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Abstract. We prove the boundedness of the Hardy–Littlewood maximal operator and their

commutators with BMO-coefficients in vanishing generalized Orlicz–Morrey spaces VMΦ,ϕ(Rn)

including weak versions of these spaces. The main advance in comparison with the existing results is

that we manage to obtain conditions for the boundedness not in integral terms but in less restrictive

terms of supremal operators involving the Young function Φ(u) and the function ϕ(x, r) defining

the space. No kind of monotonicity condition on ϕ(x, r) in r is imposed.

1. Introduction

1.1. Some background. As is well known, Morrey spaces are widely used to
investigate the local behavior of solutions to second order elliptic partial differential
equations (PDE). Recall that the classical Morrey spaces Mp,λ(Rn) have an origin
in [23] and are defined by

Mp,λ(Rn) =

{
f ∈ L

p
loc(R

n) : ‖f‖Mp,λ := sup
x∈Rn, r>0

r−
λ
p ‖f‖Lp(B(x,r)) < ∞

}
,

where 0 ≤ λ ≤ n, 1 ≤ p < ∞. Here and everywhere in the sequel B(x, r) is the ball
in Rn of radius r centered at x and |B(x, r)| stands for its Lebesgue measure.

By WMp,λ ≡ WMp,λ(Rn) we denote the weak Morrey space defined as the set
of functions f ∈ WL

p
loc(R

n) for which

‖f‖WMp,λ = sup
x∈Rn, r>0

r
−λ

p ‖f‖WLp(B(x,r)) < ∞.
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Without danger of confusion of notation, by Mp,ϕ we denote the generalized Morrey
space defined by the norm

(1.1) ‖f‖Mp,ϕ := sup
x∈Rn, r>0

1

ϕ(x, r)
‖f‖Lp(B(x,r))

where ϕ is a measurable function positive on Rn × (0,∞).
Orlicz spaces are useful tools in harmonic analysis and its applications. For

example, the Hardy–Littlewood maximal operator

(1.2) Mf(x) = sup
r>0

1

|B(x, r)|

ˆ

B(x,r)

|f(y)| dy

is bounded on Lp for 1 < p ≤ ∞, but not on L1, but via Orlicz spaces, we can study
its boundedness near p = 1, see [18, 19] and [4] for precise statements.

1.2. On Orlicz–Morrey spaces and the goal of the paper. A natural step
in the theory of functions spaces was to study Orlicz–Morrey spaces

MΦ,ϕ(Rn)

where the “Morrey-type measuring” of regularity of functions is realized with respect
to the Orlicz norm over balls instead of the Lebesgue one. Such spaces were studied in
[24] first, see also [7, 13, 25, 26, 34]. The most general spaces of such a type, Musielak–
Orlicz–Morrey spaces, unifying the classical and variable exponent approaches, were
an object of study in [22], where potential operators were studied.

The Orlicz–Morrey spaces we work with are precisely defined in Section 2.3. The
weakest assumptions on the functions Φ and ϕ, defining the space MΦ,ϕ(Rn), for the
boundedness of the maximal operator, were obtained in [7], up to authors’ knowledge,
together with weak estimates.

The definition of Orlicz–Morrey spaces introduced in [7] and used here is different
from that of the papers [24], [34] and other papers.

Morrey and Orlicz–Morrey spaces are not separable due to the L∞-norm with
respect to r and x. The closure of nice functions in the Morrey or Orlicz–Morrey
norm gives a subspace of the corresponding space. Such a subspace corresponding
to the classical Morrey space Mp,λ, known under the name of vanishing Morrey
space, appeared in connection with PDE in [36], [37], they were also used in [28].
The vanishing generalized Morrey spaces were introduced and studied [30], see also
a study of commutators of Hardy operators in such spaces in [27].

Note that commutators in Morrey spaces were studied in a less generality in
comparison with other spaces. In the case of the classical Morrey spaces we refer for
instance to [28] and [32], in the case of generalized Morrey spaces to [35] (where some
monotonicity assumptions were imposed on the function ϕ, but on the other hand an
anisotropic case was admitted) and to [14, 15] (where no monotonicity assumptions
on ϕ were imposed, including an anisotropic case [15]), where other references may
be also found. The results for commutators in the setting of Orlicz–Morrey spaces
in this paper are new even in the case of non-vanishing spaces.

Vanishing Orlicz–Morrey spaces, including their weak versions appeared in [13],
where there was studied the boundedness of the so called Φ-admissible sublinear
operators and their commutators. The notion of Φ-admissible sublinear operators
generalizes the notion of p-admissible operators corresponding to the case Φ(u) = up,
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introduced in [30], where the boundedness of p-admissible operators of singular type
in vanishing generalized Morrey spaces was studied.

The result obtained in [13] for the maximal operator and its commutators pro-
vides boundedness conditions in terms of some integral inequality.

The main goal of this paper is to show that the boundedness of the maximal
operator and its commutators in vanishing Orlicz–Morrey spaces may be obtained
under weaker conditions, namely in terms of the so called supremal operators. More
precisely, we find sufficient conditions, in supremal terms, on the Young function Φ
and functions ϕ1, ϕ2 which ensure the boundedness of the maximal operator and its
commutators from one vanishing generalized Orlicz–Morrey space VMΦ,ϕ1(Rn) to
another VMΦ,ϕ2(Rn), including weak estimates.

Finally note that there is a close relations between of vanishing Morrey spaces
and so called Stummel classes. They are different, but are closely embedded into
each other: every vanishing Morrey space is embedded between two very close to
each other Stummel classes and vice versa. Such relations were studied in [31] in the
case Φ(u) = up. We do not touch such a study for the general case of Orlicz spaces
in this paper.

1.3. On some operators. It is well-known that commutators of classical
operators of harmonic analysis play an important role in various topics of analysis
and PDE, see for instance [3], [6] and [5], where in particular in [6] it was shown that
the commutator [b, T ]f = T (bf) − b Tf of the Calderón–Zygmund operator T with
b ∈ BMO(Rn) is bounded on Lp(Rn) for 1 < p < ∞.

In this paper, in the setting of Orlicz–Morrey spaces, we consider the commutator
Mb(f) of the maximal operator defined by

M
b(f)(x) = sup

t>0

1

|B(x, t)|

ˆ

B(x,t)

|b(x)− b(y)||f(y)| dy

studied in [9] in the space Lp(Rn).
The definitions related to the so called Φ-admissible operators, containing the

maximal operator as a particular case, may be found in [13]. However we provide the
corresponding details here for completeness of presentation, keeping in mind that we
wish to compare the obtained results with those in [13].

Let T be a sublinear operator, i.e.,

|T (f + g)| ≤ |Tf |+ |Tg|.

In the definition of Φ-admissible operator of singular type given below we follow [30],
where this notion was first introduced in the case Φ(u) = up

Definition 1.1. (Φ-admissible operator of singular type) Let Φ be a Young
function. A sublinear operator T will be called Φ-admissible operator of singular

type or respectively weakly Φ-admissible operator of singular type, if:

1) T satisfies the size condition of the form

(1.3) χ
B(x,r)

(z)
∣∣∣T

(
fχ

Rn\B(x,2r)

)
(z)

∣∣∣ ≤ Cχ
B(x,r)

(z)

ˆ

Rn\B(x,2r)

|f(y)|

|y − z|n
dy

for x ∈ Rn, a.e. z ∈ Rn and r > 0;
2) T is bounded from LΦ(Rn) to LΦ(Rn), or to the weak space WLΦ(Rn),

respectively.
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Definition 1.2. (Φ-admissible commutators of operators of singular type) Let
Φ be a Young function and T a sublinear operator. The operator Tb depending on a
function b, will be called Φ-admissible commutator of a singular type operator T , if:

1) Tb satisfies the size condition of the form

χ
B(x,r)

(z)
∣∣∣Tb

(
fχ

Rn\B(x,2r)

)
(z)

∣∣∣ ≤ Cχ
B(x,r)

(z)

ˆ

Rn\B(x,2r)

|b(y)− b(z)||f(y)|

|y − z|n
dy

for x ∈ Rn, a.a. z ∈ Rn and r > 0;
2) Tb is bounded in LΦ(Rn).

2. Preliminaries

We refer to the books [20, 21, 29] for the theory of Orlicz spaces, but provide some
basic definitions and facts to be precise in formulations. A function Φ: [0,+∞) →
[0,∞] is called a Young function if it is convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0

and limr→+∞Φ(r) = ∞. Any Young function is increasing. Let

Φ−1(s) = inf{r ≥ 0: Φ(r) > s}, 0 ≤ s ≤ +∞.

It is known that

(2.1) Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < +∞.

Recall that the ∆2-condition, denoted also as Φ ∈ ∆2, is Φ(2r) ≤ kΦ(r), and the
∇2-condition, denoted also by Φ ∈ ∇2, is Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0, where k > 1.

The function

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)}, r ∈ [0,∞),

+∞, r = +∞,

complementary to a Young function Φ, is also a Young function and
˜̃
Φ = Φ.

A Young function Φ is said to be of upper type p (resp. lower type p), p ∈ [0,∞),
if for all t ∈ [1,∞) (resp. t ∈ [0, 1]) and s ∈ [0,∞), Φ(ts) ≤ CtpΦ(s).

Remark 2.1. It is known [20] that for a Young function Φ to be of lower type
p0 and upper type p1 with 1 < p0 ≤ p1 < ∞, is equivalent to Φ ∈ ∆2 ∩ ∇2.

We will also use the numerical characteristics

aΦ := inf
t∈(0,∞)

tΦ′(t)

Φ(t)
, bΦ := sup

t∈(0,∞)

tΦ′(t)

Φ(t)

of Young functions.

Remark 2.2. It is known that Φ ∈ ∆2 ∩ ∇2 if and only if 1 < aΦ ≤ bΦ < ∞,
see [21]. Then as a consequence of Remark 2.1, a Young function Φ is of lower type
p0 and upper type p1 with 1 < p0 ≤ p1 < ∞ if and only if 1 < aΦ ≤ bΦ < ∞.

The Orlicz space LΦ(Rn) everywhere in the sequel is defined by a Young function
Φ via the norm

‖f‖LΦ = inf

{
λ > 0 :

ˆ

Rn

Φ
( |f(x)|

λ

)
dx ≤ 1

}



Boundedness of the maximal operator and its commutators 539

and the weak Orlicz space by

‖f‖WLΦ = inf

{
λ > 0: sup

t>0
Φ(t)|{x ∈ Rn : |f(x)| > λt}| ≤ 1

}
.

The notation LΦ
loc(R

n) will stand for the set of functions f such that fχ
B
∈ LΦ(Rn)

for all balls B ⊂ Rn.

2.1. Some supremal inequalities. Let v be a weight and L∞
v (0,∞) the

space defined by the norm ‖g‖L∞
v (0,∞) := supt>0 v(t)|g(t)|. Let M(0,∞) be the set of

all Lebesgue-measurable functions on (0,∞), and M+(0,∞) its subset of nonnega-
tive functions on (0,∞) and M+(0,∞;↑) be the cone of non-decreasing functions in
M+(0,∞). Denote also

A =

{
ϕ ∈ M

+(0,∞; ↑) : lim
t→0+

ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on (0,∞). We define the supremal
operator Su on g ∈ M(0,∞) by

(Sug)(r) :=

∥∥∥∥
(
1 + ln

t

r

)
u(t)g(t)

∥∥∥∥
L∞(r,∞)

, r ∈ (0,∞).

The following theorem is proved analogously to Lemma 5.2 in [2].

Theorem 2.3. Let v1 and v2 be weights and 0 < ‖v1‖L∞(t,∞) < ∞ for any t > 0

and let u be a continuous non-negative function on (0,∞). Then the operator Su is
bounded from L∞

v1
(0,∞) to L∞

v2
(0,∞) on the cone A if and only if

∥∥∥v2Su

(
‖v1‖

−1
L∞(·,∞)

)∥∥∥
L∞(0,∞)

< ∞.

2.2. On boundedness of the maximal operator and their commutators

in Orlicz spaces. The following lemma was proved in [7].

Lemma 2.4. Let f ∈ LΦ
loc(R

n). Then for Young functions Φ ∈ ∇2

(2.2) ‖Mf‖LΦ(B(x,r)) .
1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t))

and for any Young function Φ

‖Mf‖WLΦ(B(x,r)) .
1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t)).

Conditions for the boundedness of the maximal operator in Orlicz spaces are
known, see [10], [20]; we use such a result in the theorem below in the form proved
in [7].

Theorem 2.5. Let Φ be a Young function. Then the maximal operator M is
bounded from LΦ(Rn) to WLΦ(Rn). If Φ ∈ ∇2, it is bounded in LΦ(Rn).

The known boundedness statements for the commutator operator Mb on Orlicz
spaces run as follows, see [8, Theorem 1.9 and Corollary 2.3]. Note that in [8] a more
general case of multi-linear commutators was studied.
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We recall that the space BMO(Rn) = {b ∈ L1
loc(R

n) : ‖b‖∗ < ∞} is defined by
the seminorm

‖b‖∗ := sup
x∈Rn,r>0

1

|B(x, r)|

ˆ

B(x,r)

|b(y)− bB(x,r)| dy < ∞,

where bB(x,r) =
1

|B(x,r)|

´

B(x,r)
b(y) dy. We will need the following properties of BMO-

functions:

(2.3) ‖b‖∗ ≈ sup
x∈Rn,r>0

(
1

|B(x, r)|

ˆ

B(x,r)

|b(y)− bB(x,r)|
p dy

) 1
p

,

where 1 ≤ p < ∞, and

(2.4)
∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t,

where C does not depend on b, x, r and t.

Theorem 2.6. Let Φ be a Young function with 1 < aΦ ≤ bΦ < ∞ and b ∈
BMO(Rn). Then Mb is bounded on LΦ(Rn).

2.3. Generalized Orlicz–Morrey space.

Definition 2.7. [7] Let ϕ(x, r) be a positive measurable function on Rn×(0,∞)
and Φ any Young function. The generalized Orlicz–Morrey space MΦ,ϕ(Rn) is the
space of functions f ∈ LΦ

loc(R
n) with the finite norm

‖f‖MΦ,ϕ = sup
x∈Rn,r>0

‖f‖LΦ(B(x,r))

ϕ(x, r)
,

and the weak generalized Orlicz–Morrey space WMΦ,ϕ(Rn) as the set of functions
f ∈ WLΦ

loc(R
n) for which

‖f‖WMΦ,ϕ = sup
x∈Rn,r>0

‖f‖WLΦ(B(x,r))

ϕ(x, r)
< ∞.

Clearly, we recover the spaces Mp,ϕ and WMp,ϕ under the choice Φ(r) = rp, 1 ≤
p < ∞.

The following theorem was proved in [7]. Our results for vanishing spaces are
based on this theorem.

Theorem 2.8. Let Φ be a Young function, the functions ϕ1, ϕ2 and Φ satisfy
the condition

sup
r<t<∞

ess inf
t<s<∞

ϕ1(x, s)Φ
−1
(
t−n

)
≤ Cϕ2(x, r) Φ

−1
(
r−n

)
,

where C does not depend on x and r. Then the maximal operator M is bounded
from MΦ,ϕ1(Rn) to WMΦ,ϕ2(Rn) for any Young function Φ and from MΦ,ϕ1(Rn) to
MΦ,ϕ2(Rn) for Φ ∈ ∇2.

In the case Φ(t) = tp, from Theorem 2.8 we get the following corollary, which is
proven in [1] on Rn.

Corollary 2.9. Let 1 ≤ p < ∞ and (ϕ1, ϕ2) satisfies the condition

(2.5) sup
r<t<∞

ess inf
t<s<∞

ϕ1(x, s)

t
n
p

≤ C
ϕ2(x, r)

r
n
p

,
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where C does not depend on x and r. Then for p > 1, M is bounded from Mp,ϕ1(Rn)
to Mp,ϕ2(Rn) and for p = 1, M is bounded from M1,ϕ1(Rn) to WM1,ϕ2(Rn).

Note that the result of Corollary 2.9 is stronger than the Euclidean version of
a result for the maximal operator in Lebesgue–Morrey spaces (the case Φ(u) = up)
obtained in [33], where the general underlying quasi-metric measure space (X, dµ)
was admitted. In the case where X = Rn and µ is the Lebesgue measure, the result
from [33] runs as follows.

Theorem 2.10. [33, Theorem 2.3] Let p ∈ [1,∞) and let ϕ : (0,∞) → (0,∞)

be an increasing function. Assume that the mapping r 7→ ϕ(r)

r
n
p

is almost decreasing

(there exists a constant c such that for s < r we have ϕ(r)

r
n
p

≤ c
ϕ(s)

s
n
p

). Then there exists

a constant C > 0 such that

‖Mf‖Mp,ϕ ≤ C‖f‖Mp,ϕ if p > 1,

and

‖Mf‖WM1,ϕ ≤ C‖f‖M1,ϕ .

3. Vanishing generalized Orlicz–Morrey spaces

Definition 3.1. The vanishing generalized Orlicz–Morrey space VMΦ,ϕ(Rn)
and its weak version VWMΦ,ϕ(Rn) are defined as the spaces of functions f ∈
MΦ,ϕ(Rn) and f ∈ WMΦ,ϕ(Rn) such that

lim
r→0

sup
x∈Rn

‖f‖LΦ(B(x,r))

ϕ(x, r)
= 0 and lim

r→0
sup
x∈Rn

‖f‖WLΦ(B(x,r))

ϕ(x, r)
= 0,

respectively.

Conditions sufficient for the non-triviality of the spaces VMΦ,ϕ(Rn) and
VWMΦ,ϕ(Rn) have the form

lim
r→0

1

Φ−1(r−n)ϕ(x, r)
= 0(3.1)

and

sup
0<r<∞

1

Φ−1(r−n)ϕ(x, r)
< ∞,(3.2)

respectively, because bounded functions with compact support belong then to these
spaces; in the case Φ(u) = up these conditions appeared in [30].

The spaces VMΦ,ϕ(Rn) and VWMΦ,ϕ(Rn) are closed subspaces of the Banach
spaces MΦ,ϕ(Rn) and WMΦ,ϕ(Rn), respectively, which may be shown by standard
means.

We will also use the notation

AΦ,ϕ(f ; x, r) :=
‖f‖LΦ(B(x,r))

ϕ(x, r)
and A

W
Φ,ϕ(f ; x, r) :=

‖f‖WLΦ(B(x,r))

ϕ(x, r)

for brevity, so that

VMΦ,ϕ(Rn) =

{
f ∈ MΦ,ϕ(Rn) : lim

r→0
sup
x∈Rn

AΦ,ϕ(f ; x, r) = 0

}

and similarly for VWMΦ,ϕ(Rn).
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4. Boundedness of the maximal operator in the spaces VMΦ,ϕ(Rn)

In this section we give sufficient conditions on Φ and ϕ for the boundedness of
the maximal operator M in vanishing generalized Orlicz–Morrey spaces VMΦ,ϕ(Rn).

Theorem 4.1. Let Φ be a Young function, ϕ2 satisfy (3.1), the functions ϕ1, ϕ2

and Φ satisfy the conditions

mδ := sup
δ<t<∞

sup
x∈Rn

ϕ1(x, t)Φ
−1
(
t−n

)
< ∞(4.1)

for every δ > 0 and the supremal condition

(4.2)

sup
r<t<∞

Φ−1
(
t−n

)
ϕ1(x, t)

Φ−1
(
r−n

)
ϕ2(x, r)

≤ C0,

where C0 does not depend on x and r. Then the maximal operator M is bounded from
VMΦ,ϕ1(Rn) to VWMΦ,ϕ2(Rn) and, if Φ ∈ ∇2, from VMΦ,ϕ1(Rn) to VMΦ,ϕ2(Rn).

Proof. The norm inequalities follow from Theorem 2.8, so we only have to prove
that

lim
r→0

sup
x∈Rn

AΦ,ϕ1(f ; x, r) = 0 =⇒ lim
r→0

sup
x∈Rn

AΦ,ϕ2(Mf ; x, r) = 0,(4.3)

when Φ ∈ ∇2, and

lim
r→0

sup
x∈Rn

AΦ,ϕ1(f ; x, r) = 0 =⇒ lim
r→0

sup
x∈Rn

A
W
Φ,ϕ2

(Mf ; x, r) = 0(4.4)

otherwise. In the justification of the above passage to the limit we follow ideas of
[30], where the case Φ(r) = rp was considered, but base ourselves on Lemma 2.4.

We start with (4.3). We rewrite the inequality (2.2) in the form

(4.5) AΦ,ϕ2(Mf ; x, r) ≤ C
supt>r Φ

−1
(
t−n

)
‖f‖LΦ(B(x,t))

ϕ2(x, r)Φ−1 (r−n)
.

To show that supx∈Rn AΦ,ϕ2(Mf ; x, r) < ε for small r, we split the right-hand
side of (4.5):

AΦ,ϕ2(Mf ; x, r) ≤ C[Iδ0(x, r) + Jδ0(x, r)],(4.6)

where δ0 > 0 will be chosen as shown below (we may take δ0 < 1),

Iδ0(x, r) :=
supr<t<δ0

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t))

ϕ2(x, r)Φ−1 (r−n)
,

Jδ0(x, r) :=
supt>δ0

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t))

ϕ2(x, r)Φ−1 (r−n)

and it is supposed that r < δ0. Now we choose any fixed δ0 > 0 such that

sup
x∈Rn

AΦ,ϕ1(f ; x, t) <
ε

2CC0
, for all 0 < t < δ0,

where C and C0 are constants from (4.6) and (4.2), which is possible since f ∈
VMΦ,ϕ1(Rn). Then ‖f‖LΦ(B(x,t)) <

ε
2CC0

ϕ1(x, t) and we obtain the estimate of the

first term uniform in r ∈ (0, δ0):

sup
x∈Rn

CIδ0(x, r) <
ε

2
, 0 < r < δ0,
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by (4.2).
The estimation of the second term now may be made already by the choice of r

sufficiently small thanks to the condition (3.1). We have

Jδ(x, r) ≤
mδ0‖f‖MΦ,ϕ1

Φ−1(r−n)ϕ2(x, r)
,

where mδ0 is the constant from (4.1) with δ = δ0. Then, by (3.1) it suffices to choose
r small enough such that

sup
x∈Rn

1

Φ−1(r−n)ϕ(x, r)
≤

ε

2mδ0‖f‖MΦ,ϕ

,

which completes the proof of (4.3).
The proof of (4.4) is, line by line, similar to the proof of (4.3). �

To compare, we formulate the following theorem proved in [13] and remarks
below.

Theorem 4.2. Let Φ be a Young function, ϕ2 satisfy (3.1), the functions ϕ1, ϕ2

and Φ satisfy the conditions

cδ :=

ˆ ∞

δ

sup
x∈Rn

ϕ1(x, t)
Φ−1

(
t−n

)

t
dt < ∞(4.7)

for every δ > 0, and

1

ϕ2(x, r)Φ−1
(
r−n

)
ˆ ∞

r

ϕ1(x, t) Φ
−1
(
t−n

)dt
t
≤ C0,(4.8)

where C0 does not depend on x ∈ Rn and r > 0. Then a Φ-admissible singular
operator T is bounded from VMΦ,ϕ1(Rn) to VMΦ,ϕ2(Rn) and a weak Φ-admissible
singular operator T is bounded from VMΦ,ϕ1(Rn) to VWMΦ,ϕ2(Rn).

Remark 4.3. The condition (4.7) may be omitted when ϕ1(x, r) does not depend
on x, since (4.7) follows from (4.8) in this case.

Remark 4.4. As shown in [7], the condition (4.2) is weaker than (4.8): the latter
implies the former, while the functions ϕ1(x, t) = ϕ2(x, t) = 1

Φ−1(t−n)
satisfy (4.2),

but not (4.8).

5. On commutators in the spaces MΦ,ϕ(Rn) and V MΦ,ϕ(Rn)

5.1. Φ-admissible commutators of singular type operators. In this sub-
section, for a possibility to compare, we formulate the following two theorems, where
Tb is a Φ-admissible commutator of a singular type operator T , which were proved
in [13].

Theorem 5.1. Let Φ be a Young function with 1 < aΦ ≤ bΦ < ∞ and b ∈
BMO(Rn). If

ˆ ∞

r

(
1 + ln

t

r

)
ess inf
t<s<∞

ϕ1(x, s) Φ
−1

(
t−n

) dt
t
≤ C0ϕ2(x, r)Φ

−1
(
r−n

)
,(5.1)

where C0 does not depend on x ∈ Rn and r > 0, then

‖Tbf‖MΦ,ϕ2 ≤ C‖b‖∗‖f‖MΦ,ϕ1 ,

where C does not depend on f and b.
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Note that from Theorem 5.1, we recover the result obtained in [12] for the case
Φ(u) = up.

Theorem 5.2. Let Φ be a Young function with 1 < aΦ ≤ bΦ < ∞ and b ∈
BMO(Rn). Suppose that

ˆ ∞

r

(
1 + ln

t

r

)
ϕ1(x, t) Φ

−1
(
t−n

) dt
t
≤ C0ϕ2(x, r)Φ

−1
(
r−n

)
,(5.2)

where C0 does not depend on x ∈ Rn and r > 0,

lim
r→0

ln 1
r

Φ−1(r−n) infx∈Rn ϕ2(x, r)
= 0(5.3)

and

cδ :=

ˆ ∞

δ

(1 + |ln t|) sup
x∈Rn

ϕ1(x, t)
Φ−1

(
t−n

)

t
dt < ∞(5.4)

for every δ > 0. Then the operator Tb is bounded from VMΦ,ϕ1(Rn) to VMΦ,ϕ2(Rn).

5.2. Commutator M
b of the maximal operator. We find it important to

underline once again that the results of this subsection for the commutator Mb of the
maximal operator are obtained in supremal terms, i.e., under weaker assumptions
than derived from more general theorems of Subsection 5.1. More precisely, the
supremal condition (5.8) is weaker than the corresponding integral condition (5.1),
see Remark 4.4.

The following lemma contains a known extension of the property (2.3) from Lp-
norms to Orlicz norms, see for instance [17], [16], where more general statements of
rearrangement invariant spaces and also for variable exponent Lebesgue spaces may
be found.

Lemma 5.3. Let b ∈ BMO(Rn) and Φ be a Young function of lower type p0
and upper type p1, 1 ≤ p0 ≤ p1 < ∞. Then

‖b‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
r−n

) ∥∥b(·)− bB(x,r)

∥∥
LΦ(B(x,r))

.

We also use the following lemma to prove our main estimates.

Lemma 5.4. For a Young function Φ and all balls B, the following inequality is
valid

‖f‖L1(B) ≤ 2|B|Φ−1
(
|B|−1

)
‖f‖LΦ(B).

Proof. The proof is obtianed by applying Hölder inequality with Young functions
and the known facts:

(5.5) ‖χ
B
‖LΦ(Rn) =

1

Φ−1 (|B|−1)

and r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0. �

The following lemma is crucial for the main result of this section.

Lemma 5.5. Let Φ be a Young function with 1 < aΦ ≤ bΦ < ∞ and b ∈
BMO(Rn), then the inequality

‖Mbf‖LΦ(B(x0,r)) .
‖b‖∗

Φ−1
(
r−n

) sup
t>r

(
1 + ln

t

r

)
Φ−1

(
t−n

)
‖f‖LΦ(B(x0,t))
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holds for any ball B(x0, r) and for all f ∈ LΦ
loc(R

n).

Proof. For B = B(x0, r), write f = f1 + f2 with f1 = fχ
2B

and f2 = fχ
∁
(2B)

, so

that ∥∥Mbf
∥∥
LΦ(B)

≤
∥∥Mbf1

∥∥
LΦ(B)

+
∥∥Mbf2

∥∥
LΦ(B)

.

By the boundedness of the operator Mb in the space LΦ(Rn) provided by Theo-
rem 2.6, we obtain

(5.6) ‖Mbf1‖LΦ(B) ≤ ‖Mbf1‖LΦ(Rn) . ‖b‖∗ ‖f1‖LΦ(Rn) = ‖b‖∗ ‖f‖LΦ(2B).

For x ∈ B we have

M
bf2(x) = sup

t>0

1

|B(x, t)|

ˆ

B(x,t)∩ ∁(2B)

|b(y)− b(x)||f(y)|dy.

Note that if B(x, t) ∩ {
∁

(2B)} = B(x, t) \ 2B 6= ∅, then t > r. Indeed, if y ∈
B(x, t) \ 2B, then t > |x− y| ≥ |x0 − y| − |x0 − x| > 2r − r = r.

On the other hand, B(x, t) \ 2B ⊂ B(x0, 2t). Indeed, if y ∈ B(x, t) \ 2B, then we
get |x0 − y| ≤ |x− y|+ |x0 − x| < t+ r < 2t. Hence

M
b(f2)(x) ≤ sup

t>r

1

|B(x0, t)|

ˆ

B(x0,2t)

|b(y)− b(x)||f(y)| dy

= 2n sup
t>2r

1

|B(x0, t)|

ˆ

B(x0,t)

|b(y)− b(x)||f(y)| dy.

Then

‖Mbf2‖LΦ(B) .

∥∥∥∥sup
t>2r

1

|B(x0, t)|

ˆ

B(x0,t)

|b(y)− b(·)||f(y)| dy

∥∥∥∥
LΦ(B)

. J1 + J2 =

∥∥∥∥sup
t>2r

1

|B(x0, t)|

ˆ

B(x0,t)

|b(y)− bB||f(y)| dy

∥∥∥∥
LΦ(B)

+

∥∥∥∥sup
t>2r

1

|B(x0, t)|

ˆ

B(x0,t)

|b(·)− bB||f(y)| dy

∥∥∥∥
LΦ(B)

.

For the term J1 by (5.5) we obtain

J1 ≈
1

Φ−1
(
r−n

) sup
t>2r

1

tn

ˆ

B(x0,t)

|b(y)− bB||f(y)| dy

and split it as follows:

J1 .
1

Φ−1
(
r−n

) sup
t>2r

1

tn

ˆ

B(x0,t)

|b(y)− bB(x0,t)||f(y)| dy

+
1

Φ−1
(
r−n

) sup
t>2r

1

tn
|bB(x0,r) − bB(x0,t)|

ˆ

B(x0,t)

|f(y)| dy.

Applying Hölder’s inequality, by Lemmas 5.3 and 5.4 and (2.4) we get

J1 .
1

Φ−1
(
r−n

) sup
t>2r

1

tn

∥∥b(·)− bB(x0,t)

∥∥
LΦ̃(B(x0,t))

‖f‖LΦ(B(x0,t))

+
1

Φ−1
(
r−n

) sup
t>2r

1

tn

∣∣bB(x0,r) − bB(x0,t)

∣∣ tn Φ−1
(
t−n

)
‖f‖LΦ(B(x0,t))
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.
‖b‖∗

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

) (
1 + ln

t

r

)
‖f‖LΦ(B(x0,t)).

For J2 we obtain

J2 ≈ ‖b(·)− bB‖LΦ(B) sup
t>2r

t−n

ˆ

B(x0,t)

|f(y)| dy

.
‖b‖∗

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x0,t))

gathering the estimates for J1 and J2, we get

(5.7) ‖Mbf2‖LΦ(B) .
‖b‖∗

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)(
1 + ln

t

r

)
‖f‖LΦ(B(x0,t)).

To unite (5.7) with (5.6), observe that

1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t)) ≥ C‖f‖LΦ(B(x,2r)),

which completes the proof. �

Theorem 5.6. Let Φ be a Young function with 1 < aΦ ≤ bΦ < ∞ and b ∈
BMO(Rn). If

sup
r<t<∞

(
1 + ln

t

r

)
ess inf
t<s<∞

ϕ1(x, s) Φ
−1
(
t−n

)
≤ C0 ϕ2(x, r) Φ

−1
(
r−n

)
,(5.8)

where C0 does not depend on x ∈ Rn and r > 0, then

‖Mbf‖MΦ,ϕ2 ≤ C‖b‖∗‖f‖MΦ,ϕ1 ,

where C does not depend on f and b.

Proof. Apply Lemma 5.5 and Theorem 2.3. �

From this theorem we recover the result in [11] for the case Φ(u) = up.

Theorem 5.7. Let Φ be a Young function with 1 < aΦ ≤ bΦ < ∞ and b ∈
BMO(Rn). Let us assume that ϕ1, ϕ1,Φ satisfy the conditions (5.3) and

sup
r<t<∞

(
1 + ln

t

r

)
ϕ1(x, t) Φ

−1
(
t−n

)
≤ C0 ϕ2(x, r) Φ

−1
(
r−n

)
,

where C0 does not depend on x ∈ Rn and r > 0. Suppose also that

sup
δ<t<∞

(1 + | ln t|)Φ−1
(
t−n

)
sup
x∈Rn

ϕ1(x, t) < ∞

for every δ > 0. Then the operator Mb is bounded from VMΦ,ϕ1(Rn) to VMΦ,ϕ2(Rn).

Proof. The proof follows the same lines as in Theorem 5.2 with the difference
that now splitting of r < t < ∞ to r < t < δ0 and δ0 < t < ∞ must be made with
respect to supr<t<∞, not integration. �

Corollary 5.8. Let 1 < p < ∞, b ∈ BMO(Rn) and the condition

sup
t>r

(
1 + ln

t

r

)ϕ1(x, t)

t
n
p

≤ C0
ϕ2(x, r)

r
n
p

,(5.9)
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be fulfilled, where C0 does not depend on x ∈ Rn and r > 0. Let us also set

lim
r→0

r
n
p ln 1

r

infx∈Rn ϕ2(x, r)
= 0(5.10)

and

sup
δ<t<∞

1 + | ln t|

t
n
p

sup
x∈Rn

ϕ1(x, t) < ∞(5.11)

for every δ > 0. Then the commutator Mb is bounded from VMp,ϕ1(Rn) to
VMp,ϕ2(Rn). In particular, this holds for the vanishing Morrey spaces VMp,λ(Rn)

with ϕ1(x, r) = ϕ2(x, r) = r
λ
p , 0 ≤ λ < n.

Proof. Let Φ(t) := tp for all t ∈ (0,∞) with p ∈ (1,∞). Then Φ is a Young
function with aΦ = bΦ = p ∈ (1,∞), and MΦ,ϕ = Mp,ϕ. Thus if we take Φ(t) = tp

at Theorem 5.7, after easy calculations we get Corollary 5.8.
In particular, this holds for the vanishing Morrey spaces VMp,λ(Rn) with ϕ1(x, r) =

ϕ2(x, r) = r
λ
p , 0 ≤ λ < n. Indeed, if in the conditions (5.9), (5.10) and (5.11) we

take ϕ1(x, r) = ϕ2(x, r) = r
λ
p , 0 ≤ λ < n, then we have

sup
t>r

(
1 + ln

t

r

)
t
λ−n
p ≤ C0r

λ−n
p ⇐⇒ sup

t>1
(1 + ln t)t

λ−n
p ≤ C0,

lim
r→0

r
n−λ
p ln

1

r
= 0 and sup

δ<t<∞
(1 + | ln t|)t

λ−n
p < ∞. �
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