 0.004 0.000 
KE 0.004 0.003 0.004 0.004 0.001 0.000 0.003 0.000 

 
Table 4 shows the relative errors of central moments. All PNSMs produce accurate (and precise) 
values for the means with relative errors between 0 and 0.030. The higher relative errors are 
produced by Kernel-Gaussian and the Kernel-Epanechnikov methods for the standard deviations 
of response time variables tres1, tres3 and tres4 with values ranged from 3.465 to 6.337. This is 
possibly due to the use of Silverman’s rule of thumb to minimize the AMISE (asymptotic mean 
integrated squared error). While this rule of thumb is easy to compute, it should be used with 
caution as it can yield widely inaccurate estimates when the density is not close to being normal. 
 

Table 4. Relative errors of central moments (mean, standard deviation, skewness and kurtosis) for 
the PNSMs (BM = Box Muller transform; PL = Piecewise linear; KG = Kernel-Gaussian; KE = 

Kernel-Epanechnikov). Cells in grey show relative errors higher than 1. 
 

 

Response time (tres1) 

 BM PL KG KE 

ErelM 0.001 0.000 0.030 0.004 

ErelSD 0.037 0.008 6.337 6.249 

ErelS 0.470 0.011 0.999 0.998 

ErelK 2.239 0.001 1.004 1.102 

 

Stop time (tstop)  
BM PL KG KE 

ErelM 0.001 0.005 0.000 0.000 

ErelSD 0.004 0.012 0.486 0.474 

ErelS 0.400 0.400 0.693 0.698 

ErelK 1.498 0.237 0.808 0.941 
  

 

Exit time (texit) 

 BM PL KG KE 

ErelM 0.001 0.002 0.000 0.001 

ErelSD 0.004 0.003 0.140 0.136 

ErelS 0.177 0.035 0.344 0.347 

ErelK 1.072 0.088 0.443 0.464 
 

Walking speed within aisle (Saisle) 

 BM PL KG KE 

ErelM 0.000 0.001 0.000 0.001 

ErelSD 0.003 0.001 0.005 0.006 

ErelS 1.021 0.019 0.024 0.015 

ErelK 0.959 0.025 0.030 0.038 
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Response time (tres2) 

 BM PL KG KE 

ErelM 0.000 0.000 0.000 0.000 

ErelSD 0.003 0.002 0.223 0.219 

ErelS 1.013 0.005 0.466 0.472 

ErelK 0.919 0.156 0.573 0.091 
 

Walking speed downstairs (Sstairs) 

 BM PL KG KE 

ErelM 0.000 0.000 0.000 0.000 
ErelSD 0.004 0.003 0.000 0.002 
ErelS 0.981 0.018 0.004 0.008 
ErelK 0.944 0.033 0.025 0.005 

  

 

Response time (tres3) 

 BM PL KG KE 

ErelM 0.001 0.000 0.000 0.002 
ErelSD 0.004 0.006 3.528 3.465 
ErelS 1.021 0.036 0.985 0.987 
ErelK 1.310 0.022 0.961 0.496 

 

Response time (tres4) 

 BM PL KG KE 

ErelM 0.000 0.001 0.002 0.001 
ErelSD 0.003 0.004 5.280 5.211 
ErelS 0.999 0.028 1.063 0.988 
ErelK 0.259 0.010 0.979 0.491 

 
Figure 11 compares the weighted relative errors (Ew_rel) produced by each PNSM when sampling 
from the observed variables. The Kernel-Gaussian and the Kernel-Epanechnikov methods are less 
accurate for tres1, tres3 and tres4 variables with Ew_rel > 1 while the Box Muller transform method 
produces Ew_rel ranged from 0.2 to 0.7. The Piecewise linear method is most accurate and produces 
Ew_rel = 0 for tres1, tstop, texit, Saisle and Sstair variables, Ew_rel = 0.1 for tres3 and tres4 variables and Ew_rel 
= 0.4 for tres2 variable. 
 

 
Fig.11. Weighted relative errors produced by the PNSMs when generating samples from the selected 

variables. 
Figure 12 shows the accuracy of the PNSMs according to the type of distribution. As expected, 
the Kernel-Gaussian and the Kernel-Epanechnikov methods are the most accurate in sampling 
from normal distributions (Ew_rel =0.06 and Ew_rel = 0.07 respectively). Nevertheless, the Ew_rel 
values produced by these two methods increase dramatically when sampling from uniform and 
lognormal distributions. The Piecewise linear method is the most accurate in sampling from 
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lognormal (Ew_rel =0.04) and uniform distributions (Ew_rel = 0.009) and it is the only method that 
produces Ew_rel values below 0.15 for the three types of distributions. On the other hand, the Box 
Muller method produces Ew_rel values between 0.23 and 0.29 when sampling from the three types 
of distributions. It is important to note that this method involves two potential sources of error 
related with 1) the goodness-of-fit and 2) the pseudorandom numbers generation.  
 

 
Fig.12. Weighted relative errors produced by the PNSMs when generating samples from normal, 

lognormal and uniform distributions.  
4 Discussion  
 
The evacuation analysis using computer modelling and simulation involves random variables. This 
work is a novel contribution for assessing degree of exactness of different PNSMs when sampling 
from evacuation datasets. The method is based on the comparison between experiment and 
generated distributions. We focus on the statistical parameters as central moments to describe 
(shape) a given distribution (mean, standard deviation, skewness and kurtosis). It should be noted 
that this method could be employed to other fire safety engineering applications. The method was 
applied to eight empirical data samples derived from evacuation experiments and fire drills (3 
samples were normally distributed, 3 lognormally distributed and 2 were uniformly distributed).  
 
As expected, the accuracy of the PNSMs varied. The Kernel-Gaussian and the Kernel-
Epanechnikov methods are accurate when sampling from normal distributions but potentially 
inaccurate when sampling from other distributions. The principal finding of this study is that the 
Piecewise linear method is the most accurate method for data samples used and showed a better 
fit with normal, uniform and lognormal distributions. This method is simple and no previous 
distribution fitting is needed. Therefore, the Piecewise linear is suggested here for evacuation 
modelling and future developments as long as the model user/developer can have access to 
empirical (raw) data. Otherwise, analytical methods such as the Box Muller transform method can 
provide plausible estimations.  
Note that this method is likely to produce errors when used for normal and lognormal distributions: 
1) the error derived from the previous goodness-of-fit test conducted and 2) the error derived from 
sampling from the distribution.  
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Although we feel that the results of the present study are promising, there are some limitations in 
relation to the number of PNSMs used and the number of datasets studied and their relatively 
limited sample size. Care should be taken, however, in generalizing from these findings since the 
use of other (hopefully larger) datasets may lead to different results.  
 
Future research should conduct more tests using the proposed method involving more data samples 
and PNSMs exploring the generated sample sizes to improve current and future computer 
evacuation models. For instance, some methods may show a better fit with data-sets of different 
sizes. 
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