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Abstract. We apply chiral-perturbation-theory techniques to the QCD sector of the Lorentz
and CPT violating standard-model extension. We derive the effective Lagrangian in terms of
pions and nucleons for a selected set of dimension-five operators involving quarks and gluons.
This derivation is based on chiral-symmetry properties of the operators, as well as on their
behaviour under C,P, and T transformations. We consider the power counting rules and
apply the heavy-baryon approach to account for the large nucleon mass. Having obtained
the relevant Lorentz-violating contributions to the pion-nucleon Lagrangian, we proceed to
derive the particle and anti-particle Hamiltonian, from which we obtain the Lorentz-violating
contribution to comagnetometer experiments. This allows us to place stringent limits on some of
the parameters. For some other parameters we find that the best bounds will come from nucleon-
nucleon interactions, and we derive the relevant nucleon-nucleon potential. These considerations
imply possible new opportunities for spin-precession experiments involving for example the
deuteron.

1. Introduction
The unification of general relativity with quantum mechanics is one of the main outstanding
problems in theoretical physics today. Many different solutions to this problem have been
proposed. However, none of these have proven to be the definitive answer yet. One of the
main difficulties is the energy scale at which the relevant theories become distinguishable from
what should be their low-energy limits: general relativity and the standard model of particle
physics. The generally accepted paradigm is that these theories should become unified around
an energy scale of about the Planck mass: mP ' 1019 GeV. The relevant deviations from the
conventional physics should thus become apparent at this energy scale, which is far out of reach
of any present-day experiments.

One possible solution to this problem can be found in the study of violations of spacetime
symmetries. Many theories that attempt to unify the standard model of particle physics with
general relativity modify the notion of spacetime at Planck-scale energies. Consequently, the fate
of spacetime symmetries such as Lorentz and CPT symmetry becomes an open issue. Tests of
these symmetries might therefore provide valuable insights about a possible theory of quantum
gravity. Moreover, it turns out that very sensitive experimental tests are possible for signals that
are characteristic for the breaking of Lorentz and/or CPT symmetry. Therefore, tiny remnants
of such high-energy symmetry breakings might be detectable at presently attainable energies.
This high sensitivity, combined with the fact that Lorentz- and CPT-symmetry-violating signals

http://creativecommons.org/licenses/by/3.0
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(or their absence) might guide us in the quest for a theory of quantum gravity, has motivated a
large amount of research in this area over the last two decades.

This research is facilitated by an effective-field-theory approach to Lorentz and CPT violation,
called the standard-model extension (SME) [1], which we will discuss in more detail in the
next section. One of the merits of the SME is its generality. It includes all Lorentz-violating
effects that can be incorporated into a local quantum field theory. Additionally, it allows for
a classification of the different Lorentz-violating operators and for quantitative bounds on the
corresponding parameters for Lorentz violation. Therefore, one can compare different (potential)
experiments and their sensitivity and identify possible sectors in the parameter space for Lorentz
violation that might have been tested relatively poorly.

One of the sectors where limits are relatively weak, is the QCD sector of the SME [2].
The reason for this is obvious: the nonperturbative nature of QCD at energies below 1 GeV.
Although very precise bounds on effective Lorentz-violating coefficients for protons, neutrons,
and other hadrons exist, the corresponding limits on the underlying quark and gluon parameters
are hard to obtain. To remedy this situation, we recently started to apply the machinery of chiral
perturbation theory to the QCD sector of the SME [3]. Further work along the same lines can
be found in Refs. [4, 5]. Using the effective operators in terms of the relevant degrees of freedom
at low energies – the pion and nucleon fields – it becomes possible to put stringent constraints
on quark and gluon parameters for Lorentz violation.

2. A Lorentz noninvariant effective field theory
It is not hard to argue that the best way to approach the problem of investigating Lorentz
violation in theoretical particle physics today, is by using an effective-field-theory approach. A
general construction of such an effective field theory was described in Ref. [1]. Similar, albeit
more restricted approaches, were taken in Refs. [6, 7]. The resulting framework is called the
standard-model extension (SME) and it has been succesfully used many times to describe and
parametrize Lorentz- and CPT-violating effects, as well as to obtain quantitative bounds on
many of its coefficients for Lorentz- and CPT violation. In Ref. [2] a complete and up-to-date
overview of the experimental limits can be found.

Although it is possible to conceive of other methods to describe Lorentz- and CPT-symmetry
breaking, the SME has several important advantages [8]. First of all, it is general, in the sense
that all possible Lorentz-violating effects are included in the theory, as long as these effects
can be described in the context of a local quantum field theory. Secondly, we can describe the
SME as being realistic, since it is a perturbation of the conventional standard model of particle
physics and thus includes all the known and well-established particle physics. Finally, the SME
is coordinate invariant, as it should be, since we do not want the physics to depend on the
coordinates we use.

The operators in the Lagrangian of the SME are build from the conventional standard-
model quantum fields that represent all the known elementary particles and transform under
the Lorentz group in the conventional way. The fields continue to be representations of the
standard-model gauge group SU(3)c × SU(2)L × U(1)Y and the Lagrangian is invariant under
the corresponding gauge transformations. The only restrictions on the form of the operators
that are relaxed, is those of Lorentz and CPT symmetry. Operationally this means that Lorentz
indices are no longer contracted to each other, but instead can be contracted to coefficients
that parametrize the Lorentz and CPT violation. The value of these coefficients presumably
originates from some unknown high-energy theory that incorporates (spontaneous) Lorentz-
symmetry breaking.

A typical example of an SME operator is

LLV ⊃ 〈T 〉µν ψ̄γ
µ∂νψ , (1)
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where 〈T 〉µν is the Lorentz-violating coefficient. The Lorentz-violating coefficients are generally
taken to have fixed background values and do not transform under so-called ‘particle Lorentz
transformations’. These are transformations that effect only the quantities associated to the
particles, like their momentum and spin, i.e. they are transformations of the particle fields only.
Particle Lorentz transformations can be viewed as corresponding to physical rearrangements
within the system one is trying to describe. They should be contrasted with ‘observer Lorentz
transformations’, which affect both the particle fields and the Lorentz-violating coefficients.
These transformations are just redefinitions of the coordinate system and as such should not
influence the physics. Therefore, all SME operators are invariant under observer Lorentz
transformations, as clearly exemplified by Eq. (1).

The Lagrangian of the SME in principle contains all local and gauge-invariant Lorentz-
violating operators. This is an infinite set of operators, starting at a mass dimensionality three.
On phenomenological grounds the coefficients of the operators are assumed to be suppressed
by one or more powers of a large mass scale that corresponds to the scale of Lorentz-symmetry
breaking (in many cases this scale is taken to be the Planck mass). This leads to a slight
conundrum for the minimal standard-model extension (mSME), which contains only operators
with a mass dimension of three or four. Naturalness arguments suggest that the coefficients of
these operators are proportional the large mass scale or to unity, respectively. This obviously
is in sharp contrast with existing experimental limits. One way out of this is to conjecture the
existence of some additional symmetry that forbids the offensive operators. This symmetry
might be broken at some intermediate energy scale MIR, making low-energy values of the
coefficients proportional to powers of MIR/MP . For example, it seems that in a minimal
supersymmetric model the lowest dimension for Lorentz-violating operators is five [9], such
that at low energy the symmetry-breaking operators are suppressed by at least one power of the
high-energy scale.

Although the SME in principle contains all possible operators, the explicit identification and
classification of all the operators has only been performed up to mass dimension five. The power-
counting renormalizable operators of dimension three and four are described in Ref. [1], while
the authors of Ref. [10] identify all mass-dimension five operators that are subject to certain
‘UV-safety constraints’, which prevent these operators from mixing with the lower-dimensional
operators. For QED, all operators have been identified up to dimension six [11], while for kinetic
operators the program of classifying all operators of arbitrary dimensions has been finished for
photons, Dirac fermions, and neutrinos [12].

As mentioned in the introduction, in particular the QCD sector of the SME is poorly
constrained, due to the nonperturbative nature of QCD. In Ref. [3] we started to remedy this
situation, by applying chiral perturbation theory techniques to the Lorentz-violating operators
(see Refs.[4] and [5] for more work in this direction). In Ref. [3] we focused on a set of dimension
five quark-gluon operators, which are relevant at an energy scale of about 1 GeV. They were
first written down in Ref. [10] and are given by

LLV =
∑
q=u,d

[
Cqµνρq̄γ

µGρνq +Dq
µνρq̄γ

µγ5Gρνq
]

+Hµνρ Tr
(
GµλDνG̃ρ λ

)
. (2)

The sum in this equation runs over the lightest two quark flavors, the fields q are the quark
fields and Gµν = taGa,µν (ta = 1

2λ
a, a = 1, . . . 8, where λa are the Gell-Mann matrices, are the

generators of the SU(3) color group). All three operators violate Lorentz symmetry as well as
CPT symmetry. This symmetry breaking is parametrized by the coefficients Cqµνρ, D

q
µνρ, and

Hµνρ. In addition to being antisymmetric in their last two Lorentz indices, the Cµνρ and Dµνρ

coefficients are symmetric in their first and last Lorentz indices, while Hµνρ is fully symmetric,
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i.e.

Xq
µνρ = Xq

ρνµ = −Xq
µρν , (3)

Hµνρ = Hµρν = Hνµρ , (4)

with X ∈ {C,D}. These symmetry constraints follow from the UV-safety considerations, which
are discussed in Ref. [10]. The properties of the coefficients under the action of C, P, and T
operations are summarized in table 1.

There are many more operators that can be considered in the context of chiral perturbation
theory, however these are left for future considerations (see for example Refs. [4] and [5]). Also,
we consider only the lightest two quark flavors. In principle the strange quark can be included
and our work can be extended to SU(3) chiral perturbation theory (e.g. see Ref. [5]).

3. The Lorentz-violating chiral-perturbation-theory Lagrangian
At energies below 1 GeV, the operators in Eq. (2) induce interactions between the relevant
degrees of freedom, i.e. the pions, nucleons, and photons. Chiral perturbation theory [13, 14] (see
e.g. Refs. [15, 16] for reviews) can be used to derive the form of the operators that describe these
interactions. In Ref. [3] we constructed the low-energy effective Lagrangian that corresponds
to the Lorentz-violating operators in Eq. (2) in the SO(4) approach to chiral perturbation
theory. This approach is based on the observation that the massless (and Lorentz-symmetric)
two-flavor QCD Lagrangian possesses an SU(2)L × SU(2)R ∼ SO(4) symmetry under chiral
transformations of the quark fields. Moreover, the structure of the baryon and light-meson
spectrum implies that the axial part of this symmetry is spontaneously broken, down to its SO(3)
isospin subgroup. This happens at the chiral breaking scale: Λχ ' 1 GeV. The pseudoscalar
Goldstone bosons associated with this spontaneous symmetry breaking are identified with the
pions. The small nonzero mass of the pions originates from the fact that chiral symmetry is not
an exact symmetry of the QCD Lagrangian, due to the (small) quark masses.

To be able to construct a Lagrangian which has the correct symmetry properties, one
constructs chiral- and gauge-covariant derivatives of the pion and nucleon fields. The covariant
derivative for the pion field is given by

(Dµπ)a = D−1(∂µδab + eAµε3ab)πb , (5)

where π is the pion triplet, Aµ is the photon field, e > 0 is the proton charge, D = 1 + π2/F 2
π ,

Fπ ' Λχ/(2π) ' 185 GeV is the pion decay constant, and a, b are isospin indices. For the
nucleon field the covariant derivative is

DµN =

(
∂µ +

i

F 2
π

τ · π ×Dµπ +
ie

2
Aµ(1 + τ3)

)
N , (6)

where N = (p, n)T is the nucleon doublet and τ are the Pauli isospin matrices. In the chiral
invariant Lagrangian that can now be constructed, pion fields can only appear with one or more
derivatives acting on them. Consequently all such operators can be ordered in terms of powers
of the small quantity p/Λχ, where p � Λχ is a momentum scale of the order of the pion mass.
For the nucleon field on the other hand, the derivative does not give rise to a small quantity. In
fact, a time derivative acting on the nucleon field is of order mN/Λχ = O(1). A way to deal with
this is described in Section 4. For now we just consider only the operators with the smallest
number of derivatives on either pion or nucleon fields and order all interactions by their chiral
index, defined by

∆ = d+ f/2− 2 , (7)

where d is the number of (covariant) derivatives and f is the number of nucleon fields.
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Table 1. The sign that follows from the action of C, P, or T on the Lorentz-violating operators
in Eq. (2). As usual (−1)µ = 1 if µ = 0 and (−1)µ = −1 otherwise.

Cµνρ Dµνρ Hµνρ

P (−1)µ(−1)ν(−1)ρ −(−1)µ(−1)ν(−1)ρ −(−1)µ(−1)ν(−1)ρ

T −(−1)µ(−1)ν(−1)ρ −(−1)µ(−1)ν(−1)ρ (−1)µ(−1)ν(−1)ρ

C +1 −1 +1

Operators that break chiral symmetry can be incorporated in the formalism as well. The
way the operators, relevant above 1 GeV, transform under chiral transformations, determines
the form of the chiral-breaking operators in the effective Lagrangian below 1 GeV. These
operators will generally contain pion fields without derivatives, but are proportional to some
small symmetry-breaking parameter. The most important example of this is the breaking of
chiral symmetry by the quark masses, which induces the pion mass at low energy.

In a similar fashion we constructed the chiral effective operators corresponding to the Lorentz-
violating dimension five quark-gluon operators, given in Eq. (2). The first two operators in
Eq. (2) can be split into a chiral invariant part, proportional to X+

µνρ = Xu
µνρ + Xd

µνρ, with

X ∈ {C,D}, and a chiral noninvariant part, proportional to X−µνρ = Xu
µνρ − Xd

µνρ. The final
operator in Eq. (2) is trivially invariant under chiral transformations, since it does not contain
any quark fields.

Using the chiral properties of the operators in Eq. (2), together with their C, P, and T
characteristics, given in table 1, it is possible to construct the low-energy effective operators
in terms of the relevant degrees of freedom, i.e. the pions and the nucleons (see Ref. [3] for
details). The set of lowest-order relativistic operators that is non-redundant under the equations
of motion, is given by

LLVχ =
i

mN
N̄

(
C̃+
µνρ + C̃−µνρ

[
τ3 −

2

F 2
πD

(
π2τ3 − π3τ · π

)])
σνρDµN

+
1

m2
N

H̃µνρN̄γ
µγ5DνDρN +

i

mNFπD
D̃−µνρN̄(τ × π)3σ

νρDµN +

+
1

m2
NFπ

D̆+
µνραβN̄(τ ·Dµπ)σνρDαDβN + H.c. , (8)

where we included a factor of 1/mN for each covariant nucleon derivative, to keep the time

derivatives from spuriously lowering the chiral index of the operators. The parameter D̆+ is
given by

D̆+
µρναβ = D̃+,1

µρνηαβ + D̃+,2
ανρηµβ + D̃+,3

α[βρ]ηµν , (9)

where square brackets mean antisymmetrization over the enclosed indices. In Eqs. (8) and (9),
the Lorentz-violating coefficients at the hadronic level are denoted by a tilde. This represents the
fact that they are proportional to the Lorentz-violating coefficients in Eq. (2), but additionally

contain an unknown low-energy constant, i.e. C̃±µνρ = c±C±µνρ, D̃
−
µνρ = d−D−µνρ, D̃

+,i
µνρ = d+i D

+
µνρ,

and H̃µνρ = hHµνρ, with c±, d−, d+i , and h the low-energy constants. The value of these low-
energy constants cannot be determined using symmetry arguments, although chiral symmetry
does imply that d− = 2c−. In principle the values of the low-energy constants can be calculated
using lattice QCD, however for the Lorentz-violating operators under consideration this has
not been done. Therefore we use naive dimensional analysis (NDA) [17] to get an estimate
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of the value of the low-energy constants at the order-of-magnitude level. NDA gives that
c±, d− = O(ΛχFπ), d+i = O(Fπ), and h = O(Λ2

χ). The operators in Eq. (8) also induce pure-
pion operators, however these are all of higher order. Moreover, one can write down additional
nucleon-pion operators, that have the correct symmetry properties. However, it can be shown
that these are redundant [3].

As expected, we see that the chiral invariant operators (coupled to C+
µνρ andHµνρ) only induce

nucleon operators without pion fields at lowest order. The chiral noninvariant operators induce
kinetic nucleon terms, as well as pion-nucleon interaction terms, which are related by chiral
symmetry. Also, in contrast to the C±µνρ and Hµνρ parameters, the D±µνρ coefficient does not
introduce any contribution to the nucleon two-point function. This is important, since it turns
out that the strongest constraints come from properties of the free nucleon field. Consequently,
the bounds on D±µνρ will be much weaker than those on C±µνρ and Hµνρ.

4. Heavy baryon chiral perturbation theory
Since an effective field theory in principle contains an infinite number of terms, to be useful
there has to be some way to order the effective operators, based on the expected size of their
contribution to observables. As mentioned, this ordering is performed based on the chiral index
of the operators, defined in Eq. (7). The estimated size of Feynman diagrams is then determined
by their chiral order, which, for diagrams with only one baryon in the initial and final state, is
given by

ν = 2NL + 1 +
∑
i

∆i , (10)

where NL is the number of independent loops and the sum runs over all the interactions that
contribute to the relevant diagram. As mentioned, this is based on the assumption that all
energy scales in the problem are small compared to the chiral breaking scale, i.e. that we
can use the expansion parameter p/Λχ. However, when doing loop calculations involving
nucleons, the nucleon mass constitutes an extra scale in the problem, which is not small, in
fact mN/Λχ = O(1). Loop calculations performed with dimensional regularization receive
contributions from loop momenta of order mN . This upsets the assumed power counting. This
holds for the Lorentz-violating effective operators in Eq. (8) as well. We therefore apply the
framework of heavy-baryon chiral perturbation theory [18]. It consists of introducing heavy-
nucleon fields with a fixed velocity v, given by

Nv =
1 + v/

2
eimNv

µxµN , (11)

where pµ = mNv
µ + kµ , with kµ a small residual momentum. Derivatives acting on the

heavy-nucleon field will now be proportional to this small residual momentum. Moreover, the
propagator of the heavy-nucleon field will no longer contain the nucleon mass, such that the
results of loop integrals scale with powers of p/Λχ. Conventionally, in heavy-baryon chiral
perturbation theory, the operators are written in terms of the nucleon velocity vµ and the
covariant spin vector Sµ, with Sµ = i

2γ
5σµνvν . In the heavy-baryon formalism the Lagrangian

in Eq. (8) becomes

LHB
χ = 4

(
εµναβC̃+

ραβ − H̃
µν
ρ

)
vρvνN̄SµN

+4εµναβC̃−ραβvνv
ρN̄

[
τ3 −

2

F 2
πD

(
π2τ3 − π3τ · π

)]
SµN

+
4

FπD
εµναβD̃−ραβv

ρvνN̄(τ × π)3SµN + 4D̆+
µνραβε

νρλκvλv
αvβN̄(τ ·Dµπ)SκN .(12)
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Notice that C̃+
µνρ and H̃µνρ are coupled to an identical operator. However, in principle they can

still be experimentally distinguished by using the symmetry properties of their Lorentz indices.

5. Particle and antiparticle Hamiltonian
As we mentioned before, the best constraints on the present set of Lorentz-violating coefficients
come from kinetic nucleon terms. They are set by clock-comparison experiments. To analyse
the effect of nucleon Lorentz violation on such experiments it is convenient to have a block-
diagonalized form of the relevant Hamiltonian. Such a form can be obtained by performing
a Foldy-Wouthuysen transformation on the nucleon fields. When the Hamiltonian is in the
block-diagonalized form, the equations for the particle and the anti-particle become decoupled.

A comparable decoupling is achieved in the heavy-baryon approach, discussed in the previous
section. In that approach a nonrelativistic expansion in p/mN is employed. Using a Foldy-
Wouthuysen transformation, in some cases the diagonalization can be achieved exactly, however
in many cases the off-diagonal parts are of some higher order in a small quantity, which can also
be p/mN .

For the kinetic nucleon operators in Eq. (8) one can perform a Foldy-Wouthuysen
transformation such that the off-diagonal parts of the Hamiltonian are of higher order in the
Lorentz-violating coefficients and in the electromagnetic fields. These higher-order terms can
safely be ignored and we obtain a relativistic expression for the block-diagonal Hamiltonian.
One subtlety involves the higher-order time derivatives in the operators in Eq. (8). To deal with
this complication, we use the approach of Ref. [12], i.e. we first diagonalize the Hamiltonian and

then substitute i∂0 →
√
~p2 +m2

N for the fermion and i∂0 → −
√
~p2 +m2

N for the antifermion.

Any terms that we miss in this way are of higher order in the Lorentz-violating coefficients.
For a particle of species w, with w ∈ {p, n}, the resulting Hamiltonian has a 2× 2 upper left

block hw,+, which we associate with the particle, and a 2× 2 lower right block hw,−, pertaining
to the antiparticle. These particle/antiparticle Hamiltonians can be written as

hw,± = hw,0 ± δhw , (13)

where hw,0 is the conventional particle/antiparticle Hamiltonian, while the Lorentz-violating
contribution is given by

δhw = −2γ

[
σ · ξ̄w − γσ · β

(
ξ̄0w −

γ

γ + 1
β · ξ̄w

)]
, (14)

where β = p/E is the (anti)particle velocity, γ is the relativistic boost factor, and

ξ̄µw = ξµνρw βνβρ =
[
H̃µνρ − εµναβ(C̃w)ραβ

]
βνβρ , (15)

with β = (1,β), C̃pραβ = C̃+
ραβ + C̃−ραβ, and C̃nραβ = C̃+

ραβ − C̃
−
ραβ. Comparing Eq. (15) to the

expression in Eq. (12), we see that the same combination of C±µνρ and Hµνρ coefficients appears.
This combination, which is symmetric in ν and ρ, is the one to which free nucleon experiments
are sensitive. It has 32 independent components. A subset of these can be constrained using
clock-comparison experiments, as we will illustrate in the following.

6. Constraints
In Ref. [3] we derived bounds on Cµνρ and Hµνρ from comagnetometer experiments. In finding
the particular components to which the experiments are sensitive, we followed the approach of
Ref. [19]. We will sketch this approach here briefly and refer to Ref. [3] or [19] for more details.
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Essentially, one calculates the shift of the rotational energy levels of an atom, ion, or nucleus
W , that follows from the Lorentz-violating Hamiltonian described in the previous section. The
part of the Hamiltonian for W that is linear in the Lorentz-violating coefficients, is given by

h′W =
∑
w

Nw,W∑
N=1

δhw,N , (16)

where δhw,N is the Hamiltonian for the N -th particle of species w, described in the previous
section. The second sum runs over all particles of species w that are present in W .

This Hamiltonian induces a shift in the energy levels corresponding to

δE(F,MF ) =
〈
F,MF |h′W |F,MF

〉
, (17)

where |F,MF 〉 is the state of W with spin angular momentum F and projection MF . The
Lorentz-violating contribution to a transition frequency F,MF → F ′,M ′F can then be calculated
by δω = δE(F,MF )− δE(F ′,M ′F )

What the contribution of different (components of) Lorentz-violating coefficients to Eq. (17)
looks like depends on the rotational properties of those coefficients. For the Lorentz-violating
coefficients that are presently relevant the Lorentz-violating shift can be written as

δE(F,MF ) = M̃1
FE

W
1 + M̃2

FE
W
2 + M̃3

FE
W
3 , (18)

where M̃n
F (n = 1, 2, 3) follow from ratios of Clebsch-Gordan coefficients, while EWn represent

contributions from spherical tensors of rank n in the original Hamiltonian. Because of the
triangle inequality for angular momenta, EWn requires W to have an angular momentum of at
least n/2 to be nonvanishing. In Ref. [3] we calculated EW1 , EW2 , and EW3 for the Lorentz-
violating coefficients under consideration, in the nonrelativistic limit. We found that the
dominant contribution is part of EW1 , which constitutes a dipole contribution to the energy.
The resulting energy shift is given by

δE(F,MF ) = −2MF

F

∑
w

Nw∑
N=1

[
H300 + (C̃w)012 − (C̃w)021

]
〈[σ3]w,N 〉 , (19)

Here, 〈[σ3]w,N 〉 is an unknown matrix element of the third spin component, defined in the
‘stretched’ state |F, F 〉 (the 3-axis is the quantization axis). One has to adopt some nuclear-
structure model to calculate the values of such matrix elements. Besides Eq. (19), there are other
Lorentz-violating contributions to the energy shift, which contain different linear combinations
of the Lorentz-violating coefficients. However, these are suppressed by factors of p2/m2

N with
respect to the one in Eq. (19).

The best bounds on the Lorentz-violating dipole contribution in Eq. (19) come from
a 3He/129Xe comagnetometer [20] for the X and Y direction and from a 199Hg/133Cs
comagnetometer [21] for the Z direction. Here the X,Y , and Z direction are defined in the Sun-
centered inertial reference frame [2]. These experiments allow us to put bounds on components
of ξµνρ in the order of 10−33–10−30 GeV−1. Additional bounds can be derived by considering
effects due to the nonzero velocity of the Earth. Such effects are ignored in most cases, since
they are suppressed by powers of the Earth’s velocity with respect to the Sun, i.e. powers of
β⊕ ' 10−4. However, due to the high precision of the comagnetometer experiments, in this case
relevant bounds can be derived from such effects. An analysis of such boost-dependent signals
was performed in Ref. [22].

Using the experiments and analyses of Refs. [20, 21, 22], we are able to bound 7 linear
combinations of components of the Lorentz-violating tensors [3]. These linear combinations
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Table 2. Order-of-magnitude bounds on the LV tensor components defined in Eqs. (2).

Tensor component Limit in GeV−1

HTTX , HTTY , CqT [XZ], C
q
T [Y Z] < 10−33

HTTZ < 10−30

CqT [XY ] < 10−29

HTXX , HTXY , HTY Y < 10−28

HTTT , HTXZ , HTY Z , CqT [TZ], C
q
X[Y Z], C

q
Y [XZ], C

q
Y [Y Z] < 10−27

CqT [TX], C
q
T [TY ], C

q
T [TZ], C

q
X[XZ], C

q
Z[XZ], C

q
Z[Y Z] < 10−26

involve the low-energy constants described below Eq. (8). Therefore, bounds on the actual
coefficients are order-of-magnitude bounds until we can do better than NDA estimates for the
low-energy constants. Moreover, we assume that there are no large (unexpected) cancellations
between the different coefficients, such that the 7 experimental bounds can be interpreted as
bounds on the separate components of the Lorentz-violating tensors. The resulting order-of-
magnitude limits are collected in table 2.

7. Spin-precession equation
An alternative way of bounding Lorentz-violating coefficients such as the ones in Eq. (8) is by
considering storage-ring experiments that measure spin-precession frequencies. To interpret such
experiments, we derived relevant Lorentz-violating spin-precession equation that corresponds to
Eq. (13). Using the Heisenberg equation of motion to derive the time evolution of the spin
operator, we find that the Lorentz-violating contribution to the spin-precession frequency ωs of
particle species w is given by

∓δωs,w
4

= −γξ̄w + γ2β

(
ξ̄0w −

γ

γ + 1
β · ξ̄w

)
, (20)

where γ and β are the Lorentz boost factor and particle velocity, respectively. The Lorentz-
violating coefficient ξ̄µ is defined in Eq. (15) and the upper (lower) sign applies to particles
(antiparticles).

In Ref. [3], we used Eq. (20) to derive a bound |ξZTTp | < 2.7×10−21 GeV by comparing proton
and antiproton spin-precession frequencies. These were measured in two double Penning-trap
experiments, performed in Mainz [23] and at CERN [24]. Although the sensitivity of these
experiments is much lower than the comagnetometer experiments, described in the previous
section, they have the added advantage that they do not need to rely on a nuclear model to
determine the nuclear matrix elements.

Also, storage-ring experiments have the potential to bound additional (boost-dependent)
components of the Lorentz-violating coefficients. In particular an experiment with deuterons
is expected to be benificial, since it will have sensitivity to the D±µνρ coefficients that do not
contribute to single-nucleon observables. We will discuss this in more detail in the next section.

8. The D±µνρ parameter

As can be seen from Eq. (8), the Lorentz-violating coefficient D±µνρ does not contribute to any
nucleon two-point function, due to its symmetry properties. As such it does not contribute to
free nucleon properties and thus cannot be bounded to the same precission as C±µνρ and Hµνρ,
using comagnetometer experiments.



10

1234567890

Fifth Symposium on Prospects in the Physics of Discrete Symmetries IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 873 (2017) 012009  doi :10.1088/1742-6596/873/1/012009

(a) (b) (c)

Figure 1. Contribution of D−µνρ to the nucleon electromagnetic form factor. The squares denote
the pion-nucleon vertex from Eq. (12), while the circles denote leading-order vertices from the
usual chiral perturbation Lagrangian.

In Ref. [3], we therefore calculated the pion-loop contribution of D±µνρ to the nucleon
electromagnetic form factor (see Fig. 1). The result for the Lorentz-violating current that
follows from the loop calculation is given by

Iµ(q) =
(
F+
νρσ(Q2) + F−νρσ(Q2)τ3

)
vνvµq[σSρ] + · · · , (21)

where the dots represent terms that are not relevant for on-shell photons. The function F+
νρσ(Q2)

(F−νρσ(Q2)) represents a isoscalar (isovector) form factor, proportional to the Lorentz-violating

parameters. For on-shell photons, the loop contribution to the isovector form-factor F−νρσ turns
out to vanish, while the loop calculation does give a nonzero isoscalar form factor. After
renormalization, the loop contribution to the form factors can be written as

F+
νρσ(Q2 = 0) = D̃−νρσ

8egA
(2πFπ)2

ln
m2
N

m2
π

+ · · · , (22)

where the dots represent contributions from other low-energy effective operators. We see that

the chiral loop contribution is slightly enhanced by the factor ln
m2
N

m2
π

. This result exemplifies

how chiral perturbation theory allows for precision calculations for Lorentz-violating hadronic
observables.

The problem with using the electromagnetic nucleon form factor to bound Lorentz-violating
coefficients is the fact that the presence of physical electromagnetic fields suppresses the effects
by many order of magnitudes. The suppression factor with respect to the dominant Lorentz-
violating effects due to C and H will be in the order of eFµν/Λ2

χ. For a magnetic field of 1

tesla this is about 10−16. We thus estimate that the bounds on D−µνρ from comagnetometer

experiments are at best in the order of O(10−17) GeV.
A more promising option is the contribution of D±µνρ to nucleon-nucleon interactions.

Although it is not possible to write a two-point function for spin-12 particles involving D±µνρ,
this is not necessarily true for higher-spin particles, such as the deuteron. In Ref. [3] we thus
calculated the Lorentz-violating nucleon-nucleon potential that follows from one-pion exchange
between nucleons in the context of chiral EFT (see Refs. [25, 26, 27] for reviews). In the relevant
pion-exchange diagram, one of the two interaction vertices is a Lorentz-violating vertex from
Eq. (12). The resulting potential is given by

VLV = −
(
εijkD̃−0ij

) 2igA
F 2
π

(τ 1 × τ 2)3
(σ1 · k)σk2 + (σ2 · k)σk1

k2 +m2
π

−
(
εjklD̆+

ijk00

) 4gA
Fπ
τ 1 · τ 2

(σl1σ
m
2 + σm1 σ

l
2)k

ikm

k2 +m2
π

, (23)
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where σ1,2 (τ 1,2) are the spin (isospin) operators of nucleon 1 and 2 and the momentum transfer
k = p−p ′ flows from nucleon 1 to nucleon 2; p and p ′ are the relative momenta of the incoming
and outgoing nucleon pair in the center-of-mass frame. The Latin indices i, j, k, ... denote spatial
directions. There are other contributions from the D-parameter to the potential, which can be
found in Ref. [3].

The detailed study of the effects of Eq. (23) are left for future work. However, it seems clear
that it will have an effect on for example the spin-precession frequency of the deuteron as well
as on other light-nucleon systems or clock-comparison experiments. For such systems a bound
on D±µνρ that is a significant improvement over the current bounds seems feasible.

9. Conclusion and outlook
In Ref. [3], we started the program of deriving the hadronic low-energy effective Lagrangian
for Lorentz-violation, based on chiral-symmetry considerations and induced by operators of the
Lorentz-violating standard-model extension. Here, we limited the discussion to a selected set of
dimension-five quark-gluon operators, which obey a set of UV-safety conditions [10]. This work
has been extended to several different operators in other work [4, 5].

We applied a Foldy-Wouthuysen transformation to the low-energy effective Lagrangian to
obtain a decoupled particle/antiparticle Hamiltonian and derived the resulting shift in the
rotational energy levels of atoms. Using these results we derived strict bounds on components of
two of the three Lorentz-violating coefficients, from comagnetometer experiments [20, 21]. The
resulting limits are collected in table 2. Comparing these to the expected size of the dimension-
five operators, i.e. 1/mP ' O(10−19) GeV−1, we see that many of the components of Cµνρ and
Hµνρ have bounds that are well beyond the Planck scale.

An important result is that the Dµνρ coefficients do not contribute to the nucleon two-point
function and therefore cannot be limited by the same methods that provided the stringent bounds
on Cµνρ and Hµνρ. In Ref. [5] we found that this also holds for a particular pure-gluon parameter
in the mSME and we expect there will be more such parameters in the SME Lagrangian.

We calculated pion-loop contributions to the nucleon electromagnetic form factor in terms
of the Dµνρ coefficient. However, due to the supression that follows from the necessity of the
presence of a physical electromagnetic field, the resulting bounds on components of Dµνρ are
in the order of O(10−17) GeV−1 at best. This is not yet at the expected level of 1/mP and
improvements of this bound are thus desirable.

Such improvement might come from considering effects of the one-pion exchange nucleon-
nucleon potential in Eq. (23). The effects of the NN interaction in nuclei could provide
much better bounds than the electromagnetic interactions. Especially the spin precession of
the deuteron is promising in this respect and for example storage-ring experiments might be
able to place stringent constraints [28].
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