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ABSTRACT: 

Recent advances in the fabrication and characterization of nanomaterials have led to 

intelligible applications of such nanomaterials in next generation flexible electronics and highly 

efficient photovoltaic devices. Nano devices are moving on a path toward smaller designs. This 

idea helps scientists to extend the efficiency of nano devices such as antennas, sensors and nano 

robots. On the other hand, the excellent electron transport property of Graphene makes it an 

attractive choice for next generation electronics and applications in nanotechnology. In this paper 

we present a mathematically analyze of Carbon Nanotubes (CNT) based Nano antennas 

(Nantennas) and further we present some applications regarding to a novel design in scale of nano 

meter. 
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Chapter 1 : INTRODUCTION 

1.1 Introduction 

Nowadays, generating electricity is one of the most important tasks in human’s life. Balancing 

the power generation and demand lays among highest priorities in countries’ agenda [1]. Klass 

model is a method to approximately calculate the time takes for fossil fuels to be consumed.  

According to this model with some modifications, the depletion times for oil, coal and gas are 

about 35, 107 and 37 years, respectively [2]. Lack of fossil fuels in near future, environmental 

pollution caused by burning of fossil fuels, the lack of water needed in power plants, severe 

weather in remote places and difficulties in transmitting electricity all over the world have made 

us resort to distribute generation (DG) and using renewable resources instead of fossil fuels to 

cover the energy demand. 

There are many researches going on finding a better way to produce electricity or making 

current method more efficient; so that we can replace it with the traditional ways. Sun radiation 

including heat and visible light, biomass and wind have been gathered more attention among other 

resources since mathematically, the amount of power that can be gathered from this resources are 

much higher than other renewable resources such as geothermal “Exergy is the expression for loss 

of available energy due to the creation of entropy in irreversible systems or processes” [3]. Exergy 

calculation is an important tool to see what renewable resource is more sustainable. Regarding to 

this, it is necessary to point out gathering the energy from sun is not as sustainable as wind or 

biomass heat, but since sun is more accessible in rural area, it is considered as the best renewable-

based energy generation in most remote places [4]. Also one of byproducts of generating electricity 

with biomass is N2O, a greenhouse gas with 100 years average global warming potential (GWP) 

which is about 296 times greater than same amount of CO2 GWP [5].  

Mathematical models and fabrication in this area are based on the limits of technology in 

previous decades. Over time, advances in technology, especially in nanotechnology area has 

pushed these limits more and more away. For instance, the frequency limits of diodes or other 

elements in electrical circuits, made us to work with a range of frequency. Now this range has been 

expanded and by this, we can work in higher energy range: 
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E (j) = h (𝑗. 𝑠) × f (Hz)    (Equation 1) 

Where “E” is energy (j), “h” is plank’s constant (6.62×10-34 j.s) and “f” is the frequency (Hz). 

By these advancements, there are significant improvements in converters, inverters, switches 

and other fundamental devices that are used in mentioned power generation method. Another 

example is the wind turbines. Recent advancements in rotors, control systems, electronics circuits 

and gearboxes of windfarms, have led us to achieve better efficiency in output power. 

1.2 Sun, the biggest energy source in the Solar System: 

The Sun is located in the center of our solar system and other stars in solar system orbit the 

Sun. it is known as the biggest energy source in Solar System. Sun’s energy is being released in 

the form of sunlight with varied frequency range. This energy supports almost all life on Earth. 

The Sun is composed of hydrogen (about 74% of its mass, or 92% of its volume), helium (about 

25% of mass, 7% of volume), and small amount of other elements. It has a surface temperature of 

approximately 5500 (K). Sunlight is the main source of energy to the surface of Earth. The solar 

constant, which is the amount of power Sun irradiance per unit area, is about 1370 watts per square 

meter of area at a distance of one Astronomic Unit (AU) from the Sun (that is, on or near Earth). 

Although sunlight is attenuated by the Earth’s atmosphere while it is reaching the surface, it is 

almost about 1000 watts per directly exposed square meter in clear conditions when the Sun is 

near the zenith. 

About 3.4 × 1038 protons (hydrogen nuclei) are converted into helium nuclei every second (out 

of about ~8.9 × 1056 total amount of free protons in Sun) via fusion reaction. Byproduct is releasing 

as energy at the matter-energy conversion rate of 4.26 million tons per second, 383 Yottawatts 

(383 × 1024 W) or 9.15 × 1010 megatons of TNT per second [6]. This energy releases in the form 

of electromagnetic waves (photons). Irradiation of photons from sun with different frequency 

causes the heat and appearance of light on earth. Even wind blows because of the heat of the sun. 
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Chapter 2 : CARBON NANOTUBES 

2.1  CNT Review: 

Carbon can bond in many ways to create different structure with different properties. It is 

because of its chemical characteristics. Carbon has four valance electrons. Sharing these electrons 

in different ways ends to different structures. For instance when all four electrons are shared 

equally, it creates diamond, an isotropically strong structure; while if only three electrons are 

shared in covalence bond between neighbors in a plane and forth electron is allowed to move 

among all atoms, it makes graphite [7]. Graphene is another formation of carbon atoms, which is 

single layer, and it has lattice honeycomb structure. 

Early experiments in the mid-1980s, which leaded to the fullerene discovery, presented that 

when the number of carbon atoms is smaller than a few hundred, the structures formed correspond 

to linear chains, rings, and closed shells [7], [8]. “The fullerenes are closed shell carbon based 

structure with an even number of atoms (starting at C28, which has been observed by mass 

spectrometers in carbon soot) and nominal sp2 bonding between adjacent atoms” [7]. To form 

curved structures, such as the fullerenes, from a planar fragment of hexagonal graphite lattice, we 

have to include specific topological defects in the structure. In order to produce a convex 

formation, positive curvature has to face the planar hexagonal graphite lattice. Creating pentagons 

can do this. A greatly elongated fullerene can be formed with exactly 12 pentagons and millions 

of hexagons [9]. This would correspond to a carbon nanotube [7], [9]. Tube’s diameter will rely 

on the size of the semi-fullerene which the end is made of [7], [9]. 

If we somehow fold a graphene sheet into a cylinder such that the open edges match perfectly 

to form a seamless structure, result will be an open ended tube.” The tubes have to be closed at 

both ends, which means that at some stage in the growth process pentagons are nucleated to initiate 

the closure mechanism”[7]. 

Nanotubes structures are divided in two categories. First are called the multi-walled carbon 

nanotubes (MWNT) were the first to be discovered. Second are called the single-walled carbon 

nanotubes (SWCNT) which possess good uniformity in diameter (1-2 nm)” [7]. 
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2.2  CNT Lattice structure: 

CNTs are cylinder formation of Carbon atom and regarding to their binding types and 

characteristics of Carbon atoms, they are considered among highly conductive materials. Nantenna 

fabrication with the use of CNT as the base material of Nantenna attracts researchers’ attention 

since the high conductivity of CNT increases the efficiency of Nantenna; however putting CNTs 

in specific form is not easy. Later we mathematically analyze CNT conductivity. Nowadays, CNT 

and Graphene are being used in many applications and nano devices such as transistors and 

Nantennas. Energy harvesting via renewable resources is changing to be a big pole of future 

industry since the traditional way of producing electricity will face fundamental issues in future. 

Using these Nantennas might be a good replacement for typical solar panels. 

CNTs are nothing more than rolled up graphene sheets along the chiral vector. In we somehow 

cut the CNT and spread it, the chiral vector is the vector that shows the opened circumference of 

CNT (figure 1). 

 

Figure 1 : Chiral vector demonstration 
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Since the foundation of CNT is graphene sheets, the best way for analyzing CNT is to analyze 

graphene. Graphene is a mono-layered honeycomb crystal of carbon atoms (figure 2). It has two 

sub-lattices, which are separated with black and white circles in figure 2. 

 

Figure 2 : Graphene honeycomb lattice structure. Sublattices are seperated with bullet points and 

circles 

In order to analyze graphene’s structure, we define the unit cell as a rhombus shape which 

contains one atom from each sublatice. It is shown in figure 3. 

 

Figure 3 : Graphene Unit Cell 
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As it is shown in figure 3, unit cell can be defined with two vectors, "𝑎1⃗⃗⃗⃗ " and "𝑎2⃗⃗⃗⃗ ": 

𝑎1⃗⃗⃗⃗ = (
√3  𝑎0

2
,
𝑎0

2
)    (Equation 2) 

𝑎2⃗⃗⃗⃗ = (
√3  𝑎0

2
,
−𝑎0

2
)    (Equation 3) 

Where: 

|𝑎1| = |𝑎2| = 𝑎0 = √3𝑏0   (Equation 4) 

“b0” is the interatomic distance in the lattice structure which is 0.142 (nm). 

As it is mentioned in chiral vector’s definition, in two dimensions, the circumference of opened 

CNT can be shown with the chiral vector (C): 

𝐶 = 𝑛𝑎1⃗⃗⃗⃗ + 𝑚𝑎2⃗⃗⃗⃗     (Equation 5) 

Different “n” and “m” causes different edge types in the CNT containing zigzag, armchair and 

chiral CNTs: 

{
𝑧𝑖𝑔𝑧𝑎𝑔           𝑚 = 0
𝑎𝑟𝑚𝑐ℎ𝑎𝑖𝑟      𝑚 = 𝑛
𝑐ℎ𝑖𝑟𝑎𝑙              𝑂.𝑊.

   (Equation 6) 

Also, “m” and “n” show whether the SWCNT is metallic or semiconductor as if (n-m)/3 is 

equal to an integer, CNT is metallic, and otherwise it is semiconductor. Metallic ones have high 

conductivity which makes current density be able to reach 4×109 A/cm2. This high conductivity 

put CNTs in the top of high conduction materials such as copper. All armchair CNTs are metallic. 

In contrary, only one third of zigzag CNTs are metallic, so in general approximately one third of 

CNTs are metallic. 

Circumference of CNT can be found by: 

 

|𝑐| = √|𝑛𝑎1|2 + |𝑚𝑎2|2 + 2|𝑛𝑎1𝑚𝑎2| cos 𝜃  (Equation 7) 
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Where: 

𝜃 = 60°     (Equation 8) 

So: 

|𝑐| = √|𝑛𝑎1|2 + |𝑚𝑎2|2 + |𝑛𝑎1𝑚𝑎2|   (Equation 9) 

From equations 4 and 9 we have: 

|𝑐| = 𝑎0√𝑛2 + 𝑚2 + 𝑛𝑚    (Equation 10) 

So radius of CNT is: 

𝑟𝐶𝑁𝑇 =
|𝑐|

2𝜋
=

𝑎0

2𝜋
√𝑛2 + 𝑚2 + 𝑛𝑚   (Equation 11) 

2.3  CNT Conductivity: 

Conductivity in nano scales has different scenario. In bigger scale, we consider electron’s 

transportation as diffusive transportation, which means electron does not move in just one path to 

reach its destination. The reason is that since distances are much greater than atomic scale, electron 

might hit other atomic objects in its way and moves in random directions and the summation of 

these movements is a straight displacement. In contrary, in nano scale, since distances are close to 

atomic scale (a little less than one nano meter), electron moves on a single path and we can consider 

the transportation straight with a good approximation. This type of transportation is called Ballistic 

transportation, since electrons move like bullets.  

We cannot implement the common conductivity equation (𝜎 = (𝜌
𝐿

𝐴
)
−1

) to find the 

conductivity in nano scale. If we consider the common equation, since “L” tends to be zero, the 

conductivity would become infinity and it is against results in nano scale experiments. In order to 

find the conductivity, we should analyze changes in electrons energy (electrons movements). We 

use the Boltzmann transport equation for this purpose: 

𝜕𝑓

𝜕𝑡
+ 𝑒𝐸𝑧

𝜕𝑓

𝜕𝑝𝑧
+ 𝜈𝑧

𝜕𝑓

𝜕𝑧
= 𝜗[𝑓0(𝑝) − 𝑓]    (Equation 12) 
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Where "𝑒" is electrons charge, “𝐸𝑧" is the longitudinal component of the electric field at the 

nanotube surface, "𝜈𝑧" is electron’s velocity, "𝜗" is the relaxation frequency and "𝑓0(𝑝)" is the 

Fermi-Dirac distribution equation which is a function of electron’s momentum. "𝑓" is electron’s 

distribution function: 

𝑓 = 𝑓(𝑝, 𝑧, 𝑡) = 𝑓0(𝑝) + 𝑅𝑒(𝛿𝑓𝑒𝑗𝜔𝑡)   (Equation 13) 

The Fermi-Dirac distribution relation can be written as: 

𝑓0(𝑝) = (1 + 𝑒
𝐸(𝑝)−𝐸𝐹

𝑘𝐵𝑇 )

−1

   (Equation 14) 

Where "𝐸(𝑝)" is the energy-momentum relation, "𝐸𝐹" is Fermi energy, “kB” is the Boltzmann 

constant and “T” is nanotube absolute temperature. Fermi energy in graphene is zero. Considering 

the longitudinal component of the electric field as: 

𝐸𝑧 = 𝑅𝑒(𝐸̂𝑧𝑒
𝑗𝜔𝑡)     (Equation 15) 

Then we can write: 

𝑓 = 𝑓0(𝑝) + 𝛿𝑓 cos(𝜔𝑡)    (Equation 16) 

𝐸𝑧 = 𝐸̂𝑧 cos(𝜔𝑡)     (Equation 17) 

Putting results in equation 12 leads to: 

−𝛿𝑓𝜔 sin(𝜔𝑡) + 𝑒𝐸̂𝑧 cos(𝜔𝑡)
𝜕𝑓0

𝜕𝑝𝑧
= 𝜗[𝑓0(𝑝) − 𝑓0(𝑝) − 𝛿𝑓 cos(𝜔𝑡)]  (Equation 18) 

𝛿𝑓 = 𝑗
𝜕𝑓0

𝜕𝑝𝑧

𝑒𝐸̂𝑧

𝜔−𝑗𝜗
     (Equation 19) 

The axial current density in two dimensional lattice structures can be shown as: 

𝐽𝑧 =
2𝑒

(2𝜋ℏ)2
∑ ∫ 𝜈𝑧𝑓𝑑𝑝𝑧

 

𝑓𝑖𝑟𝑠𝑡 𝐵𝑟𝑖𝑙𝑙𝑖𝑜𝑛 𝑧𝑜𝑛𝑒𝑝∅
   (Equation 20) 

Where 
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𝐽𝑧 = 𝑅𝑒(𝐽𝑧𝑒
𝑗𝜔𝑡)    (Equation 21) 

And 

𝐽𝑧 = 𝜎𝑧𝑧(𝜔)𝐸̂𝑧    (Equation 22) 

So, from above equations, we have: 

𝜎𝑧𝑧(𝜔) = 𝑗
2𝑒2

(2𝜋ℏ)2
∑ ∫

𝜕𝑓0(𝑝)

𝜕𝑝𝑧

𝜈𝑧

(𝜔−𝑗𝜗)
𝑑𝑝𝑧

 

𝑓𝑖𝑟𝑠𝑡 𝐵𝑟𝑖𝑙𝑙𝑖𝑜𝑛 𝑧𝑜𝑛𝑒𝑝∅
  (Equation 23) 

Where the summation is in the first Brillion zone of SWCNT where it is [10]: 

{
|𝑃∅| =

𝑠

𝑚

2𝜋ℏ

√3𝑎0
,     𝑠 = 1,2,3,… ,𝑚

|𝑃𝑧| <
4𝜋ℏ

3𝑎0
−

1

√3
𝑃∅

  (Equation 24) 

Where “s” accounts for the quantized momentum in the circumferential direction [11]. “m” is 

from Chiral vector (equation 5). 

In order to solve this equation, we need to find the energy-momentum relation in graphene and 

for this concept; we need to analyze the energy band, which requires using Schrodinger time 

independent equation. 

2.4  Energy Band 

Experiments showed Newtonian Mechanics is inaccurate in atomic distance. Schrodinger 

presented an equation for both microscopic and macroscopic universes called the “wave equation”. 

Since electrons have fixed total energy, we should use the time independent Schrodinger equation 

in order to analyze CNT. From Schrodinger time independent equation: 

𝐸ѱ =
−ℏ

2𝑚
𝛻2ѱ + 𝑈(𝑟 )ѱ    (Equation 25) 

Or we can write it like: 

𝐸ѱ = {
−ℏ

2𝑚
𝛻2 + 𝑈(𝑟 )}ѱ    (Equation 26) 
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"ѱ" is called the “wave function” which is function of space coordinates and time. Since we 

are using time independent Schrodinger equation, we do not consider the time part of "ѱ". "ѱ" 

shows the location of electron. “m” is mass of electron in vacuum, "ℏ" is reduced plank constant 

and "𝑈(𝑟 )" is potential energy. The equation is fit for vacuum condition; but in solid objects, like 

Graphene, electron behaves almost as if it is in vacuum but with different mass. We call this mass 

Effective Mass Equation (EME). So we just replace electron mass in the equation with “meff”: 

𝐸ѱ = {
−ℏ

2𝑚𝑒𝑓𝑓
𝛻2 + 𝑈(𝑟 )}ѱ      (Equation 27)  

The reason convinces us to agree with this equation, is that Schrodinger was able to solve this 

equation for electron in Hydrogen atoms and confirm it with experimental results. From 

experiment, it was shown that electrons in Hydrogen atoms have certain discrete energy levels. 

This could be resulted by observing the light emitted from Hydrogen atom while it is heated. 

Frequencies of this lights corresponded to this different energy level. On the other hand, 

Schrodinger showed by solving this equation for electrons in Hydrogen atoms, using the electron 

potential energy (
−𝑞2

4𝜋𝜀0𝑟
), we end up with solutions for energy with specific discrete values, the 

eigenvalues. This means energy resulted from analytically solution of Schrodinger equation could 

not be something else except eigenvalues [12]. 

Although Schrodinger was able to solve this equation for Hydrogen atom analytically, there 

are very few practical examples that can be solved analytically. Most of them need to be solved 

via numerical solution; like the way computers solving equation. In this case, we should turn the 

differential equation into matrix equation. Since Graphene has two-dimensional structure, 

elements in equation will be two by two matrixes. By presenting the differential operator as Hop: 

𝐻𝑜𝑝 =
−ℏ

2𝑚
𝛻2 + 𝑈(𝑟 )     (Equation 28) 

We can change the differential Schrodinger equation into matrix form by changing elements 

to matrixes as: 

𝐸[𝑆]{ѱ} = [𝐻]{ѱ}    (Equation 29) 
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Where braces present column vector and brackets presents matrix. The column vector of {ѱ} 

can be found by writing the ѱ(𝑟 )as linear combination of the data we know: 

ѱ(𝑟 ) =  ѱ1𝑢1(𝑟 ) + ѱ2𝑢2(𝑟 ) + ⋯ = ∑ ѱ𝑛𝑢𝑛(𝑟 )𝑛    (Equation 30) 

ѱ(𝑟 ) is the function that we do not know and we write it as a set of functions we do know 

(𝑢𝑛(𝑟 )) and coefficients (ѱ𝑛). So column vector, {ѱ}, can be presents as: 

{ѱ} = {
ѱ1

ѱ2

⋮
}    (Equation 31) 

We are using the semi-empirical method to write matrixes S and H. it means instead of finding 

the elements of matrixes S and H via Gaussian equation, we just adjust the parameters, to make 

sure it matches well-known results for material that we are interested here, which means Graphene. 

So we assume S matrix is an identity matrix. So we can drop S matrix from our equation; 

𝐸{ѱ} = [𝐻]{ѱ}    (Equation 32) 

Then we will find H as it leads to result that matches well-known theoretical results or 

experimental observations. We find it with the use of “nearest neighbor model” method which 

means we choose the interaction of non-neighbor atoms to be zero. 

So in the process of changing the differential equation to matrix equation, we are replacing the 

differential operation function (Hop) with matrix H. matrix H is called Hamiltonian matrix. Since 

these two equations are the same, it is obvious that the answers should be the same. 

ѱ𝑛 can be represented as: 

{ѱ𝑛} = {ѱ°}𝑒
𝑖𝑘⃗ .𝑟⃗⃗ 𝑛    (Equation 33) 

Where rn is position vector of nth atom, which shows the vector started from first atom toward 

the other atom. Since our Graphene structure is two dimensional, vector 𝑘⃗  has two elements 

containing 𝑥  and 𝑦  elements. Also E is going to be a function of 𝑘⃗ . 

From equation 32 we will have: 
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𝐸 {
ѱ1

ѱ2

⋮
} = [

𝐻11 … 𝐻1𝑛

⋮ ⋱ ⋮
𝐻𝑚1 … 𝐻𝑚𝑛

] {
ѱ1

ѱ2

⋮
}   (Equation 34) 

Or simpler for each element in matrix: 

𝐸{ѱ𝑛} = ∑ [𝐻𝑛𝑚]{𝑛
𝑚=1 ѱ𝑚}   (Equation 35) 

From above equations: 

𝐸(𝑘⃗ ){ѱ°} = ∑ [𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ ){ѱ°}𝑚   (Equation 36) 

As is it mentioned before, Graphene has a two-dimensional lattice structure. In order solve the 

Schrodinger equation for Graphene (or any other structures) we need to define a unit cell in which 

the whole structure can represent with that by just copy it continuously. We choose the unit cell 

as: 

 

 

Figure 4 : Graphene’s unit cell. 𝒂𝟏⃗⃗ ⃗⃗  and 𝒂𝟐⃗⃗ ⃗⃗ are basic vectors of unit cell 
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So each unit cell contains of two atom so ѱ° is going to be a matrix. Since ѱ° is a matrix, we 

cannot cancel it from both sides. Also [𝐻𝑛𝑚] is going to be a two by two matrix. We can find the 

energy eigenvalue, by finding the eigenvalue of [ℎ(𝑘⃗ )] where: 

[ℎ(𝑘⃗ )] = ∑ [𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ )
𝑚     (Equation 37) 

Now for writing [ℎ(𝑘⃗ )] we should use the nearest neighbor model. In order so, we will pursue 

by analyzing Graphene structure diagram and unit cell in six steps.  

2.4.1 First, unit cell and itself: 

 

 

Figure 5 : First step of the nearest neighbor model 

 

In this case n=m. first parameter is the relation of atom A with itself. We show it with “𝜀”. 

Second parameter is the relation between A and B, since they are neighbor atoms; it is a non-zero 
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value, which can be shown with “𝛾”. Third parameter is relation between atom B and atom A, 

which is also “𝛾”. Last parameter is relation between atom B and itself so it is “𝜀”. So the 

corresponding matrix is going to be: 

[𝐻𝑛𝑛] = [
𝜀 𝛾
𝛾 𝜀]    (Equation 38) 

So when n=m; 

[𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ ) = [𝐻𝑛𝑛]𝑒
𝑖𝑘⃗ (𝑟𝑛⃗⃗⃗⃗ −𝑟𝑛⃗⃗⃗⃗ ) = [

𝜀 𝛾
𝛾 𝜀] 𝑒

0 = [
𝜀 𝛾
𝛾 𝜀]  (Equation 39) 

2.4.2 Second, unit cell and its top left neighbor: 

 

 

Figure 6 : Second step of the nearest neighbor model 

 

In this case mth unit cell is located on top-left side. First parameter is the relation between atoms 

A with atom C, since they are not neighbors, the parameter is zero. Second parameter is the relation 

between A and D, since they are neighbor atoms; it is a non-zero value, which can be shown with 
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“𝛾”. Third parameter is relation between atom B and atom C, which is zero. Last parameter is 

relation between atom B and atom D and it is also zero. So the corresponding matrix is going to 

be: 

[𝐻𝑛𝑚] = [
0 𝛾
0 0

]    (Equation 40) 

So: 

[𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ ) = [
0 𝛾
0 0

] 𝑒−𝑖𝑘⃗ 𝑎2⃗⃗⃗⃗  ⃗  (Equation 41) 

Where 𝑎2⃗⃗⃗⃗  is unit cells vector. 

2.4.3 Third, unit cell and its top right neighbor: 

 

 

Figure 7 : Third step of the nearest neighbor model 
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In this case mth unit cell is located on top-right side. First parameter represents the relation 

between atoms A with atom C and since they are not neighbors, this parameter is zero. Second 

parameter is the relation between A and D, since they are not neighbors atoms, the parameter is 

zero. Third parameter is relation between atom B and atom C, which is “𝛾”. Last parameter is 

relation between atom B and atom D and it is zero. So the corresponding matrix is going to be: 

[𝐻𝑛𝑚] = [
0 0
𝛾 0

]    (Equation 42) 

So: 

[𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ ) = [
0 0
𝛾 0

] 𝑒+𝑖𝑘⃗ 𝑎1⃗⃗⃗⃗  ⃗  (Equation 43) 

Where 𝑎1⃗⃗⃗⃗  is unit cells vector. 

2.4.4 Forth, unit cell and its bottom left neighbor: 

 

Figure 8 : Forth step of the nearest neighbor model 

 

In this case mth unit cell is located on bottom-left side. First parameter is the relation between 

atoms A with atom C, since they are not neighbors, the parameter is zero. Second parameter is the 



23 

 

relation between A and D, since they are neighbor atoms; it is a non-zero value, which can be 

shown with “𝛾”. Third parameter is relation between atom B and atom C, which is zero. Last 

parameter is relation between atom B and atom D and it is also zero. So the corresponding matrix 

is going to be: 

[𝐻𝑛𝑚] = [
0 𝛾
0 0

]    (Equation 44) 

So: 

[𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ ) = [
0 𝛾
0 0

] 𝑒−𝑖𝑘⃗ 𝑎1⃗⃗⃗⃗  ⃗  (Equation 45) 

2.4.5 Fifth, unit cell and its bottom right neighbor: 

 

 

Figure 9 : Fifth step of the nearest neighbor model 

 

In this case mth unit cell is located on bottom-right side. First parameter is the relation between 

atoms A with atom C, since they are not neighbors, the parameter is zero. Second parameter is the 
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relation between A and D, since they are not neighbors atoms, the parameter is zero. Third 

parameter is relation between atom B and atom C, which is “𝛾”. Last parameter is relation between 

atom B and atom D and it is zero. So the corresponding matrix is going to be: 

[𝐻𝑛𝑚] = [
0 0
𝛾 0

]    (Equation 46) 

So: 

[𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ ) = [
0 0
𝛾 0

] 𝑒+𝑖𝑘⃗ 𝑎2⃗⃗⃗⃗  ⃗  (Equation 47) 

2.4.6 Sixth, summation of each element: 

In order to write the [ℎ(𝑘⃗ )]: 

[ℎ(𝑘⃗ )] = ∑ [𝐻𝑛𝑚]𝑒𝑖𝑘⃗ (𝑟𝑚⃗⃗ ⃗⃗  ⃗−𝑟𝑛⃗⃗⃗⃗ )
𝑚 = [

𝜀 𝛾 (1 + 𝑒−𝑖𝑘⃗ 𝑎1⃗⃗⃗⃗  ⃗ + 𝑒−𝑖𝑘⃗ 𝑎2⃗⃗⃗⃗  ⃗)

𝛾 (1 + 𝑒𝑖𝑘⃗ 𝑎1⃗⃗⃗⃗  ⃗ + 𝑒𝑖𝑘⃗ 𝑎2⃗⃗⃗⃗  ⃗) 𝜀
]  

  (Equation 48) 

Assuming that 

ℎ0 = 𝛾 (1 + 𝑒𝑖𝑘⃗ .𝑎⃗⃗  ⃗1 + 𝑒𝑖𝑘⃗ .𝑎⃗⃗  ⃗2)   (Equation 49) 

Then we have: 

ℎ(𝑘⃗ ) = [
𝜀 ℎ0

∗

ℎ0 𝜀
]    (Equation 50) 

Using equations 2, 3 and 49: 

ℎ0 = 𝛾(1 + 𝑒𝑖𝑘⃗ .(
√3

2
𝑎0𝑥̂+

1

2
𝑎0𝑦̂) + 𝑒𝑖𝑘⃗ .(

√3

2
𝑎0𝑥̂−

1

2
𝑎0𝑦̂))    (Equation 51) 

Assuming 𝑘⃗ . 𝑥̂ = 𝑘𝑥 and 𝑘⃗ . 𝑦̂ = 𝑘𝑦, we can simplify the equation and find |ℎ0| as: 

|ℎ0| = −𝛾√1 + 4 cos2(
𝑎0

2
𝑘𝑦) + 4 cos(

√3

2
𝑎0𝑘𝑥) cos(

𝑎0

2
𝑘𝑦)         (Equation 52) 
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Mathematical review for eigenvalue: 

In order to find the eigenvalue of matrix [ℎ(𝑘⃗ )]: 

𝜆𝐼 = 𝜆 [
1 0
0 1

] = [
𝜆 0
0 𝜆

]    (Equation 53) 

ℎ(𝑘⃗ ) − 𝜆𝐼 = [
𝜀 − 𝜆 ℎ0

∗

ℎ0 𝜀 − 𝜆
]   (Equation 54) 

Now, by solving below equation, eigenvalue will be "𝜆": 

|
𝜀 − 𝜆 ℎ0

∗

ℎ0 𝜀 − 𝜆
| = 0 ⟹ 

(𝜀 − 𝜆)2 − |ℎ0|
2 = 0 ⟹ 

𝜆 =  𝜀 ± |ℎ0|    (Equation 55) 

So, the eigenvalue will be: 

𝜀 ± |ℎ0|     (Equation 56) 

So, the energy momentum relation for Graphene can be written as: 

𝐸 = 𝜀 ± |ℎ0|    (Equation 57) 

It means for each "𝑘⃗ " we will have two eigenvalues; from experiments "𝜀" can be obtained and 

it is equal to zero [13]; so:  

𝐸 = −𝛾√1 + 4 cos2(
𝑎0

2
𝑘𝑦) + 4 cos(

√3

2
𝑎0𝑘𝑥) cos(

𝑎0

2
𝑘𝑦)  (Equation 58) 

 

Below is the plot of energy-momentum relation: 
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Figure 10 : Energy-momentum relation in first Brillion zone 

 

MATLAB codes for the plot are attached in appendix A. 

In order to make the plot more tangible, "𝑎0" is divided by 1010 in the plotting procedure. 

Assuming 𝑘⃗ . 𝑥̂ = 𝑘𝑥 and 𝑘⃗ . 𝑦̂ = 𝑘𝑦, and regarding to the relation between "𝑘⃗ " and “P” as 

bellow: 

𝑘𝑦 =
𝑃𝑧

ℏ
  and  𝑘𝑥 =

𝑃∅

ℏ
  (Equation 59) 

We can write the energy-momentum relation as: 
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𝐸(𝑃) = −𝛾√1 + 4 cos2(
𝑎0

2ℏ
𝑃𝑧) + 4 cos(

√3

2ℏ
𝑎0𝑃∅) cos(

𝑎0

2ℏ
𝑃𝑧)  (Equation 60) 

Wherein "𝛾" is the overlap energy and it is equal to 2.7e.V. [13], [14].  
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Chapter 3 APPLICATIONS: 

Nanotechnology and nanoparticles based devices are thriving research areas.  The last decade 

has seen as increase use of nanotechnology in sensors, biomedical and medicine applications [15], 

[16]. CNT and nano-wires based technology have also been used in radio-frequency, microwave, 

power harvesting and bioelectronics [17]–[19]. Having a conductive DNA would be enormously 

useful since it makes it possible to create conductive Nantennas and sensor in different shapes in 

such small scale. 

Self-assembling 3-D DNA structures combined with carbon nanotube (CNT) based 

nanotechnology have the potential to revolutionize nano-electronics and biomedical. Bottom-up 

growth of self-assembled technology have enabled researchers to build nanoscale structures, like 

Nantenna, with sound electrical and thermal properties [20], [21]. Conductivity of such a 

biological Nantenna can be achieved by using conductive nanoparticles coating on DNA [22] or 

by attaching nanowire to DNA structures [23].  Recent advances in nanotechnology and the 

synthesis of scaffold based nanostructures have led to the possibility of realizing nanoscale devices 

cost-effectively  [24]. 

Fabricating DNA scaffold based nanoscale- spiral Nantenna with CNT can be used in energy 

harvesting applications. Presented idea is also published as conference paper which is attached to 

the end of this thesis. Sun’s energy, conventionally, gathered by solar Photovoltaic (PV) panels. 

They convert the energy of photons with infrared and visible light frequency band into electrical 

energy via two procedures, one physical and the other chemical. According to equation 1, 

gathering the energy of photons with higher frequency leads to produce more energy. 
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Wave Frequency range Energy of a photon (e.V.) 

Infrared 0.3THz – 0.429 PHz 0.001 – 1.772 

Visible-Light 0.385PHz – 0.789 PHz 1.591 – 3.265 

UV-A 0.75 PHz – 0.952 PHz 3.102 – 3.939 

UV-B 0.952 PHz – 1.07 PHz 3.939 – 4.431 

UV-C 1.07 PHz – 1.5 PHz 4.431 – 6.203 

Vacuum UV 1.5 PHz – 3 PHz 6.203 – 12.407 

Table 1 : List of the energy of photons with different frequencies [25] 

 

Another factor is the density of photons with desired frequency. This can be realized via 

irradiance for each frequency. Taking a look at the irradiance of each frequency makes it easier to 

choose Nantenna’s size. Irradiance data are collected by Solar Radiation and Climate Experiment 

(SORCE) from Laboratory for Atmospheric and Space Physics of the University of Colorado [26]: 

 

Figure 11 : irradiance of sun light in wavelength range of 0.5 - 2412.34 (nm) on 09/22/2012 

 

http://lasp.colorado.edu/sorce/index.htm
http://lasp.colorado.edu/sorce/index.htm
http://lasp.colorado.edu/home/
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Figure 12 : irradiance of sun light in wavelength range of 450 - 500 (nm) on 09/22/2012 

 

As it is clear in figure 12, it is more efficiently to design our Nantenna for 0.625 Peta Hertz 

frequencies (480 nm). Regarding to table 1, though the irradiance of UV from sun is less than 

infrared and visible light frequencies, the excess energy of photons in the UV frequency is greater 

than infrared or visible light frequencies and makes up for the lack of irradiance. 

 The challenge here is to build Nantenna small enough to collect the energy of mentioned 

photons since frequency and Nantenna size have reverse relation, the higher the frequency is, the 

smaller the antenna should be [27], [28]. By choosing the desired frequency, the size of Nantenna 

will be calculated. The relation can be shown as: 

f =
c

2πr
     (Equation 61) 

Where “f” is frequency (Hz), “C” is the speed of light (3×108 m/s) and “r” is radius of spiral 

Nantenna. According to radius size of Nantenna, we can estimate the radius of CNT. So we can 

find the chiral vector from equations 5, 6 and 11. Finding chiral vector leads to find the 

conductivity of Nantenna (using equations 62, 63, 64 and 65). 

The efficiency of energy conversion through this method is far better than conventional PV 

panels since the ratio of output energy over Sun’s energy is much greater. In addition, the energy 

efficiency of the systems that this technique may be used for can be improved using methods [29]–

[31].  
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Another application of such structure is tangible in biomedical area. The benefits of 

nanotechnology in medical applications are enormous. Numerous research groups [32]–[35]have 

investigated the use of nanoparticles not only in medicines, but also medical devices so they can 

increase the effect of healing and remission. For instance, it can be used to guide the synthesis of 

nanowires based nanostructured antenna. Drug delivery is another application of such structures. 

The last application of the proposed energy harvesting system, could be in Internet Of the 

Thing (IOT) devices. These remote devices are constrained to have chips that consume as low 

power as possible, since they are located in places that are not easy for humans to live in (i.e. 

deserts) and it is preferred to lower the computation performance to save energy [36]–[40]. Having 

the proposed technique eases this need. Also, due to the nano-dimension of utilized antennas, the 

Power Delivery Network (PDN) on ASIC chips (which has the task of delivering a constant voltage 

all over the chip) could target to provide more voltage to area with higher voltage drop and mitigate 

the complication of PDN [38], [41], [42]. 
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Chapter 4 CONCLUSION: 

To sum up, in order to find the conductivity, first we should find “m” and “n” from the chiral 

vector, and then we can proceed as bellow: 

{
|𝑃∅| =

𝑠

𝑚

2𝜋ℏ

√3𝑎0
,     𝑠 = 1,2,3,… ,𝑚

|𝑃𝑧| <
4𝜋ℏ

3𝑎0
−

1

√3
𝑃∅

  (Equation 62) 

𝜎𝑧𝑧(𝜔) = 𝑗
2𝑒2

(2𝜋ℏ)2
∑ ∫

𝜕𝑓0(𝑝)

𝜕𝑝𝑧

𝜈𝑧

(𝜔−𝑗𝜗)
𝑑𝑝𝑧

 

𝑓𝑖𝑟𝑠𝑡 𝐵𝑟𝑖𝑙𝑙𝑖𝑜𝑛 𝑧𝑜𝑛𝑒𝑝∅
  (Equation 63) 

Where: 

𝑓0(𝑝) = (1 + 𝑒
𝐸(𝑝)−𝐸𝐹

𝑘𝐵𝑇 )

−1

   (Equation 64) 

And: 

𝐸(𝑃) = −𝛾√1 + 4 cos2(
𝑎0

2ℏ
𝑃𝑧) + 4 cos(

√3

2ℏ
𝑎0𝑃∅) cos(

𝑎0

2ℏ
𝑃𝑧)  (Equation 65) 

As an example, for small radius CNT, (m<50), conductivity will approximately be [14], [43]: 

𝜎𝑐𝑛(𝜔) = 𝜎𝑧𝑧(𝜔) ≅ −𝑗
2𝑒2𝜈𝐹

𝜋2ℏ𝑎(𝜔−𝑗𝜈)
  (Equation 66) 

Where "𝜈𝐹" is the Fermi velocity for CNT [14], [43]. 

According to the fact that CNT based Nantennas can harvest photon’s energy from higher 

frequency band, the output electrical energy via this method is greater than it from PV panels, in 

same time duration. In other word, the efficiency of CNT based Nantennas is far better. These 

Nantennas can be formed by scaffolding CNT over DNA structures. Since they also have DNA as 

part of their structure, they can be used for drug delivery application and cancer treatments as well. 

Also other industry and research areas such as nano sensors and nano robots can use them in 

order to make efficiency higher. [26], [44]–[46]  
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Appendix A : MATLAB Codes 

 

MATLAB code: 

The energy band can be plotted in MATLAB with this code: 

>>> 

a=(sqrt(3)*1.42); 

x= linspace(-pi,pi); 

y= linspace(-pi,pi); 

[x,y]= meshgrid(x,y); 

z=(-2.7)*(sqrt(1+(4*(cos(((sqrt(3))/2).*a.*x)).*(cos((a.*y)/2)))+(4*((cos((a.*y)/2)).^2)))); 

mesh(x,y,z) 

<<< 
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