
Open to Change:
A Theory for Iterative Test-Driven Modelling?

Tijs Slaats1, Søren Debois2, and Thomas Hildebrandt1

1 University of Copenhagen, Denmark
slaats@di.ku.dk, hilde@di.ku.dk

2 IT University of Copenhagen, Denmark
debois@itu.dk

Abstract. We introduce open tests to support iterative test-driven pro-
cess modelling. Open tests generalise the trace-based tests of Zugal et.
al. to achieve modularity : whereas a trace-based test passes if a model
exhibits a particular trace, an open test passes if a model exhibits a
particular trace up to abstraction from additional activities not relevant
for the test. This generalisation aligns open tests better with iterative
test-driven development: open tests may survive the addition of activi-
ties and rules to the model in cases where trace-based tests do not. To
reduce overhead in re-running tests, we establishing sufficient conditions
for a model update to preserve test outcomes. We introduce open tests
in an abstract setting that applies to any process notation with trace
semantics, and give our main preservation result in this setting. Finally,
we instantiate the general theory for the DCR Graph process notation,
obtaining a method for iterative test-driven DCR process modelling.

Keywords: Test-driven Modelling, Abstraction, Declarative, DCR Graphs

1 Introduction

Test-driven development (TDD) [4,17] is a cornerstone of agile software devel-
opment [8] approaches such as Extreme programming [3] and Scrum [24]. In
TDD, tests drive the software development process. Before writing any code, de-
velopers gather and translate requirements to a set of representative tests. The
software product is considered complete when it passes all tests.

In [27,28] Zugal et al. proposed applying the TDD approach to process mod-
elling, introducing the concept of test-driven modelling (TDM). Like in TDD,
the modeller in TDM first defines a set of test cases then uses these test cases
to guide the construction of the model. A test case in this setting consists of a
trace of activities expected to be accepted by the model.

Specifically, Zugal et al. proposed a test-driven modelling methodology where
the model designer first constructs a set of process executions (traces) that will
? Work supported in part by the Innovation Fund project EcoKnow (7050-00034A);
the first author additionally by the Danish Council for Independent Research project
Hybrid Business Process Management Technologies project (DFF-6111-00337).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/186639338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

be used as test cases. The model designer then constructs the process model by
repeatedly updating the model to make it satisfy more tests. Once all tests pass,
the model is complete.

This methodology benefits the end-user by allowing him to focus on specific
behaviours of the model that should be allowed in isolation, without having to
immediately reason about all possible behaviours. By eventually arriving at a
model where all tests pass, he is ensured that all desired behaviour is supported;
and should a previously passing test fail after a model update, he knows that
this update is wrong.

Process modelling notations can be roughly divided into two classes: declara-
tive notations [21,22,14,10,16,19], which model what a process should do, e.g. as
a formal description the rules governing the process; as opposed to imperative
process models, which model how a process should proceed, e.g. as a flow be-
tween activities. Zugal et. al. argued [27,28] that TDM is particularly useful for
the declarative paradigm, where understanding exactly which process executions
the model allows and which it does not requires understanding potential non-
trivial interplay of rules. In this setting, TDM is helpful to both constructing the
model in a principled way (incrementally add declarative rules to satisfy more
tests), as well as to recognize when the model is becoming over-constrained
(when previously passing tests fail after a model extension). The commercial
vendor DCR Solutions has implemented TDM in this sense in their commercial
DCR process portal, dcrgraphs.net.

Unfortunately, TDM falls short of TDD in one crucial respect: its test cases
are insufficiently modular and may cease to adequately model requirements as
the model evolves. Consider a requirement “payout can only happen after man-
ager approval”, and suppose we have a model passing the test case:

〈Approval,Payout〉 (1)

Now suppose that, following the iterative modelling approach, we refine the
model to satisfy also the only tangentially related requirements that “approval
requires a subsequent audit” and “payout cannot happen before an audit”. That
is, the model would have a trace:

〈Approval,Audit,Payout〉 (2)

Crucially, while the requirement “payout can only happen after manager ap-
proval” is still supported by the refined model, the test case (1) intended to
express that requirement no longer passes.

In the present paper we propose open tests: A generalisation of the “test
cases” of [27,28] that is more robust under evolution of the model. Open tests
formally generalise [27,28]: An open test comprises a trace as well as a context,
a set of activities relevant to that test. This context will always contain the
activities of the trace, and will often (but not always) be the set of activities
known when the test was defined. For example, if we generalise the test (1) to an
open test with the same trace and context {Approval,Payout}, then the extended

dcrgraphs.net

3

model which has the trace (2) passes this open test, because, when we ignore
the irrelevant activity Audit, the traces (1) and (2) are identical.

In practice, one will use open tests in a similar way as regular trace-based
tests; the core TDM methodology does not change. The difference comes when
the specification of a model changes, for example because of changes in real-world
circumstances such as laws or business practices, or because one wants to add
additional detail to the model. Using simple trace-based tests, one would need to
update each individual test to make sure that they still accurately represent the
desired behaviour of the system. With open tests one only needs to change those
tests whose context contains activities that are directly affected by the changes.
Because of the modularity introduced by open tests, any test not directly affected
by the changes will continue to work as expected. This also means that open
tests are much better suited for regression testing : it is possible to make small
changes to a model and continue to rely on previously defined tests to ensure
that unrelated parts continue to work as intended.

We define both positive and negative open tests. A positive open test passes
iff there exists a model trace whose projection to the context is identical to the test
case. A negative test passes iff for all model traces, the projection to the context
is different from the test case. Note that positive open tests embody existential
properties, and negative open tests universal ones.

We instantiate the approach of open tests for the Dynamic Condition Re-
sponse (DCR) Graph process notation [14,10] and provide polynomial time meth-
ods for approximating which open tests will remain passing after a given model
update. This theoretical result makes the approach practical: When the relevant
activities are exactly those of the model, an open test is the same as a test
of [27,28]. From there, we iteratively update the model verifying at each step in
low-order polynomial time that the open tests remain passing.

Altogether, we provide the following contributions:

1. We give a theory of process model testing using open tests (Section 2).
This theory is general enough that it is applicable to all process notations
with trace semantics: it encompasses both declarative approaches such as
DECLARE or DCR, and imperative approaches such as BPMN.

2. We give in this general theory sufficient conditions for ensuring preservation
of tests (Proposition 16). This proposition is key to supporting iterative test-
driven modelling: it explains how a test case can withstand model updates.

3. We apply the theory to DCR graphs, giving a sufficient condition ensuring
preservation of tests across model updates (Theorems 30 respectively 33).

Related Work Test-driven modelling (TDM) was introduced by Zugal et al.
in [27,28] as an application of test-driven development to declarative business
processes. Their studies [27] indicate in particular the that simple sequential
traces are helpful to domain experts in understanding the underlying declar-
ative models. The present approach generalises that of [27,28]: We define and
study preservation of tests across model updates, alleviating modularity concerns
while preserving the core usability benefit of defining tests via traces.

4

Connections between refinement, testing-equivalence and model-checking was
observed in [6]. But where we consider refinements guaranteeing preservation of
the projected language, the connection in [6] uses that a refinement of a state
based model (Büchi-automaton) satisfies the formula the state based model was
derived from. Our approach (and that of [12]) has strong flavours of refinement.
Indeed, the iterative development and abstract testing of system models in the
present paper is related to the substantial body of work on abstraction and
abstract interpretation, e.g., [1,7,9]. In particular, an open test can be seen as
a test on an abstraction of the system under test, where only actions in the
context of the test are visible. In this respect, the abstraction is given by string
projection on free monoids. We leave for future work to study the ramifications of
this relationship and the possibilities of exploiting it in employing more involved
manipulations than basic extensions of the alphabet in the process of iterative
development, such as, e.g., allowing splitting of actions.

The synergy between static analysis and model checking is also being inves-
tigated in the context of programming languages and software engineering [13].
In particular there have been proposals for using static analysis to determine
test prioritisation [26,18] when the tests themselves are expensive to run. Our
approach takes the novel perspective of analysing the adaptations to a model
(or code), instead of analysing the current instance of the model.

2 Open Tests

In this section, we introduce open tests in the abstract setting of trace languages.
The definitions and results of this section apply to any process notation that has
a trace semantics, e.g., DECLARE [22], DCR graphs [14,10,12], or BPMN [20].
In the next section, we instantiate the general results of this section specifically
for DCR graphs.

Definition 1 (Test case). A test case (c,Σ) is a finite sequence c over a set
of activities Σ. We write dom(c) ⊆ Σ for the set of activities in c, i.e., when
c = 〈e1.en〉 we have dom(c) = {e1, . . . , en}.

As a running example, we iteratively develop a process for handling reimburse-
ment claims. The process we eventually develop conforms to §42 of the Danish
Consolidation Act on Social Services (Serviceloven) [5]. The process exists to
provide a citizen compensation for lost wages in the unfortunate circumstances
that he must reduce his working hours to care for a permanently disabled child.

Example 2. Consider the set of activities Σ = {Apply,Document,Receive}, ab-
breviating respectively “Apply for compensation”, “Document need for compen-
sation”, and “Receive compensation”. We define a test case t0:

t0 = (〈Apply,Document,Receive〉, Σ) (3)

Intuitively, this test case identifies all traces, over any alphabet, whose projection
to Σ is exactly 〈Apply,Document,Receive〉.

5

Open test cases come in one of two flavours: a positive test requires the
presence of (a representation of) a trace, whereas a negative test requires the
absence of (any representation of) a trace.

Definition 3 (Positive and negative open tests). An open test comprises
a test case t = (c,Σ) and a polarity ρ in {+,−}, altogether written t+ respec-
tively t−.

Example 4. Extending our previous example, define a positive and negative open
test as follows:

t+0 = (〈Apply,Document,Receive〉, {Apply,Document,Receive}+ (4)

t−1 = (〈Receive〉, {Document,Receive})− (5)

Intuitively, the positive test t+0 requires the presence of some trace that projects
to exactly 〈Apply,Document,Receive〉. The negative requires that no trace, when
projected to {Document,Receive}, is exactly Receive, that is, this test models
the requirement that one may not Receive compensation without first providing
Documentation.

To formalise the semantics of open tests we need a system model representing
the possible behaviours of the system under test. In general, we define a system
as a set of sequences of activities, that is, a language.

Definition 5. A system S = (L,Σ) is a language L of finite sequences over a
set of activities Σ.

We can now define under what circumstances positive and negative open
tests pass. First we introduce notation.

Notation Let ε denote the empty sequence of activities. Given a sequence s, write
si for the ith element of s, and s|Σ defined inductively by ε|Σ = ε, (a.s)|Σ =
a.(s|Σ) if a ∈ Σ and (a.s)|Σ = s|Σ if a 6∈ Σ. E.g, if s = 〈Apply,Document,Receive〉
is the sequence of test t0 above, then s|{Document,Receive} = 〈Document,Receive〉 is
the projection of that sequence. We lift projection to sets of sequences point-wise.

Definition 6 (Passing open tests). Let S = (L,Σ′) be a system and t =
(c,Σ) a test case. We say that:

1. S passes the open test t+ iff there exists c′ ∈ L such that c′|Σ = c.
2. S passes the open test t− iff for all c′ ∈ L we have c′|Σ 6= c.

S fails an open test tρ iff it does not pass it.

Notice how activities that are not in the context of the open test are ignored
when determining if the system passes.

6

Example 7 (System S, Iteration 1). Consider a system S = (L,Σ) with activities
Σ = {Apply,Document,Receive} and as language L the subset of sequences of
Σ∗ such that the Receive is always preceded (not necessarily immediately) by
Document, and Apply is always succeeded (again not necessarily immediately)
by Receive.

Positive tests require existence of a trace that projects to the test case.
This system S passes the test t+0 for t0 = (〈Apply,Document,Receive〉, Σ) as
defined above, since the sequence c′ = 〈Apply,Document,Receive〉 in L has
c′|Σ = 〈Apply,Document,Receive〉 .

Negative tests require the absence of any trace that projects to the test
case. S also passes the test t−1 for t1 = (Receive, {Document,Receive}) since if
there were a c′ ∈ L s.t. c′|{Document,Receive} = Receive that would contradict that
Document should always appear before any occurrence of Receive.

Finally, consider the following positive test.

t+2 = (Apply, {Apply,Receive})+

The System S fails this test t+2 , because every sequence in L that contains Apply
will by definition also have a subsequent Receive, which would then appear in
the projection.

We note that a test either passes or fails for a particular system, never both; and
that positive and negative tests are dual: t+ passes iff t− fails and vice versa.

Lemma 8. Let S = (L,Σ) be a system and t a test case. Then either (a) S
passes t+ and fails t−; or (b) S fails t+ and S passes t−.

Example 9 (Iteration 2, Test preservation). We extend our model of Example 7
with the additional requirement that some documentation of the salary reduction
is required before compensation may be received. To this end, we refine our
system (L,Σ) to a system S′ = (L′, Σ′ = Σ ∪ {Reduction}) where Reduction
abbreviates “Provide documentation of salary reduction”, and L′ is the language
over Σ′∗ that satisfies the original rules of Example 7 and in addition that Receive
is always preceded by Reduction.

The explicit context ensures that the tests t+0 , t
−
1 , t

+
2 defined in the previous

iteration remain meaningful. The system S′ no longer has a trace

〈Apply,Document,Receive〉

because Reduction is missing. Nonetheless, S′ still passes the test t+0 , because S
′

does have the trace:

c′ = 〈Apply,Document,Reduction,Receive〉 ∈ L′

The projection c′|Σ = 〈Apply,Document,Receive〉 then shows that t+0 passes S′.
Similarly, S′ still passes the test t−1 since for any c′ ∈ L′, if c′|Σ = 〈Receive〉

then c′ = 〈c0,Receive, c1〉 for some c0, c1 ∈ Σ′\Σ, but that contradicts the
requirement that Document must appear before any occurrence of Receive.

7

We now demonstrate how open tests may be preserved by model extensions
where the trace-based tests of Zugal et. al. [27,28] would not be.

Example 10 (Non-preservation of non-open tests). We emphasize that if we in-
terpret the trace s = 〈Apply,Document,Receive〉 underlying the test t+0 as a test
in the sense of [27,28], that test is not preserved when we extend the system from
(L,Σ) to (L′, Σ′): The original system L has the behaviour s, but the extension
L′ does not.

Example 11 (Iteration 2, Additional tests). We add the following additional tests
for the new requirements of Iteration 2.

t−3 = (〈Apply,Document,Receive〉, Σ′)−

Note that the trace of t3 is the same as the original test t0; the two tests differ
only in their context. This new test says that in a context where we know about
the Reduction activity, omitting it is not allowed.

In these particular examples, the tests that passed/failed in the first itera-
tion also passed/failed in the second. This is not generally the case; we give an
example.

Example 12 (Iteration 3). The reduction in salary may be rejected, e.g. if the
submitted documentation is somehow unsatisfactory. In this case, compensation
must be withheld until new documentation is provided. We model this by adding
an activity Rejection to the set of activities Σ′ and constrain the language L′
accordingly. Now the system will pass the test t+2 = (Apply, {Apply,Receive})+
defined above, because it has a trace that contains Apply but no Receive: the
sequence in which the documentation of reduced salary is rejected.

We now turn to the question how to “run” an open test. Unlike the tests of
Zugal et. al., running an open test entails more than simply checking language
membership. For positive tests we must find a trace of the system with a suitable
projection, and for negative tests we must check that no trace has the test trace
as projection.

First, we note that if the context of the open test contains all the activities of
the model under test, it is in fact enough to simply check language membership.

Lemma 13. Let S = (L,Σ) be a system, let t = (c,Σ′) be a test case, and
suppose Σ ⊆ Σ′. Then: 1. t+ passes iff c ∈ L. 2. t− passes iff c /∈ L.

Second, we show how checking whether an open test passes or fails in the
general case reduces to the language inclusion problem for regular languages.

Proposition 14. Let S = (L,Σ) be a system, let t = (〈c1, . . . , cn〉, Σ′) be a
test case. Define the set of irrelevant activities I = Σ \ Σ′ as those activities
in the system but not in the test case. Assume wlog I = {i1, . . . , im}, and let
ri = (i1| · · · |im)∗ be the regular expression that matches zero or more irrelevant
activities. Finally, define the regular expression rc = ri c1 ri · · · ri cn ri. Then:

8

1. S passes the positive test t+ iff lang(rc) ∩ L 6= ∅, and
2. S passes the negative test t− iff lang(rc) ∩ L = ∅.

Example 15. Consider again S′ of Example 9, and the test case t+0 of Example 2:

S′ = (L′, Σ′ = {Apply,Document,Receive,Reduction})
t+0 = (〈Apply,Document,Receive〉, {Apply,Document,Receive}+

In the notation of Proposition 14, we have I = {Reduction}, ri = Reduction∗ and
by that Theorem, t+0 passes the system S′ because S′ has non-empty intersection
with the language defined by the regular expression:

Reduction∗ Apply Reduction∗ Document Reduction∗ Receive Reduction∗

Lemma 13 and Proposition 14 explain how to “run” open tests, they apply
directly for any process notation with trace semantics. Language inclusion for
regular languages is extremely well-studied: practical methods exist for comput-
ing such intersections from both the model-checking and automata-theory com-
munities. For certain models these methods may be sufficient; for example in the
case of BPMN where models tend to be fairly strict and allow little behaviour,
it could be feasible to always rely on model checking. However, for models that
represent large state spaces, which is particularly common for declarative no-
tations, this will not suffice and we will need to reduce the amount of model
checking required.

The key insight of open tests is that oftentimes, changes to a model will pre-
serve open test outcomes, obviating the need to re-check tests after the change.
The following Proposition gives general conditions for when outcomes of positive
(resp. negative) tests for a system S are preserved when the system is changed
to a new system S′.

Proposition 16. Let S = (L,Σ) and S′ = (L′, Σ′) be systems, and let t =
(ct, Σt) be a test case. Assume that Σ′ ∩Σt ⊆ Σ′ ∩Σ. Then:

1. If L′|Σ ⊇ L and S passes t+, then so does S′.
2. If L′|Σ ⊆ L and S passes t−, then so does S′.

In words, the assumption Σ′ ∩Σt ⊆ Σ′ ∩Σ states that the changed system
S′ does not introduce activities appearing in the context of the test that did
not already appear in the original system S. Condition 1 (resp. 2) expresses that
positive (resp. negative) tests are preserved if the language of the original system
S is included in (resp. including) the language of the changed system S′ projected
to the activities in the original system. Now, if one can find static properties of
changes to process models for a particular notation that implies the conditions
of Proposition 16 then these properties can be checked instead of relying on
model-checking to infer preservation of tests. We identify such static properties
for the Dynamic Condition Response (DCR) Graphs [14,10,12] process notation
in Section 4. First however, we recall the syntax and semantics of DCR graphs
in the next section.

9

3 Dynamic Condition Response Graphs

DCR Graphs is a declarative notation for modelling processes superficially sim-
ilar to DECLARE [21,22] or temporal logics such as LTL [23] in that it allows
for the declaration of a set of temporal constraints between activities.

One notable difference is that DCR graphs model also the run-time state of
the process using a so-called marking of activities. The marking consists of three
finite sets (Ex,In,Re) recording respectively which activities have been executed
(Ex), which are currently included (In) in the graph, and which are required (Re)
to be executed again in order for the graph to be accepting, also referred to as
the pending events. The marking allows for providing semantics of DCR Graphs
by defining when an activity is enabled in a marking and how the execution of
an enabled activity updates the marking. Formally, DCR graphs are defined as
follows.

Definition 17 (DCR Graph [14]3). A DCR graph is a tuple (E,R,M) where

– E is a finite set of activities, the nodes of the graph.
– R is the edges of the graph. Edges are partitioned into five kinds, named and

drawn as follows: The conditions (→•), responses (•→), inclusions (→+),
exclusions (→%) and milestones →�.

– M is the marking of the graph. This is a triple (Ex,Re, In) of sets of activities,
respectively the previously executed (Ex), the currently pending (Re), and the
currently included (In) activities.

Next we recall from [14] the definition of when an activity is enabled.

Notation. When G is a DCR graph, we write, e.g., E(G) for the set of activities
of G, Ex(G) for the executed activities in the marking of G, etc. In particular,
we write M(e) for the triple of boolean values (e ∈ Ex, e ∈ Re, e ∈ In). We write
(→•e) for the set {e′ ∈ E | e′ →• e}, write (e•→) for the set {e′ ∈ E | e •→ e′}
and similarly for (e→+), (e→%) and (→�e).

Definition 18 (Enabled activities [14]). Let G = (E,R,M) be a DCR graph,
with marking M = (Ex,Re, In). An activity e ∈ E is enabled, written e ∈
enabled(G), iff (a) e ∈ In and (b) In∩ (→•e) ⊆ Ex and (c) (Re∩ In)∩ (→�e) = ∅.

That is, enabled activities (a) are included, (b) their included conditions have
already been executed, and (c) have no pending included milestones.

Executing an enabled activity e of a DCR Graph with marking (Ex,Re, In)
results in a new marking where (a) the activity e is added to the set of executed
activities, (b) e is removed from the set of pending response activities, (c) the
responses of e are added to the pending responses, (d) the activities excluded by

3 In [14] DCR graphs model constraints between so-called events labelled by activities.
To simplify the presentation, we assume in the present paper that each event is
labelled by a unique activity and therefore speak only of activities.

10

e are removed from included activities, and (e) the activities included by e are
added to the included activities.

From this we can define the language of a DCR Graph as all finite sequences
of activities ending in a marking with no activity both included and pending.

Definition 19 (Language of a DCR Graph [14]4). Let G0 = (E,R,M) be
a DCR graph with marking M0 = (Ex0,Re0, In0). A trace of G0 of length n is a
finite sequence of activities e0, . . . , en−1 such that for 0 ≤ i < n, (i) ei is enabled
in the marking Mi = (Exi,Rei, Ini) of Gi, and (ii) Gi+1 is a DCR Graph with
the same activities and relations as Gi but with marking (Exi+1,Rei+1, Ini+1) =
(Exi ∪ {ei}, (Rei\{ei}) ∪ (ei •→), (Ini\(ei→%)) ∪ (ei→+)).

We call a trace of length n accepting if Ren∩ Inn = ∅. The language lang(G0)
of G0 is then the set of all such accepting traces. Write Ĝ for the corresponding
system Ĝ = (lang(G),E) (viz. Definition 5). When no confusion is possible, we
denote by simply G both a DCR graph and its corresponding system Ĝ.

Example 20 (DCR Iteration 1). We model the §42 process of Example 2 in Fig-
ure 1a as a DCR graph. This model is simple enough that it uses only the
response and condition relations which (in this case) behave the same as the re-
sponse and precedence constraints in DECLARE. The condition from Document
to Receive models the requirement that documentation must be provided before
compensation may be received. The response from Apply to Receive models that
compensation must eventually be received after it has been applied for. The
marking of the graph is (∅, ∅, {Document,Receive}), i.e. no activities have been
executed, no activities are yet pending responses and all activities are included.
(The activity Receive is grey to indicate that it is not enabled).

Example 21 (DCR Iteration 2). Following Example 9, we extend the iteration
1 model of Figure 1a to the iteration 2 model in Figure 1b. We model the new
requirement that documentation must be provided before compensation may
be received by adding a new activity Reduction and a condition relation from
Reduction to Receive.

Example 22 (DCR Iteration 3). Following Example 12, we extend the iteration
2 model of Figure 1b to the iteration 3 model in Figure 1c. To model the re-
jection of documentation, we add the activity Rejection and exclude-relations
between Rejection and Receive. This models the choice between those two ac-
tivities: Once one is executed, the other is excluded and no longer present in
the model. To model subsequent re-submission, we add an include relation from
Reduction to Rejection and Receive: if new documentation of salary is received,
the activities Rejection and Receive become included once again, re-enabling the
decision whether to reject or pay.

Example 23 (DCR Iteration 3, variant). To illustrate the milestone relation, we
show an alternative to the model of Figure 1c in Figure 1d. Using a response
4 In [14] the language of a DCR graph consists of both finite and infinite sequences.
To simplify the presentation, we consider only finite sequences in the present paper.

11

relation from Receive to Reduction we model that after rejection, documentation
must be resubmitted; and by adding a milestone from Reduction to Receive we
model that compensation may not received again while we are waiting for this
new documentation.

(a) I1: Iteration 1 (b) I2: Iteration 2

(c) I3: Iteration 3 (d) I ′3: Variant iteration 3

Fig. 1: DCR Graph models of the §42 of Examples 2–12.

4 Iterative Test Driven Development for DCR Graphs

In this Section, we show how Proposition 16 applies to DCR graphs, and exem-
plify how the resulting theory supports iterative test-driven DCR model develop-
ment by telling us which tests are preserved by model updates. We consider the
situation that a graph G′ extends a graph G by adding activities and relations.
Recall the notation M(e) = (e ∈ Ex, e ∈ Re, e ∈ In).

Definition 24 (Extensions). Let G = (E,R,M) and G′ = (E′,R′,M′) be DCR
graphs. We say that G′ statically extends G and write G v G′ iff E ⊆ E′ and R ⊆
R′. If also e ∈ E implies M(e) = M(e′), we say that G′ dynamically extends G
and write G � G′.

Our main analysis technique will be the application of Proposition 16. To
this end, we need ways to establish the preconditions of that Theorem, that is:

lang(G′)|E ⊇ lang(G) (†)
lang(G′)|E ⊆ lang(G) (‡)

12

Example 25. Consider the graphs I1 of Figure 1a and I2 of Figure 1b. Clearly
I1 v I2 since I2 contains all the activities and relations of I1. Moreover, since
the markings of I1 and I2 agree, also I1 � I2. Similarly, I2 v I3 and I2 v I ′3,
where I3 and I ′3 are the graphs of Figures 1c and 1d. On the other hand, neither
I3 v I ′3, since the former graph has activities not in the latter, nor I ′3 v I3, since
the former graph has relations (e.g., the milestone) not in the latter.

We note that DCR activity execution preserves static extensions, i.e. if G v G′

and an activity e is enabled in both G and G′ then G1 v G′1, if G1 and G′1 are the
results of executing e in G and G′ respectively. Dynamic extension is generally
not preserved by execution, because an execution might make markings between
the original and extended graph differ on the original activities, e.g., if G′ adds
an exclusion, inclusion or response constraint between activities of E.

4.1 Positive tests

We first establish a syntactic condition for a modification of a DCR graph to
preserve positive tests. The condition will be, roughly, that the only new relations
are either (a) between new activities, or (b) conditions or milestones from new
to old activities. For the latter, we will need to be sure we can find a way to
execute enough new activities to satisfy such conditions and milestones. To this
end, we introduce the notion of dependency graph, inspired by [2].

Definition 26 (Dependency graph). Let G = (E,R,M) be a DCR graph, and
let e, f ∈ E be activities of G. Write e→ f whenever e→• f ∈ R or e→� f ∈ R.
The dependency graph D(G, e) for e is the directed subgraph of G which has
nodes {f | f →∗ e} and an edge from node f to node f ′ iff f → f ′.

With the notion of dependency graph, we can define the notion of “safe”
activities, intuitively those that can be relied upon to be executed without having
undue side effects on a given (other) set of nodes X. The principle underlying
this definition is inspired by the notion of dependable activity from [2].

Definition 27 (Safety). Let G = (E,R,M) be a DCR graph, let e ∈ E be an
activity of G, and let X ⊆ E be a subset of the activities of G. We say that e is
safe for X iff

1. D(G, e) is acyclic,
2. no f ∈ D(G, e) has an include, exclude, or response relation to any x ∈ X.
3. for any f ∈ D(G, e), if f has a condition or milestone to some f ′ ∈ E, then

f ′ is reachable from f in D(G, e).

The notion of safe activity really captures activities that can reliably be
discharged if they are conditions or milestones for other activities. We use this
to define a notion of transparent process extensions: a process extension which
we shall see preserves positive tests.

13

Definition 28 (Transparent). Let G = (E,R,M) and G′ = (E′,R′,M′) be
DCR graphs with G v G′. We say that G′ is transparent for G iff for all e, f ∈ E
and e′, f ′ ∈ E′ we have:

1. if e′Rf ′ ∈ R′ for R ∈ {→•,→�} then either e′Rf ′ ∈ R or (a) e′ 6∈ E, (b) e′
is safe for E, and (c) E(D(G′, e′)) ⊆ E′ \ E,

2. for R ∈ {→+,→%, •→} we have eRf ∈ R′ iff eRf ∈ R.
3. for R ∈ {→+, •→} we have if eRe′ ∈ R′ or e′ ∈ Re(G′) then e′ ∈ E

We rephrase these conditions more intuitively. Call an activity e ∈ E an old
activity, and an activity e′ ∈ E′ \ E a new activity. The first item then says
that we can never add conditions or milestones from old activities and only
add a condition or milestone to an old activity when the new activity is safe,
that is, we can rely on being able to discharge that milestone or condition. The
second item says that we cannot add exclusions, inclusions or responses between
old activities. The third says that we also cannot add inclusions or responses
from old to new activities, or add a new activity which is initially pending in
the marking, which could cause the new graph to be less accepting than the old.
Inclusions, exclusions and responses may be added from a new to an old activity;
the interplay of condition 1 of Definition 28 and condition 2 of Definition 27 then
implies that this can only happen if the new activity is not in the dependency
graph of any old activity. The reason is, that such constraints can be vacuously
satisfied since the new activity at the source of the constraint is irrelevant with
respect to passing any of the positive tests.

Example 29. It is instructive to see how violations of transparency may lead to
non-preservation of positive tests. Consider a DCR graph with activitiesA,B and
no relations. Note that this graph passes the open test t+ = (〈A,B〉, {A,B})+.
Consider two possible updates. (i) Adding a relation B →• A (a condition be-
tween old activities) would stop the test from passing. So would adding an ac-
tivity C and relations B →• C →• A. (ii) Adding a relation B •→ A causes t to
end in a non-accepting state, stopping the test t from passing.

Theorem 30. Let G � G′ with G′ transparent for G, and let t+ = (ct, Σt)
+ be

a positive test with Σt ⊆ E. If G passes t then so does G′.

Example 31 (Preservation). Consider the change from the graph I1 of Figure 1a
to the graph I2 of Figure 1b: We have added the activity Reduction and the
condition Reduction →• Receive. In this case, I2 is transparent for I1: The new
activity Reduction satisfies Definition 28 part (1c): even though a new condition
dependency is added for Receive, the dependency graph for the new Receive
remains acyclic. By Theorem 30, it follows that any positive test whose context is
contained in {Apply,Document,Receive} will pass I2 if it passes I1. In particular,
we saw in Example 7 that I1 passes the test t+0 , so necessarily also I2 passes t+0 .

4.2 Negative tests

For negative tests we must establish the inclusion (‡). This inclusion was investi-
gated previously in [11,12], with the aim of establishing more general refinement

14

of DCR graphs. Definition 24 is a special case of refinement by merging, investi-
gated in the above papers. Hence, we use the sufficient condition for such a merge
to be a refinement from [12] to establish a sufficient condition, exclusion-safety
for an extension to preserves negative tests.

Definition 32 (Exclusion-safe). Suppose G = (E,R,M) and G′ = (E′,R′,M′)
are DCR graphs and that G′ dynamically extends G. We say that G′ is exclusion-
safe for G iff for all e ∈ E and e′ ∈ E′ we have that:

1. if e′ →% e ∈ R′ then e′ →% e ∈ R.
2. if e′ →+ e ∈ R′ then e′ →+ e ∈ R.

Using [11, Theorem 4.10], we arrive at the following Theorem.

Theorem 33. Suppose G � G′ are DCR graphs with G′ exclusion-safe for G,
and suppose t− = (ct, Σt)

− is a negative test with with Σt ⊆ E. If G passes t
then so does G′.

Example 34 (Application). Consider again the change from I1 to I2 in Figure 1a
and 1b. Since neither contains inclusions or exclusions, clearly I2 is exclusion-safe
for I1. By Theorem 33 it follows that any negative test whose context is contained
in {Apply,Document,Receive} which passes I1 will also pass I2. In particular, the
negative test t−1 = (〈Receive〉, {Document,Receive})− of Example 7 passes I1, so
by Theorem 33 it passes also I2. Similarly but less obviously, any negative test
with context included in {Apply,Document,Reduction,Receive} which passes I2
must also pass I ′3 (Figure 1d).

Example 35 (Non-application). The changes two from I1 to I2 and from I2 to I3
(Figures 1a, 1b and 1c), where amongst other changes we have added an activity
Rejection and a relation Rejection→% Receive, both violate exclusion-safety.

In this case, we can find a negative test that passes I1 and I2 but not I3:
t−2 = 〈Apply〉, {Apply,Receive}−. It passes both I1 and I2, because in both of
these, Apply leaves Receive pending, whence one needs to execute also Receive to
get a trace of the process. But in I3, we can use Rejection to exclude the pending
Receive. So I3 has a trace 〈Apply,Rejection〉, and the projection of this trace to
the context {Apply,Receive} of our test is the string 〈Apply〉: The test fails in I3.

4.3 Practical use

To perform iterative test-driven development for DCR graphs using open tests,
we proceed as follows. When tests are defined, we normally include all activities
of the model under test in the context, and will be able to run them as standard
tests, cf. Lemma 13. As we update the model, we verify at each step that the
update preserves existing tests using Theorem 30 or 33. Should a model update
fail to satisfy the prerequisites for the relevant Theorem, we “re-run” tests using
model-checking techniques such as Proposition 14. We refer the reader to [25,15]
for details on model-checking for DCR Graphs.

The prerequisites of both Theorem 30 and 33 are effectively computable.

15

Theorem 36. Let G � G′ be DCR graphs. It is decidable in time polynomial in
the maximum size of G,G′ whether (1) G′ is exclusion-safe for G and (2) G′ is
transparent for G.

5 Conclusion and Discussion

We introduced a general theory for testing abstractions of process models based
on a notion of open tests, which extend the test-driven modelling methodology
of [27,28]. In particular, we gave sufficient conditions for ensuring preservation of
open tests across model updates. We applied the theory to the concrete declar-
ative notation of DCR graphs and gave sufficient static transparency conditions
on the updates of a DCR graph, ensuring preservation of open tests.

While the general theory applies to any process notation with trace semantics,
the static conditions for transparency will need to be defined for the particular
process notation at hand. Consider for example DECLARE [22]. The mono-
tonicity of the semantics implies that adding more constraints will only remove
traces from the language, and removing constraints will only add traces to the
language. It is thus straightforward to prove that, if the set of activities is not
changed, then adding respectively removing a constraint will satisfy part (1) re-
spectively (2) of Proposition 16 and consequently positive respectively negative
tests will not need to be re-checked. Further static conditions can be obtained
by considering the constraints individually. Here, one source of complexity is the
fact that DECLARE allows constraints that implicitly quantify over all possible
activities. For instance, if a DECLARE model has the chain succession relation
between two activities A and B, then A and B always happen together in the
exact sequence A.B with no other activities in-between. Now, if the model is
extended by adding condition constraints from A to a new activity C and from
C to B, then the test A.B will fail even when considered in the open context
{A,B}. Another source of complexity is simply that DECLARE allows many
more constraints than DCR. We leave for future work to further investigate
sufficient conditions for transparency for DECLARE.
Acknowledgements: We are grateful to the reviewers for their help not only
to improve the presentation but also to identify interesting areas of future work.

References

1. Baeten, J.C., van Glabbeek, R.J.: Another look at abstraction in process algebra.
In: International Colloquium on Automata, Languages, and Programming. pp. 84–
94. Springer (1987)

2. Basin, D.A., Debois, S., Hildebrandt, T.T.: In the Nick of Time: Proactive Pre-
vention of Obligation Violations. In: Computer Security Foundations. pp. 120–134
(2016)

3. Beck, K.: Extreme programming explained: embrace change. addison-wesley pro-
fessional (2000)

4. Beck, K.: Test-driven development: by example (2003)

16

5. Bekendtgørelse af lov om social service (Aug 2017), Børne- og Socialministeriet
6. Bushnell, D.M.: Research Conducted at the Institute for Computer Applications in

Science and Engineering for the Period October 1, 1999 through March 31, 2000.
Technical Report NASA/CR-2000-210105, NAS 1.26:210105, NASA (2000)

7. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
transactions on Programming Languages and Systems (TOPLAS) 16(5), 1512–
1542 (1994)

8. Cockburn, A.: Agile software development, vol. 177. Addison-Wesley Boston (2002)
9. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In:

Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of pro-
gramming languages. pp. 269–282. ACM (1979)

10. Debois, S., Hildebrandt, T.: The DCR Workbench: Declarative Choreographies for
Collaborative Processes. In: Behavioural Types: from Theory to Tools, pp. 99–124.
River Publishers (2017)

11. Debois, S., Hildebrandt, T.T., Slaats, T.: Hierarchical Declarative Modelling with
Refinement and Sub-processes. In: Business Process Management. pp. 18–33 (2014)

12. Debois, S., Hildebrandt, T.T., Slaats, T.: Replication, Refinement & Reachability:
Complexity in Dynamic Condition-Response Graphs. Acta Informatica (2017)

13. Ernst, M.D.: Static and dynamic analysis: Synergy and duality. In: ICSEWorkshop
on Dynamic Analysis. pp. 24–27 (2003)

14. Hildebrandt, T., Mukkamala, R.R.: Declarative Event-Based Workflow as Dis-
tributed Dynamic Condition Response Graphs. In: Post-proceedings of PLACES
2010. EPTCS, vol. 69, pp. 59–73 (2010)

15. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-
organizational workflows as timed dynamic condition response graphs. The Journal
of Logic and Algebraic Programming 82(5-7), 164–185 (2013)

16. Hull, R., et al.: Introducing the guard-stage-milestone approach for specifying busi-
ness entity lifecycles. In: WS-FM. vol. 6551, pp. 1–24. Springer (2010)

17. Janzen, D., Saiedian, H.: Test-driven development concepts, taxonomy, and future
direction. Computer 38(9), 43–50 (2005)

18. Mei, H., Hao, D., Zhang, L., Zhang, L., Zhou, J., Rothermel, G.: A static approach
to prioritizing junit test cases. IEEE Transactions on Software Engineering 38(6),
1258–1275 (2012)

19. Object Management Group: Case Management Model and Notation. Tech. Rep.
formal/2014-05-05, Object Management Group (May 2014), version 1.0

20. Object Management Group BPMN Technical Committee: Business Process Model
and Notation, Version 2.0 (2013)

21. Pesic, M., Van der Aalst, W.M.: A declarative approach for flexible business pro-
cesses management. In: Business Process Management. pp. 169–180 (2006)

22. Pesic, M., Schonenberg, H., Aalst, W.M.P.v.d.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proceedings of the 11th IEEE International En-
terprise Distributed Object Computing Conference. pp. 287–300. IEEE (2007)

23. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science (FOCS). p. 46?57 (1977)

24. Schwaber, K., Beedle, M.: Agile software development with Scrum, vol. 1. Prentice
Hall Upper Saddle River (2002)

25. Slaats, T.: Flexible Process Notations for Cross-organizational Case Management
Systems. Ph.D. thesis, IT University of Copenhagen (January 2015)

26. Zhang, L., Zhou, J., Hao, D., Zhang, L., Mei, H.: Prioritizing junit test cases in
absence of coverage information. In: Software Maintenance. pp. 19–28. IEEE (2009)

17

27. Zugal, S., Pinggera, J., Weber, B.: The impact of testcases on the maintainability of
declarative process models. Enterprise, Business-Process and Information Systems
Modeling pp. 163–177 (2011)

28. Zugal, S., Pinggera, J., Weber, B.: Creating declarative process models using test
driven modeling suite. In: CAiSE Forum 2011. pp. 16–32 (2012)

	Open to Change: A Theory for Iterative Test-Driven Modelling

