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ORIGINAL ARTICLE

External control of the Drosophila melanogaster egg to imago
development period by specific combinations of 3D low-frequency
electric and magnetic fields

Vladimir I. Makarov1 and Igor Khmelinskii2

1Department of Physics, University of Puerto Rico, Rio Piedras, San Juan, PR, USA and 2FCT, DQF, and CIQA, Universidade do Algarve, Faro, Portugal

Abstract

We report that the duration of the egg-to-imago development period of the Drosophila
melanogaster, and the imago longevity, are both controllable by combinations of external
3-dimensional (3D) low-frequency electric and magnetic fields (LFEMFs). Both these periods
may be reduced or increased by applying an appropriate configuration of external 3D LFEMFs.
We report that the longevity of D. melanogaster imagoes correlates with the duration of the
egg-to-imago development period of the respective eggs. We infer that metabolic processes in
both eggs and imago are either accelerated (resulting in reduced time periods) or slowed down
(resulting in increased time periods). We propose that external 3D LFEMFs induce electric
currents in live systems as well as mechanical vibrations on sub-cell, whole-cell and cell-group
levels. These external fields induce media polarization due to ionic motion and orientation
of electric dipoles that could moderate the observed effects. We found that the longevity of
D. melanogaster imagoes is affected by action of 3D LFEMFs on the respective eggs in the
embryonic development period (EDP). We interpret this effect as resulting from changes in
the regulation mechanism of metabolic processes in D. melanogaster eggs, inherited by the
resulting imagoes. We also tested separate effects of either 3D electric or 3D magnetic fields,
which were significantly weaker.
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Introduction

External control of biological system dynamics is a very

important fundamental and biotechnological problem

(Makarov and Khmelinskii, 2013). External control may be

performed by way of external conditions (temperature,

pressure, electromagnetic fields, magnetic and electric

fields, etc.) that affect live systems. Presently, we shall

discuss effects of combinations of external three-dimensional

low-frequency electric and magnetic fields (3D LFEMFs) on

live systems. 3D EMFs are electric and/or magnetic fields

with three Cartesian components, each varying in time at its

own frequency, presently in the sonic frequency range. Earlier

we explored the effects of 3D LFEMFs on different processes

in live systems, including cell population growth rates

(Makarov and Khmelinskii, 2011), rehabilitation rates of

damaged rat eye retina (Makarov, 2013), and the duration of

the imago development period of D. melanogaster (Makarov

and Khmelinskii, 2013).

The effects of external electromagnetic fields on

D. melanogaster have been extensively studied earlier

(Atli and Unlü, 2006; Dalgic, 2003; Onder and Bozcuk,

2004; Panagopoulos et al., 2004; Pay et al., 1978; Ramirez

et al., 1983; Tipping et al., 1999; Walters et al., 1987). Pay

et al. (1978) investigated the effects of long-term 2450 MHz

EMF on reproduction of D. melanogaster, finding that EMF

exposure reduced the egg production among the females, as

compared to control. Pulsed radiofrequency (RF) EMFs from

common GSM (global system for mobile telecommunica-

tions) telephones with the carrier frequency at 900 MHz has

decreased the reproductive capacity of D. melanogaster by

50–60%, whereas the same but non-modulated field (non-

speaking emission) has decreased the reproductive capacity

by only 15–20% (Panagopoulos et al., 2004), underlining the

important contribution of acoustic frequencies. Similarly,

Ramirez et al. (1983) observed that oviposition in

D. melanogaster was reduced by exposure to extremely low

frequency (ELF) pulsed fields (100 Hz, 1.76 mT) and sinus-

oidal fields (50 Hz, 1 mT). In contrast, it was reported that

50 Hz and 8 mT EMF exposure had no discernible effect when

third-stage larvae were exposed (Tipping et al., 1999). In a

similar work, Walters et al. (1987) reported that 60 Hz

magnetic fields did not affect egg production of

D. melanogaster. Atli and Unlü (2006) also studied the

effects of microwave-frequency electromagnetic fields (EMF)

on the fecundity of D. melanogaster. The Oregon strain
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University of Puerto Rico, Department of Physics, Rio Piedras, Campus,
PO Box 23343, San Juan, PR 00931, USA. Tel: +1 787 529 2010.
E-mail: vmvumakarov@gmail.com; vladimir.makarov@uprrp.edu

D
ow

nl
oa

de
d 

by
 [

Ig
or

 K
hm

el
in

sk
ii]

 a
t 1

3:
35

 0
7 

Se
pt

em
be

r 
20

15
 



females were exposed to 10 GHz EMFs continuously (3, 4 and

5 h) and discontinuously (3 h exposure + 30 min interval + 3 h

exposure). The fecundity in the 4 and 5 h exposed groups was

significantly reduced as compared to the control (p50.05).

There was a reduction in the 3 h and 3 + 3 h exposed groups,

although not as significant (p40.05). We shall reassess these

and other studies in the ‘‘Discussion’’ section.

Presently we continue the studies of 3D LFEMF effects on

the egg-to-imago development period duration and its

correlation with the imago longevity in D. melanogaster.

We use combinations of 3D LFEMFs in the audible sound

frequency range and up to 30 kHz. We report experimental

studies of these parameters controlled by combination of

external 3D LFEMFs, including their detailed field depend-

ences and correlations. We identified specific sets of the 3D

LFEMF parameters for the D. melanogaster eggs, whereby

we could either increase (the first parameter set) or reduce

(the second parameter set) their egg-to-imago development

period (EDP). We also found correlations between the effects

on the EDP and the imago longevity in D. melanogaster.

These results may be used in biomedical and medical

applications. In a future study, we shall use biophysical and

biochemical methods to investigate the detailed mechanisms

of 3D LFEMF action on live systems.

Materials and methods

The experimental setup described earlier was partially used in

the present study (Makarov, 2013; Makarov and Khmelinskii,

2011, 2013).

D. melanogaster egg preparation

The eggs were collected between 2 and 4 h after oviposition

and 100 eggs were used in each of the experiments. The sets

of eggs were exposed in the 3D LFEMF cell, described below

in detail. We used the same cell in separate experiments with

either magnetic or electric field components switched off.

The D. melanogaster eggs were prepared as follows. First,

we joined 100 males and 100 females with 6–8 h age after

emergence (Roberts, 1998) in a 30� 30� 30 cm3 plastic box

with excess food [recipe by Wheeler and Clayton (1965)

amended by Bozcuk (1978) and King (1970)] kept at

25 ± 1 �C with a slow air flow at 70 ± 1% humidity passing

through and in 8 h light, 16 h dark periods in otherwise

standard conditions (Bozcuk, 1978; Roberts, 1998). Standard

D. melanogaster (common fruit fly) was used. The box was

incubated during 2–4 h, after which all D. melanogaster eggs

were collected. Each of the experiments used 100 eggs. The

eggs were selected by size (0.18 ± 0.06 mm width; 0.51 ±

0.10 mm length).

Experimental cell

The experimental 3D LFEMF cell has been described in

detail earlier (Makarov and Khmelinskii, 2013). The cell

includes a plastic box 15� 15� 15 cm3 internal size, coils

(15 cm internal diameter) to produce periodic magnetic fields,

and circular planar electrodes (14 cm diameter) to produce

periodic electric fields. The cell is schematically shown

in Figure 1. Periodic magnetic and electric fields were created

in the zone where the biological samples were located:

Bi ¼ Bi;0 Cos xit þ uið Þ ð1Þ

Dj ¼ Dj;0 Cos xjt þ uj

� �
ð2Þ

where i, j¼ x, y, z, Bi,0 and Dj,0 are magnetic and electric field

inductions, xi and xj are harmonic frequencies of the

magnetic and electric induction oscillations, ui and uj are

phases of the magnetic and electric field inductions. All of the

field parameters could be chosen as required, with Bi,0 from

0 to 15 G and Dj,0 from 0 to 15 V/cm; xi and xj – 10 to

30,000 Hz; ui and uj – 0 to 2�. The exposure time was also

chosen as required.

According to the Maxwell equations presented in SGS

units:

@~D

@t
¼ rot ~B

� �
; ð3Þ

@~B

@t
¼ �rot ~D

� �
; ð4Þ

time-variable electric and magnetic fields induce secondary

magnetic and electric fields. For example, the x components

of these secondary fields are given by:

@Bx

@t
¼ @Dy

@z
� @Dz

@y

� �

@Dx

@t
¼ � @By

@z
� @Bz

@y

� � ð5Þ

In general, we may write:

@~X

@t
¼ �

i j k

Xx Xy Xz

@

@x

@

@v

@

@z

��������

��������
ð6Þ

where X¼D or B, the plus sign is to be used for time

derivatives of B, and the minus sign for the time derivative of

D. Using Equation (4), we estimated the strength of the

induced magnetic and electric fields in the active area of

12

3

Figure 1. 3D LFEMF cell: (1) is the plastic box (15� 15� 15 cm3 of the
internal volume); (2) wire coils to produce variable magnetic field
Bi ¼ Bi;0Cos xit þ �ið Þ, where the amplitude Bi,0 was up to 15 G;
(3) circular planar electrodes to produce variable electric field
Dj ¼ Dj;0Cos xjt þ �j

� �
, where the amplitude Dj,0 was up to 15 V/cm.

2 V. I. Makarov & I. Khmelinskii Electromagn Biol Med, Early Online: 1–15
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the 3D LFEMF cell. The estimated maximum values of the

induced secondary field amplitudes in the cell center are

0.081 G and 0.014 V/cm, respectively. Thus, we neglected

these induced fields in any further considerations.

The 3D LFEMF cell was built around a cubic plastic

chamber, manufactured of polymethylmethacrylate plates

1.0 cm thick, plate size: 17� 17 cm (2 plates), 17� 15 cm

(2 plates) and 15� 15 cm (2 plates). The volume of the

sample chamber was ca. 3375 cm3. Six planar stainless-steel

circular electrodes were placed inside the chamber as it is

shown in Figure 1. The distance between the two electrodes in

a pair was 15 cm. Three pairs of coils were mounted outside

of the chamber; with the 17 cm distance between the opposite

coils being equal to the coil diameter. Three independent

voltage generators were used to create 3D LF electric fields

(3D LFEFs) in the chamber, each producing an output voltage

varying according to the expression

U ¼ a� Cos xat þ uað Þ ð7Þ

where amplitude a, cyclic frequency xa and phase ua could be

appropriately controlled, with the maximum voltage ampli-

tude of 225 V. The generators were implemented using a PC

computer, a Keithley KPCI-1800 I/O board, and a home-made

multichannel voltage amplifier. Similarly, three independent

current generators were used to create periodic 3-D LF

magnetic fields (3D LFMFs) in the active zone of the

chamber, each producing an electric current varying accord-

ing to the expression

I ¼ b� Cos xbt þ ubð Þ ð8Þ

where amplitude b, cyclic frequency xb and phase ub could be

appropriately controlled, with the maximum current ampli-

tude of 5 A, equivalent to the maximum magnetic field value

of 1.5� 10�3 T in the central zone of the chamber. These

generators were implemented in the same way as the voltage

generators and used home-made current amplifiers. All of the

six generators were operated via a home-made computer

program running in the LABVIEW software environment,

whereby the desired configuration of 3D periodic electro-

magnetic field was set. Summing the three Cartesian com-

ponents, we could achieve up to 2.6� 10�3 T periodic

magnetic field and up to 2.6 V/cm periodic electric field, with

the fields essentially homogeneous within the active zone of

the cell where the D. melanogaster eggs were located. Note

that the electric and magnetic field homogeneity within the

5 cm diameter central zone was 0.6%, although the effects

were much more strongly dependent on frequencies than on

amplitudes. The magnetic field was measured using a Hall

sensor and a digital oscilloscope (LeCroy). All of the

experiments were carried out at a stabilized temperature of

25 ± 1 �C using a commercial incubator (Memmert Inc.,

model IF30PLUS), modified to accommodate the experimen-

tal cell, and allowing for visual control of the D. melanogaster

population.

Experiments on egg samples

Control sets of D. melanogaster eggs were kept unexposed to

any external EMFs. Test sets were exposed to 3D LFEMFs

during specified time, with a new egg set used for each

configuration of the external 3D LFEMFs. The number of

emergent imagoes was determined each 8 h from the begin-

ning of the experiment and each 0.5 h after the emergence of

the first imago. The results are presented as histograms to

facilitate analysis, with each of the data points obtained by

averaging over 10 independent experiments.

Experiments on D. melanogaster males

First, 50 D. melanogaster males were selected from popula-

tions produced in section (i). The longevity of the imagoes

was measured as detailed earlier (Makarov and Khmelinskii,

2013), with the number of dead imagoes determined each 8 h

from the beginning of the experiment and each 1 h during the

imago life period, thus we were using two different time

scales. The results were similarly presented as histograms,

with each of the data points obtained by averaging of 10

independent experiments.

Exposure conditions

All of the experiments were carried out in the same

experimental conditions: 25 �C temperature, 70 ± 1% humid-

ity, 8 h light and 16 h dark periods per day, in otherwise

standard conditions. No special measures were taken to

compensate for the geomagnetic field. Control sets of eggs

were placed into the incubator and the duration of the egg-to-

imago development period was controlled by the number of

imagoes that have emerged. The sets of eggs to be exposed

were placed into the EMF cell, exposed for a certain time,

transferred into the incubator, and the duration of the egg-to-

imago development period was similarly controlled.

Results

Experiments on D. melanogaster eggs

Egg samples were exposed to EMFs immediately after they

were collected, with 5 h exposure time. According to the

published development schedules of unexposed eggs (Brody,

1996), the exposure started at Bownes stage 5–8, and ended at

stage 11–12 (stages 6–11, on average). No attempt was made

to identify the actual development stages in the exposed egg

samples. However, according to Panagopoulos (2012), the life

cycle of D. melanogaster simplified by omitting some

intermediate steps may also be presented as shown in Table 1.

Thus, according to this classification, the exposure to

EMFs was administered during the oogenesis phase. Possible

mechanisms of EMF effects will be discussed below.

The samples were exposed to different configurations of

external EMFs. We found that for the same EMF parameter

Table 1. Life cycle of D. melanogaster and the duration of phases.

Life phase Duration

Oogenesis 48 h
Fertilized egg (embryogenesis) 24 h
First instar larva 24 h
Second instar larva 24 h
Third instar larva 48 h
Pupa 4 d
Imago 20–25 d

DOI: 10.3109/15368378.2014.959175 Control of D. melanogaster development 3
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sets that were identified earlier (Makarov and Khmelinskii,

2013) and presented in Table 2, the histograms were shifted to

shorter and longer EDP durations, respectively, as compared

to the histogram describing the EDP duration of the control

sets of D. melanogaster eggs.

The time distributions were fitted by a Gaussian function

(7), with the results plotted in Figure 3, in function of the

central point of the respective time interval, and using the

same intervals as those used in all of the histograms of

Figure 2.

N tð Þ ¼ n0e�
t��X

2�ð Þ2 ð9Þ

Here, n0, sX and s are the fitting parameters, with the values

listed in Table 3, the X subscript refers to the experiments on

either eggs or adults.
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Figure 2. Time-distribution histograms of egg–imago development period (EDP) duration of D. melanogaster eggs: (a) the control experiment,
reproduced 10 times, refer Table 1; (b) negative effect, reproduced 10 times with separate sets of D. melanogaster eggs, refer Table 2; (c) positive
effect, reproduced 10 times with separate sets of D. melanogaster eggs, refer Table 2.

Table 2. Values of the 3D LFEMF parameters that reduce (negative effect) or increase (positive effect) the EDP duration of the D. melanogaster eggs.

(a) Control experiment, reproduced 10 times on separate sets of D. melanogaster eggs

Parameters D0,x (V/cm) D0,y (V/cm) D0,z (V/cm) xex (Hz) xey (Hz) xez (Hz) uex (rad) uey (rad) uez (rad)
Value 0 0 0 0 0 0 0 0 0
Parameters B0,x (G) B0,y (G) B0,z (G) xhx (Hz) xhy (Hz) xhz (Hz) uhx (rad) uhy (rad) uhz (rad)
Value 0 0 0 0 0 0 0 0 0

(b) Negative effect, reproduced 10 times on separate sets of D. melanogaster eggs: the P1 parameter set

Parameters D0,x (V/cm) D0,y (V/cm) D0,z (V/cm) xex (Hz) xey (Hz) xez (Hz) uex (rad) uey (rad) uez, (rad)
Value 12.5 11.5 7.0 17,000 12,550 15,750 0 0.1 0.2
Parameters B0,x (G) B0,y (G) B0,z (G) xhx (Hz) xhy (Hz) xhz (Hz) uhx (rad) uhy (rad) uhz (rad)
Value 9.5 13.5 11.5 20,500 15,320 22,350 0 0.8 0.7

(c) Positive effect, reproduced 10 times on separate sets of D. melanogaster eggs: the P2 parameter set

Parameters D0,x (V/cm) D0,y (V/cm) D0,z (V/cm) xex (Hz) xey (Hz) xez (Hz) uex (rad) uey (rad) uez, (rad)
Value 11.5 12.5 15.0 27,000 22,550 12,750 0 0.3 0.5
Parameters B0,x (G) B0,y (G) B0,z (G) xhx (Hz) xhy (Hz) xhz (Hz) uhx (rad) uhy (rad) uhz (rad)
Value 6.5 11.5 12.5 30,500 39,350 14,350 0 0.2 0.4

The collected data were statistically analyzed using the usual relations, and the comparison with the control experiments was done using the Student’s
t-test. The results are shown in Figure 2 as histograms.
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The probabilities p are about 10�4, thus the observed

changes are highly significant. Note that similar values of p

were obtained for the experiments reported below, always

corresponding to highly significant changes; therefore, these

probability values will not be reported or discussed explicitly

below. Note that the EDP duration of the control egg sets is

in acceptable agreement with the results obtained earlier

(Bozcuk, 1978; King, 1970).

Since the relationship (9) is an approximate description of

data distribution, we also carried out direct calculations of sX

and s parameter values and of their uncertainties, using the

standard statistical approach. The respective results are also

listed Table 3, along with the EMF effect expressed as the

ratio f ¼ �X EMFð Þ
�X 0ð Þ .

Egg experiments with 3D LFEFs and 3D LFMFs

Experiments with 3D LFEFs and 3D LFMFs were carried

out in the same experimental conditions as described above.

We found that turning off either electric or magnetic fields in

either the P1 or P2 parameter sets resulted in negligible

effects of the EMF treatment upon the EDP duration. Thus,

significant effects were only produced by combined action of

magnetic and electric fields of the P1 and P2 parameter sets.

Noting the results obtained for D. melanogaster eggs, we

further studied the imago longevity only for the imagoes

obtained from eggs exposed to the complete P1 and P2 sets.

Experiments on imago males

We selected 50 males produced in each of the experiments

(a)–(c) on D. melanogaster eggs, and measured their average

longevity in absence of any external fields. Each of the three

experiments was reproduced 10 times on separate sets of

imago males. The results are shown in Figure 4 as histograms.

These time distributions were fitted by a Gaussian function

(7), with the results plotted in Figure 5 and the fitting

parameters listed in Table 4.
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Figure 3. Time distribution of the EDP duration: (a) control experiment; (b) negative effect; (c) positive effect. Each of the experiments was
reproduced three times with separate sets of D. melanogaster eggs. The curves show the respective Gaussian fitting functions with the parameters listed
in Table 3.

Table 3. Values of Gaussian fitting parameters.

Experiment N0 s (days) segg (days)
s (days)

(direct calculation)
segg (days)

(direct calculation) f p

(a) 10.6 2.6 9.6 ± 0.5 2.4 ± 0.2 9.7 ± 0.5 –
(b) 11.8 2.1 6.0 ± 0.3 2.2 ± 0.2 6.1 ± 0.2 0.63 1.3� 10�4

(c) 13.5 2.0 14.8 ± 0.6 2.1 ± 0.2 14.5 ± 0.6 1.50 0.6� 10�4

The p column lists the probability of the null hypothesis (no difference between experiments b, c and the control experiment a) as calculated using the
Student’s t-test. Note that the very low values of p correspond to very high statistical significance of the observed EMF effects. Refer Table 2 for the
description of the experiments (a), (b) and (c).
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Figure 5. Time distributions of the number of dead males: (a) control experiments used males produced from eggs of experiments (a); (b) negative
effect used males produced from eggs of experiments with the P1 field parameter set; (c) positive effect used males produced from eggs of experiments
with the P2 field parameter set. Each type of experiment was reproduced 10 times on separate sets of males. The curves show the respective Gaussian
fitting functions with the parameters listed in Table 4.
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Figure 4. Time-distribution histograms of dead D. melanogaster males: (a) control experiment, reproduced 10 times with males produced from control
sets of eggs; (b) negative effect, reproduced 10 times on males produced from eggs exposed to the field parameter set P1; (c) positive effect, reproduced
10 times on males produced from eggs exposed to the field parameter set P2.
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Table 4 also lists the imago longevity calculated directly

using the modified relationship (8). The values obtained

earlier in the experiments on D. melanogaster imagoes

(Makarov and Khmelinskii, 2013) are shown in Table 4 for

comparison. Notably, the longevity changes in imagoes

produced from exposed eggs are significantly larger than

those in imagoes exposed to the same 3D LFEMFs as adults.

We interpret this result as the memory effect of the 3D

LFEMF exposure, which is inherited by the respective

imagoes from the exposed eggs. Later we shall discuss

these results in more detail.

As we already noted, since the relationship (9) is an

approximate description of the data distribution, we also

carried out direct calculations of the sX and s parameter

values and their uncertainties using the standard statistical

approach, with the respective results listed in Table 4, along

with the EMF effect expressed by the ratio f ¼ �X EMFð Þ
�X 0ð Þ .

Effect of the exposure duration

Here, we varied the duration of the exposure to 3D LFEMFs

from 0 to 5 h. The plots of the normalized effect of the 3D

LFEMF exposure in function of the exposure duration for D.

melanogaster EDP duration are shown in Figure 6 (the same

statistical analysis was carried out as in other experiments;

similar results were obtained and are not presented).

Note that the effects are saturated with the exposure time;

extrapolated to infinite exposure time, the asymptotic relative
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Figure 6. Normalized average egg-to-imago development period duration 5s0(3D LFEMF)4/5s0(0)4in function of the exposure time of the
D. melanogaster eggs: (a) P1 field parameter set, producing a negative effect and (b) P2 field parameter set, producing a positive effect.
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Figure 7. Normalized average imago longevity period 5s0(3D LFEMF)4/5s0(0)4in function of the exposure time for D. melanogaster males
produced from exposed eggs: (a) P1 field parameter set, producing a negative effect and (b) P2 field parameter set, producing a positive effect.

Table 4. Values of the Gaussian fitting and of the directly calculated parameters.

Experiment n0 s (days) sad (days)

sad (days;
exposed as imagoes:

Makarov and Khmelinskii, 2013) p
s (days;

direct calculation)
sad (days;

direct calculation) f

(a) 9.8 3.39 21.41 ± 0.56 17.81 ± 0.40 – 3.27 ± 0.21 21.33 ± 0.53 –
(b) 9.8 4.45 14.29 ± 0.31 14.32 ± 0.26 0.9� 10�4 4.41 ± 0.24 14.31 ± 0.34 0.67
(c) 10.0 4.27 33.18 ± 0.61 25.56 ± 0.50 0.8� 10�4 4.22 ± 0.23 33.22 ± 0.62 1.57

Refer Table 2 for the description of the experiments (a), (b) and (c). We believe the difference with our previous results in the control experiment (a) is
due to the presently implemented change in the imago selection procedure.

DOI: 10.3109/15368378.2014.959175 Control of D. melanogaster development 7

D
ow

nl
oa

de
d 

by
 [

Ig
or

 K
hm

el
in

sk
ii]

 a
t 1

3:
35

 0
7 

Se
pt

em
be

r 
20

15
 



effects are 0.53 and 1.62, respectively. Similar results

obtained for D. melanogaster imago males produced from

exposed eggs are plotted in Figure 7.

Using the data of Figure 7, we obtained the asymptotic

relative values of the negative and positive effects of 0.56 and

1.70, respectively.

Effect of the exposure delay

Here, we introduced an additional delay, varied from 0 to 5 h,

before the exposure of D. melanogaster eggs to 3D LFEMFs

was initiated. The duration of the exposure was 5 h in all of

the experiments. The exposure thus started, on average, at

Bownes stage 9, 10, 11, 11, and 12 for the delay of 1, 2, 3, 4

and 5 h, respectively, judging by the published development

scale of unexposed eggs (Brody, 1996). Once more, no

attempt was made to identify the actual development stages of

the exposed eggs, although, as we already noted, the exposure

always occurred within the oogenesis phase. The plots for the

negative and positive effects in function of the delay time are

shown in Figure 8.

Figure 8 shows that the effect of the 3D LFEMF exposure

decreases with the delay time. Both plots saturate at longer

delays, with the asymptotic limits of 0.73 and 1.34, respect-

ively. Figure 9 shows similar plots obtained for

D. melanogaster males grown from the exposed eggs.

Similarly to Figure 8, the effect on D. melanogaster

imagoes decreases with increased delay time. Both plots

saturate, with the respective asymptotic limits of 0.77 and

1.37, respectively.

Effect of exposure substituted by delay

Here, we varied the delay time from 0 to 5 h, simultaneously

varying the exposure time from 5 to 0 h. The plots of the

normalized EDP are shown in Figure 10.

As expected, both plots converge to the value of 1.0 (no

EMF effect) at zero exposure time. Similar plots obtained for

D. melanogaster males grown from exposed eggs, and

illustrating the memory effect, are shown in Figure 11.

As expected, both plots converge to the value of 1.0 (no

EMF effect) at zero exposure time.

Discussion

The effects of 3D LFEMFs on live systems have been

recorded earlier for the yeast cells (Makarov and Khmelinskii,

2011), murine retinal cells (Makarov, 2013) and D. melano-

gaster imagoes (Makarov and Khmelinskii, 2013). Earlier we

found (Makarov and Khmelinskii, 2013) that external 3D

LFEMFs may either increase or reduce the D. melanogaster

longevity. Here, we made similar experiments on

D. melanogaster eggs and imagoes grown from exposed eggs.
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We believe that the mechanisms we proposed for the action

of 3D LFEMFs on D. melanogaster imagoes (Makarov and

Khmelinskii, 2013) may be used to also interpret the

presently obtained results. Namely, we believe that external

3D LFEMFs may cause resonance mechanical vibrations at

different spatial scales, including that of an individual live

cell or of a group of cells. Similar resonance mechanical

vibrations may also be induced in ion-transport chains of

live cells. All of these resonance effects may affect

metabolic rates in live systems.

The observed memory effects may also be interpreted in

terms of the earlier proposed mechanism, where we assumed

that the mechanical or charge oscillations affect the genetic

and the receptor systems of the developing embryo, generat-

ing the memory of the 3D LFEMF exposure in

D. melanogaster imagoes. As follows from the present

results, the embryos are more sensitive to the action of 3D

LFEMFs than the imagoes. Below we will consider some

modeling approaches to the mechanistic analysis of the

observed phenomena. The respective models will have to

consider the development of the imago D. melanogaster,

passing through a sequence of stages. The development stages

are identified by the events taking place and the time after

fertilization at which they occur. Morphogenic processes that

occur from fertilization to larval hatch, with the correspond-

ing Bownes stage number and time frame for each event, are

quite well known (Campos-Ortega and Hartenstein, 1985;

Colas et al., 1999; Costa et al., 1993; Driever and Nüsslein-

Volhard, 1988; Foe, 1998; Foe et al., 1993; Martinez Arias,

1993; Nasiadka et al., 2002; Poulson, 1950; Sonnenblick,

1950; Tram et al., 2002). Note that we only presented a

partial list of relevant references. However, several important

questions remain unanswered, namely: (a) what stage(s) of

the embryo development are the most sensitive to 3D

LFEMFs; (b) what is the EMF action mechanism; and

(c) what is the mechanism of the memory effect.

The mechanism of electromagnetic field action in live

systems has been extensively discussed earlier (Al Ghamdi,

2012; Goodman et al., 1993; Kohane and Tiller, 2000;

Lednev, 1991; Liboff, 1985, 2009, 2010; Liboff and McLeod,

1988; Panagopoulos et al., 2000, 2002, 2013; Panagopoulos,

2012; Vincze et al., 2008). They proposed that such field-

induced resonance effects may be attributed to (i) medium

polarization, (ii) charged particle motion in the medium; and

(iii) charged particles moving through the membrane chan-

nels. Recalling typical polarization times of water in NaCl

solutions (physiological solution), which is in the subnano-

second to picosecond time scale (Faguy and Richmond,

1996), we conclude that the electromagnetic field resonance

in aqueous media should be observed in the THz frequency

range, but not at low frequencies. Low-frequency polarization

phenomena may only be observed for larger systems, such as
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biopolymers, cell organelles, cell shape deformations etc.

Disregarding the magnetic fields induced by variable electric

fields, and vice versa, a model describing the ionic motion

may be presented in SGS units as:

d2�r

dt2
mþ m

�

d~r

dt
¼ q � ~D tð Þ
� �

þ q
d~r

dt
�~B tð Þ

� �
ð10Þ

where m is the effective ionic mass, q is the effective ionic

charge, r is the radius-vector of the ion, s is the ionic mobility,

and the periodic electric and magnetic fields are given by

~D tð Þ ¼ ~D0 eixt þ e�ixt
� �

~B tð Þ ¼ ~B0 eixt þ e�ixt
� � ð11Þ

Equation (8) describes the ionic motion in oscillating

fields; its solution has resonances at certain frequencies of the

external oscillating field (cases ii and iii). The ionic drift

described by Equation (10) has been analyzed in detail by

Szasz and Liboff (2008). However, for the ion transport

through the cellular membrane (case iii), such field effects

should be very small due to potential differences naturally

existing on the cell membrane, where the internal effective

electric fields are in the kV/cm range. Therefore, it is difficult

to imagine the influence of weak external fields upon ionic

transport through the cellular membrane. However, we may

also assume that external oscillating fields induce ionic

motion in the intra-cellular medium due to modulation of its

polarization.

Several authors analyzed the above model, taking into

account the drift of charged particles in the presence of

oscillating electric and magnetic fields. They found by solving

the Equation (8) that the oscillating motion of a single

charged particle shows resonance effects dependent on

different system parameters (Vincze et al., 2008). The

equation giving the respective frequency is similar to that

describing ion cyclotron resonance (Liboff, 2009, 2010). The

developed theory takes into account viscous friction (Liboff,

2009, 2010; Vincze et al., 2008), but does not include

thermal diffusion, being therefore only an approximation to

the more correct description.

Thus, in order to properly describe the ionic motion in

liquid phase, we have to analyze the diffusion equation for

ions in the presence of an external potential. Such an equation

may be written as:

@n ~r; tð Þ
@t

¼ L̂ � n ~r; tð Þ ¼ � ~r �~j ~r; tð Þ
	 


~j ~r; tð Þ ¼~j1 ~r; tð Þ þ~j2 ~r; tð Þ

ð12Þ

where

~j1;i ~r; tð Þ ¼ D Tð Þ ~r � ni ~r; tð Þ
	 


~j2;i ~r; tð Þ ¼ �D Tð Þni ~r; tð Þ � eZi
~r � � tð Þ

	 

þ ~r�~A tð Þ
h in o

ð13Þ
Here, for an isotropic medium, D Tð Þ ¼ D0e

� Ea
kBT is the

temperature-dependent diffusion coefficient of the ions, Ea

is the effective diffusion activation energy, kB is the

Boltzmann constant, T is the absolute temperature,

~r ¼~i @@x
þ~j @@y

þ~k @
@z

, ni ~r; tð Þ is the i-th ionic concentration,

Zi is the ionic charge, u tð Þ and ~A tð Þ are the time-dependent

scalar and vector potentials:

u ~r; tð Þ ¼ u0 ei ~k~r�xtð Þ þ e�i ~k~r�xtð Þ
	 


~A ~r; tð Þ ¼ ~A0 ei ~k0~r�x0tð Þ þ e�i ~k0~r�x0tð Þ
	 
 ð14Þ

The boundary conditions for Equation (12) should be

additionally determined in each case of interest. Note that

Equation (12) cannot be solved analytically even for one-

dimensional oscillating electric or magnetic fields; therefore,

we shall investigate it numerically. Note that the diffusion

coefficient depends on the viscosity, differing between intra-

cellular and extra-cellular mediums.

The problem may be significantly simplified, assuming

that the ion is much heavier than the water molecules, thus the

collisions with the latter only weakly affect the ionic

trajectory. Assuming a spherical ion, we thus modify the

Equation (10), to give:

d2�r

dt2
m ¼ q � ~D tð Þ

� �
þ q

d~r

dt
�~B tð Þ

� �
� 6��R

d~r

dt
1þ 1

6

d~r

dt

R�

�

� �
ð15Þ

where R is the ion radius, � is the viscosity coefficient and � is

the medium density. Assuming laminar motion, the latter

equation may be rewritten as:

d2�r

dt2
m ¼ q � ~D tð Þ

� �
þ q

d~r

dt
�~B tð Þ

� �
� 6�� Tð ÞR d~r

dt
ð16Þ

Here, the temperature dependence is included into the

viscosity coefficient. The latter equation may be solved

analytically for some field configurations. We analyzed

Equation (16) for the following field configuration: D¼Dx;

B¼Bz. In this case, Equation (16) transforms into:

d�x

dt
¼ q

m
� Dx tð Þ

	 

þ q

m
�y � Bz tð Þ
� �

� 6�� Tð ÞR�x ð17Þ

d�y

dt
¼ q

m
�x � Bz tð Þ½ � � 6�� Tð ÞR�y ð18Þ

or

d �x � �y

� �
dt

¼ q

m
� Dx tð Þ

	 

� q

m
�x � �y

� �
� Bz tð Þ

� �
� 6�� Tð ÞR �x � �y

� �
d�0

dt
¼ Dx tð Þð Þ � Bz tð Þ þ 6�� Tð ÞR½ ��0

¼ D0xCos xtð Þ � B0zCos x0tð Þ þ 6�� Tð ÞRð Þ�0

�0 ¼
m

q
�x � �y

� �
ð19Þ

and

d �x þ �y

� �
dt

¼ q

m
� Dx tð Þ

	 

þ q

m
�x þ �y

� �
� Bz tð Þ

� �
� 6�� Tð ÞR �x þ �y

� � ð20Þ
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d�1

dt
¼ D0xCos xtð Þ þ B0zCos x0tð Þ � 6�� Tð ÞRð Þ�1

�1 ¼
m

q
�x þ �y

� �
The solutions of these equations are given by:

�0 tð Þ ¼ e�
B0zCos x0 tð Þþ6�� Tð ÞRx0 t

x0 � D0x

Z t

0

Cos xt0ð Þ

� e�
B0zCos x0 t0ð Þþ6�� Tð ÞRx0 t0

x0 dt0

�1 tð Þ ¼ e�
�B0zCos x0 tð Þþ6�� Tð ÞRx0 t

x0 � D0x

Z t

0

Cos xt0ð Þ

� e�
�B0zCos x0 t0ð Þþ6�� Tð ÞRx0 t

x0

0

dt0

ð21Þ

The relationships (21) were analyzed numerically. We

also obtained the value of the field-induced ionic current,

given by:

Iion tð Þ ¼ nion � q � Z þð Þ�
þð Þ

ion tð Þ � Z �ð Þ�
�ð Þ

ion tð Þ
	 


where

�
�ð Þ

ion tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
�ð Þ2

x tð Þ þ � �ð Þ2y tð Þ
q

� �ð Þx tð Þ ¼ q

2m
�
�ð Þ

0 tð Þ þ � �ð Þ1 tð Þ
	 


� �ð Þx tð Þ ¼ q

2m
�
�ð Þ

0 tð Þ � � �ð Þ1 tð Þ
	 


ð22Þ

where the subscript (±) refers to positively or negatively

charged ions, Z(±) are the respective charges, q is the electron

charge. We applied this analysis to the field-induced current

in water/glycerol mixtures with dissolved NaCl. The effective

ionic radius was introduced as the Debye–Huckel (DH)

radius:

� ¼ RDH ¼ q

ffiffiffiffiffiffiffiffiffiffi
�I

"kBT

r
;

I being the ionic force; and the effective ionic mass was

determined from:

m ¼ 1

N

R3
DH � R3

Free Ion

� �
R3

H2O

MH2O þMIon

" #
ð23Þ

where RFree Ion is the radius of a free ion, RH2O is the radius of

a water molecule, MH2O and Mion are the molecular mass of

H2O and atomic masses of Na+ and Cl� ions, N¼ 6.02� 1023

is the Avogadro number. The value of the viscosity was varied

from the macroscopic viscosity of pure water (890.3 mPa s;

Kestin et al., 1978) to that of glycerol (1012 mPa s; Dow

Chemical Corporation, 2014), both at 25 �C. These two values

correspond to low-viscosity and high-viscosity systems, and

should cover the range of viscosities occurring in biological

systems. Note that viscosity and the diffusion coefficient are

related according to

D Tð Þ ¼ kBT

6�RDH� Tð Þ ð24Þ

which will further be used to correlate the analysis of the

relationship (22) and the diffusion equation (12).

The numerical analysis was carried out for the field

parameters D0x¼ 12.5 V/cm; x¼ 17,000 Hz; B0z¼ 11.5 G;

x¼ 22,350 Hz, temperature 25 �C, NaCl concentration of

0.05 M, using both water (a) and glycerol (b) viscosities. The

results are shown in Figure 12, showing that the amplitude

of the field-induced current in glycerol is two orders of

magnitude smaller than that in water, with the amplitude ratio

of ca. 160. Note also the different character of current

oscillations in these two media. As regards viscosity, glycerol

should be closer to live systems than water, thus we expect

currents below 1 nA in live cells. However, even such small

currents may affect metabolism in live systems, as has been

extensively discussed earlier.

An extensive discussion of the ion cyclotron resonance

(ICR) induced by LFEMF in biological systems has been

presented in the literature. Since the detailed mechanism of

EMF action in live systems is unknown, various physiological

indicators were studied, including changes in diatom motility,

plant growth, rat behavior, etc. (Liboff, 2007), clinical

treatment of non-unions and spinal fusion in bone (Liboff,

2006), ion parametric resonance (Blanchard and Blackman,

1994; Lednev, 1991; Vincze et al., 2008), aminoacid con-

ductivity (Alberto et al., 2008a,b; Comisso et al., 2006; Del

Giudice et al., 2002; Pazur, 2004; Zhadin et al., 1998),

protein hydrolysis (Novikov and Fesenko, 2001) and stem cell

differentiation (Gaetini et al., 2009). As noted by Liboff

(2010), one possibility to understand EMF phenomenon is

that the frequency must be specifically tuned to the

unhydrated ion. However, it is quite difficult to imagine the

presence of such ions in aqueous solutions. Liboff (2010)

notes further that ICR-like interactions may occur between the

ion and its innermost hydration shell, where the water

molecules, although coupled via their dipole moments

oriented radially towards the central ion within the shell, are

nevertheless so rigidly constrained as to be unaffected by the

Lorentz force experienced by the ion. He also notes that

beyond these qualitative considerations, it has been difficult

to explain exactly how the low-frequency magnetic fields

tuned to ICR frequencies are so effective in producing

biochemical, biological and medical effects. Furthermore,
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Figure 12. Time dependences of field-induced current in water (a) and
glycerol (b): D0x¼ 12.5 V/cm; x¼ 17,000 Hz; D0x¼ 11.5 G;
x¼ 22,350 Hz, temperature 25 �C, NaCl concentration of 0.05 M. Note
that the scale for the trace (b) is expanded by a factor of 100.
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there may have been prior unrecognized ICR-like effects in

some experiments. In a number of earlier experiments where

only an AC magnetic field was applied, there exists the

possibility that whatever effects were observed, these were the

result of a fortuitous combination of AC field in resonance

with the static, but unmeasured local magnetic field. Many of

the later successful ICR-like experiments have utilized the

local magnetic field to supply the required magnetostatic

component to achieve resonance. An examination of the

charge-to-mass ratios for many biological ions, including

polar amino acids, clearly shows that the ICR frequencies for

these ions are in the low-frequency range when the geomag-

netic field (GMF) is chosen as the static component of the

resonant field combination. Liboff (2010) also noted that

the significance of the fact that GMF preceded the appear-

ance of life on earth, thereby providing an environmental

template for potential biological regulatory processes, espe-

cially regarding the possible effects of magnetic field on

ion transport. Among others, the effect of ultra-low-frequency

MF on electro-conductivity of glutamic acid aqueous solu-

tions was studied (Alberto et al., 2008a,b). Narrow resonance

was observed in conductivity, providing an indirect proof of

the external magnetic field influence on ion transport in

aqueous solutions. Further on, we will analyze Equation (12)

numerically.

Note also that an external EMF can affect polypeptide

bond hydrolysis rates (Novikov and Fesenko, 2001). The

authors proposed that resonances between the external EMF

and the internal polypeptide vibrations may accelerate

polypeptide bond hydrolysis. This is another mechanism,

not much different from the one we proposed (Makarov and

Khmelinskii, 2013) and will discuss shortly.

Numerical analysis of Equation (12)

Using the diffusion flux of Equation (12), we define the field-

induced current as:

Iion tð Þ ¼ q ZðþÞ~j
ðþÞ þ Zð�Þ~j

ð�Þ	 

ð25Þ

where ~j þð Þ and~j �ð Þ were determined according to Equation

(12). We performed numerical analysis for the following field

parameters: D0x¼ 12.5 V/cm; x¼ 17,000 Hz; B0z¼ 11.5 G;

x¼ 22,350 Hz, temperature 25 �C, NaCl concentration of

0.05 M and glycerol viscosity. We used a home-made

FORTRAN code for calculations. The diffusion coefficients

for Na+ and Cl� ions were taken from Equation (15), with the

results obtained shown in Figure 13.

We note that the maximum field-induced current is on the

sub-nA scale, while the field-induced current oscillations are

not as prominent as in the previously considered example. We

believe that the model including diffusion provides a better

prediction for the field-induced current than the previously

discussed simplified approach, though the current amplitudes

have the same order of magnitude in the two cases. We

therefore conclude that the model described by Equation (21)

is an acceptable approximation for the analysis of field-

induced currents in live systems. Note that oscillating currents

may affect metabolic processes in live systems. Such currents

may be induced both inside the cells and in the inter-cell

media, affecting the transport of different molecules and ions.

As we already noted, it is quite difficult to imagine field

effects upon membrane transport, as the potential difference

across the cell membrane is much larger than that created by

the external electric fields and the induced electric fields

generated by the external magnetic fields. However, the field-

induced currents may affect the ion concentration gradients

between the inter-cellular medium and the cellular membrane.

These gradient changes may in turn affect the transport

dynamics through the cellular membrane. This analysis also

demonstrates the possibility of field-induced effects on ion

transport. However, we cannot exclude other possible mech-

anisms of LFEMF effects on live systems. Then, we shall

discuss some of the earlier proposed mechanisms (Makarov

and Khmelinskii, 2013).

Another mechanism of EMF effects in
biological systems

Earlier we proposed (Makarov and Khmelinskii, 2011, 2013)

that external LFEMF induces vibrations of (a) large fragments

of biopolymer molecules with respect to each other; (b)

coupled biopolymer molecules with respect to each other; (c)

biopolymer molecules with respect to cellular organelles; (d)

cellular organelles with respect to each other; (e) biopolymer

molecules with respect to cellular membranes; (f) organelles

with respect to membranes; (h) the cellular membrane as a

whole; (g) entire cells with respect to each other; (i) the entire

cellular ensemble as a whole, etc. A complete analysis of all

possible vibrations is out of our present scope; therefore, next

we shall only consider the possibilities (a) and (h).

EMF-induced rotations of molecular fragments

Such LFEMF effects may be understood taking into account

that biological activity of biopolymers is dependent on their

primary, secondary and tertiary structure. The relative motion

of its fragments will distort its secondary and tertiary

structure, modulating its biological activity. As a model, we

shall consider relative rotation of two disks connected at their

common axis. The interaction potential of the relative rotation

may be described by a periodic function:

U �ð Þ ¼ U0 1� Cos Nuð Þð Þ ð26Þ

Time (µs)

1000 200 300 400 500

Fi
el

d 
In

du
ce

d 
C

ur
re

nt
 (

nA
)

0.06

0.08

0.10

0.12

0.14

0.16

Figure 13. Time dependences of field-induced current in glycerol
[Equation (11)]: D0x¼ 12.5 V/cm; x¼ 17,000 Hz; D0x¼ 11.5 G;
x¼ 22,350 Hz, temperature 25 �C, NaCl concentration of 0.05 M.
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where U0 is the amplitude of the interaction potential, N is the

number of maxima for a complete turn, u is the angle of

relative rotation. The moments of inertia of the disks are I1,

and I2, respectively. We shall assume that I155I2 for

simplicity, the radius of the first disk being r0. We shall

also assume that the force created by the potential (26) is

homogeneously distributed over the disk radius, and the

external field-induced force described by:

F tð Þ ¼ F0 Cos xtð Þ ð27Þ

is also homogeneously distributed over the disk radius, being

normal to it and parallel to the disk surface. We shall also

assume a constant force of friction Ffric, homogeneously

distributed over the disk radius. The equation of motion may

thus be written:

dM

dt
¼ 1

2
r0F tð Þ � 1

2
r0

dU

d�
� 1

2
r0Ffric ð28Þ

simplified as:

2
I1

r0

d2u
dt2
¼ F0 Cos xtð Þ þ U0N Sin Nuð Þ � Ffric

d2u
dt2
¼ C1 Cos xtð Þ þ C2 Sin Nuð Þ � C3

ð29Þ

where,

C1 ¼
r0F0

2I1

C2 ¼
r0U0

2I1

C3 ¼
r0Ffric

2I1

ð30Þ

Equation (28) cannot be solved analytically. Therefore, we

analyzed the dependence of u vs. x numerically, using the

Runge–Kutta method (Johnson, 1968). The plots of u versus

x for N¼ 2, U0¼ const., Ffric¼ const. and different F0 values

are shown in Figure 14. Note that the resonant frequency,

disregarding the external field-induced force and friction,

is approximately given by:

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0N

2I1

r0

r
/

ffiffiffiffiffiffiffiffiffiffi
U0N

2mr0

r
ð31Þ

Taking into account typical parameter values for a biopolymer

(for example, a DNA molecule) of N¼ 2 or 3, U0¼ 0.1–0.2

eV, biopolymer mass / 105 a.u. and the characteristic value

of r0¼ 50 nm, we estimated the vibrational frequency x0,

obtaining the value of (3.77 4.5)� 104 Hz, which is not

much different from frequencies used in our experiments. The

parameters were selected so as to obtain x0 ¼ 2:0 arbitrary

units for the numerical analysis. We note in Figure 14 that the

resonance effect is infinite at F0¼ 2, interpreted as free

rotation of disk 1 with respect to disk 2, caused by an external

force. We presume that similar results may be obtained in

biological systems, where field-induced rotation of a bio-

polymer fragment with respect to the remaining molecule

may disorganize the structure of that molecule, affecting its

biological activity. The interaction of external LFEMFs with a

specific fragment may be caused by the existence of electric

charge located on this fragment. Thus, this model provides a

qualitative explanation of LFEMF action on biological

systems, with such resonance phenomena capable of produ-

cing significant biological response.

Cellular membrane oscillating as a whole

This model takes into account the interactions between a

periodic electric field and the cellular membrane that induces

cell polarization and mechanical deformation of its shape.

Here, we are disregarding any effects of the magnetic fields

that may further alter the deformation pattern. In this simple

model the cell polarization time (spol) is much shorter than

1/xEMF, xEMF being the frequency of the external EMF,

resulting in a mechanical motion caused by electrostatic

interaction of the polarized cell with the external periodic

electric field. We assume that at zero external fields the cell is

spherical with radius R and rigidity coefficient ks. We also

assume that the friction force is described by the Stokes

relationship for laminar motion of a spherical object in a

viscous medium. Introducing an effective mass (m*) to

describe the cellular shape vibrations (ellipsoid–sphere–

ellipsoid), we write the respective equation of motion as:

d2x

dt2
m� ¼ 	

2R
D2 tð Þ � ksx� 6�� Tð ÞR dx

dt
ð32Þ

This is a non-homogeneous second-order linear equation,

with resonance occurring when the LFEMF frequency equals

the intrinsic vibrational frequency of the entire cell as a

mechanical object: xcell ¼
ffiffiffiffi
ks

m�

q
. Taking into account the

rigidity properties of cells (Hernández-Zapata et al., 2009),

and a typical cellular mass, we estimated xcell in the range of

(1.37 2.9)� 104 Hz, once more within the presently explored

frequency range. We expect that such resonance effects may

alter the transport of species through the cellular membrane

and inside the cell, affecting cellular metabolism.

Thus, we discussed several simple models that may

qualitatively account for the LFEMF effects on live systems,

whereas the reality is probably significantly more complex.
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Figure 14. Dependence of U vs. x for N¼ 2, and different U0, Ffric and
F0: (1) F0¼ 0, U0¼ 1, Ffric¼ 0; (2) F0¼ 0.1, U0¼ 1, Ffric¼ 0.5;
(3) F0¼ 0.3, U0¼ 1, Ffric¼ 0.5; (4) F0¼ 0.5, U0¼ 1, Ffric¼ 0.5;
(5) F0¼ 2, U0¼ 1, Ffric¼ 0.5. Note that all of the parameters are
measured in arbitrary units.
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Conclusions

We believe that sub-macroscopic mechanical vibrations in

D. melanogaster eggs created by external 3D LFEMFs

significantly affect the dynamics of their metabolism. Such

EMFs even more significantly affect D. melanogaster

embryos, probably on genetic and receptor levels, producing

the observed memory effects, whereby the longevity of the

imagoes is affected by the exposure of the respective eggs to

the 3D LFEMFs. Exposure to electromagnetic fields signifi-

cantly affects the longevity of D. melanogaster imagoes,

giving a possibility to control the life phase duration of both

eggs and imagoes. We expect that similar effects may be

produced in more complex live systems, including mammals

and humans, with biomedical and medical applications.
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