
1

Benchmarking API Costs
of Network Sampling Strategies

Michele Coscia∗†, Luca Rossi†
∗Harvard University

michele coscia@hks.harvard.edu
†IT University of Copenhagen

{mcos,lucr}@itu.dk

Abstract—Online social media contain valuable quantitative
and qualitative data, necessary to advance complex social systems
studies. However, these data vaults are often behind a wall: the
owners of the media sites dictate what, when, and how much data
can be collected via a mandatory interface (called Application
Program Interface: API). To work with such restrictions, network
scientists have designed sampling methods, which do not require
a full crawl of the data to obtain a representative picture of the
underlying social network. However, such sampling methods are
usually evaluated only on one dimension: what strategy allows
for the extraction of a sample whose statistical properties are
closest to the original network? In this paper we go beyond
this view, by creating a benchmark that tests the performance
of a method in a multifaceted way. When evaluating a network
sampling algorithm, we take into account the API policies and the
budget a researcher has to explore the network. By doing so, we
show that some methods which are considered to perform poorly
actually can perform well with tighter budgets, or with different
API policies. Our results show that the decision of which sampling
algorithm to use is not monodimensional. It is not enough to ask
which method returns the most accurate sample, one has also to
consider through which API constraints it has to go, and how
much it can spend on the crawl.

Keywords-Network Sampling; Online Social Network; Social
Media;

I. INTRODUCTION

Online social media represent an unprecedented opportunity
for studying complex social systems and phenomena. They
provide a wealth of data in machine-readable format that
was previously hard to gather, prone to noise, and usually
difficult to analyze automatically. For instance, reconstructing
a network of friendship in the past required pen-and-paper
questionnaires [33], which limited the size of the studied social
networks to a few dozen nodes. Today, on Facebook, we
can investigate social networks with hundreds of millions of
nodes1.

However, the vast majority of social media platforms rec-
ognize data as one of their primary source of revenue, and
therefore put restrictions on the amount of data you can extract
from them per unit of time. Their terms of service usually
state that researchers have to use a custom interface (API).
The owners of the social media dictate how their API works,
establishing what and how much data each request can obtain,

1https://en.wikipedia.org/wiki/Facebook\#User growth, date of access:
April 16th, 2018

and how and when such requests can be made. Under such
limitations, to fully crawl Twitter’s social network requires a
time and labor investment beyond the capability of most – if
not all – research groups. Twitter has 330 million monthly
active users2 and a restriction of one user crawl per minute
[5]. A non-parallel crawl of the follower network would then
take more than 600 years.

Even before the advent of large scale social networks, net-
work scientists were addressing this problem through so-called
sampling methods. However, to the best of our knowledge,
when a new network sampling method is proposed, the only
criterion to evaluate its performance is testing whether the
samples it returns more closely represent the original proper-
ties of the full network. Usually these properties include the
degree distribution, the clustering/modularity of the network,
among many others. In this paper, we propose that there are
some unexplored trade-offs involved and we consider their
investigation to be the main contribution of this paper. For
instance, consider crawling cost: perhaps some methods do
not represent the original network well on a large budget, but
outperform the alternatives on a tighter one. Some API policies
might make previously underperforming sampling methods
better than the alternatives.

We focus on topological sampling methods, which explore
the network one edge at a time. There are other methods such
as node- and edge-samples, which select random nodes or
edges and then induce the network by collecting all nodes
and edges directly connected to their sample. However, such
methods cannot be applied to the typical social media API, and
therefore they are outside the scope of this paper. Moreover,
they usually create a biased sample, by overestimating the
exponent of the degree distribution [26].

In this paper we create a benchmark for testing the trade-
off between the cost of a network sampling strategy and
the representativeness of the sample it creates. We allow
researchers to specify an arbitrary API cost policy, and to test
which sampling method works best given this policy and their
budget constraints.

As motivation, we simulate the costs of many popular
topological network sampling algorithms, using different API
policies, different network topologies, and different attribute

2https://www.statista.com/statistics/282087/
number-of-monthly-active-twitter-users/, date of access: May 11th, 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The IT University of Copenhagen's Repository

https://core.ac.uk/display/186639327?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

distributions. By showing how different algorithms perform
in these scenarios, we show that a researcher with the task of
extracting a social network from a social media has to consider
multiple factors when selecting a sampling strategy. There is
not a single best method to obtain an unbiased sample in every
possible scenario. API policy costs and budget constraints also
play a role in such a decision.

From our results, it appears clear that network sampling is
similar to community discovery in that there is no free lunch
[37]: we cannot point to a single method outperforming all
other methods in any arbitrary scenario – although we leave the
proof of the theorem to future work. Moreover, we also show
that there is a complex relationship between the total through-
put of an API system, and the ability of sampling methods to
faithfully represent the underlying network structure. Higher-
throughput APIs result in less representative samples, given
specific conditions.

We consider this paper a timely addition to the network
sampling literature, given that we expect the online social
media gathering task to become significantly harder in the
future. In the wake of data handling misbehavior by private
companies, some platforms have already increased their API
restrictions3. We release our benchmark system as an open
source library for public use4.

II. RELATED WORK

This paper is about evaluating topological network sampling
algorithms. Network sampling is a crucial problem at the heart
of social network analysis. Almost all papers and subtopics
in social network analysis face the problem of extracting a
representative sample from social media. Examples of appli-
cations range from detecting socially prominent users [38], the
effect of missing data [42], knowledge base building [48], and
damage detection [16].

There is a vast literature on evaluating sampling algorithms.
The majority of the papers in it are interested in determining
which strategy yields the most representative sample of a
network [14], [20], [21], [18]. Sometimes, constraints are
added. For instance, some works focus on the scenario of
hidden populations isolated from the rest of society [23],
which are notoriously hard to sample from (e.g. drug users
[13]). In other cases, the underlying graph is not static, but it
can significantly change during the sampling process [39]. In
yet another case, an application-oriented strategy is evaluated
– for instance in aiding A/B testing [10].

In none of these cases, however, different API policies of
different platforms are taken into account. Also, researchers
usually fix a budget for all methods and the tests they run, and
rarely explore what changing that budget implies for different
costs as defined by the API system. APIs and their cost policies
have been considered in discussions on how to complete a
partial network representation [43], [44], but not in discussions
of how to extract a sample from a network reflecting its global
properties.

3https://techcrunch.com/2018/04/02/instagram-api-limit/, date of access:
April 16th, 2018.

4http://www.michelecoscia.com/?page id=1390

Topological

Probabilistic Deterministic Node

Non-RW

Induced

Edge

RW
(FF, NRS) (MHRW, RWRW)

(DFS, BFS, SBS) (TIES, PIES) (RDN, RPN)

Network Sampling

Fig. 1: Our classification of network sampling strategies. We
highlight in red the branch on which we focus in this paper.

Figure 1 depicts the rough organization of network sampling
strategies we follow in this paper. The main families of
sampling methods are topological and induced.

In induced sampling, one determines a set of nodes (node
induced) or a set of edges (edge induced) and then generates
a sample by collecting all nodes/edges adjacent to the sam-
ple. Popular edge sample methods are Partially and Totally
Induced Edge Samples (TIES and PIES [7], [8]), while node
sample methods are either fully uniform, or degree (RDN) or
PageRank weighted samples (RPN) – see [27] for a discussion
of these methods. We choose not to focus on these methods,
because usually social media APIs do not allow for an easy
application of such strategies.

In topological sampling, one chooses a random starting
point and then explores the network with a walk along its
edges. The walk can be deterministic – as in classical Depth or
Breadth First Search or Snowball sampling – or probabilistic
– random walks [28], [45], [24], [41], [40] or probabilistic
modification of the deterministic approaches such as forest fire
[27] or Neighbor Reservoir Sampling [29], [9]. Since these
methods are the main focus of the paper, we discuss them
more in depth in Section IV.

In conclusion, no matter how accurately we can make
a network sampling method and how realistically we can
benchmark and evaluate it, API-based sampling is affected by
fundamental issues. Works in the past have shown that one has
to be careful when working with data sources that potentially
yield non-representative samples of the phenomenon at large
[35], [34].

III. PROBLEM DEFINITION

Here, a topological network sampling approach is seen as a
function f taking four inputs: G = (V,E), the original graph
– with V being the set of nodes and E ⊆ V × V the set of
edges –; v, the seed node from which to start the exploration
of G; b, the available budget; and P , the API cost policies. The
constraint on f is that it has to start exploring G from v, and it
can only follow edges in E. The result of f is G′ = (V ′, E′)
– with V ′ ⊆ V and E′ ⊆ E –, e.g. a proper subgraph of G.

We assume to have a quality function qG(f) for any
arbitrary G that, given a function f , returns the similarity
between the topological properties of G and G′, the result



3

of f . We can then state the general problem definition that
all topological network sampling algorithms aim to solve as
follows:

Definition 1 (Topological Network Sampling): Given a
graph G, a seed node v, a budget b, a set of cost policies P ,
and a quality function q, design a function f which explores
G from v and returns G′ = (V ′, E′), such that P (f,G) ≤ b
and f = argmax

f
qG(f).

Our problem definition is how to create a benchmark system
B which, given a collection of fs, is able to evaluate their qG
performances for varying budgets b in presence of constraints
P . Traditionally, when introducing a new sampling method, it
is evaluated using only one of the many possible qG. However,
in practice, we have an ensemble of functions qG, one for
each of G’s properties. Moreover, P and b take values in a
large space and, traditionally, the impact of P has been under-
explored. This makes optimizing f difficult, and creates the
necessity for the benchmark system B.

In the following subsections, we explore more closely the
internal structure of P . P includes cost policies regulating
the collection of edges (Section III-A) and dictating how to
space out queries to the API system in time (Section III-B).
The first subsection defines how to calculate the number of
API calls needed to collect the edges. The second subsection
shows how to convert this number of calls into the crawl cost
– as we consider it in this paper –: crawl time. Note that
our introduction of time does not mean that we are working
with streaming graphs like in [9]: even if evolving, the graph
is considered as effectively static – because it is large enough
that changes during the crawl are unlikely to modify its general
characteristics. “Time” in our case is a measure of cost, not a
dimension of the study.

A. Edge Costs

Collecting the list of edges incident to a specific node
on a social media network is usually an operation allowed
explicitly by the platform’s APIs. The number of calls to
the platform’s API needed to obtain the data depends on the
network structure of the social media platform. The following
elements contribute to the cost of retrieving the edge list for
a single node:
• Directed or Undirected nature of the relation between

users.
• Pagination policy of the returned result.
Usually, the list of connections of a given node is returned

through a single call to the API. When relevant (e.g. in the
case of Twitter, Flickr, Instagram, etc.) APIs make a distinction
between users following the node and users followed by the
node. These two lists are usually returned through different
calls to the platform.

Every platform that we have surveyed has a paging policy
in place. This means that, even if the connections of a
single node are potentially available through a single call,
the actual number of calls needed is defined by the number
of connections of the node and by the paging policy of the
platform. In the case of a node v member of a directed social

OSN Page Size Secs per Query Avg Throughput Class Ref
Tumblr 20 17.28 1.15 SP-HQI [4]
Youtube 50 4.32 11.57 [6]
Twitter 5,000 60 83.33 LP-HQI [5]
Google+ 2,000 8.64 231.4 [2]
Lastfm 50 .2 250 SP-LQI [3]
Flickr 1,000 1 1,000 LP-LQI [1]

TABLE I: The API policy details of the six selected social
media. The average throughput is calculated in number of
edges per second.

media the number of calls required to collect the full list of
its connections will be:

calls[1, Deg(v)] =

⌈
Deg−v
pag

⌉
+

⌈
Deg+v

pag

⌉
,

where Deg−v and Deg+v are the in- and out-degree of v,
respectively. pag is the number of edges returned with each
call as defined in the platform specific pagination policy. Later
in the text we will refer to this value as page size.

B. Cost Multipliers

Once we have defined how many calls we need to collect
the list of edges of a given node, our model needs to account
for the fact that, to the best of our knowledge, all social media
platform’s APIs have rate limits. The differences in rate limits
between different media is almost always quantitative. API
rate limits regulate the number of calls per unit of time. As
summarized in Table I, these rate policies can be extremely
different between different platforms and they can even change
over time when a single platform is considered. Social Media
platforms use more or less strict limits for a number of reasons.
Platforms desire to keep under control the costs associated
with running the API, they need to prevent abusive behavior
from malicious users, and to prevent access to the whole
network.

By restricting how many calls to the API are possible per
second, rate limits define the actual budget, expressed in time,
needed to collect the list of edges incident to a node. Using s
as the number of seconds we need to wait before submitting
another query to the API system, the final cost of crawling
node v is:

cost[v] = (s+ l)

(⌈
Deg−v
pag

⌉
+

⌈
Deg+v

pag

⌉)
.

Here we introduce l as the communication’s latency: the
number of seconds it takes to complete one call. Latency on the
data collection is extremely variable, and considering it falls
outside the scope of this article. Since it is a fair assumption
that, in most real systems, l� s, in the following experiments
we will assume for latency to be negligible and stable (l = 0).

Note that the budget-per-node – cost[v] – has no trivial
relation with the actual cost of collecting the entirety of the
network data from social media platforms. We should rather
consider cost[v] together with the pagination policy and the
topology of the network. To explain this, let us consider two
hypothetical APIs regulated through two different policies.
The first policy P1 has a rate limit of 1 second (s = 1)



4

100

101

102

103

104

105

106

100 101 102 103

C
ou

nt

k

Fig. 2: A power-law degree distribution: the number of nodes
(y-axis) with a given degree (x-axis). We highlight in blue the
part of the distribution where policy P1 has a lower cost per
node than policy P2 – because of P1’s more favorable rate
limit –, in green where policy P2 has a lower cost per node
than policy P1.

and returns pages of 10 edges each (pag = 10). We can
consider the throughput of P1 as 10 edges per second. The
second policy, P2, allows a call every 2 seconds (s = 2) but
it returns 100 edges per page (pag = 100). The second policy
has a throughput of 50 edges per second, five times larger that
the first. A hasty evaluation could suggest that P2 is always
preferable to P1.

Figure 2 compares the actual cost of the two policies when
deployed on a network characterized by a power-law degree
distribution and containing 500k nodes. The light-blue area
represents the part of the distribution in which P1 pays less
than P2 (P1 needs less time than P2 to collect this part of the
network). Given the power-law distribution of this network,
P1 results a more economic strategy than P2 to collect 492k
of the 500k total nodes. As a consequence of this, to collect
the entire network (including the green area of Figure 2) P1

results to be two times faster than P2.
While the results seem to suggest that, in several cases,

small pages and frequent calls might be preferable to large
pagination policies, it should be considered that latency in the
process can largely affect the final result. Looking at cost[v]’s
formula, if we were to significantly reduce s, we would break
the l � s assumption, with negative repercussions on crawl
time. We leave the investigation of these consequences as
future work.

IV. ALGORITHMS (f )
In this section we briefly present the algorithms (f , see

Section III) that we use for our benchmark B. As mentioned in
Section II, we only consider topological sampling. Node- and
edge-induced are not appropriate for social media API crawl:
APIs do not usually return one edge at a time, nor we can
obtain arbitrary node IDs without exploration as node-induced
methods would demand. Following Figure 1’s classification,
we divide topological network sampling in deterministic (Sec-
tion IV-A) and probabilistic (Section IV-B).

A. Deterministic

Deterministic topological sampling is the oldest class of net-
work sampling methods. It includes the classical approaches to

graph navigation: Breadth-, Depth-First Search, and Snowball
sampling.

In Breadth-First Search (BFS) [32], [31], we start from a
seed v and we put its neighbors in a First-In, First-Out (FIFO)
queue. In this case we call v a parent, and its neighbors are
its children. Children of the same parent are siblings. We then
explore the neighbors one by one, inserting the neighbor’s
neighbors in the FIFO queue. All the siblings of a node will
be explored before switching to their children. Figure 3(a)
shows an example of this approach.

Depth-First Search (DFS) [46] is similar to BFS, but uses
a Last-In, First-Out (LIFO) queue instead of a FIFO: the
children of a node are explored before its siblings. In practice,
DFS explores a chain from v until the farthest node it can reach
and, when there are no more possible children to explore, it
backtracks and explores the sibling of the last parent selected,
as Figure 3(b) shows.

Snowball sampling [22] is almost identical to BFS, in fact
sometimes these terms are used as synonyms. However, in
classical Snowball sampling, the recruited subjects are asked
to provide n contacts. Therefore, if the node has degree k >
n, Snowball does not explore all of its neighbors. In social
media data gathering, there is often little cost in exploring all
neighbors of a node: in that case Snowball is equivalent to
BFS. However, we consider it as a separate method, because
then we can simulate a scenario in which the researcher can
decide to request only a given number of pages to the API,
effectively capping the maximum degree of the sample. This
might have positive repercussions: for instance, it will limit
degree bias by not exploring all of a hub’s neighbors. Fixing
the degree bias is one of the main objective of other methods,
as we will see. Figure 3(c) shows an example of this approach.

B. Probabilistic

Following our classification in Figure 1, we divide the
probabilistic network sampling algorithms in two subclasses:
random-walk-based (Section IV-B1) and non-random-walk-
based (Section IV-B2).

1) Random Walk Based: When sampling a network using
random walks (RW), the procedure starts from v and chooses
one of its neighbors at random [28], [27]. The same process is
repeated for every node visited. In vanilla random walk, one is
allowed to re-visit previously visited nodes although, for our
benchmark system B, if a node was already visited we do not
count its cost twice. In many practical applications, random
walk sampling takes a parameter p which establishes a proba-
bility of restarting the walk from the seed v, or teleporting to
an arbitrary node. In our paper we use the teleportation flavor,
for efficiency reasons. For high budgets most of the nodes are
already explored, and thus the probability of finding a non-
explored node is low. Since visiting an already-explored node
does not incur in any cost, the expected time to spend the full
budget would skyrocket. Additionally, we put a cap on failed
attempts: if the walker visits 1,000 already-explored nodes in
a row, we consider it trapped and abort the exploration even
if there is budget left. Figure 3(d) shows an example of this
approach.



5

(a) BFS (b) DFS (c) Snowball

(d) Random Walk (e) MHRW (f) Forest Fire

Fig. 3: Examples of how different network sampling strategies explore a given network. Each node is labeled with the order
in which it is explored. The node color shows whether the node was sampled (green) or not (red), assuming a budget of 15
units and a constant cost of 1 unit per node. Snowball assumes n = 3 (unlabeled nodes are not explored due to this parametric
restriction), while Forest Fire has a burn probability of .5.

Exploring a network through random walks has known
biases. The probability of visiting a node is proportional to its
degree. As a consequence, high degree nodes are oversampled,
leading to representativeness issues. Network scientists have
developed a Metropolis-Hastings correction for random walk
sampling (MHRW) [45], [24]. The network is explored via
random walks as before, choosing a neighbor at random from
the currently visited node v, say u. However, u is not accepted
with probability 1. Instead, it is accepted with probability
kv/ku, where kv is v’s number of connections (degree). In
practice, if u has a higher degree than v, there is a chance
that we will attempt to select a different u′ to continue the
random walk. Figure 3(e) shows an example of this approach.

The final approach we consider in the random walk family
is the re-weighted correction [41], [40] (RWRW, also known
as Respondent Driven Sampling, or RDS). In RWRW, the net-
work exploration is conducted with the vanilla RW approach
described above. Once the exploration is done, each statistical
property of G – π – is reconstructed with the formula:

πi =

∑
v∈Ai

k−1v∑
v∈V k

−1
v

,

where i is the value of the property, e.g. the degree, Ai is
the set of nodes with exactly i value for the property, V is
the full set of nodes, kv = i in the numerator and equal to
the value of the property of node v in the denominator, and
pi is the estimated probability of observing the value i in the
full network. This works for discrete variables. For continuous

ones, one could perform a kernel density estimator, but in
this paper we evaluate RWRW only on discrete properties.
There is no need to show the G′ sample extracted by RWRW,
because it is equivalent to the one extracted by RW. Therefore,
the downside of RWRW is that it can only return a correct
estimation of G’s properties, but not a G′ itself that can be
then used as input for any arbitrary algorithm.

2) Non Random Walk Based: In this subclass we have
sampling strategies which have a probabilistic component, but
which do not base their core strategy on a random walk. The
most famous approach is Forest Fire [27] (FF). In FF, one
starts by performing a BFS exploration of the graph. However,
FF introduces a parameter: the “burning probability”. If a node
passes the burning probability test, the node is “burned” and
the BFS exploration will move on to its neighbors. Figure 3(f)
shows an example of this approach.

Finally, we have Neighbor Reservoir Sampling [29], [9]
(NRS). NRS starts by building a small core of explored nodes
using RW. However, the majority of NRS’s budget is spent on
a second phase. Suppose that in the first phase the algorithm
has sampled |V ′| nodes. We select at random a neighbor u
directly connected to any of the V ′ sampled nodes. We also
select at random a sampled node v from V ′. We add u to V ′ if
and only if: (i) by adding u and removing v, G′ still has only
a single connected component, and (ii) we extract a uniform
random number α < |V ′|/i, where i is initially set to |V ′| and
increased by one for every attempt to add a new neighbor u.
In practice, |V ′| stays constant, but each subsequent attempt



6

to add new us becomes less likely to succeed – because of
increasing i. NRS is by far the most computationally expensive
method because at each potential node addition it has to verify
that G’ still has a single connected component. Also, given the
diminishing acceptance probability, the last units of budget
take a long time before they are spent. For these reasons, we
are unable to perform enough experiments to have statistically
robust results, and so we drop it from Section VI.

V. NETWORK TOPOLOGIES (G)
To test the sampling methods, we use exclusively synthetic

networks. We focus on models that have realistic topological
assumptions, thus disqualifying simpler generative processes
such as Erdős-Rényi or Caveman. The three approaches we use
are: scale free via a Barabási-Albert preferential attachment
(BA) [11], Watts-Strogatz Small World (SW) [47], and the
Lancichinetti-Fortunato-Radicchi (LFR) bechnmark originally
defined for community discovery [25].

We chose the BA model because it generates realistically
broad degree distributions and small diameters, although low
clustering and no communities. The SW model, unlike BA,
has high clustering, but not realistic degree distributions.
LFR is our main benchmark, because it faithfully reproduces
most characteristics of real world networks: power law degree
distribution, high clustering, and network communities.

Because most synthetic network models generate undirected
networks, we modify each method to allow for edge direction-
ality. We perform experiments on both the directed and the
original undirected versions.

For the scale free network, although there are directed
formulations [15], we found them unsatisfactory because they
generate graphs with very low reciprocity. Networks should
accurately reflect the common social media scenario where
most friendships are reciprocated [31]. So, we use a four step
generative process. First, we generate a Pareto distribution. In
the second step, we use it to assign to each node its outdegree
– by picking endpoints at random –, and in the third step we
use it to assign the indegree. After the second step we have
a power-law outdegree distribution and a normal in-degree
distribution. After the third step we have pseudo-power-law
distributions for both in- and out- degree. The fourth and final
step plants reciprocity: each edge has a 50% chance of being
reciprocated.

For the SW network, we take the result of the vanilla SW
model. Then, with a 50% probability we reverse the edge
direction. With a further 50% probability, we keep the original
edge, enabling reciprocity. For LFR, the authors created a
directed version [25].

All networks, directed and undirected, have ∼200k nodes.
The number of edges is variable, due to the differences in
how the network topologies are generated by the various
methods. Thus we go from the smallest network of 1.76M
edges (undirected LFR) to the largest of 4.22M edges (directed
LFR).

VI. RESULTS

In this section we perform our experiments. They are all
conducted on six distinct synthetic topologies, as explained in

Section V. We are interested in checking the seven methods
(BFS, SBS, FF, DFS, RW, RWRW, MHRW) at ten different
budgets, for ten different tests, and for six different API
systems, based on the restrictions imposed by the following
social media: Tumblr, Youtube, Twitter, Google+, Lastfm, and
Flickr. Section VI-A details the experimental setup describing
the tests and the initialization of the API policies.

Note that most of the sampling methods have some degree
of randomness. Thus, we run each test 100 times, and we take
the average performance as its result. This generates small
enough standard errors to make the distinctions between the
performances statistically significant, except where otherwise
noted.

In each of the following sections, we discuss results by a
different scenario dimension: by API System in Section VI-B,
by network topology in Section VI-C, by evaluation test in
Section VI-D, and by budget level in Section VI-E. Each
section then provides a few illustrative cases, using various
combinations of values on the other dimensions. This is done
to manage the size of the result section, given that to show all
of our results we would need 180 plots.

A. Experimental Setup
To setup our experiments we have to build the benchmark

system B by specifying: the methods we test (fs), the syn-
thetic network topologies (Gs), our budget choices (bs), the qG
tests we are going to run, and the details of the API systems
we test (P s). We have presented the first two dimensions of
our study in Sections IV and V, respectively. Here, we fill the
remaining gaps.

1) Budget (b): As discussed in Section III, our fundamental
unit of cost is the number of seconds it is required to crawl a
network. It makes sense to use seconds as our budget unit here.
To keep the experiments’ complexity manageable in terms of
time and space, in Section V we made the decision of limiting
the size of the synthetic networks to something significantly
smaller than the actual structures underlying most popular
social media. As a consequence, we also scale our budget to be
more restrictive than usual when it comes to web crawling. The
idea is that the relationship between budget and underlying
network size is linear. If we increase the size of the network
tenfold, increasing the budget tenfold will yield comparable
results.

Our budget dimension then goes from one hour (3,600
budget units – seconds), to three days (259,200 budget units).
Since for the loosest API policies we can completely explore
one node per query, increasing the budget to be much larger
than the number of nodes in the network (∼200k) is not going
to yield any interesting insight: we would have crawled the full
network well before we hit the budget limit.

2) API Systems (P ): As previously noted, we focus on six
social media and their API policies. Table I reports the details
of the pagination size and length of the mandatory interval
between two queries – in seconds. We also report the URL that
is the source of our estimation, and the estimated throughput
of the system. This estimation ignores network latency, which
we assume to be equal to zero for all social media. The API
throughput is measured in edges per second.



7

For Section VI-B we classify API systems in four classes
along two dimensions: Large and Small Pages (LP and SP),
and High and Low Query Interval time (HQI and LQI). We
then pick one API policy from Table I to represent each
quadrant as follows:
• LP-HQI Twitter: it has the largest page size and the

longest interval between queries;
• SP-HQI Tumblr: smallest page size and second-highest

interval between queries;
• LP-LQI Flickr: third-largest page size, second-lowest

query interval size;
• SP-LQI Lastfm: second-smallest page size and lowest

overall query interval time.
This avoids the confusion that could come from averaging

results: one could think that method x is the best for, say,
Flickr, even if the results are averaged over topologies that
have nothing to do with Flickr, e.g. undirected SW.

3) Tests (qG): When analyzing the structure of online social
media, there are commonly three basic measures most studies
are interested on: the degree distribution, identifying the most
important actors in the social network, and the relationship
between node attributes and the topology of the network.
These three measures are at the basis of our ten tests.

For the degree distribution, we use the standard approach
of calculating the Kolmogorov-Smirnov distance between the
original degree distribution and the one we obtain from
the network sample. Given that we have both directed and
undirected networks, this generates three tests: undirected KS
distance (k KS), in-degree and out-degree KS distances (k-IN
KS and k-OUT KS, respectively).

For the centrality test, we calculate the Spearman rank
correlation between the degree vector of the original network
and the one of the sample. By using the Spearman correlation
we correct for the broad distributions typical of real world
networks, and we make sure we are testing what is at interest
here: that the top-ranking nodes are correctly sorted out from
the bottom ranking ones. Note that we use the degree for time
complexity reasons, however this could be considered fairly
similar to measures of centrality such as PageRank, given their
high correlation [19]. This generates one test for the directed
and one test for the undirected networks.

For the relationship between node attributes and topology,
we run two tests each for directed and undirected networks.
We generate two different attributes: one characterized by
homophily and a disassortative one. Homophily means that
nodes at the endpoints of the same edge tend to have the
same value of the attribute [36]. Disassortativity holds the
opposite. For the test, we simply calculate the assortativity
of the attributes as defined in [36], and we compute the Mean
Absolute Error (MAE) of the sample when compared to the
original network. This is a necessary test, because homophily
is one of the defining characteristics of social networks [12],
[30]: misjudging it might lead to wildly incorrect conclusions.

Finally, the directed networks have an additional test. Most
social systems are characterized by a certain degree of reci-
procity [31]: a connection from a to b is usually reciprocated
by a connection from b to a. We also calculate the reciprocity
MAE of the sample.

Method SP-HQI LP-HQI SP-LQI LP-LQI
BFS -0.7226 -0.7669 1.5333 1.0887
SBS -0.4026 -0.8048 1.4970 1.0733
FF -0.6440 -0.9081 1.5445 1.0935
DFS -1.3188 -0.8447 -0.1603 0.8866
RW -1.0136 -0.6439 0.8316 0.4687
RWRW -0.9715 -0.6149 0.7501 0.3827
MHRW -1.1536 -0.9745 0.4343 0.1910

TABLE II: Average standardized results for different API
policies. Average across all directed and undirected networks.
Higher is better.

Note that in Sections VI-B, VI-C, and VI-E we are collaps-
ing over the test dimension to calculate average performance,
which means that we are averaging test performance values.
However, the KS test, Spearman correlation and MAE have
different domains with different semantics. A value of .1 in
each of these three tests means something different. Thus we
need to manipulate them to perform a fair comparison.

First, we multiply KS and MAE by -1, aligning them with
the Spearman semantics that “higher is better”. Then, each
measure is standardized, by removing its average and dividing
by its standard deviation. The result is a unitless measure that
is harder to interpret – it reports how many standard deviations
above or below the average measurement the test is – but that
is otherwise identical in meaning with all the other tests. At
this point, different tests can be averaged together.

B. Results by API System
In this section we discuss how each method performs

when tested against each API system. The API policy legend
is the classification introduced in Section VI-A2, and the
throughput information is in Table I. Table II reports the
average performances across all topologies, tests and budgets.

The Table highlights the first dimension of our no-free-
lunch situation: for different API policies, different methods
performed best. In particular, Snowball sampling works best
for the low throughput SP-HQI class, and Forest Fire/BFS
– the difference between them is not significant – for high-
throughput ones (SP-LQI, LP-LQI). In LP-HQI, RWRW per-
forms best.

Note that here we also confirm the page size effect discussed
in Section III-A: even if LP-LQI has 4× throughput over SP-
LQI (see Table I), each method performs much better on the
latter. The difference is even more remarkable when comparing
LP-HQI to SP-HQI: in that case, the throughput difference is
> 80× in favor of LP-HQI (see Table I), yet – in some cases
– the sampling methods perform better on SP-HQI.

Figure 4 shows two examples of the same test ran on
the same topology, but for different API policies: SP-HQI
(Tumblr) and SP-LQI (Lastfm). We can see that in the SP-
HQI case the two best performing methods are MHRW and
DFS. However, in SP-LQI, DFS is the worst performing one,
and MHRW is not the best one, beaten by Snowball sampling
for low budgets, and by everything else for high budgets.

C. Results by Topology
In this section we discuss how each method performs when

tested against each topology: the directed and undirected



8

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

10
3

10
4

10
5

10
6

M
A

E

Relative Budget

 0

 0.005

 0.01

 0.015

 0.02

 0.025

10
3

10
4

10
5

10
6

M
A

E

Relative Budget

BFS          DFS          SBS         RW          MHRW          RWRW          FF

Fig. 4: Comparison of sampling method MAE for the dis-
assortative node attribute in the undirected BA network, for
SP-HQI (left) and SP-LQI (right). Lower is better.

Method LFR BA SW dLFR dBA dSW
BFS -0.5966 -0.0564 0.3075 0.3120 0.0542 0.9008
SBS -0.2466 0.0859 0.2208 0.3001 0.0544 0.9070
FF -0.7707 0.0271 0.2746 0.4066 0.0603 0.8745
DFS -0.3479 -0.3616 0.1500 -0.0834 0.0515 0.2440
RW -0.2381 0.0789 -0.1298 0.2856 -0.7329 0.1590
RWRW -0.4335 -0.0120 -0.3229 0.3354 -0.5844 0.0028
MHRW -2.2700 -0.1096 -0.2776 -0.0820 -0.1674 0.0542

TABLE III: Average standardized results for different network
topologies. Average across all directed and undirected net-
works. Higher is better.

versions of the LFR, BA, and SW models – as introduced in
Section V. Table III reports the average performances across
all API policies, tests and budgets.

Just like in the previous section, here we have another
dimension in which there is no free lunch. In the directed
networks, BFS-based methods like Forest Fire and Snowball
sampling work well, but – in the undirected networks – vanilla
RW works best for the most realistic network model (LFR),
and fairly well also for the scale free network.

Figure 5 shows an example of how different topologies
can radically influence the performances of different sampling
methods. In the Small World topology, the highest errors are
registered for BFS, Snowball and Forest Fire. However, these
are among the best performing approaches in a preferential
attachment network, with RW and RWRW performing worst.
Again, these two methods work fairly well in a directed LFR
topology, with MHRW now showing as outlier among the
worst performing approaches.

D. Results by Test

In this section we focus on each single test we run, making
a distinction between directed and undirected versions of the
same test. Here we can directly interpret the returned values
for each test, since we do not need to standardize across tests
with different domains for their results.

Table IV reports the results for the directed networks. While
BFS and similar approaches perform reasonably well in many
scenarios, they are beaten in the out-degree distribution test by
RWRW and MHRW, which are methods explicitly designed
for this particular test in mind. The BFS-based approaches also
have trouble with assortative node attributes, likely because
they are trapped in areas of the network where all nodes have
the same attribute value.

We can draw similar conclusions from Table V. This implies
that the no-free-lunch scenario applies also to the various
tests: methods designed to perform well with a specific target
in mind do so, but they underperform when one shifts her
attention to other topological features of the network.

Figure 6 shows one of the many examples one can draw.
DFS is the best performing algorithm when testing for cen-
trality correlations, but it is also one of the methods with
higher MAE when testing for reciprocity in the same network
(directed LFR) and same API policy (Google+). On the other
hand, Snowball sampling has low centrality correlations in the
same scenario, but also a low reciprocity MAE – among the
best of the lot.

E. Results by Budget

Finally, we look at what happens when one has different
levels of budget available. Superficially, by looking at Table
VI, one could think that here there is a clear winner: no
matter the budget level, Snowball sampling performs the best.
However, such conclusion would be hasty. As we saw in the
previous sections, Snowball performs decently on average, but
it is often beaten in many scenarios. Most of its power in this
test is driven by its excellent performance in the MAE test for
disassortative attributes, in which it performs twice better than
all other methods (see Table V).

The issue with different budget levels becomes even more
problematic when looking at specific instances of this test.
Consider Figure 7. In both these tests we have clear winners
at low budgets and clear winners at high budgets – ironically,
Snowball sampling is never the winner in any of the shown
cases. However, the best low-budget performers are also the
worst high-budget performers, and vice versa. Our conclusion
is that, even if at a theoretical level Snowball sampling is
better on average than everything else at all budget levels, in
practical and specific scenarios the available budget heavily
influences the sampling method choice.

VII. CONCLUSION

In this paper, we explore the different performances of dif-
ferent network sampling methods over a variety of scenarios.
Real world network sampling has many practical problems
to consider: how does the target API system work? How
much budget do I have available? On which analysis do
I want to focus? Classical literature on the problem only
superficially considers some of these questions. Here, we show
that answering them is crucial: different methods perform
differently when targeting specific API platforms, with specific
budgets, and for specific tests.

For instance, one cannot consider an API system as a simple
pipe with a given throughput. Its features have a complex
relationship with the performance of the sampling methods:
small pages are usually better than large ones, even if they
cause a theoretically smaller throughput – all this assuming a
negligible overhead from network latency.

There are several future works that could originate from
this paper. First, as just mentioned, here we largely ignore the
influence that network latency has on the sampling procedure.



9

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

10
3

10
4

10
5

10
6

M
A

E

Relative Budget

 0
 0.001
 0.002

 0.003
 0.004
 0.005
 0.006
 0.007

 0.008
 0.009

 0.01

10
3

10
4

10
5

10
6

M
A

E

Relative Budget

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

10
3

10
4

10
5

10
6

M
A

E

Relative Budget

BFS          DFS          SBS         RW          MHRW          RWRW          FF

Fig. 5: Comparison of sampling method MAE for the assortative node attribute in the directed Lastfm network, for different
topologies (from left to right): Small World, Barabasi-Albert, LFR benchmark. Lower is better.

Method k-IN KS k-OUT KS Centr Corr Assort MAE Disassort MAE Recipr MAE
BFS 0.4876 0.1404 0.5618 0.0213 0.0035 0.1863
SBS 0.4960 0.1338 0.5556 0.0208 0.0036 0.1873
FF 0.4881 0.1179 0.5616 0.0213 0.0041 0.1852
DFS 0.6509 0.2713 0.4467 0.0068 0.0038 0.2594
RW 0.7860 0.1675 0.2876 0.0076 0.0053 0.3226
RWRW 0.8540 0.1179 0.2881 0.0073 0.0053 0.3225
MHRW 0.8025 0.1220 0.2883 0.0104 0.0081 0.3036

TABLE IV: Average standardized results for different quality tests. Average across directed networks only. Lower is better,
except for the “Centr Corr” test.

Method k KS Centr Corr Assort MAE Disassort MAE
BFS 0.4700 0.4954 0.0452 0.0468
SBS 0.5140 0.4591 0.0331 0.0285
FF 0.4779 0.4805 0.0496 0.0432
DFS 0.4755 0.3516 0.0330 0.0458
RW 0.5926 0.4592 0.0268 0.0408
RWRW 0.7379 0.4590 0.0268 0.0404
MHRW 0.7856 0.1418 0.0342 0.0456

TABLE V: Average standardized results for different network
topologies. Average across undirected networks only. Lower
is better, except for the “Centr Corr” test.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

10
3

10
4

10
5

10
6

C
e

n
tr

 C
o

rr

Relative Budget

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

10
3

10
4

10
5

10
6

M
A

E

Relative Budget

BFS          DFS          SBS         RW          MHRW          RWRW          FF

Fig. 6: Comparison of sampling method perfomances for dif-
ferent tests in the Google+ network with directed LFR topol-
ogy. (Left) Centrality correlation (higher is better), (Right)
MAE of reciprocity (lower is better).

While small pages increase the power of the sample methods,
at some point making too many requests per unit of time will
hit decreasing returns. Finding where this optimal point lies is
a quest for follow-up experiments.

Second, here we had to ignore some sampling methods for
various reasons: induced samples because they do not play
well with traditional API systems, and NRS because of its high
time complexity. Adding these methods – and more tests for
a well-rounded analysis of less common social media analysis
tasks, or the scenario of streaming graphs – would provide

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

10
3

10
4

10
5

10
6

K
S

Relative Budget

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

10
3

10
4

10
5

10
6

C
e

n
tr

 C
o

rr

Relative Budget

BFS          DFS          SBS         RW          MHRW          RWRW          FF

Fig. 7: Comparison of sampling perfomances at different
budget levels. (Left) KS distance for undirected LFR network
in Youtube (lower is better). (Right) Centrality correlation for
directed LFR network in Youtube (higher is better).

further investigation pathways.
Finally, the benchmark system can be used as a target for

the development of new network sampling algorithms. Now
that we have a more realistic target, we should be able to
create methods that behave better in more complex scenarios,
by targeting directly API costs. Our proposal would be to
estimate the amount of new information sampling a node
could bring, using a Bayesian framework similar to the one
developed for network backboning [17].

Acknowledgements. The authors wish to thank Clara Van-
deweerdt for insightful comments.

REFERENCES

[1] “Flickr api,” https://www.flickr.com/services/api/flickr.contacts.
getPublicList.html, accessed: 2018-03-12.

[2] “Google+ api,” https://developers.google.com/+/web/api/rest/latest/
people/list, accessed: 2018-03-12.

[3] “Lastfm api,” https://www.last.fm/api/show/user.getFriends, accessed:
2018-03-12.

[4] “Tumblr api,” https://www.tumblr.com/docs/en/api/v2, accessed: 2018-
03-12.



10

Method 3.6k 7.2k 14.4k 28.8k 54k 86.4k 129.6k 172.8k 216k 259.2k
BFS -1.2499 -0.8217 -0.3185 0.1166 0.4803 0.6965 0.9060 1.0479 1.1647 1.2198
SBS -1.1648 -0.6278 -0.1666 0.2598 0.6108 0.7894 0.9536 1.0872 1.1909 1.2434
FF -1.2617 -0.8278 -0.3507 0.1146 0.4995 0.7060 0.9012 1.0534 1.1696 1.2351
DFS -1.5304 -1.1119 -0.8046 -0.3803 -0.0163 0.2218 0.4630 0.6744 0.8345 0.8974
RW -1.2670 -0.9372 -0.6447 -0.3844 -0.1085 0.0447 0.1934 0.3143 0.4295 0.4689
RWRW -1.2120 -0.9056 -0.6661 -0.4151 -0.1446 -0.0295 0.1229 0.2401 0.3315 0.3606
MHRW -1.5643 -1.3279 -1.0551 -0.7807 -0.4927 -0.3034 -0.2080 -0.0673 0.0686 0.0358

TABLE VI: Standardized results for different budgets. Average across all directed and undirected networks. Higher is better.

[5] “Twitter api,” https://developer.twitter.com/en/docs/basics/rate-limits.
html, accessed: 2018-03-12.

[6] “Youtube api,” https://developers.google.com/youtube/v3/docs/channels/
list, accessed: 2018-03-12.

[7] N. Ahmed, J. Neville, and R. R. Kompella, “Network sampling via
edge-based node selection with graph induction,” 2011.

[8] N. K. Ahmed, J. Neville, and R. Kompella, “Space-efficient sampling
from social activity streams,” in Proceedings of the 1st international
workshop on big data, streams and heterogeneous source mining:
algorithms, systems, programming models and applications. ACM,
2012, pp. 53–60.

[9] ——, “Network sampling: From static to streaming graphs,” ACM
Transactions on Knowledge Discovery from Data (TKDD), vol. 8, no. 2,
p. 7, 2014.

[10] L. Backstrom and J. Kleinberg, “Network bucket testing,” in Proceedings
of the 20th international conference on World wide web. ACM, 2011,
pp. 615–624.

[11] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” science, vol. 286, no. 5439, pp. 509–512, 1999.

[12] M. Barone and M. Coscia, “Birds of a feather scam together: Trustwor-
thiness homophily in a business network,” Social Networks, vol. 54, pp.
228–237, 2018.

[13] D. C. Bell, E. B. Erbaugh, T. Serrano, C. A. Dayton-Shotts, and I. D.
Montoya, “A comparison of network sampling designs for a hidden
population of drug users: Random walk vs. respondent-driven sampling,”
Social science research, vol. 62, pp. 350–361, 2017.

[14] N. Blagus, L. Šubelj, and M. Bajec, “Empirical comparison of network
sampling techniques,” arXiv preprint arXiv:1506.02449, 2015.

[15] B. Bollobás, C. Borgs, J. Chayes, and O. Riordan, “Directed scale-
free graphs,” in Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms. Society for Industrial and Applied
Mathematics, 2003, pp. 132–139.

[16] F. Ciulla, N. Perra, A. Baronchelli, and A. Vespignani, “Damage de-
tection via shortest-path network sampling,” Physical review E, vol. 89,
no. 5, p. 052816, 2014.

[17] M. Coscia and F. M. Neffke, “Network backboning with noisy data,”
in Data Engineering (ICDE), 2017 IEEE 33rd International Conference
on. IEEE, 2017, pp. 425–436.

[18] A. Dasgupta, R. Kumar, and D. Sivakumar, “Social sampling,” in
Proceedings of the 18th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2012, pp. 235–243.

[19] G. Ghoshal and A.-L. Barabási, “Ranking stability and super-stable
nodes in complex networks,” Nature communications, vol. 2, p. 394,
2011.

[20] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou, “Walking in
facebook: A case study of unbiased sampling of osns,” in Infocom, 2010
Proceedings IEEE. Ieee, 2010, pp. 1–9.

[21] ——, “Practical recommendations on crawling online social networks,”
IEEE Journal on Selected Areas in Communications, vol. 29, no. 9, pp.
1872–1892, 2011.

[22] L. A. Goodman, “Snowball sampling,” The annals of mathematical
statistics, pp. 148–170, 1961.

[23] D. D. Heckathorn and C. J. Cameron, “Network sampling: From
snowball and multiplicity to respondent-driven sampling,” Annual review
of sociology, vol. 43, pp. 101–119, 2017.

[24] B. Krishnamurthy, P. Gill, and M. Arlitt, “A few chirps about twitter,”
in Proceedings of the first workshop on Online social networks. ACM,
2008, pp. 19–24.

[25] A. Lancichinetti and S. Fortunato, “Community detection algorithms:
a comparative analysis,” Physical review E, vol. 80, no. 5, p. 056117,
2009.

[27] J. Leskovec and C. Faloutsos, “Sampling from large graphs,” in Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2006, pp. 631–636.

[26] S. H. Lee, P.-J. Kim, and H. Jeong, “Statistical properties of sampled
networks,” Physical Review E, vol. 73, no. 1, p. 016102, 2006.

[28] L. Lovász, “Random walks on graphs,” Combinatorics, Paul erdos is
eighty, vol. 2, no. 1-46, p. 4, 1993.

[29] X. Lu and S. Bressan, “Sampling connected induced subgraphs uni-
formly at random,” in International Conference on Scientific and Statis-
tical Database Management. Springer, 2012, pp. 195–212.

[30] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of a feather:
Homophily in social networks,” Annual review of sociology, vol. 27,
no. 1, pp. 415–444, 2001.

[31] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proceed-
ings of the 7th ACM SIGCOMM conference on Internet measurement.
ACM, 2007, pp. 29–42.

[32] E. F. Moore, “The shortest path through a maze,” in Proc. Int. Symp.
Switching Theory, 1959, 1959, pp. 285–292.

[33] J. L. Moreno, H. H. Jennings et al., “Who shall survive?” 1934.
[34] F. Morstatter, J. Pfeffer, and H. Liu, “When is it biased?: assessing

the representativeness of twitter’s streaming api,” in Proceedings of the
23rd International Conference on World Wide Web. ACM, 2014, pp.
555–556.

[35] F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley, “Is the sample
good enough? comparing data from twitter’s streaming api with twitter’s
firehose.” in ICWSM, 2013.

[36] M. E. Newman, “Assortative mixing in networks,” Physical review
letters, vol. 89, no. 20, p. 208701, 2002.

[37] L. Peel, D. B. Larremore, and A. Clauset, “The ground truth about
metadata and community detection in networks,” Science advances,
vol. 3, no. 5, p. e1602548, 2017.

[38] D. Pennacchioli, G. Rossetti, L. Pappalardo, D. Pedreschi, F. Giannotti,
and M. Coscia, “The three dimensions of social prominence,” in Interna-
tional Conference on Social Informatics. Springer, 2013, pp. 319–332.

[39] A. H. Rasti, M. Torkjazi, R. Rejaie, D. Stutzbach, N. Duffield,
and W. Willinger, “Evaluating sampling techniques for large dynamic
graphs,” Univ. Oregon, Tech. Rep. CIS-TR-08, vol. 1, 2008.

[40] A. H. Rasti, M. Torkjazi, R. Rejaie, N. Duffield, W. Willinger, and
D. Stutzbach, “Respondent-driven sampling for characterizing unstruc-
tured overlays,” in INFOCOM 2009, IEEE. IEEE, 2009, pp. 2701–2705.

[41] M. J. Salganik and D. D. Heckathorn, “Sampling and estimation in
hidden populations using respondent-driven sampling,” Sociological
methodology, vol. 34, no. 1, pp. 193–240, 2004.

[42] J. A. Smith, J. Moody, and J. H. Morgan, “Network sampling coverage
ii: the effect of non-random missing data on network measurement,”
Social networks, vol. 48, pp. 78–99, 2017.

[43] S. Soundarajan, T. Eliassi-Rad, B. Gallagher, and A. Pinar, “Maxreach:
Reducing network incompleteness through node probes,” in Advances
in Social Networks Analysis and Mining (ASONAM), 2016 IEEE/ACM
International Conference on. IEEE, 2016, pp. 152–157.

[44] ——, “ε-wgx: Adaptive edge probing for enhancing incomplete net-
works,” in Proceedings of the 2017 ACM on Web Science Conference.
ACM, 2017, pp. 161–170.

[45] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “On
unbiased sampling for unstructured peer-to-peer networks,” IEEE/ACM
Transactions on Networking (TON), vol. 17, no. 2, pp. 377–390, 2009.

[46] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
journal on computing, vol. 1, no. 2, pp. 146–160, 1972.

[47] D. J. Watts and S. H. Strogatz, “Collective dynamics of small-
worldnetworks,” nature, vol. 393, no. 6684, p. 440, 1998.

[48] Z. Wei, J. Zhao, K. Liu, Z. Qi, Z. Sun, and G. Tian, “Large-scale
knowledge base completion: Inferring via grounding network sampling
over selected instances,” in Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management. ACM,
2015, pp. 1331–1340.


