
RESEDA: Declaring Live Event-driven
Computations as REactive SEmi-structured DAta

João Costa Seco
NOVA LINCS

FCT, NOVA University of Lisbon
Lisbon, Portugal

joao.seco@fct.unl.pt

Søren Debois
Dept. of Computer Science

IT University of Copenhagen
Copenhagen, Denmark
debois@itu.dk

Thomas T. Hildebrandt
Dept. of Computer Science
University of Copenhagen

Copenhagen, Denmark
hilde@di.ku.dk

Tijs Slaats
Dept. of Computer Science
University of Copenhagen

Copenhagen, Denmark
slaats@di.ku.dk

Abstract—Enterprise computing applications generally consists
of several inter-related business processes linked together via
shared data objects and events. We address the open challenge of
providing formal modelling and implementation techniques for
such enterprise computing applications, introducing the declar-
ative, data-centric and event-driven process language RESEDA
for REactive SEmi-structured DAta. The language is inspired by
the computational model of spreadsheets and recent advances in
declarative business process modelling notations. The key idea is
to associate either input events or reactive computation events
to the individual elements of semi-structured data and declare
reactive behaviour as explicit reaction rules and constraints
between these events. Moreover, RESEDA comes with a formal
operational semantics given as rewrite rules supporting both
formal analysis and persistent execution of the application as
sequences of rewrites of the data. The data, along with the set of
constraints, thereby at the same time constitutes the specification
of the data, its behaviour and the run-time execution component.
This key contribution of the paper is to introduce the RESEDA
language, its formal execution semantics and give a sufficient
condition for liveness of programs. We also establish Turing-
equivalence of the language independently of the choice of un-
derlying data expressions and exemplify the use of RESEDA by a
running example of an online store. A prototype implementation
of RESEDA and the examples of the paper are available on-line
at http://dcr.tools/reseda.

Index Terms—declarative, event-driven computations, semi-
structured data, liveness, enterprise applications, business pro-
cesses

I. INTRODUCTION

Realistic enterprise computing applications contain several
inter-related business processes defining the behaviour of the
application and which are often linked together via shared
data, such as customers, orders and shipments in a shop. The
data and the activities of the processes are two sides of the
same coin: Data classes have corresponding activities in the
processes for the creation and change of the data objects.
Moreover, cardinality relations between data elements in the
data model are mirrored by behavioural orderings of activities
in the processes. For instance, the data model may specify that
a shipment is related to one or more orders belonging to the

Supported by NOVA LINCS UID/CEC/04516/2013, FC&T Project CLAY -
PTDC/EEI-CTP/4293/2014, Innovation Fund Denmark project EcoKnow.org
(7050-00034A) and the Danish Council for Independent Research project
Hybrid Business Process Management Technologies (DFF-6111-00337).

same customer. This is reflected by a behavioural constraint,
that the activity for creating a shipment can only be executed
after the activities of creating a customer and the first order
of the customer.

The management of customers, orders and shipments of
orders are likely to be independently defined and developed
business processes, which are not necessarily hierarchically
embedded in each other. However, as pointed out in [19], [21],
standard business process notations such as BPMN [13] are
not ideal for modelling nor implementing enterprise business
applications with dependencies and shared data between ac-
tivities belonging to multiple instances of such independent
processes. The same holds for standard case management
notations such as CMMN [14].

We propose in the present paper a novel, declarative data-
centric process language RESEDA based on REactive SEmi-
structured DAta as a unified specification of data, behaviour
and run-time execution state. RESEDA is inspired by and
generalises both the declarative Dynamic Condition Response
(DCR) graph process notation [4], [5], [10] and the widely
used reactive model of data and behaviour used in spread-
sheets [17].

In a spreadsheet, data is organised in a matrix. The fields
of the matrix are either empty and expect a data element to be
input by the user or contain an expression, possibly referring
to data of other fields, and expected to be computed by the
spreadsheet processer. The computation of an expression hap-
pens initially, when the expression is defined and reactively,
whenever a data element referenced by the expression changes
its value.

In RESEDA we categorise data elements as either input
or computation data elements similarly to spreadsheets, but
instead of the matrix structure used in spreadsheets, RESEDA
employs a semi-structured model for the data elements. Semi-
structured data is widely used in practice, notably via XML
and JSON, and allows more easily than matrices the modelling
of inter-related, unbounded and dynamically growing and
shrinking collections of data elements using the containment
relation, attributes with unique ids (UIDs) and locational
referencing of data elements via so-called path expressions.

Input data elements in RESEDA are thus data elements, for
which the assignment of a value is triggered by an input event

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/186639344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dcr.tools/reseda

from the outside context of the process. In addition to an
empty field of a spreadsheet, other analogies for such input
data elements can be found in input fields of web forms,
input parameters of web-services, or even IoT sensors e.g.
measuring the location of a business object using a geo-
location capability. Similarly to input fields in a web form
being either required or optional, RESEDA allows for data el-
ements to be declared as either required or optional. A required
input data element must eventually be provided a value for
the program to reach an accepting state. Similarly, a required
computation data element must eventually be evaluated by the
run-time system, for the program to reach an accepting state.
Also, we allow for the declaration of additional rules, e.g.
for dynamically creating new data and determining additional
ordering constraints, e.g. that a new input or re-computation of
a value for a data element is required as a response to another
input or computation. A computation of a process is then only
considered complete if every required input or computation of
a data value is eventually executed.

The execution semantics of RESEDA makes the language
directly applicable for execution as a sequence of rewrites
of the data. The semantic foundation for describing both the
reactive computation of expressions and the creation of new
data obtained from the declarative DCR∗ process notation
introduced in [4], [5] and generalising DCR graphs [10] to
allow dynamic creation of sub processes. The creation of new
data (with its own behavioural constraints and reaction rules)
is represented directly by the DCR∗ rule for dynamic spawning
of new sub processes. RESEDA can thereby also be seen as an
extension of DCR∗ to allow for associating events with semi-
structured data and expressions, and using path expressions
to indirectly refer to other events by their location instead of
only their identity. Our approach in this way harmoniously
integrates the dynamic construction of semi-structured data
and concurrent declarative control flow.

The concurrent event-driven reactive computation raises
issues of possible deadlocks and livelocks, as an event may in
response lead to an infinite sequence of re-computations and
creations of new data elements. As a main technical result,
we provide sufficient conditions for deadlock and livelock
freedom. In addition, we prove that Reseda generalises the
DCR graphs process formalism, [4], [5] and derive Turing
completeness of the language as a corollary.

For want of space, proofs and trivial or tedious definitions
have been relegated to the extended on-line version of this
paper, available at [16].

II. RESEDA

We illustrate and motivate the constructs of our language,
RESEDA, by gradually designing the shopping process intro-
duced in [22].

The data model shown in Figure 1 describes (using UML
notation) classes of customers, orders, orderlines, products and
deliveries. The behavioural model shown in Figure 2 describes
behavioural constraints between key activities of the business
process using a variant of DECLARE [15] notation used in

the so-called Object-Centric Behavioural Constraint (OCBC)
notation of [21], [22]. Briefly, the process describes a shop in
which registered customers can create orders (by the activity
create order (1), to which they must add one or more
order lines (by the activity pick item (2), each referring to a
unique product. Each product mentioned in a order line must
be wrapped (by the activity wrap item (3)) and eventually
delivered to the customer (by the activity deliver items

(4)). A delivery may contain items from different orders but
restricted to only one customer.

The relations (5) and (6) from create order to pick

item in Figure 2 define behavioural constraints denoting
respectively that any create order event is followed by
one or more pick item events, and that every pick item

event is preceded by a unique create order event. The
relation (7) between pick item and wrap item denote a
one-to-one correspondence between events related to the two
activities. Finally, the relations (8) and (9) define respectively
that every wrap item must be followed by exactly one
deliver items event, and each deliver items event
must be preceded by one or more wrap item events.

The OCBC notation of [21], [22] makes it possible to
combine the data model of Figure 1 and the declarative
behavioural model of Figure 2. But OCBC does not provide
notation for specifying the run-time data objects and process
instances. In the following we describe a RESEDA process
doing exactly that. We represent data items as named leaf
elements of the tree-structured semi-structured data, and model
the structure of the data model either by regular nesting or
by linking using unique identifiers like in document bases
databases.

In this section we use the concrete RESEDA syntax, used
in our implementation. However, in the formal developments
ahead we define a core calculus, using a slightly different,
more abstract notation, for the sake of readability of the
results. We invite the reader to experiment with the syntax and
semantics of RESEDA in the on-line tool accompanying this
paper, available at http://dcr.itu.dk/reseda/. For convenience,
all major examples of the present section are pre-loaded in
that tool for experimentation.

A. Static data

We begin by showing how to model static data with no
behaviour in Example 1. Concretely, we model two data
objects of class Customer of Figure 1.

Example 1 (Modelling structured data using constant values).

1 customer[] {
2 customer_id(0)[],
3 customer_name(’John’)[]
4 },
5 customer[]{
6 customer_id(1)[],
7 customer_name(’Mary’)[]
8 }

http://dcr.itu.dk/reseda/

Fig. 1. Data model of the shopping example from [22]

create
order

pick
item

wrap
item

deliver
items

1 2 3 4

5

6

7 8

9

Fig. 2. Behavioural constraints of the shopping example from [22]

In Reseda, the basic building block are instances of data
elements, with the general form, M name(V)[E]P, where
name defines a label for the data element, V defines the current
value for the element, E is an expression that defines the value
for the element if computed, M defines the behavioural state
of the data element (to be explained later), and P defines
inner (nested) data elements and control elements (behavioural
constraints and reaction rules, described ahead). The element
label is the only required part of a data element specification.

In this example, we model two data elements with label
customer, which contain data elements modelling the fields
customer_id and customer_name. The structure of data
items and associated inner data items and values can be
interpreted as an object structure found in document- or XML-
based databases. Notice that the data element customer has
structuring purposes only — intuitively it does not have a
value nor expression for computing one, formally we model it
holding the value unit (1) and omitted from the specification.

B. Dynamically created data

The key mechanism for obtaining dynamic behaviour in
RESEDA is that whenever the value of a data element is up-
dated, that update may have side effects triggered by reaction
rules inherited from the DCR* process language [5]. A rule
can e.g. specify the dynamic creation of new data elements or
requiring other data elements to be updated in response.

We next illustrate how to declare a rule for dynamically
creating instances of the class Customer of Figure 1.

Example 2 (Dynamically created customers collection).
1 customers[]{
2 create_customer[?]
3 ;
4 create_customer -->> {
5 customer[]{
6 !customer_id[freshid()],
7 !customer_name[?:string]
8 }
9 }

10 }

The dynamically created collection of customers is enclosed
by a customers[] data element, that nests a list of data
elements, like the ones defined in Example 1. Initially, the

element contain no such customer data elements. Instead, we
have introduced an input data element create_customer.
When the corresponding input event happens, an additional
customer data element is created as a side effect. This side-
effect is specified via a rule using the “spawn relation” (-»)
introduced in [5]. Syntactically, we distinguish between the
part of a process that specifies data elements, and the part that
specifies rules by a ; symbol.

The reaction rule declares that, whenever the left operand
— a data item named create_customer — is provided a
value, a new data item named customer is created in the
local context, i.e. inside the collection customers. When
no data type is provided, as for the create_customer data
item, we assume it is of unit type, which in the analogy of
the web forms would just be a button being clicked. The
value of the computation data element customer_id inside
each new customer data element is given by the predefined
function fresh_id similar to the the generate_id function
in XPath [7]. The input data item customer_name gets its
value of string type from the outside context. The result
of executing a create customer event will thus be the
RESEDA program shown in Example 3

Example 3 (Freshly created customer instance).
1 customers[]{
2 create_customer[?],
3 customer[]{
4 !customer_id[freshid()],
5 !customer_name[?:string]
6 }
7 ;
8 create_customer -->> {
9 customer[]{

10 !customer_id[freshid()],
11 !customer_name[?:string]
12 }
13 }
14 }

Notice that for any newly created customer record, the
computation data element customer_id needs to be updated
and the input data element customer_name element is miss-
ing a data value. We indicate that the events providing values
to the data elements inside a new customer data element are
initially pending as in DCR Graphs, by the exclamation mark

! used as prefix. A pending event is an event that is required to
happen eventually. This means, for computation data elements
like customer_id, that they are staged to be automatically
computed. The corresponding computation event will happen
unless it depends on some other data elements for which values
have not yet been computed or provided, or other behavioural
constraints have been defined as exemplified in later examples.
Since there are no dependencies for the computation event
customer_id, the event will be triggered by the RESEDA
processer, thereby computing a fresh id and assigning it as
value to the data element, resulting in the RESEDA program
shown in Example 4.
Example 4 (Customer id computed).

1 customers[]{
2 create_customer[?],
3 customer[]{
4 customer_id(0)[freshid()],
5 !customer_name[?:string]
6 }
7 ;
8 create_customer -->> {
9 customer[]{

10 !customer_id[freshid()],
11 !customer_name[?:string]
12 }
13 }
14 }

For input data elements, the pending state means that the
input should be done eventually for the process to progress.
Using the analogy of web forms, this would correspond to an
input field being marked as mandatory.

The result of executing a customer_name event providing
the string John as value will be the RESEDA program shown
in Example 5
Example 5 (Customer name provided as input event).

1 customers[]{
2 create_customer[?],
3 customer[]{
4 customer_id(0)[freshid()],
5 customer_name(’John’)[?:string]
6 }
7 ;
8 create_customer -->> {
9 customer[]{

10 !customer_id[freshid()],
11 !customer_name[?:string]
12 }
13 }
14 }

Note that a new customer_name input event can happen
again, analogous to a web form field being editable, but not
mandatory.

The same structure can be followed to create the collection
corresponding to class Product depicted in Figure 1, by the
code of Example 6.
Example 6 (Dynamically created products and trigger path
expression).

1 products[]{
2 create_product[?:string]
3 ;
4 create_product -->>{
5 product[]{
6 !product_id[freshid()],

7 !product_name[@trigger:value]
8 }
9 }

10 }

Here we also illustrate how to access the data element whose
update caused the dynamic creation of data using the reserved
word trigger in a path expression (identified by the prefix
@) for a computation data element product_name. We get
the value(s) of the element(s) identified by the path expression
by adding the suffix :value.

The result of executing a create_product event providing
the string iPhone X as value will be the RESEDA program
shown in Example 7. Note that the two computation data
elements are pending and will thus the corresponding com-
putation events subsequently be computed and assign values
to the data elements.
Example 7 (Freshly created iPhone X product).

1 products[]{
2 create_product[?:string],
3 product[]{
4 !product_id[freshid()],
5 !product_name[’iPhone X’]
6 }
7 ;
8 create_product -->>{
9 product[]{

10 !product_id[freshid()],
11 !product_name[@trigger:value]
12 }
13 }
14 }

We can observe by now that RESEDA expressions represent
both the state and code of the system, which relates to live
programming and execution environments such as smalltalk
virtual machines.

C. Regulating behaviour: Condition and exclusion rules

Next, to define the collection of orders we must establish
relations between classes Order, Customer and Product (via
class OrderLine) as depicted in Figure 1. Consider Example
Example 8 below introducing data element orders with an
input data element create_order, used to introduce new
elements in the collection.
Example 8 (Orders collection definition).

1 orders[]{
2 create_order[
3 ?:@/customers/customer/customer_id:value
4]
5 ;
6 create_order -->>{
7 order[]{
8 !order_id[freshid()],
9 !customer_id[@trigger:value],

10 !pick_item[
11 ?:@/products/product/product_id:value
12]
13 ;
14 pick_item -->>{
15 order_line[]{
16 !order_line_id[freshid()],
17 !item[@trigger:value],
18 !wrap_item[
19 ?:@/deliveries/
20 delivery[

21 not(deliver_items:executed)
22]/delivery_id:value
23]
24 ;
25 wrap_item -->* order_line_id,
26 item -->* order_line_id,
27 wrap_item -->% wrap_item
28 }
29 }
30 }
31 }
32 }

Observe the type annotation for the input of data ele-
ment create_order in line 2–4, given by the path expres-
sion @/customers/customer/customer_id:value. The
expression is evaluated with relation to its definition context
to a set of data items and dereferenced by the attribute label
value to obtain all values carried by the selected data items.
The initial / of the path expression means that the expression
is evaluated at the root of the process.

This kind of annotations in input fields thereby acts as a
dependent type [12] for the input, with the meaning, that only
values in the computed set are accepted as valid input value
for the data element create_order. Further, the input event
updating the data element is only possible if there is at least
one valid data value. The type in this case thereby ensures
that a valid customer id is provided as input for the create
order data element. In the analogy of the web form, this would
correspond to a data-dependent input validation of the input
field or the values in a dropdown UI widget.

As in the previous examples, the unique identifier of an
order is automatically computed using the freshid() ex-
pression in line 8, and the customer explicitly identified by
the input value for the create_order event is copied to a
locally available computation data element (customer_id)
using the @trigger:value path expression in line 9. We
thereby establish the relation between a customer and an order.

The pending input data element pick_item in line 10-
12 allows items to be added to a created order. The fact
that it is initially pending means that at least one item must
eventually be added to the order. Combined with the fact that
the input data element is created with the new order we fulfil
the constraints (5) and (6) in Figure 2. Again, every time a
value is provided as input for the data element pick_item, by
the user using a web form or an external service, the dependent
type in line 11 guarantees that the value is a valid product
identifier value.

Now, the rule for dynamic creation of data (line 14-28)
triggered by the input event for the pick_item data element
specifies that an order_line data element is created inside
the structure of the current order. Using the @trigger path
expression in line 17, the product identifier provided as value
to the pick_item is copied to the item data element of the
order line and we thereby establish the relation between an
order line and a product. The wrap_item input data element
in line 18 takes an input value which is again constrained by a
path expression. In this case, the path expression constrains the
values to be delivery identifiers for deliveries, for which the

event corresponding to the deliver_items data element has
not yet been executed. This implements that the wrapped item
is associated with a delivery which has not yet been delivered.
We will look into the details of the delivery data class and
behaviour in the next example.

Notice the nested structure created here to represent the con-
tainment relation of objects from classes Order and OrderLine
from Figure 1 and the use of identifiers to represent relations
from class Order to class Customer and from class OrderLine
to the classes Product and Delivery.

The example introduces two new kinds of behavioural rules
in line 25-27 in the definition of order_line, inherited
from DCR Graphs. The first two behavioural rules (line 25-
26) are standard condition constraint rules, as also found
in DECLARE, specifying that the order_line_id compu-
tation data element can only be updated after wrap_item

and item have been updated. As we will see in the next
example, the reason for this constraint is that the update of
the order_line_id has the side effect in the delivery

class that the item is added to the delivery identified by the
wrap_item data element. For this reason we want it only to
happen once all data elements has been computed. Finally,
the rule wrap_item ->% wrap_item (line 27), causes the
data element wrap_item to be dynamically excluded from
future computation once a value has been provided to it. In
the analogy of the web form, the button will no longer be
visible, but its data can still be accessed by the code. This
ensures that the wrap_item input event can only happen
once. Combined with the fact that the data element is initially
pending implements constraint (7) in Figure 2.

D. Initially excluded data elements aka hidden fields

We now explain how to specify the collection of delivery
data elements corresponding to the class Delivery from Fig-
ure 1. Refer to Example 9 below.

Example 9 (Deliveries collection definition).
1 deliveries[]{
2 create_delivery[?:
3 @/customers/customer/customer_id:value
4]
5 ;
6 create_delivery -->> {
7 delivery[]{
8 !delivery_id[freshid()],
9 !customer_id[@trigger:value],

10 !%deliver_items[?]
11 ;
12 /orders/order[
13 @customer_id:value==@trigger:value
14]/order_line[
15 @wrap_item:value==@rule/delivery_id:value
16]/order_line_id
17 -->> { !item_id[@trigger:value] },
18 item_id -->+ deliver_items,
19 deliver_items -->% deliver_items
20 }
21 }
22 }
23

As for the previous examples, a delivery data element
is created by assigning a value, in this case a valid customer

id, to an input data element create_delivery (line 2–4).
The delivery has data elements, just as the other classes,
updated with a fresh id (line 8) and a copy of the customer
id (line 9) provided when it was created. Each delivery

data element moreover contains a deliver_items input data
element (line 10), which is initially both pending and excluded,
the exclusion being declared by the prefix %. Initially excluded
data elements are another feature inherited from DCR Graphs.
Excluded data elements may be included using an include
reaction rule. In the analogy with web forms, excluded data
elements correspond to hidden fields, which may be made
dynamically visible.

The Path expression in line 12–16 introduces the use
of filters constraining which data elements will trigger the
rule when they are updated by a computation event. The
first filter, @customer_id:value==@trigger:value en-
sures that only orders of the customer with id match-
ing the id of the delivery are considered. The second fil-
ter, @wrap_item:value==@rule/delivery_id:value en-
sures that only items in the order line wrapped for that delivery
are considered. (Recall that a delivery id was added when
an item was wrapped). The path expression thereby make
sure that only order lines with the designated delivery id
and for the customer assigned to the delivery triggers the
creation of an item_id data element. Once the computation
event for the created pending item_id computation data
element is executed, the rule item_id ->+ deliver_items

in line 20 causes the deliver_items data element to be
dynamically included. Finally, once the computation event for
the deliver_items element happens, the deliver_items

data element is again excluded by the deliver_items ->%

deliver_items rule. These rules together with the constraint
of the wrap_item input events that items can only wrapped
for deliveries that have not been delivered implement the
constraints (8) and (9) of Figure 2, i.e. that a delivery can
only happen after an item has been added, and that an item
can only be delivered once.

This example demonstrates that behavioural constraints of
business processes as well as their underlying data model can
be declared harmoniously specified together in RESEDA. In
the next sections we provide the formal syntax and semantics.

III. SYNTAX

In this section we introduce the formal syntax of the
RESEDA calculus, leaving out types to simplify the exposition.
RESEDA processes are the syntactic entities generated by the
syntax in Figure 3. (We will relate the formal syntax to the
concrete ASCII-syntax used in the previous section shortly.)

A RESEDA process P consists of a vector ~D of (structured)
data terms, followed by a vector ~R of relation terms. Both
data and relation terms are built over an expression language.
As already described above, in the ASCII syntax, we separate
data terms and rules by a symbol ;, and nested subprocesses
are enclosed in braces.

P ::= ~D;~R processes
D ::= n[E]:M{P} | n[?]:M{P} structured data
M ::= (h, i, r, v) markings
R ::= φ→• φ | φ→� φ | φ •→ φ

| φ→+ φ | φ→% φ | φ→−→ P relations
φ ::= /ψ | ψ path expressions
ψ ::= α | ψ/α | ψ[E]

α ::= . | .. | n | ∗
E ::= c | f(E_1, . . . , E_n) | φ | trigger

| this | rule | E:attr | ⊥ | 1 data expressions
attr ::= value | executed

| included | pending

Fig. 3. Syntax of RESEDA.

A. Expression language

Expressions in RESEDA are built from the mutually recur-
sive classes of data expressions E and path expressions φ.

Data expressions E are built over an unspecified set of
constants c, assumed to include the positive integers; function
symbols f ; the undefined value ⊥ and the unit value 1, and
three constructs with particular meaning in RESEDA. Data
expressions are meant to be evaluated always in the context
of a given subterm of a process p. Given such a context, the
remaining constructs are:

1) φ, a path expression, identifying a set of subterms of P ;
2) this, the subterm identified by the current context; and
3) rule, if used in a rule, the subterm identified by the

context in which the rule is defined; and
4) trigger, the subterm identifying the data element that

caused a spawning effect; and
5) E:attr , the (set of) attribute values at the current context.
Path expressions φ navigate between subprocesses in a

manner that should be superficially familiar from, e.g., the
UNIX filesystem or XPath expressions [7]: A path expression
is a name (n), an instruction to move up (..), a wildcard (∗)
matching any child process, or the concatenation of such steps.
Moreover, like in XPath, a path can be filtered by an expression
along the way (ψ[E]).

In the concrete syntax, we distinguish path expressions
from data expressions by prefixing the former with an @,
and we allow abbreviations of the attribute selectors value,
executed, etc. into simply v, e, etc.
Example 10. In Example 9, we see path expressions on lines
3, 9, 12-16 and 18. In line 3, for instance, the path expression
@/customers/customer/customer_id:value starts with
a / meaning that it selects data elements in the upper context
(see Example 8). In line 12-16 we have an example of a filtered
path expression, that only matches order_line data elements
inside orders with a particular value for the customer_id and
wrap_item. The path expression customer_id:value used

in the first filter (line 13) matches data elements in deeper
context levels, in this case the nested elements of the order el-
ement, while the path expression rule/delivery_id:value

used in the second filter (line 15) matches in the context where
the rule is defined, i.e. inside the delivery data element.

B. Structured data

A data term d consists of either a computation data element
n[E]:M{P} or an input data element n[?]:M{P}. In either
case, the data element is associated with a marking M and
a subprocess P . Computation data elements further have an
associated expression E, indicating what computation they
carry out when executed (updated). Input data elements are
syntactically distinguished from computation data elements by
having a question mark ‘?’ instead of such an expression.

A marking M is a 4-tuple comprising:
1) a boolean h, indicating whether the data element has

been executed at least once before,
2) a boolean i indicating whether the data element is

currently included,
3) a boolean r indicating whether the data element is

currently pending (i.e. required to be updated again if
included) and finally

4) a value v indicating the current value of the data element.
A special undefined value is used for a data element that has
yet to compute/receive a value for the first time and has no
initial value.

In the ASCII variant of this syntax used in previous sections
and in the online tool, we admit a number of shorthands:

1) Markings are by default (false, true, true,⊥), that is,
unless otherwise specified, data elements that have not
been executed, are included, not pending, and have the
“undefined” value.

2) Data elements are marked “executed”, “excluded” re-
spectively “pending” in the ASCII syntax by prefixing
them with :, %, respectively !.

3) Data elements with no square brackets are considered
computation data elements computing the unit value, 1.

Example 11. In Example 9, we see on lines 8–10 pending data
elements, and in line 10 also an excluded data element.

C. Relations

A relation definition R consists of one of six relations:
1) the condition →• (ASCII ->*), indicating that data

elements on the right cannot execute unless each data
on the left is either marked not included or executed;

2) the milestone→� (ASCII -<>), indicating that elements
on the right cannot execute unless each element on the
left is marked not included or not pending;

3) the response •→ (ASCII *->), indicating that whenever
some data element on the left executes, all data elements
on the right become marked pending;

4) the dynamic inclusion→+ (ASCII ->+), indicating that
whenever some element on the left executes, all elements
on the right become marked included;

5) the dynamic exclusion →% (ASCII ->%), indicating
that whenever some element on the right executes, all
elements on the right become excluded; and finally,

6) the spawn →−→ (ASCII -»), indicating that whenever
some data element on the left execute, new sub processes
(data elements and rules) as indicated on the left are
merged into the current process.

For the first five relations, both the domain and range of the
relation is a path expression indicating which data elements
(left-hand side) are being related to which other data elements
(right-hand side). For the latter relation, the right-hand side
indicates the process to be spawned.

Example 12. We see an example of the spawn relation in
Example 9 starting on lines 6 and 12 respectively, where
a process is spawned for each execution of respectively the
create_delivery data element inside the delivery data
element and the order_line_id data element.

IV. SEMANTICS

The semantics of RESEDA is given as a transition system,
where states are the data elements combined with information
about which elements are pending for update and currently
included. The transitions are events corresponding to exe-
cutions (i.e. value updates) of either input data elements
or computation data elements, specified as a path to the
corresponding data element, and, if the event is an input event,
a value to input. To define this transition system, we must
define two functions:

1) One that determines, for given a RESEDA term, which
data elements are currently executable in that term; and

2) One that determines, for given a RESEDA term and a
data element of that term, what is the next state (term)
after executing this data element.

Because data elements in a process are not necessarily
identified uniquely by name, we identify a data element by
a path from the root to it. Such a path can be uniquely
represented as a sequence of integers, each integer representing
the left-to-right index of the subterm to descend into. In the
sequel, we let ρ range over such sequences of numbers, calling
such a ρ a location. A path expression evaluates to the set
of locations it identifies; for a path expression φ evaluated
from the location ρ in a process P , we write this set JφKPρ .
Similarly, the value of a data expression E we write LE MPρ .
It is straightforward to give a mutually recursive definition of
these two evaluation functions; refer to [16].

A. Enabledness

The notion of enabled data element ρ is defined in Figure 6.
For a data element ρ to be enabled, its parents must also be,
viz. the recursive definition of the enabled function. Moreover,
the data element ρ that we are considering for enabledness
must satisfy that (enabled′):

1) every data element ρ′ that is a condition for ρ must be
either excluded or previously executed,

2) every data element ρ′ that is a milestone for ρ must be
either excluded or not pending, and finally,

3) the data element ρ must itself be included.
The enabled′ function makes this check. Note how in Figure 6
it is always invoked by enabled at the root P : Both for the
data element ρ we are checking for enabledness and all of
its parents, we must traverse the entire process, looking for
relations that might prevent it from being enabled.

B. Transitions

Finally, we define the transition system of a process P .
Recall that we intend states to be processes P and transitions
to be either locations ρ (identifying data elements), or pairs of
locations ρ and (input) values v.

We begin by defining the set of effects executing a data
element ρ on a process P ′ in the context of a global process
P ; we write this set effectsP (P

′, ρ), defined by cases in
Figure 4. The first case described defines that the effects
are computed from the relations present in the term and
inductively computed in the structure of the data element.
Next, we treat each base case separately, by registering which
data element may cause what particular effect (pend, incl,
excl), and to what other data elements it is applied to.

Finally, we define the labelled transition system by the
transition rules in Figure 5, making a distinction between
computation events (rule COMPUTE) and input events (rule
UPDATE). The former transitions are labelled by a data ele-
ment location ρ, whereas the latter is labelled ρ(v) by both a
data element location ρ and an input value v. In both cases the
selected data element ρ must be enabled, and the effects of the
data element’s execution δ are applied to a process P ′ where
the target data element is already (re)computed/updated.

Computing a transition involves in either case three steps:
1) In either case, the data element in question must be

enabled as defined in Figure 6 for the transition to apply.
2) Then, for an input data element ρ, the value of ρ is

updated with the value v input (computePρ (P, ρ)). For a
computation data element, the computation is executed
(updatePρ (P, ρ, v)).

3) Finally, the effects of executing ρ are computed and
applied (effectsP ′(P ′, ε)(ρ)).

See [16] for full definitions of compute, update, and effects.
This concludes our introduction of RESEDA semantics. We

proceed in the following Sections to study static properties of
the language: its expressiveness and its relation to the notion
of liveness.

V. EXPRESSIVE POWER

We report in this section that Reseda processes embed
DCR∗ processes [5]1.

Theorem 1. Let G be a DCR∗ process. Then there exists
a Reseda process JGK s.t. the languages of G and JGK are
identical. Moreover, every data expression in JGK is trivial.

1Restating the syntax and semantics of DCR∗ is out of scope for the present
paper; we refer instead the reader to [5].

We can use this encoding to study the expressive power of
RESEDA. In [5] it is shown how to encode counter machines
in DCR∗ and from that proving that the problem determining
whether a given sequence of events is accepted by a DCR∗

process is undecidable.

Corollary 1. The problem of determining whether the lan-
guage of a RESEDA process P includes a string s of events
is undecidable. This problem is undecidable already in the
fragment of RESEDA where every data expression is trivial.

VI. LIVENESS

We aim for the central property that a pending data-element
can always be either executed or excluded in the future. When
this is the case we say that the program is live.

Definition 1. Let P be a process. We say that P is live iff
whenever Q is reachable from P and an event ρ is included
and pending in Q, then there exists an R reachable from Q
s.t. either ρ was executed on the way from Q to R, or ρ is
not included in R.

We will not be able to achieve this property for arbitrary
RESEDA processes. In particular, we rule out RESEDA pro-
cesses with subprocesses whose bodies spawn copies of them-
selves. We formalise processes not including this behaviour as
bounded processes.

Definition 2 (Runs). Let P be a process. The set R(P) of
runs of P is the set

R(P) = {ρ1, . . . , ρn | P = P1
ρ1−→ P2

ρ2−→ · · · ρn−→ Pn} .

The non-repeating runs R!(P) of P is the subset of R(P)
defined by ρ1, . . . , ρn ∈ R!(P) iff the ρi are pairwise distinct,
i.e., for 1 ≤ i < j ≤ n we have ρi 6= ρj .

Definition 3 (Bounded process). Let P be a process. We say
that P is bounded iff for every Q reachable from P , R!(Q)
is finite.

Definition 4. Let P be a process, and suppose P contains as
subterm a relation φb →−→x∈E Q, and in turn that Q contains
as subterm an event a. Let b be any name mentioned in φ. In
this case we say there is a potential spawn dependency (PSD)
from b to a in P .

The following Lemma is then immediate.

Lemma 1. Let P be a process and suppose the graph of PSDs
in P is acyclic. Then P is bounded.

Now that we have identified the class of bounded processes,
we sketch how to ensure liveness ; for full proofs and
definitions, refer to full version of this paper [16]. The basic
idea follows that of [2] in constructing a static approximation
of the dependencies between events that may be incurred by
conditions and milestones, referred to as the static inhibitor
graph, and then require the static inhibitor graph to be acyclic.
To execute a given event, we may simply execute “from the
bottom” of that acyclic graph, eventually reaching the desired
event at the top.

Definition 5 (Static inhibitors). Let P be a process, and let
ρ be an event of P . The static inhibitors of ρ in P , written
SIP (ρ) is the set of events ρ′ of P s.t. there is in P a condition
or milestone ρ′ →• ρ or ρ′ →� ρ. The static inhibitor graph of
ρ in P , written SI∗P (ρ) is the graph arising as the closure under
SIP (−) of ρ, further closed under the rule that if ρ′ •→ ρ′′

or ρ′ →+ ρ′′ in P with ρ′, ρ′′ ∈ SI∗P (ρ) then there is an edge
ρ′, ρ′′ in SI∗P (ρ).

While the core of the idea of [2] remains in the present
development, we also need to account for events that are
generated dynamically as a result of spawn relations. We do
so by requiring that the static inhibitor graph can at any time
be embedded in a fixed, “global” graph, referred to as the
dependency control.

Definition 6 (Dependency control). Let P be a process, and
let ρ be an event of P . A dependency control (Gρ, ι−ρ) for ρ
is a finite non-empty acyclic graph Gρ and a family of graph
homomorphims ιQρ : SI∗Q(ρ) → G, for Q reachable from P ,

s.t. for any Q reachable from P and Q′ with Q
ρ′′−→ Q′:

1) if ιQρ (x) defined, then ιQρ (x) = ιQ
′

ρ (x), and
2) for ρ′ ∈ SI∗Q′(ρ) \ SI∗Q(ρ) we have ιQ

′

ρ (ρ′) > ιQ
′

ρ (ρ′′).

Given a dependency control, we can find appropriate first
actions to execute. Notice that, exactly because events can be
dynamically generated, the planned actions to execute must be
derived from the global dependency control, and not from the
particular static inhibitors graph: It may be that a dependency
has yet to materialise; in that case, it will not be present in
the static inhibitors graph, but it will be represented in the
dependency control.

Theorem 2. Let P be a bounded process, let Q be a process
reachable from P , and let ρ be an event of Q. If for all ρ′ ∈
events(P) the dependency graphs Gρ′ of P is acyclic, then
so is the dependency graph for ρ in Q.

Corollary 2. Let P be a bounded process, and let P ′ be the
unfolding of P . If for every node ρ of P ′ the dependency graph
Gρ of P ′ is acyclic, then P is live.

We conclude by noting that the prerequisites of Corollary 2
are efficiently computable; the following proposition forms the
basis of the implementation at http://dcr.itu.dk/reseda.

Proposition 1. Let P be a process. We can compute in
polynomial time (a) whether P is bounded, (b) the unfolding
P ′ of P , (c) the dependency graphs for the events of P and
(d) whether these dependency graphs are acyclic.

VII. DISCUSSION & RELATED WORK

RESEDA relates to so-called data-centric approaches, includ-
ing case handling [14], [23], business artefacts [3], [11] and
other artefact- and object-centric notations [9], [21], [22], All
these approaches give more equal emphasis on the modelling
of data and behaviour than process-centric approaches such as
BPMN [13]. The case handling paradigm is similar to RESEDA
by being data-driven, based on forms, and distinguishing

mandatory and optional data fields. However, as pointed out
in [21], [22], the artefact-centric process notations tend not to
provide a good overview of the overall data and behavioural
model, since the behavioural modelling is distributed on
artefacts. The authors of [21] propose instead the Object-
Centric Behavioural Constraints (OCBC) approach to provide
combined presentations of the data-model and behavioural
constraints. The OCBC notation also include relations between
the two models (not shown in Figure 1 and Figure 2). In
this example, the cross model relations indicate a one-to-
one relationship between activities create order and pick item
(marked by (1) and (2) respectively) and the elements of the
classes Order and Order Line, indicating that these activities
represent the activities for creating elements of these classes.
This is reflected in the RESEDA process (cf. Example 8) by the
spawn rules triggered by the create_order and pick_item

input data elements.
None of the data-centric approaches nor the OCBC ap-

proach provide a formalised representation of data and be-
haviour unifying design and run-time as it is the case for
RESEDA. The business artefacts approach models life cycles of
data objects as finite state machines and not initially supported
by an operational semantics for execution [9], [20]. This was
provided with the GSM approach. The operational semantics
for GSM is however considerably more complex than the one
defined for RESEDA in the present paper and it is non-trivial to
relate GSM to the declarative constraints present in DECLARE
and DCR on which RESEDA and OCBC is based, e.g., see [8]
for a comparison between GSM and DCR.

XML-based approaches following [1] build interesting dy-
namic and nested databases by extending a local schema with
external sources. Although structurally similar, our approach
provides a fully expressive language to build and change the
structureof nested data objects. Finally, RESEDA relates to the
work on reactors [18], which combines relational databases
with behaviour specified declaratively as actors, but has a focus
on predictable perfomance and relational databases.

VIII. CONCLUSIONS

We introduced a novel executable, declarative data-centric
process language RESEDA unifying data and behavioural
modelling as reactive semi-structured data, inspired in equal
parts by declarative business process modelling notations and
reactive spreadsheet programming. We demonstrated the use
of RESEDA on a process given in [21], [22]. We provided a for-
mal semantics for RESEDA defining an execution semantics as
rewrite rules of processes and outlined the proof of a sufficient,
polynomially decidable criteria for liveness of bounded pro-
cesses. Finally we noted that Turing-completeness of RESEDA
can be derived from the fact that RESEDA embeds the DCR*
language. We leave for future work to investigate generalising
the results of safe refinement in [6] to RESEDA. The RESEDA
language is supported by a prototype implementation available
both in source form and on-line at http://dcr.itu.dk/reseda. All
major examples of the present paper are included in the tool.

http://dcr.itu.dk/reseda
http://dcr.itu.dk/reseda

effectsP (~D;~R, ρ) ,
⋃
R∈~R effects′P (R, ρ) ∪

⋃
1≤i<n effectsP (Di, ρi)

where Pi = ni[.]:Mi{Pi}

effects′P (φ •→ φ′, ρ) , {(ρ′, (pend, ρ′′)) | (ρ′, ρ′′) ∈ JφKPρ × Jφ′KPρ }
effects′P (φ→+ φ′, ρ) , {(ρ′, (incl, ρ′′)) | (ρ′, ρ′′) ∈ JφKPρ × Jφ′KPρ }
effects′P (φ→% φ′, ρ) , {(ρ′, (excl, ρ′′)) | (ρ′, ρ′′) ∈ JφKPρ × Jφ′KPρ }
effects′P (φ→−→ P ′, ρ) , {(ρ′, (spawn(P ′{L ρ

′:v MPρ/trigger:v}, ρ′)) | ρ′ ∈ JφKPρ }

Fig. 4. Effects of Terms

enabledP (ρ) P ′ = computePρ (P, ρ) δ = effectsP ′(P ′, ε)(ρ)

P
ρ−→ P ′ / δ

(COMPUTE)

enabledP (ρ) P ′ = updateP (P, ρ, v) δ = effectsP ′(P ′, ε)(ρ)

P
ρ(v)−−→ P ′ / δ

(UPDATE)

Fig. 5. Labelled Transition System

enabled′(ρ, P, ~D;~R, ρ′) = ∀φ→• φ′ ∈ R. ρ ∈ Jφ′KPρ′ =⇒ Jφ[included]KPρ′ = Jφ[included ∧ executed]KPρ′
∧ ∀φ→� φ′ ∈ R. ρ ∈ Jφ′KPρ′ =⇒ Jφ[included]KPρ′ = Jφ[included ∧ ¬pending]KPρ′

∧ ∀i ∈ size(~D). enabled′(ρ, P, P ′i , ρ
′i)(where ~D = P1, . . . , Pn and Pi = ni[.]:Mi{P ′i})

enabledP (ρi) = enabledP (ρ) ∧ enabled′(ρi, P, P, ε) and enabledP (ε) = true

Fig. 6. Enabledness.

REFERENCES

[1] Serge Abiteboul, Omar Benjelloun, and Tova Milo. The active xml
project: an overview. The VLDB Journal, 17(5):1019–1040, Aug 2008.

[2] David A. Basin, Søren Debois, and Thomas T. Hildebrandt. In the
nick of time: Proactive prevention of obligation violations. In IEEE
29th Computer Security Foundations Symposium, CSF 2016, Lisbon,
Portugal, June 27 - July 1, 2016, pages 120–134, 2016.

[3] K. Bhattacharya, R. Hull, and J. Su. A Data-Centric Design Methodol-
ogy for Business Processes, pages 503–531. IGI Global, 2009.

[4] Søren Debois, Thomas Hildebrandt, and Tijs Slaats. Hierarchical declar-
ative modelling with refinement and sub-processes. In International
Conference on Business Process Management, pages 18–33. Springer,
Cham, 2014.

[5] Søren Debois, Thomas T. Hildebrandt, and Tijs Slaats. Safety, liveness
and run-time refinement for modular process-aware information systems
with dynamic sub processes. In FM 2015, pages 143–160, 2015.

[6] Søren Debois, Thomas Hildebrandt, and Tijs Slaats. Safety, liveness and
run-time refinement for modular process-aware information systems with
dynamic sub processes. In Nikolaj Bjørner and Frank de Boer, editors,
FM 2015: Formal Methods, pages 143–160, Germany, 2015. Springer.

[7] Denise Draper, Peter Fankhauser, Mary Fernandez, Ashok Malhotra,
Kristoffer Rose, Michael Rys, Jarome Simon, and Philip Wadler.
XQuery 1.0 and XPath 2.0 formal semantics. W3C recommendation,
23, 2007.

[8] R. Eshuis, S. Debois, T. Slaats, and T. Hildebrandt. Deriving consistent
gsm schemas from dcr graphs. In Service-Oriented Computing. ICSOC
2016., volume 9936 of Lecture Notes in Computer Science. Springer,
Cham, 2016.

[9] Hull R. et al. Introducing the guard-stage-milestone approach for
specifying business entity lifecycles. In Web Services and Formal
Methods. WS-FM 2010, volume 6551 of Lecture Notes in Computer
Science, Berlin, Heidelberg, 2011. Springer.

[10] Thomas T Hildebrandt and Raghava Rao Mukkamala. Declarative
event-based workflow as distributed dynamic condition response graphs.
arXiv:1110.4161, 2011.

[11] Richard Hull. Artifact-centric business process models: Brief survey of
research results and challenges. In OTM ’08. Part II on On the Move
to Meaningful Internet Systems, OTM ’08, pages 1152–1163. Springer,
2008.

[12] James McKinna. Why dependent types matter. In Conference Record
of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’06, pages 1–1, New York, NY, USA, 2006.
ACM.

[13] Object Management Group BPMN Technical Committee. Business
Process Model and Notation, Version 2.0, 2013.

[14] Object Management Group CMMN Technical Committee. Case Man-
agement Model and Notation, Version 1.1, 2016.

[15] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full
Support for Loosely-Structured Processes. In EDOC ’07, pages 287–.
IEEE, 2007.

[16] João Costa Seco, Søren Debois, Thomas Hildebrandt, and Tijs Slaats.
RESEDA: Declaring live concurrent event-driven computations as RE-
active SEmi-structured DAta. Technical Report TR-2018-202, IT Uni-
versity of Copenhagen, 2018. Available on-line at http://www.itu.dk/
~debois/reseda-tr.pdf.

[17] Peter Sestoft. Spreadsheet implementation technology. Basics and
extensions. MIT Press, United States, 2014.

[18] Vivek Shah and Marcos Antonio Vaz Salles. Reactors: A case for
predictable, virtualized actor database systems. In Proceedings of the
2018 International Conference on Management of Data, SIGMOD ’18,
pages 259–274, New York, NY, USA, 2018. ACM.

[19] Jianwen Su, Lijie Wen, and Jian Yang. From data-centric business
processes to enterprise process frameworks. In 21st IEEE International
Enterprise Distributed Object Computing Conference, EDOC 2017,
Quebec City, QC, Canada, October 10-13, 2017, pages 1–9, 2017.

[20] Yutian Sun, Wei Xu, and Jianwen Su. Declarative choreographies
for artifacts. In Service-Oriented Computing - 10th International
Conference, ICSOC 2012, Shanghai, China, November 12-15, 2012.
Proceedings, pages 420–434, 2012.

[21] W. van der Aalst, A. Artale, Montali, M., and S. Tritini. Object-
centric behavioral constraints: Integrating data and declarative process
modelling. In DL 2017, International Workshop on Description Logics,
volume 1879 of CEUR Workshop Proceedings, 2017.

[22] Wil M. P. van der Aalst, Guangming Li, and Marco Montali. Object-
centric behavioral constraints. CoRR, abs/1703.05740, 2017.

[23] Wil M. P. van der Aalst and Mathias Weske. Case handling: A new
paradigm for business process support. Data Knowl. Eng., 53(2):129–
162, May 2005.

http://www.itu.dk/~debois/reseda-tr.pdf
http://www.itu.dk/~debois/reseda-tr.pdf

	Introduction
	Reseda
	Static data
	Dynamically created data
	Regulating behaviour: Condition and exclusion rules
	Initially excluded data elements aka hidden fields

	Syntax
	Expression language
	Structured data
	Relations

	Semantics
	Enabledness
	Transitions

	Expressive power
	Liveness
	Discussion & Related work
	Conclusions
	References

