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Restoration of seagrass beds through seedlings is an alternative to the transplantation
of adult plants that reduces the impact over donor areas and increases the genetic
variability of restored meadows. To improve the use of Cymodocea nodosa seedlings,
obtained from seeds germinated in vitro, in restoration programs, we investigated the
ammonium and phosphate uptake rates of seedlings, and the synergistic effects of
light levels (20 and 200 µmol quanta m−2 s−1) and different nitrogen to phosphorus
molar ratios (40 µM N:10 µM P, 25 µM N:25 µM P, and 10 µM N:40 µM P) on the
photosynthetic activity and growth of seedlings. The nutrient content of seedlings was
also compared to the seed nutrient reserves to assess the relative importance of external
nutrient uptake for seedling development. Eighty two percent of the seeds germinated
after 48 days at a mean rate of 1.5 seeds per day. All seedlings under all treatments
survived and grew during the 4 weeks of the experiment. Seedlings of C. nodosa
acquired ammonium and phosphate from the incubation media while still attached to
the seed, at rates of about twice of adult plants. The relevance of external nutrient
uptake was further highlighted by the observation that seedlings’ tissues were richer
in nitrogen and phosphorus than non-germinated seeds. The uptake of ammonium
followed saturation kinetics with a half saturation constant of 32 µM whereas the
uptake of phosphate increased linearly with nutrient concentration within the range
tested (5 – 100 µM). Light was more important than the nutrient ratio of fertilization
for the successful development of the young seedlings. The seedlings’ photosynthetic
and growth rates were about 20% higher in the high light treatment, whereas different
nitrogen to phosphorus ratios did not significantly affect growth. The photosynthetic
responses of the seedlings to changes in the light level and their capacity to use external
nutrient sources showed that seedlings of C. nodosa have the ability to rapidly acclimate
to the surrounding light and nutrient environment while still attached to the seeds.
C. nodosa seedlings experiencing fertilization under low light levels showed slightly
enhanced growth if nourished with a balanced formulation, whereas a slight increase
in growth was also observed with unbalanced formulations under a higher light level.
Our results highlight the importance of high light availability at the seedling restoration
sites.
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INTRODUCTION

Seagrass meadows are invaluable marine habitats considering
the myriad of goods and services they provide to the
overall functioning of coastal systems. Seagrass beds increase
biodiversity, offer food and shelter for marine animals, improve
water quality, protect coastlines from erosion and mitigate
climate change through carbon storage (Duffy, 2006; Fourqurean
et al., 2012). Despite their ecological importance, seagrasses
are a vulnerable resource. Concern is increasing over the
decline of seagrass populations worldwide as a result of adverse
anthropogenic activities in coastal areas (Orth et al., 2006a; Short
et al., 2011).

Seagrass restoration programs have long been used in an
attempt to re-establish lost or declining seagrass areas. Seagrass
restoration involves the transplantation of plant material (mature
plants or seeds and seedlings from in vitro germinated seeds)
obtained from healthy donor meadows into degraded areas.
Recently, small- and large-scale restoration efforts have been
made to recover lost populations in Northern Europe using
both vegetative transplants (van Katwijk et al., 1998) and seed-
based methods (Infantes et al., 2016), in Chesapeake Bay,
United States (Orth et al., 2003, 2006b, 2009, 2012) and in
Shandong Peninsula, China (Zhang et al., 2015; Yang et al.,
2016) using seed-based methods, and in Western Australia using
vegetative transplants (Paling et al., 2001, 2007; van Keulen
et al., 2003; Bastyan and Cambridge, 2008). Transplantation
of mature plants harvested from donor populations, frequently
located a great distance from receptor meadows, requires a
heavy logistic and creates an impact on donor meadows.
The survival of the transplants at the receptor sites has been
highly variable among the various projects. Compared to the
transplantation of adult plants, the use of seeds (or in vitro
germinated seedlings) in seagrass restoration constitutes an
effective alternative, or complementary, re-plantation method
that reduces the impact over donor areas, requires less labor and
time, is less expensive, and increases the genetic variability within
restored meadows (Ackerman, 2006; Ailstock and Shafer, 2006;
Zarranz et al., 2010). Genetically diverse seagrass populations
grow and spread faster, produce more flowers, and have better
rates of germination than less diverse beds (Procaccini and
Piazzi, 2001; Williams, 2001). Therefore, seed- and seedling-
based restoration has been considered more suitable for large-
scale seagrass restoration projects (Williams and Orth, 1998;
Harwell and Orth, 1999; Granger et al., 2000; Orth et al., 2008).
However, this restoration practice presents several bottlenecks
(Statton et al., 2017), one of them being the low rate of
seedling survival and establishment (less than 10% of the
seeds placed in the field) (Orth and Moore, 1983; Orth et al.,
2003), although high rates of success have been also observed
(Balestri et al., 1998; Balestri and Lardicci, 2012). Due to the
vulnerability of seedlings to environmental stressors during the
initial phases of development, the successful development of
viable beds depends upon several factors, including sediment
burial, light, nutrients and initial patch size (Duarte and
Sand-Jensen, 1990; Moore et al., 1993; Celdrán and Marín,
2013).

Cymodocea nodosa is a subtidal dioecious marine angiosperm
that forms extensive meadows along the Mediterranean coasts,
the North Atlantic coast of Africa and the Canary Islands,
reaching its southern limit of distribution in Senegal (Pavón-
Salas et al., 2000, Green and Short, 2003; Alberto et al., 2008;
Cunha and Araújo, 2009). It is the most common seagrass
species in the Canary Islands (Reyes et al., 1995) and the second
most important concerning the surface area covered in the
Mediterranean, after Posidonia oceanica (Procaccini et al., 2003).
The species can reproduce both clonally and sexually through the
production of flowers, fruits and seeds that originate seedlings
(Caye and Meinesz, 1985; Buia and Mazzella, 1991; Terrados,
1991). Substantial deterioration and regression of C. nodosa
meadows has occurred in the past two decades (Delgado et al.,
1997; Tuya et al., 2013, 2014; Fabbri et al., 2015). Efforts have
been made to restore seagrasses by transplanting adult plants
from donor to receptor meadows (Curiel et al., 2003; Meinesz
et al., 2005; Ruiz de la Rosa et al., 2006) but so far no cases
of successful C. nodosa seedlings transplantations are reported.
Little is known about the environmental factors controlling
the development of seedlings and its establishment, although
this information is key for the success of restoration programs
through seedlings. Nutrient limitation at the seedling stage has
been shown to constrain branching and patch initiation in
C. nodosa (Duarte and Sand-Jensen, 1996; Nielsen and Pedersen,
2000; Balestri et al., 2010), suggesting that nutrients play a
critical role in the successful establishment of replanted seedlings
in nutrient-poor environments. Therefore, the application of
fertilizers in transplanted areas has been proposed to minimize
nutrient limitation and enhance the survival and growth of
the seedlings at the initial stages of development. A number
of fertilization experiments have shown that the addition of
nitrogen and phosphorus to seagrass meadows stimulates shoot
biomass and growth of C. nodosa (Pérez et al., 1991, 1994;
Kenworthy and Fonseca, 1992; Balestri et al., 2010; Balestri and
Lardicci, 2014), P. australis and P. sinuosa (Hovey et al., 2012),
and seedlings of Zostera marina (Tanner and Parham, 2010) but
not in seedlings of P. australis (Statton et al., 2014). Nutrient
additions to seagrass meadows have usually been made through
the application of fertilizers with either balanced or unbalanced
nutrient formulations. The effects of the application of balanced
and unbalanced formulations of fertilizers (i.e., different N and
P molar ratios) on growth and shoot production of seagrass
seedlings have been evaluated in only two studies (Roberts
et al., 1984; Tanner and Parham, 2010). Both studies reported
enhanced growth rates of seedlings fertilized with a balanced
formulation. However, nitrogen to phosphorus molar ratios in
seagrass meadows are seldom balanced, and interactions between
ammonium and phosphate uptake have been reported. While,
on the one hand, the addition of phosphate has been shown
to attenuate the negative production balance of the seagrass
Z. noltei nourished with high concentrations of ammonium
at low light levels (Brun et al., 2008), on the other hand an
inhibition of phosphate uptake in the presence of ammonium
has been described in this species (Villazán et al., 2013).
Based on these observations, we tested different N to P molar
ratios and hypothesized whether a balanced or an unbalanced
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nutrient formulation would result in a higher growth rate
of the C. nodosa seedlings. Light reduction, mostly due to
anthropogenic disturbances, is a major cause of seagrass die-
off in shallow coastal areas (Short and Wyllie-Echeverria, 1996).
Seedlings are particularly sensitive to light availability, as its
survival, growth and development is significantly affected by
light reduction (Bintz and Nixon, 2001). Light and nutrient
regimes are frequently reported as major factors affecting
seagrass seedling development and the success of restoration
efforts.

In order to improve the use of seedlings in C. nodosa
restoration programs, we assessed (1) the seedling nitrogen and
phosphorous uptake dynamics and (2) the synergistic effects
of light and N:P ratios on photosynthesis and growth in lab-
developed seedlings. The seed development and germination
rates were also assessed. To determine the relative importance
of external nutrient uptake for seedling development we also
followed the nutrient content of non-germinated seeds and
young seedlings. We hypothesize that seedlings’ growth will be
enhanced under high light level and fertilization with a balanced
nutrient formulation.

MATERIALS AND METHODS

Germination of Seeds
Seeds of Cymodocea nodosa were collected from the sediment
of a meadow at the southeast coast of Gran Canaria Island,
Spain (27◦47′19′′N, 15◦29′35′′W) in November 2015 and were
transported in moist tissue to the Centre of Marine Sciences,
South Portugal. Seeds were induced to germinate by the
hyposaline shock (Caye et al., 1992) in a growth chamber in
aquaria with natural seawater (salinity = 18h, pH = 8.2, N
and P < 1 µM) semi-buried in autoclaved (20 min at 120◦C)
sea sand at 22◦C with a light intensity of 150 µmol quanta
m−2 s−1 and a photoperiod of 12:12 h. A salinity of 18h
was chosen for the hyposaline shock because it was reported
to yield higher percentages of seed germination and seedlings
with leaves in C. nodosa (Zarranz et al., 2010). After seeds were
germinated, i.e., after the emergence of the cotyledon, seeds
were transferred to aquaria with full-strength natural seawater
(salinity = 36h, pH = 8.2, N and P < 1 µM) to ensure a
higher percentage of developed seedlings (Zarranz et al., 2010).
The seedlings’ development was followed from seed germination
(visible cotyledon) to seedling production (plant with young
leaves and roots still attached to the seed) and the percentage of
seeds in the different developmental stages was recorded (n= 90).
The mean germination rate was also determined.

Seeds of C. nodosa were also collected from the sediment of
a meadow in Laguna Mar Menor, Múrcia, Spain (37◦49′08′′N,
0◦46′33′′W) in a dense monospecific meadow at 0.6 m depth
in November 2015, but only 2% of the seeds germinated under
the same germination conditions used for the seeds collected in
Gran Canaria, demonstrating that the germination potential is
site specific. Given the low germination rate of the seeds from
Mar Menor, the experiments were performed using only the
seedlings from seeds collected in Gran Canaria. Seedlings with

at least two developed leaves and roots still attached to the seed
(about 2-month old) were used.

Uptake Experiments
In a first experiment, seedlings were incubated for 0.5 h in
250 mL of artificial seawater (salinity= 35h, pH= 8.2) enriched
with 15NH4Cl (at % = 99) at five nutrient concentrations (5,
25, 50, 100, and 200 µM). For each nutrient concentration
eight seedlings were incubated, in a total of 40 seedlings (8
seedlings × 5 concentrations). Each seedling was incubated in
an independent container. A short incubation time (0.5 h) was
chosen to ensure that nutrient concentrations in the media
remained constant throughout the incubation, and that the
incorporation of the labeled nutrient by plant tissues was not
affected by changes in the nutrient concentration. In a second
experiment, seedlings were incubated for 4 h in 100 ml of
artificial seawater (salinity = 35h, pH = 8.2) enriched with
K2HPO4 at five different nutrient concentrations (5, 12.5, 25,
50, and 100 µM). For each nutrient concentration five seedlings
were incubated, in a total of 25 seedlings (5 seedlings × 5
concentrations). Each seedling was incubated in an independent
container. In this experiment, uptake rates were assessed using
the depletion method, i.e., rates were determined by the
difference between the initial and final concentration of the
nutrient in the media and, thus, a longer incubation time (4 h)
and a shorter incubation volume (100 ml) were required.

Experiments were performed at constant light (125 µmol
quanta m−2 s−1) and temperature (22◦C). During the
experiments, the seedlings were incubated in seawater only,
after being grown in autoclaved sea sand. The incubation
media were constantly stirred using a shaking platform to
ensure a thorough mixing of the nutrients. The range of
nutrient concentrations used was representative of seagrass
environments (Touchette and Burkholder, 2000). Although
nutrient concentrations in the water column are much lower
(<5 µM) compared to those in the sediment porewater, pulses of
high nutrient concentration may also occur from the sediment
to the water column in seagrass meadows (e.g., up to 200 µM in
the Palmones river estuary during low tide, Brun et al., 2002).
The dry biomass (leaves plus roots) of the incubated seedlings in
the N and P uptake experiments averaged 0.028 ± 0.013 g and
0.027± 0.010 g, respectively.

At the end of the N uptake experiment, the leaves and roots of
the seedlings were separated from the seeds, dried at 60◦C for 48 h
and weighted. The dried tissues were reduced to a fine powder
for 15N analysis. The amount of 15N (g) taken up by the leaves
and roots of the seedlings was calculated by subtracting the post-
incubation 15N level (%) from the initial background level (%)
and multiplied by the total nitrogen in the tissues (g). Nitrogen
uptake rates (µmol g−1 DW h−1) were plotted against substrate
concentration (µM) and fitted to the Michaelis–Menten model
(V = Vmax × S/Km + S), and the uptake kinetic parameters
Vmax (maximum uptake rate), Km (half-saturation constant) and
α (affinity constant= Vmax/Km) were obtained. S is the substrate
concentration (µM).

At the end of the P uptake experiment, the seedlings
were removed from the incubation media, dried at 60◦C for
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48 h and weighted. Water samples were collected from each
seedling container, filtered (Whatman cellulose acetate filters,
0.45 µm size pore) and stored at −20◦C until analysis. The
concentration of phosphate in the samples was measured in a
loop-flow analyser (µMAC-1000, Systea, Anagni, Italy) using
the molybdate/ascorbic acid method. Phosphate uptake was
determined as the difference between the initial and final
concentration of the nutrient in the seawater. Uptake rates were
fitted to a linear model V = a + b × S, where S is the substrate
concentration (µM).

Nutrient Content and Requirements for
Growth
The endosperm of non-germinated seeds and the leaves and
roots of developed seedlings still attached to the seed (n = 5),
were dried and grinded into powder for determination of the
carbon (C), nitrogen (N) and phosphorus (P) content to follow
the nutrient content throughout developmental phases. C and
N analysis were performed in a Vario EL III elemental analyser
(Elementar). P content was determined by alkaline persulfate
digestion following the methods described by Murphy and Riley
(1962) and Wheeler and Björnsäter (1992). Briefly, 6 mL of
oxidizing agent (3 g sodium hydroxide and 6.7 g potassium
persulfate in 1 L of distilled water) were added to 1 – 2 mg of
ground dried tissue (60◦C for 48 h) and autoclaved at 120◦C for
1 h. After cooling, samples were acidified with 0.6 mL of HCl 0.3
M and buffered with 0.8 mL of alkaline borate buffer (30.9 g boric
acid and 100 mL sodium hydroxide 1 M in 1 L of distilled water)
and volume was adjusted to 10 ml with distilled water. 0.5 mL of
a mix reagent (125 mL sulphuric acid 5 N, 37.5 mL ammonium
molybdate saturated solution, 75 mL of ascorbic acid 0.1 M and
12.5 mL potassium antimonyl tartrate 1 mg/mL) were added
to each tube. The absorbance of the solutions was measured at
882 nm.

The nitrogen and phosphorus requirements for growth (µmol
N or P g−1 DW h−1) of the seedlings were calculated based on
the growth rates (g DW g−1 DW day−1) measured in situ by
Nielsen and Pedersen (2000) in C. nodosa seedlings from Alfacs
Bay (NE Spain), multiplied by the total N and P content (%) of
whole seedlings measured in the present study, assuming that
N and P demand for leaf growth generally constitutes 95% of
seagrass nutrient requirements (Erftemeijer et al., 1994; Stapel
et al., 1996).

Light and Fertilization Experiment
Seedlings were grown during 4 weeks in flasks with 0.2 L of
autoclaved sea sand as physical substrate and 0.5 L of artificial
seawater (salinity = 35h, pH = 8.2) containing nitrogen and
phosphorus at three different ratios of molar concentrations
(40 µM N:10 µM P, 25 µM N:25 µM P and 10 µM N:40 µM
P) at two light intensities (20 and 200 µmol quanta m−2 s−1),
in a total of six treatments (n = 3 replicates per treatment
with 2 seedlings per replicate). Nutrient ratios corresponded
respectively to concentrations of 40 µM of NH4Cl:10 µM
K2HPO4, 25 µM of NH4Cl:25 µM K2HPO4 and 10 µM of
NH4Cl:40 µM K2HPO4. These concentrations were selected

to be 4 to 10-fold higher than ambient concentrations (e.g.,
Pérez and Romero, 1994) to represent a fertilization scenario for
restoration. Ammonium was chosen because it is the preferential
inorganic nitrogen source for most seagrasses (Touchette and
Burkholder, 2000; Alexandre et al., 2011, 2014). A light intensity
of 200 µmol quanta m−2 s−1 was chosen because it is above the
compensation and saturation irradiance for C. nodosa (Olesen
et al., 2002; Olivé et al., 2013; Silva et al., 2013). A light
intensity of 20 µmol quanta m−2 s−1 was chosen to simulate an
accentuated light reduction. This value was determined based on
the percentage of light attenuation (10% of the ambient surface
irradiance) experienced by C. nodosa plants in a shallow (mean
depth 3.2 m) and relatively turbid (light attenuation coefficient,
k= 0.57 m−1) bay in Spain (Duarte, 1991). Seedlings were grown
at 22◦C under a photoperiod of 12:12 h. Light intensities were
achieved using shade screens. The growth media were changed
twice every week to keep the initial levels of nutrients and
oxygen.

Leaf growth rates were determined weekly by measuring
the total length (from the sheath to the leaf tip) of all leaves
of each shoot. This method was preferred over the classical
punching method used to determine seagrass growth (Zieman,
1974) to avoid damaging the tissues of the narrow and fragile
leaves of the seedlings. The growth rate was calculated by
subtracting the total leaf length (TLL) at the beginning to the
TLL after 1 week and dividing by the number of days. The
photosynthetic performance of the seedlings in each treatment
was also measured weekly. The 2nd or 3rd youngest leaf of each
seedling was irradiated with a series of eight increasing light
intensities (1, 11, 22, 65, 88, 145, 217, and 294 µmol quanta
m−2 s−1) using a pulse amplitude modulated (PAM) fluorometer
(Diving PAM, Walz, Germany). The relative electron transport
rate (rETR = Y × I µmol e− m−2 s−1) was calculated for each
irradiance step, where Y is the effective quantum yield and I is
the irradiance (µmol quanta m−2 s−1). The effective quantum
yield of photosystem II (Y) is determined as (F’m - Fs)/F’m, where
Fs is the fluorescence in the light when only part of the reaction
centers are closed and Fm’ is the maximal fluorescence of a light
adapted leaf immediately after closure of all reaction centers
obtained through the application of a saturating light pulse
(Genty et al., 1989). The rETR vs. irradiance curves were fitted
to the model of Jassby and Platt (1976), rETR = rETRm × tanh
(α x I/rETRm), where I is irradiance, α is the ascending slope
at limiting irradiances, and rETRm is the relative maximum
electron transport rate. Parameters were derived from curves with
R2 > 0.82.

Data Analysis
Differences in the nutrient content (C, N, and P) among non-
germinated seeds and seedlings were detected with a t-test
using SigmaPlot for windows Version 11.0 (Systat Software,
Germany). The effects of light level, nutrient ratio and time
of exposure on growth, rETRm and alpha of the seedlings
were tested with three-way analyses of variance with repeated
measures (factors light and nutrient ratio between subjects; factor
time within subject, repeated measure) using R programming
language R 3.0.3 (R Core Team, 2014, R Foundation for Statistical
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FIGURE 1 | Percentage of Cymodocea nodosa seeds (n = 90) in each
developmental stage, throughout a period of 48 days after seed germination
was induced. Seeds were germinated in seawater (salinity of 18h) at 22◦C
and light intensity of 150 µmol quanta m−2 s−1 under a 12 h:12 h light:dark
cycle.

Computing, Vienna, Austria). All tests were performed at a level
of significance lower than 0.05.

RESULTS

Germination of Seeds
Eighty two percent of the seeds germinated after 48 days at a
mean rate of 1.5 seeds per day. This indicates a high viability
of the seeds used in our experiment. Germination was initially
high on the second and fifth day (11 and 26%) and decreased
afterward to values around 5% and lower. After 1 week, nearly
50% of the seeds had germinated. Of all seeds (n = 90), 18% did
not germinate and only a small percentage (33%) reached the
seedling stage. A similar percentage (38%) germinated but did
not produce leaves and a small percentage of the seeds (11%) died
after producing leaves (Figure 1).

Uptake Experiment
The uptake of ammonium by C. nodosa seedlings followed a
hyperbolic Michaelis–Menten kinetics (Figure 2). The maximum
ammonium uptake rate (Vmax) of the seedlings was 27.74 µmol
g−1 DW h−1, the half-saturation constant (Km) was 32.34 µM
and the uptake affinity (α = Vmax/Km) was 0.86. In contrast,
the uptake of phosphate by the seedlings showed no saturation
kinetics and was best described by a linear regression model
(V = 0.1223 + 0.0425 × S, r2

= 0.84) (Figure 3). Phosphate
uptake was 0.83 µmol g−1 DW h−1 at 5 µM (3.5-fold lower than
the ammonium uptake) and reached 4.88 µmol g−1 DW h−1 at
100 µM (5-fold lower than the ammonium uptake).

FIGURE 2 | Ammonium uptake rates (µmol g−1 DW h−1) of C. nodosa
seedlings as a function of nutrient concentration (µM). Data were fitted to the
Michaelis–Menten model. The coefficient of determination (r2) and level of
significance (p) of the fit are shown. Values are mean ± SD (n = 8).

FIGURE 3 | Phosphate uptake (µmol g−1 DW h−1) of C. nodosa seedlings as
a function of nutrient concentration (µM). Data were fit to a linear model. The
coefficient of determination (r2) and level of significance (p) of the fit are
shown. Values are mean ± SD (n = 5).

Nutrient Content and Requirements for
Growth
The carbon content was significantly different among non-
germinated seeds and seedlings (t = 5.613, p = 0.001). Carbon
content was higher in non-germinated seeds (42.06± 1.19%) and
decreased significantly in the young seedlings (36.19 ± 1.72%).
In contrast, the nitrogen content increased significantly
from non-germinated seeds (1.40 ± 0.08%) to seedlings
(2.23 ± 0.35%) (t = 4.675, p = 0.003). Consequently, the
C:N ratio decreased significantly from non-germinated seeds
(30.20 ± 1.03) to seedlings (16.41 ± 1.92). The phosphorus
content was not significantly different between non-germinated
seeds (0.41 ± 0.06%) and seedlings (0.47 ± 0.05%) (t = 1.797,
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FIGURE 4 | Growth rate (cm day−1) of C. nodosa seedlings incubated at different nitrogen to phosphate ratios (40 µM N:10 µM P, 25 µM N:25 µM P and 10 µM
N:40 µM P) under low light (LL = 20 µmol quanta m−2 s−1) and high light (HL = 200 µmol quanta m−2 s−1) along the experiment (t1 = after 1 week; t2 = after
2 weeks; t3 = after 3 weeks; t4 = after 4 weeks). Values are mean ± SD (n = 6).

p = 0.115). C:N:P ratio of non-germinated seeds was 105:4:1,
whereas the ratio of the seedlings was 77:5:1. The nitrogen and
phosphorus requirements for growth of C. nodosa seedlings
were 3.12 µmol N g−1 DW h−1 (74.9 µmol N g−1 DW day−1)
and 0.29 µmol P g−1 DW h−1 (6.9 µmol P g−1 DW day−1),
respectively. These values were calculated based on a mean
growth rate of 0.047 g DW g−1 DW day−1 measured by Nielsen
and Pedersen (2000) in C. nodosa seedlings and considering the
total content of nitrogen (2.23%) and phosphorus (0.47%) in the
seedlings determined in the present study.

Light and Fertilization Experiment
The growth rate of the seedlings increased significantly with light
(p= 0.04) (Figure 4 and Table 1). On average, seedlings exposed
to high light (200 µmol quanta m−2 s−1) grew 20% more than
seedlings exposed to a low light (20 µmol quanta m−2 s−1).
In contrast, growth rates were not significantly affected by the
nutrient ratio (p = 0.996) or time of exposure (p = 0.051), and
no interactions among factors were detected (Table 1). None of
the seedlings died during the 4 weeks of the experiment. rETRm
and α were significantly affected by the light level (p < 0.001) but
not by nutrient ratios (Figures 5, 6 and Table 1). On average,
rETRm values of seedlings exposed to high light were twice as
high as those of seedlings exposed to low light, while alpha values
were about 25% lower. The time of exposure had a significant
effect on the rETRm of the seedlings (p < 0.001), but not on α

(p = 0.355). rETRm increased significantly from the 2nd to the
3rd week of experiment, particularly in the high light treatment
but this difference disappeared after the 3rd week.

DISCUSSION

Following the protocol developed by Zarranz et al. (2010) we
were able to obtain germination rates of Cymodocea nodosa
seeds similar to those they reported (82% vs. 50 – 90%), but
a smaller percentage of seeds reaching the seedling stage (33%
compared to 42 – 85%). In both studies, the seeds were collected
from the sediment rather than directly from reproductive
shoots, and therefore it is not possible to know how putative
different residence times within the sediment may affect seed
reserves and germination rates. The collection of seeds directly
from reproductive shoots rather than from the sediment may
be an alternative to improve seed germination and seedling
development rates. The seed germination rates observed for
C. nodosa are much higher than those reported for the seagrass
Z. marina (generally 10% or less, Orth et al., 2003).

Cymodocea nodosa seedlings acquired nutrients from the
water while still attached to the seed and exhibited distinct
uptake kinetics for ammonium and phosphate. The uptake of
ammonium followed saturation kinetics whereas the uptake of
phosphate increased linearly with nutrient concentration within
the range tested (5 – 100 µM). The uptake rate of ammonium
by C. nodosa seedlings were about twice as the uptake rate of
adult plants of C. nodosa (4.10 ± 1.99 µmol g−1 h−1) measured
by Morris et al. (2013) using a similar incubation time (0.67 h)
and at in situ ammonium concentration of 11 µM at a 3-m
depth meadow in Cadiz Bay. The affinity constant (α = 0.86)
for the ammonium uptake is among the highest reported
for seagrass species (cf. Alexandre et al., 2011 and references
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TABLE 1 | Combined effects of light level, nutrient ratio and time of exposure on
growth, maximum electron transport rates (rETRm) and α of Cymodocea nodosa
seedlings, as determined by three-way analysis of variance with repeated
measures with a level of significance < 0.05 (values in bolt denote significant
effects).

df F p

Growth

Light 1 4.788 0.037

Nutrient ratio 2 0.004 0.996

Time 3 2.697 0.051

Light × Nutrient ratio 2 3.252 0.053

Light × Time 3 1.827 0.148

Nutrient ratio × Time 6 0.319 0.925

Light × Nutrient ratio x Time 6 0.702 0.649

rETRm

Light 1 323.282 <0.001

Nutrient ratio 2 3.344 0.051

Time 3 11.605 <0.001

Light × Nutrient ratio 2 2.266 0.123

Light × Time 3 1.297 0.281

Nutrient ratio × Time 6 0.919 0.485

Light × Nutrient ratio × Time 6 1.312 0.260

α

Light 1 166.639 <0.001

Nutrient ratio 2 1.682 0.205

Time 3 1.097 0.355

Light × Nutrient ratio 2 0.230 0.796

Light × Time 3 1.735 0.166

Nutrient ratio × Time 6 1.173 0.329

Light × Nutrient ratio × Time 6 0.838 0.544

therein) and indicates that C. nodosa seedlings can effectively
acquire this nutrient when present at low concentrations in
the environment. The difference in the slopes of the uptake
kinetics of nitrogen (α = 0.86) and phosphorus (α = 0.04)
suggests that the seedlings acquire nitrogen from the external
medium more efficiently than phosphorus. Phosphorus uptake
rates fell within the range of reported values (0.5 – 3 µmol
g−1 h−1 for phosphate concentrations between 5 and 25 µM)
for leaves of adult plants of other seagrass species (Pérez-
Lloréns and Niell (1995) for Zostera noltii; Gras et al. (2003) for
Thalassia testudinum; Nayar (2015) forAmphibolis antarctica and
Posidonia angustifolia) but were slightly lower when compared to
seedlings of A. antarctica from Western Australia (0.8 µmol g−1

DW h−1 vs. 2 µmol g−1 DW h−1 at 5 µM) (Paling and McComb,
1994).

The ability of C. nodosa young seedlings to take up nutrients
from the surrounding environment is a feature that may
contribute to successful seedling-based restoration of this species
if compared, for example, to P. oceanica, where inadequate
nutrient uptake of the seedlings due to small root systems has
been pointed out as a major cause of transplant failure (Balestri
and Bertini, 2003; Lepoint et al., 2004). On the other hand,
additions of N and P to seagrass sediments constrained root
development (root mass, length, and density of lateral root
branches) in the early stages of seedling growth in P. australis,

hindering the capacity for successful anchorage of the seedlings
(Statton et al., 2014). In this species, the seedlings’ growth and
root development were also tightly coupled with the type of the
sediment and the addition of organic matter. The effect of these
and other important environmental stressors such as temperature
and sediment burial, and their interactions, must be assessed in
future studies of C. nodosa seedlings in order to improve the
selection of suitable sites for seedling-based restoration of this
species.

The leaf and root tissues of the seedlings were richer in
nitrogen when compared to the endosperm of non-germinated
seeds. This indicates that young seedlings (∼1 month old) of
C. nodosa are able to use nitrogen from the external environment
in the early stage of their development. A similar pattern of
increasing nutrient content from seed (0.02 mg P seed−1 and
0.32 mg N seed−1, Duarte and Sand-Jensen, 1996) to seedling
[38.7 mg P seedling−1 and 542 mg N seedling−1; Nielsen and
Pedersen (2000) has been previously reported forC. nodosa]. This
nutrient acquisition strategy differs from that of P. australis and
other aquatic plants (e.g., maize or rice), whose seedlings were
found to be dependent, on seed reserves rather than external
nutrient sources until these are exhausted, and only after that,
roots develop their uptake capacity (Statton et al., 2014; Cheng
et al., 2015; Sabermanesh et al., 2017).

In our experiment, the seawater used in the aquaria with the
seeds contained nitrogen and phosphorus at concentrations that
varied between 1 and 5 µM. Based on these concentrations and
the uptake results, we estimate that the uptake of nitrogen and
phosphorus by the seedlings was in the range 14 – 71 µmol N
g−1 DW day−1 and 4 – 20 µmol P g−1 DW day−1, respectively.
This nutrient acquisition would meet the requirements for
growth of the seedlings in terms of phosphorus (7 µmol P g−1

DW day−1) but not nitrogen (75 µmol N g−1 DW day−1),
but these estimations account for inorganic nitrogen only (as
ammonium). In addition to ammonium, seagrasses are able to
take up nitrate and organic nitrogen (Alexandre et al., 2011,
2015), and therefore the nitrogen supply from these sources must
be also added to the nitrogen budget. The above calculations
further support our findings that young seedlings ofC. nodosa use
external nutrient sources when available to meet their nutrient
requirements for growth, probably as a resource management
strategy to save internal seed reserves to maintain growth
and increase the resilience in environments where nitrogen
and phosphorus concentrations are limiting, such as in most
seagrass meadows (Duarte and Sand-Jensen, 1996; Nielsen and
Pedersen, 2000). Seed reserves may be useful in a later stage
of development (Kennedy et al., 2004; Thangapandian et al.,
2006).

Light availability in shallow coastal environments can
be highly variable, mostly due to dissolved and particulate
substances in the water column. Consequently, the amount
of light reaching seagrasses at the bottom can be markedly
attenuated (10% of the ambient surface irradiance, Duarte, 1991).
Our results showed that light was more important for seedlings’
growth than the nutrient ratio. Increasing the light available to
the seedlings resulted in an increase of growth (as leaf elongation
rate) of 20%, whereas different nitrogen to phosphorus molar
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FIGURE 5 | Maximum relative electron transport rate (rETRm) of C. nodosa seedlings incubated at different nitrogen to phosphate ratios (40 µM N:10 µM P, 25 µM
N:25 µM P and 10 µM N:40 µM P ) under low light (LL = 20 µmol quanta m−2 s−1) and high light (HL = 200 µmol quanta m−2 s−1) intensity along the experiment
(t1 = after 1 week; t2 = after 2 weeks; t3 = after 3 weeks; t4 = after 4 weeks). Values are mean ± SD (n = 6).

FIGURE 6 | Initial slopes (α = µmol e− m−2 s−1/µmol quanta m−2 s−1) of C. nodosa seedlings incubated at different nitrogen to phosphate ratios (40 µM N:10 µM
P, 25 µM N:25 µM P and 10 µM N:40 µM P) under low light (LL = 20 µmol quanta m−2 s−1) and high light (HL = 200 µmol quanta m−2 s−1) intensity along the
experiment (t1 = after 1 week; t2 = after 2 weeks; t3 = after 3 weeks; t4 = after 4 weeks). Values are mean ± SD (n = 6).
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ratios did not affect growth significantly within the 4 weeks
of the experiment. The availability of light also affected the
photosynthetic activity of the young seedlings. The maximum
relative photosynthetic capacity (rETRm) under high light was
twice of that measured under the low light treatment whereas
the photosynthetic efficiency (α) decreased by 25%, a pattern
that persisted until the end of the experiment. Based on these
results, it is recommended that seedlings of C. nodosa be planted
in shallow depth areas where light levels are expected to be
higher. Shallow areas should be, however, sheltered from wave
dynamics as strong wave exposure and sediment mobility reduce
transplant survival (de Jonge et al., 2000; Bos and van Katwijk,
2007).

Our results showed that seedlings of C. nodosa have the
ability to rapidly acclimate to the surrounding light environment.
Natural stands of adult C. nodosa plants showed a similar
photoacclimatory response of reduced maximum photosynthetic
rates and improved photosynthetic efficiency when exposed to
different levels of light attenuation (24, 40, and 75% of naturally
available photosynthetic active radiation= 228, 180, and 75 µmol
quanta m−2 s−1, respectively) in a 3-week shading experiment
(Silva et al., 2013). Under light deprivation, adult plants rapidly
re-arranged their photosynthetic pigment pool, adjusting to a
pattern typical of shade acclimated leaves, a response which
is probably related to the photoacclimatory and pigmentary
plasticity of the species (Olivé et al., 2013), and used both
soluble sugars and starch stored in the leaves to maintain
metabolic processes. Severe light limitation was also shown to
reduce survival, growth, size and biomass of Zostera marina
seedlings. Under a 90% reduction of incident light, growth and
belowground biomass decreased by 80% and the production of
lateral shoots ceased, compromising the long-term survival of
the seedlings and the development of new meadows (Bintz and
Nixon, 2001).

Experimental nutrient additions resulted in ammonium and
phosphate levels slightly above those typically found in seagrass
habitats (Touchette and Burkholder, 2000), which are often
limiting for seedling growth. The experimental concentration
of ammonium (40 µM) is close to that used previously in
other ammonium enrichment experiments (∼30 µM) (e.g., van
Katwijk et al., 1997; Brun et al., 2002; Villazán et al., 2016).
In the field, nutrient additions to seagrass meadows are usually
made through the application of fertilizers with either balanced
or unbalanced nutrient formulations. Therefore, the nutrient
ratios used in our study were chosen to mimic those of common
commercial fertilizers. These are slow-release fertilizers, which
means that nutrients are released to the surrounding area at slow
rates, in contrast to eutrophication areas where nutrients enter
the systems at very high rates and concentrations (Cloern, 2001).
The application of different nutrient formulations (balanced
and unbalanced N and P ratios) did not affect significantly
the growth of the seedlings. Therefore, our initial hypothesis
that seedling growth would be higher under high light with a
balanced formulation was not verified. The lack of effect may be
related to the possible use of nutrient reserves by the seedlings
still attached to the seed while using also nutrients from the
external environment. However, seedlings grown under the low

light level consistently showed slightly higher growth rates when
nourished with a balanced nutrient ratio (25 µM N:25 µM P)
compared with those receiving unbalanced formulations, as was
also reported by Roberts et al. (1984) and Tanner and Parham
(2010) for seedlings of Z. marina. The rapid entry of ammonium
into the cells causes a series of complex physiological alterations
such as the uncoupling of ATP production and photosynthetic
electron transport, enhanced respiratory demands and depletion
of essential cations (potassium, magnesium, calcium) (cf. Villazán
et al., 2013 and references therein). Seagrasses minimize these
effects through rapid assimilation of ammonium and conversion
into amino acids, which generates a strong depletion of carbon
skeletons (Brun et al., 2002, 2008). The decrease in C content
observed in the seedlings relative to the seeds may be explained
by this carbon use. The assimilation of ammonium under light
deprivation requires an even greater energy consumption because
carbon reserves are mostly restored through photosynthesis, and
often required mobilization of carbohydrates. However, the side
effects of high-rate ammonium assimilation may be ameliorated
in the presence of phosphate (Brun et al., 2008), whereas the
presence of ammonium affects negatively the uptake rate of
phosphate (Villazán et al., 2013). These observations suggest that
in the unbalanced 40 µM N:10 µM P formulation, the growth
of C. nodosa seedlings under low light was hampered by the
combination of insufficient carbon reserves and lower phosphate
uptake. Under low light, the balanced formulation resulted in a
faster growth of the seedlings, probably because of the higher
ammonium availability (25 µM) relatively to the 10 µM N:40 µM
P treatment (10 µM). Under high light, the seedlings generally
displayed slightly lower growth rates when supplied with the
25 µM N:25 µM P nutrient treatment, suggesting that the
decrease in the growth rate is related to the generally lower
photosynthetic activity (rETR) of the seedlings in this treatment
(HL 25 µM N:25 µM P).

CONCLUSION

Our study showed that light was more important than water
column nutrients for the successful development of young
seedlings of C. nodosa. From a restoration perspective, the use
of seedlings to enhance the recovery or genetic diversity of
C. nodosa meadows will thus be more efficient in shallow areas
with high light levels. Seedlings still attached to seeds obtain
nutrients from the water at higher rates than adult plants. The
relevance of external nutrient uptake was further highlighted by
the observation that seedlings’ tissues were richer in nitrogen
and phosphorus than non-germinated seeds. This shows that
seedlings of C. nodosa have the ability to rapidly acclimate to
the surrounding environment while still attached to the seeds.
The use of balanced vs. unbalanced nutrient fertilization to
obtain higher seedling growth depends on the light level to
which seedlings are exposed. Seedlings experiencing low light
levels showed slightly enhanced growth if nourished with a
balanced formulation, whereas a slight increase in growth was
observed with an unbalanced formulation under a higher light
level.
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