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Abstract
Various methods for reducing hardware implementation cost of incompletely specified
index generating functions have been proposed lately. Considering the methods based on
linear decomposition, for the first time in this work, we provide necessary and sufficient
conditions which describe the linear decomposition of these functions in general. These
conditions are derived using the concept of functional degeneracy, and we show that the
problem of linear decomposition can be translated into the problem of constructing suitable
coordinate Boolean functions (which represent the generating functions) such that the lin-
ear decomposition is possible. In this context, we propose several design methods of such
Boolean functions and furthermore we employ one particular design method to derive a
new iterative semi-deterministic algorithm for linear decomposition. In addition, we pro-
vide a general result which describes all incompletely specified index generating functions
for which the linear decomposition is (not) possible. Consequently, our results indicate that
the functional degeneracy is a promising approach in derivation of new deterministic-like
algorithms for linear decomposition of incompletely specified index generating functions.
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1 Introduction

Roughly speaking, an index generating function is a discrete integer-valued function defined
on a (binary) vector space. Recently these functions have drawn a lot of attention due to
their wide range of applications which encompasses address tables for internet routers, ter-
minal access controller for local area networks, databases, memory patch circuits, virus
scans, pattern matching, etc. [15, 18, 23]. The requirements on these functions are design
dependent. For instance, in communication networks high-speed circuits (fast computa-
tion) are required along with frequent updates, which means that index generators have to
be re-programmable. Thus a memory-based architecture of index generation functions is
desirable.

In general, index generating functions can be implemented in different ways: by a con-
tent addressable memory (CAM) [14], a look-up table (LUT) or an index generating unit
(IGU) [30] (see also [18, Section VIII-IX], [23, Chapter 12]). However, the implemen-
tation of index generating functions using some of the previously mentioned techniques
may become impractical if the number of input variables is large due to increased mem-
ory costs. In many cases, an index generating function does not need to be defined on a
whole domain (i.e., its values do not need to be completely specified), but rather it can
be defined on a portion of the domain which leads to the notion of an incompletely spec-
ified index generating function (which we abbreviate as ”isig-function”). More precisely,
an isig-function, say f , is a mapping from D = {d1, . . . , dk} ⊂ F

n
2 to {1, . . . , k}, where

f (di) = i and values f (y) = cy ≥ 0 are of no importance (commonly called don’t cares)
for y ∈ F

n
2 \ D. There exist various methods for reducing hardware implementation costs

of these functions, which are briefly summarized as follows. The well-known method based
on linear decomposition introduced by Nečiporuk [13] (which was later modified/extended
in [8]), has been analyzed in [11, 12, 16, 18, 22, 23, 25]. The main goal of this method
is to find suitable linear functions (so-called compound variables), say y1, . . . , yr (defined
on F

n
2) such that f (x1, . . . , xn) = ˜f (y1, . . . , yr ) (r < n) for some incompletely specified

ig-function ˜f . Another method similar to the previous one, considered in [20, 21, 24, 31],
is based on finding a minimally sized set of so-called essential variables, say {xi1 , . . . , xir }
(1 ≤ i1 < . . . < ir ≤ n), such that f can be written as f (x1, . . . , xn) = f (xi1 , . . . , xir ). In
this case, the essential variables are considered to be compound variables of weight equal
to 1. There also exist somewhat different approaches such as: a gate-based decomposi-
tion method which uses suitable partitioning of the set D [9], methods based on spectral
measures [6, 8, 26, 27, 35, 37], methods which utilize partially defined Boolean functions
[4, Section 12] (see for instance [4, Example 12.3]), algebraic methods which employ vec-
tor spaces and polynomials [1, 2]. For further works related to index generating functions,
we refer to references given in [25, Section IX].

In most of the cases the proposed algorithms are inefficient when applied to an arbitrary
given isig-function (i.e., set D). Moreover, many of these algorithms are heuristic and per-
form well only for small sized D, and the optimality of output results can not be proved
or guaranteed. Another drawback of (almost) all methods mentioned above is the fact that
there still does not exist an algebraic treatment of these functions that would provide some
explicit necessary-sufficient conditions for their linear decompositions (thus implying some
efficient decomposition methods). This justifies the difficulty of the problem in general and
at the same time the importance of finding an effective decomposition algorithm (heuristic
or any other type) applicable to arbitrary isig-functions (as pointed out by Sasao et al. [12]).

In this work, we introduce and analyze the linear decomposition method based on func-
tional degeneracy, the concept described in [38, Theorem 2.9] (or [8, Corollary 2.1]).
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Considering an isig-function f in a general form as f (x) = c1ξ1(x)+ . . .+ csξs(x) (ξi are
Boolean functions, ci are non-negative integers), for the first time (in Section 3) we derive
necessary and sufficient conditions under which the function f can be linearly decomposed
in less variables (regardless of whether they are compound or essential). Thus we show that
the problem of finding linear decomposition of f can be reduced to the problem of finding
suitable functions ξi (and integers ci) which admit the transformation (decomposition) of f

to an isig-function ˜f defined in r < n compound/essential variables.
Furthermore, for various cases (in Section 4) we show how one can linearly decompose a

given isig-function (using characteristic Boolean functions), where for a sufficiently small
number of linearly independent vectors in the set D (which we throughout the article define
as dimension of D) we prove that the linear decomposition is always possible (Theorem
4.2). For some additional specific scenarios which regard the set D, we provide explicit
construction methods of coordinate functions ξi which admit a linear decomposition of
underlying isig-function. On the other hand, we describe isig-functions (i.e., sets D) for
which the linear decomposition is not possible in general, and thus we generalize the method
of proving the minimality of a given linear decomposition by SAT solver [5] (Theorem 4.3).

The previously mentioned results will lead us to a new iterative semi-deterministic algo-
rithm (given in Section 5), which can be utilized for deducing either compound or essential
variables. The analysis of our approach shows that in the former case our algorithm pro-
vides quite efficient solutions by giving nearly optimal number of compound variables with
degree ≤ 3 for various values of n and relatively large k (cf. Table 6). On the other hand, for
the latter case it provides somewhat weaker results which are of the similar quality as those
obtained by [1] (cf. Tables 7, and 8).

To the best of our knowledge, this work is the first treatment of incompletely specified
ig-functions as algebraic objects which provides general (non)existence results on linear
decompositions, along with construction methods of coordinate functions ξi which may
give rise to new iterative deterministic algorithms (with possible further improvements).

2 Preliminaries

The binary vector space of all n-tuples x = (x1, . . . , xn) (xi ∈ F2 = {0, 1}) with the stan-
dard operations is denoted by Fn

2. The complement of xi ∈ F2 we denote by xi = xi ⊕1. For
x = (x1, . . . , xn) and y = (y1, . . . , yn) in Fn

2, the scalar (or inner) product over F2 is defined
as x ·y = x1y1⊕· · ·⊕xnyn. The Hamming weight of x = (x1, . . . , xn) ∈ F

n
2 is denoted and

computed as wt(x) = ∑n
i=1 xi . By ”

∑

” we denote the integer sum (without modulo evalu-
ation), whereas ”

⊕

” denotes the sum evaluated modulo 2. We take that the set of vectors Fn
2

is ordered lexicographically as Fn
2 = {z0 = (0, . . . , 0, 0), z1 = (0, . . . , 0, 1), . . . , z2n−1 =

(1, . . . , 1, 1)}. Thus, an arbitrary vector zj ∈ F
n
2 is represented as zj = (zj,1, . . . , zj,n)

(j ∈ [0, 2n −1]), with j = ∑n−1
t=0 zj,n−t2t being its integer representation. The all zero vec-

tor (0, . . . , 0) ∈ F
n
2 we denote by 0n. Throughout the article, by [i, j ] (for i < j , i, j ∈ Z)

we denote the interval of integers between i and j , i.e., [i, j ] = {i, i + 1, i + 2, . . . , j}.

2.1 Boolean functions

The set of all Boolean functions in n variables, which is the set of mappings from F
n
2 to F2,

is denoted by Bn. Especially, the set of affine functions in n variables is given by An =
{

a · x ⊕ b | a ∈ F
n
2, b ∈ {0, 1}} , and similarly Ln = {

a · x : a ∈ F
n
2

} ⊂ An denotes the
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set of linear functions. The support of an arbitrary function g : F
n
2 → F2 is defined as

supp(g) = {x ∈ F
n
2 : g(x) = 1}. For a vector v = (v1, . . . , vn) ∈ F

n
2, let the minterm

function mv : Fn
2 → F2 [36] be defined as mv(x1, . . . , xn) = ∏n

j=1(xj ⊕vj ⊕1). Note that
mv(x) = 1 if and only if x = v. It is well-known that any Boolean function g : Fn

2 → F2
can be uniquely represented as

g(x1, . . . , xn) =
⊕

v∈supp(g)

mv(x1, . . . , xn). (1)

For an arbitrary function g ∈ Bn, the set of its values on Fn
2 (the truth table) is defined as

Tg = (g(0, . . . , 0, 0), g(0, . . . , 0, 1), . . . , g(1, . . . , 1, 1)). For a function g defined on F
n
2

and a given subset S ⊆ F
n
2, we denote by g|S the restriction of g to S (that is g|S = g : S →

F2). The Walsh transform (WT) of g ∈ Bn at any point ω ∈ F
n
2 is defined by

Wg(ω) =
∑

x∈Fn
2

g(x)(−1)ω·x . (2)

The Walsh support of g ∈ Bn is defined as Sg = {ω ∈ F
n
2 : Wg(ω) 	= 0}. A

vectorial Boolean function, say h : F
n
2 → F

k
2, can be represented uniquely as h(x) =

(h1(x), . . . , hk(x)), where hi : Fn
2 → F2.

For a subset E ⊆ F
n
2, the indicator function φE will denote the Boolean function such

that φE(x) = 1 if and only if x ∈ E. Also, by E⊥ we denote the set E⊥ = {y ∈ F
n
2 : x ·y =

0, ∀x ∈ E}. The cardinality of any set E is denoted by #E. By [8, Corollary 2.2] and
[7, Section IV], for a given affine subspace b⊕E ⊆ F

n
2 (b ∈ F

n
2 is arbitrary, E is a subspace,

dim(E) = p), we have that WT at any u ∈ F
n
2 and ANF of φb⊕E are given respectively as

Wφb⊕E
(u) =

{

#E · (−1)u·b, u ∈ E⊥
0, u 	∈ E⊥ , φE(x) =

n−p
∏

i=1

(τi · x ⊕ 1), (3)

where {τ1, . . . , τn−p} is any basis of E⊥. For a subspace E and b ∈ F
n
2, it holds that

φb⊕E(x) = φE(x ⊕ b).

2.2 Index generating functions

Let D = {d1, . . . , dk} ⊂ F
n
2 such that #D = k � 2n, where the (distinct) vectors di ∈ D

are called registered vectors. In general, an isig-function f : D → {1, 2, . . . , k} can be
represented by decomposition table (see for instance [15, 29]) or using relation (1) as

f (x) =
∑

di∈D

i · mdi
(x). (4)

Remark 2.1 Since the values f (y) = cy for y 	∈ D ⊂ F
n
2 are of no importance (and thus

can be arbitrary), in (4) we omit their specification. Although (4) means that cy = 0 for all
y ∈ F

n
2\D (due to the fact that mdi

(x) = 1 if and only if x = di), this representation will
not mean that f is completely specified on whole Fn

2. Thus in our work relation (4) strictly
refers to the representation of an isig-function f = f |D .

With the following example we demonstrate the representation (4) of an isig-function
defined on D ⊂ F

4
2.
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Table 1 Registered vector table
di ∈ D x1 x2 x3 x4 f (di)

d1 0 0 0 1 1

d2 1 0 1 1 2

d3 1 1 0 0 3

d4 0 1 1 1 4

Example 2.1 Let the set of registered vectors D ⊂ F
4
2 and an isig-function f : D →

{1, 2, 3, 4} be given by Table 1, where f (di) = i for i ∈ [1, 4]. The function f = f |D
(Remark 2.1) can be represented as f (x) = 1 ·md1(x)+2 ·md2(x)+3 ·md3(x)+4 ·md4(x).
Alternatively, the function f can be represented by a decomposition table as in [15, Example
3 - Fig. 3b].

Definition 2.1 For a function f ∈ Bn, we say that f (x1, . . . , xn) depends on xi

if there exists a pair of vectors a = (a1, . . . , ai−1, ai, ai+1, . . . , an) and a′ =
(a1, . . . , ai−1, a

′
i , ai+1, . . . , an) such that f is defined for both a and a′, ai 	= a′

i , and
f (a) 	= f (a′). If f depends on xi , then xi is said to be an essential variable.

2.3 The functional decomposition

A decomposition or transformation (linear or non-linear) of an isig-function f : D ⊂
F

n
2 → {1, . . . , k} is said to be a vectorial Boolean function h = (y1, . . . , yr ) : Fn

2 → F
r
2

which transforms a function f into an isig-function ˜f : D → {1, . . . , k} in r variables as

f (x1, . . . , xn) = (f̃ ◦ h)(x) = ˜f (y1(x), . . . , yr (x)) = ˜f (y1, . . . , yr ), (5)

where yi = yi(x1, . . . , xn), i ∈ [1, r]. A linear transformation, which induces a vectorial
Boolean function h = (y1, . . . , yr ), with minimal possible value of r is called optimal.
Recall that by [24, Theorem 1] any incompletely specified ig-function with weight k nec-
essarily requires at least �log2 k� variables to be represented. Alternatively, in terms of its
linear decomposition, it holds that r ≥ �log2 k�. By minimal linear decomposition we refer
to a decomposition which is not necessarily optimal but for which the number of compound
variables can not be reduced further by any linear transformation in general (see for instance
the set D(2) in Example 5.2).

Assuming that the vectorial function h = (y1, . . . , yr ) in (5) (associated to f ) is linear,
then the functions yi , i ∈ [1, r], which are called compound variables, can be written as
yi(x) = λi · x, for some vectors λi ∈ F

n
2. Then, the compound degree of these functions

is defined as wt(λi). Thus, one can define a binary matrix Hn×r as H = [λT
1 , . . . , λT

r ],
where λT

i is a column vector, i.e., the transpose of λi . Consequently, the function f can be
written as f (x) = g(xH), where g ∈ Br , and if r < n then the function f is said to be
algebraically degenerate or briefly degenerate.1 If there does not exist such an n× r matrix
H with r < n such that f (x) = g(xH) holds, i.e., the minimum value of r is n, then f is
said to be algebraically nondegenerate.

1From the point of cryptographic applications, this term was introduced by Mitchell [10].
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3 Linear decompositions based on degeneracy

Using the results given in [38, Section 2.3], in this section we derive necessary and sufficient
conditions for linear decomposition of an arbitrary isig-function. Since our method uses the
notion of algebraic degeneration of Boolean functions, we firstly discuss a misleading result
which can be related to work presented in [26] (see Remark 3.1). Let us first recall two
results given in [38, Theorems 2.9] (which is [8, Corollary 2.1]) and [38, Theorems 2.10].

Theorem 3.1 [8, 38] Let f ∈ Bn. Denote by V = 〈Sf 〉 the linear span of the nonzero
spectrum points of f . Assume that dim(V ) = r , and let μ1, . . . , μr be a basis of V which
defines a binary matrix Mn×r as M = [μT

1 , . . . , μT
r ]. Then there exists a Boolean function

g(y) in r variables such that

g(y) = g(xM) = f (x), x ∈ F
n
2.

Theorem 3.2 [38] Let f ∈ Bn. Then dim〈Sf 〉 = r if and only if f can be algebraically
degenerated into a function in r variables.

Based on the results given in [26, Section V] (which are given in terms of autocorrela-
tion transform, see [26, Definition 5.1]), one can conclude that an isig-function f and the
corresponding characteristic (Boolean) function φD can be represented in the same num-
ber of variables. However, with the following example we show that a linear decomposition
(which is degeneracy) of the characteristic function φD does not imply the degeneracy of
f in general, and thus Theorem 3.1 can not be (always) applied to φD in order to induce a
linear decomposition of f .

Example 3.1 Let the set D ⊂ F
4
2 be given as D = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 1, 1, 0),

(1, 1, 0, 1)}. Then, it is not difficult to check that the characteristic function φD of the incom-
pletely specified ig-function f : D → {1, 2, 3, 4} has the Walsh support SφD

of dimension
4 (thus dim〈SφD

〉 = 4). According to Theorem 3.2, the function φD cannot be degener-
ated into a function g ∈ Br for r < n. However, by Example 4.2 in [31], the function f

can be represented by 3 variables (which is the minimal possible number in this case), say
{x1, x2, x3}, {x1, x3, x4} or {x2, x3, x4}.

Remark 3.1 Note that the only case when the degeneracy of φD implies the degeneracy of f
is when φD has a linear decomposition in compound variables with degree equal to 1 [26].

In general, an arbitrary isig-function can be represented in different ways. For instance,
the isig-function f : D = {d1, d2, d3, d4} → {1, 2, 3, 4} given in Example 3.1 can be
represented by relation (4) as f (x) = 1 · md1(x) + . . . + 4 · md4(x), but it can also be
represented as f (x) = 1 + a0(x) + 2a1(x), where ai are defined as in Table 2.

In order to set our results in a more general framework, we assume that an isig-function
f : D ⊂ F

n
2 → {1, . . . , k} can be represented in a general form as f (x) = c1ξ1(x) +

. . . , csξs(x), where ξi ∈ Bn are called coordinate functions (ci are non-zero integers, x ∈
F

n
2). However, the condition imposed on functions ξi , in order to properly define the isig-

function f , is given in the following result.

Proposition 3.1 Let f : D = {d1, . . . , dk} → {1, . . . , k} be an arbitrary incompletely
specified ig-function defined as f (di) = i, i ∈ [1, k] (D ⊂ F

n
2). For integers c1, . . . , cs
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Table 2 Definition of coordinate
functions a0 and a1 on D from
Example 3.1

di ∈ D x1 x2 x3 x4 a0(di ) a1(di ) f (di )

d1 1 0 0 0 0 0 1

d2 0 1 0 0 1 0 2

d3 0 1 1 0 0 1 3

d4 1 1 0 1 1 1 4

(s ≥ 1) and Boolean functions ξ1, . . . , ξs ∈ Bn, define matrices �k×s = [ξi(dj )] and
Cs×1 = [ci] for i ∈ [1, s], j ∈ [1, k]. If it holds that the restrictions of ξi on D satisfy the
system

�k×sCs×1 =

⎛

⎜

⎜

⎜

⎝

ξ1(d1) . . . ξs(d1)

ξ1(d2) . . . ξs(d2)
...

...
...

ξ1(dk) . . . ξs(dk)

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

c1
c2
...
cs

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎝

1
2
...
k

⎞

⎟

⎟

⎟

⎠

, (6)

then f can be represented as f (x) = c1ξ1(x) + . . . , csξs(x), x ∈ F
n
2 . Equivalently, for

every collection of Boolean functions ξ1, . . . , ξs such that
∑s

i=1 ciξi(dj ) = j (j ∈ [1, k]),
it necessarily holds that (ξ1|D, . . . , ξs |D) is an injective mapping on D.

Proof Let us assume that (ξ1|D, . . . , ξs |D) is not injective onD. Then there exist d ′, d ′′ ∈ D

(d ′ 	= d ′′) for which it holds that (ξ1|D(d ′), . . . , ξs |D(d ′)) and (ξ1|D(d ′′), . . . , ξs |D(d ′′))
are equal (binary) vectors, which gives that b′ = ∑s

i=1 ciξi(d
′) = ∑s

i=1 ciξi(d
′′) = b′′.

However, this is in contradiction with b′ 	= b′′, which completes the proof.

Notice that not all representations of f (referring to coefficients ci), using some injec-
tive vectorial mapping (ξ1|D, . . . , ξs |D), are suitable to express f correctly in this context.
For instance, if f (x) = 1ξ1(x) + 2ξ2(x) + 3ξ3(x), (ξ1|D, ξ2|D, ξ3|D)(d ′) = (0, 0, 1)
and (ξ1|D, ξ2|D, ξ3|D)(d ′′) = (1, 1, 0) (for some d ′, d ′′ ∈ D, d ′ 	= d ′′), we have that
f (d ′) = f (d ′′) = 3, which is not allowed for an incompletely function isig-function f .

Remark 3.2 Since (6) is a system of linear Diophantine equations, then all results which
characterize the existence of solutions for such systems can be applied here. However, the
problem of finding Boolean functions ξi (in the representation of f ) and integers ci such that
(6) holds can become rather complex due to the facts that �k×s has to be a binary matrix and
Cs×1 contains non-negative values. Note also that the problem of finding a linear vectorial
function which is injective on D is proved to be NP-complete (see [34, Theorem 3.1]).

Remark 3.3 In the case when an isig-function f is represented by (4), then the matrix
�k×k = [ξi(dj )] in (6) (where s = k) is the identity matrix.

The following result (which is based on Theorem 3.1) characterizes the linear decompo-
sition method of an arbitrary isig-function f in terms of Walsh supports of its coordinate
Boolean functions ξi .

Theorem 3.3 Let f : D = {d1, . . . , dk} → {1, . . . , k} (D ⊂ F
n
2) be an arbitrary

incompletely specified ig-function defined by f (di) = i, i ∈ [1, k] (D ⊂ F
n
2), and rep-
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resented as f (x) = ∑s
i=1 ciξi(x) (ci ≥ 0). For i ∈ [1, s], let Bi be a basis of 〈Sξi

〉.
Then the function f (x1, . . . , xn) can be degenerated (linearly decomposed) to an isig-
function ˜f (xM) = ˜f (y1, . . . , yr ) = f (x), (M = [λT

1 , . . . , λT
r ], yi = λi · x, λi ∈ F

n
2,�log2 k� ≤ r ≤ n) with the minimal possible number of compound variables r if and

only if {λ1, . . . , λr } is a basis set of 〈⋃s
i=1 Bi〉. Moreover, the decomposition is optimum if

dim〈⋃s
i=1 Bi〉 = �log2 k�.

Proof Let {λ1, . . . , λr } be an arbitrary basis set of 〈⋃s
i=1 Bi〉. By Theorem 3.2, every

coordinate function ξi can be degenerated into the minimal possible number of compound
variables #Bi , where Bi is a basis set of 〈Sξi

〉. Consequently, the function f can be written
in variables {y′

1, . . . , y
′
m}, where y′

i = λ′
i · x and {λ′

1, . . . , λ
′
m} = ⋃s

i=1 Bi ⊆ 〈⋃s
i=1 Bi〉

(r ≤ m). Since every λ′
i can be written in terms of vectors λ1, . . . , λr , then f can be writ-

ten in terms of compound variables yi = λi · x (i ∈ [1, r]), which is clearly the minimal
possible number of compound variables.

Conversely, let us assume that the minimal possible decomposition of f is given as
f (x) = ˜f (xM) = ˜f (y1, . . . , yr ), where yi = λi · x (i ∈ [1, r]), for some vectors
λi ∈ F

n
2. Clearly, we assume that λi are linearly independent vectors, otherwise the exis-

tence of a basis set {λ′
1, . . . , λ

′
r ′ } (r ′ < r) of {λ1, . . . , λr } would imply that f can be

degenerated to r ′ < r , which contradicts the assumption. Then it must be the case that
for every i ∈ [1, s] a basis set Bi of 〈Sξi

〉 is contained in the space 〈λ1, . . . , λr 〉 (where
also 〈Sξi

〉 ⊆ 〈λ1, . . . , λr 〉), since all functions ξi have to be written in terms of compound
variables yi . Now, if 〈⋃s

i=1 Bi〉 is a proper subspace of 〈λ1, . . . , λr 〉, then there exists a
basis set {λ′

1, . . . , λ
′
r ′ } of 〈⋃s

i=1 Bi〉 with the property that r ′ < r , which contradicts the
assumption that f can be degenerated to r variables. Consequently, it necessarily holds
that 〈λ1, . . . , λr 〉 = 〈⋃s

i=1 Bi〉, i.e., {λ1, . . . , λr } is a basis set of 〈⋃s
i=1 Bi〉 (since λi are

linearly independent). By [24, Theorem 1], the linear decomposition of f is optimum if
r = �log2 k�.

In general, Theorem 3.3 has the following important implications:

Fact 1 The problem of finding a linear decomposition of a given isig-function which uses
compound variables yi = λi · x (i = 1, . . . , r) such that λ1, . . . , λr ∈ F

n
2 have minimal

weights (in relation (5)), has been addressed in [29]. In the context of Theorem 3.3, such
linear decompositions are precisely related to vectors with minimal weights which consti-
tute a basis set {λ1, . . . , λr } of 〈⋃s

i=1 Bi〉. Alternatively, the search of these decompositions
for which wt(λi) ≤ t (for all i ∈ [1, r]) for some fixed value t , is mentioned as Problem 1
in [12, Section 3].

Fact 2 The set of all linear decompositions of an isig-function f is not less than the number
of basis sets {λ1, . . . , λr } of 〈⋃s

i=1 Bi〉. However, this estimation is still imprecise since the
number of Boolean coordinate functions of f which satisfy the system (6) is not known.

By Theorem 3.3, the problem of finding a linear decomposition(s) (degeneration) of
isig-functions is translated to the domain of Boolean functions, where we are looking for a
suitable collection of functions ξi in (6) such that basis sets of 〈Sξi

〉 share common elements
(which consequently reduces the number of compound variables yi).

Therefore, the following example is given in that direction and it demonstrates the possi-
bility of applying Theorem 3.3 to a given isig-function represented by (4) in order to find its
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linear decomposition. Thus we illustrate the main idea of our approach, which is developed
further in subsequent sections.

Example 3.2 Let the isig-function f : D ⊂ F
4
2 → {1, 2, 3, 4} be represented as

f (x) = 1 · b1(x) + 2 · b2(x) + 3 · b3(x) + 4 · b4(x),

where the set D and coordinate Boolean functions bi are defined as in Table 3. Notice that
the restrictions of bi on D are defined as bi |D = mdi

|D , since mdi
(x) = 1 if and only if

x = di . In order to apply Theorem 3.3, we need to define functions bi on F
4
2\D due to the

computation of dimensions of their Walsh supports. According to Theorem 3.2, we want to
define functions bi such that the basis sets of 〈Sbi

〉 share (many) common elements. For that
purpose, we define the subspace S = {04, d1} and bi = φEi

, where Ei ⊂ F
4
2 are given as

E1 = S, E2 = d2 ⊕ S, E3 = d3 ⊕ S, E4 = d4 ⊕ S.

The necessary condition to represent the function bi correctly, in terms of characteristic
functions, is that Ei ∩ D = {di}, for all i = 1, 2, 3, 4, which is clearly satisfied. By relation
(3), we have that for all i ∈ [1, 4] it holds that

Sbi
= SφEi

= S⊥ = 〈λ1, λ2, λ3〉 = 〈(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)〉.
Consequently, Theorem 3.3 gives that f can be represented in variables yi = λi · x (i =
1, 2, 3). More precisely, by ANF representation of the characteristic function given by (3)
we have that bi can be represented as b1(x) = φE1(x) and bj = φE1(x⊕dj ) for j = 2, 3, 4,
where

b1(x) = φE1(x) =
3

∏

i=1

(λi · x ⊕ 1) =
3

∏

i=1

(yi ⊕ 1), bj (x) =
3

∏

i=1

(yi ⊕ λi · dj ⊕ 1).

Remark 3.4 Note that the same idea presented in the above example can be applied to f

when it is represented as f (x) = 1 + a0(x) + 2a1(x) (where ai are defined as in Table 2).

The previous example, which regards the application of Theorem 3.3, raises the
following important questions (which have not been addressed in the previous works):

I) Do there exist representations of f in terms of Boolean functions which allow an
efficient construction (specification) of its coordinate Boolean functions on the whole
space Fn

2 which in turn provide an efficient determination of linear decompositions of
f ?

II) For a fixed representation of f , is it always possible to construct coordinate Boolean
functions which provide an optimum (or minimal) linear decomposition of f (for an
arbitrary fixed set D ⊂ F

n
2, #D � 2n)?

Table 3 Definition of coordinate
functions bi on D di ∈ D b1 b2 b3 b4 f (di)

d1 = (0, 0, 0, 1) 1 0 0 0 1

d2 = (1, 0, 1, 1) 0 1 0 0 2

d3 = (1, 1, 0, 0) 0 0 1 0 3

d4 = (0, 1, 1, 1) 0 0 0 1 4
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III) More generally, under which conditions with respect to an arbitrary set D ⊂ F
n
2

(#D � 2n) there exists a representation of f which allows an optimal (or minimal)
linear decomposition for some coordinate Boolean functions?

In the rest of the paper, we address the above questions by deriving and analyzing some
general results which regard both f and D.

4 Construction of suitable coordinate functions

Although the questions (I)-(III) posed in Section 3 are hard to answer in general, in this
section we provide some general/specific results which describe the linear decomposition
of an isig-function f given as in Proposition 3.1. More precisely, in Section 4.1 we propose
some methods to design suitable (affine) subspaces Ei , which in turn gives us a possibility
to define ξi as ξi = φEi

that correctly represent f and allows its decomposition into less
compound variables (by applying Theorem 3.3). While Section 4.1 mainly concerns the
construction of suitable coordinate functions ξi , in Section 4.2 we discuss the cases for
which a linear decomposition of a given isig-function is not possible with respect to a given
set D in general.

4.1 Employing characteristic functions

Recall that in Example 3.2 we have defined coordinate functions of f as indicator functions
on suitable (affine) subspaces Ei . In general, the selection of coordinate functions ξi in
terms of characteristic functions φEi

regardless of whether Ei is a linear or affine subspace
(compare to Example 3.2), is described as follows.

Proposition 4.1 Let f : D ⊂ F
n
2 → {1, . . . , k} be an arbitrary isig-function defined as f (x)

= ∑s
i=1 ciξi(x), and for i ∈ [1, s] let �i = supp(ξi |D) = {d ∈ D : ξi |D(d) = 1}. Then:

i) Assume that for i ∈ [1, s] it holds that 〈�i〉∩D = �i , and let Ei ⊂ F
n
2 be an arbitrary

(affine) subspace such that �i ⊂ Ei and Ei ∩ D = �i . Then, the assignment ξi = φEi

(for i ∈ [1, s]) gives a correct definition of f in terms of relation (6).
ii) Alternatively, assume that 〈D \ �i〉 ∩ D = D \ �i , and let Ei ⊂ F

n
2 be an arbitrary

subspace such that D \ �i ⊂ Ei and Ei ∩ D = D \ �i . Then ξi = φEi
⊕ 1 (for

i ∈ [1, s]) correctly defines f in terms of relation (6).

Remark 4.1 By Theorem 3.3, the function f in Proposition 4.1 can be degenerated to less
than n variables if dim(

⋃s
i=1 Ei) < n.

Let us now assume that there exists (fixed) i ∈ [1, s] for which it holds that ξi |D(d ′ ⊕
d ′′) = 0, for some d ′, d ′′ ∈ D with d ′, d ′′ ∈ �i . In this case, we are not able to define a
subspace Ei such that d ′, d ′′ ∈ Ei , since d ′ ⊕ d ′′ ∈ Ei would imply that φEi

(d ′ ⊕ d ′′) =
1 	= ξi |D(d ′ ⊕ d ′′). The following result establishes the impossibility of setting ξi = φEi

(�i ⊆ Ei) for arbitrary sets D with respect to a given representation f (x) = ∑s
i=1 ciξi(x).

Proposition 4.2 Let f : D → {1, . . . , k} be an arbitrary isig-function defined as f (x) =
∑s

i=1 ciξi(x) (ξi ∈ Bn), and for i ∈ [1, s] define sets �i = supp(ξi |D) = {d ∈ D :
ξi |D(d) = 1}. Assume that for a fixed (arbitrary) i ∈ [1, s] there exist vectors di1 , . . . , dit ∈
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�i such that di1 ⊕ . . . ⊕ dit 	∈ �i . Then there does not exist a subspace Ei ⊂ F
n
2 such that

Ei ∩ D = �i and di1 ⊕ . . . ⊕ dit 	∈ Ei .

Proof Let us assume that there exists a subspace Ei ⊂ F
n
2 such that Ei ∩ D = �i and

di1 ⊕ . . . ⊕ dit 	∈ Ei . Since di1 , . . . , dit ∈ �i and �i ⊆ Ei , it implies that di1 , . . . , dit ∈ Ei ,
which is a contradiction.

Combining Theorem 3.2 and Proposition 4.1 we obtain the following result which
describes the decomposition method of an isig-function with coordinate functions ξi

defined as indicator functions of suitable (affine) subspaces.

Theorem 4.1 Let f : D = {d1, . . . , dk} → {1, . . . , k} (D ⊂ F
n
2) be an arbitrary incom-

pletely specified ig-function given as f (x) = ∑s
i=1 ciξi(x), and for i ∈ [1, s] define sets

�i = supp(ξi |D) = {d ∈ D : ξi |D(d) = 1}. Assume that 〈�i〉 ∩ D = �i , and let ξi

be defined as ξi = φEi
for (affine) subspaces Ei ⊂ F

n
2 which satisfy that Ei ∩ D = �i

(�i ⊂ Ei). If Bi is a basis of 〈Sξi
〉 = E⊥

i and B = {λ1, . . . , λr } is a basis of 〈⋃s
i=1 Bi〉,

then f can be written in compound variables y1, . . . , yr , where yi = λi · x, x ∈ F
n
2 . The

decomposition of f is optimum if r = �log2 k�.

We know simplify the conditions in Proposition 4.1 (that is the idea presented in Example
3.2), thus making the application of Theorem 3.2 much more efficient. Let the set 	D be
defined as

	D = {di ⊕ dj : di, dj ∈ D, i 	= j}, (7)

where we consider 	D not to be a multi-set by removing the vectors that appear multiple
times. Notice that 	D (considered as a multi-set) was called a difference matrix (con-
sidering its vectors as rows) and used in [31, 34] for derivation of algorithms for linear
decomposition.

Theorem 4.2 Let f : D = {d1, . . . , dk} → {1, . . . , k} (f (di) = i, D ⊂ F
n
2) be an

arbitrary isig-function given as f (x) = ∑s
i=1 ciξi(x). Assume that there exists a subspace

S ⊂ F
n
2 \ 	D (	D defined by (7)) with dim(S) = t (≤ n − �log2 k�), and let Ei = di ⊕ S

for i ∈ [1, k]. Then:
i) For every d ∈ D it holds that (d ⊕ S) ∩ D = {d}.
ii) For ξi(x) = φEi

(x), ci = i (s = k, i ∈ [1, k]), it holds that f can be represented as
f (x) = ∑k

i=1 i · φEi
(x).

ii) The function f can be degenerated to r = n−t ≥ �log2 k� variables y1, . . . , yr , where
yi = λi · x (x ∈ F

n
2), and {λ1, . . . , λr } is a basis of S⊥. The function f is given as

f (x) =
k

∑

i=1

i ·
r

∏

j=1

(yj ⊕ λj · di ⊕ 1).

iv) Consequently, if wt(λi) = 1, then yi are essential variables of f .

Proof i) Let d ∈ D be an arbitrary vector. Since 0n ∈ S, it holds that d ∈ d ⊕ S. If we
assume that there exists ˜d ∈ D such that ˜d 	= d and ˜d ∈ (d ⊕ S) ∩ D, then for some
vector z ∈ S it holds that d ⊕ z = ˜d, which is equivalent to z = d ⊕ ˜d. Consequently,
z ∈ 	D , which is a contradiction (since S ⊂ F

n
2 \ 	D).
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ii) By Proposition 3.1, the function f can be represented as f (x) = ∑k
i=1 i · φEi

(x) if
and only if ξi |D = φEi

|D = mdi
|D, which is satisfied by the previous part due to the

fact that (di ⊕ S) ∩ D = Ei ∩ D = {di}, i ∈ [1, k].
iii) By relation (3) we have that for all i ∈ [1, k] it holds that Sξi

= S⊥, which by Theorem
3.1 means that all ξi can be degenerated to r compound variables y1, . . . , yr , where
yi = λi · x (x ∈ F

n
2) with {λ1, . . . , λr } being a basis of S⊥. Consequently, the ANF of

ξi = φEi
in terms of variables yi is given as φEi

(x) = ∏r
j=1(yj ⊕ λj · di ⊕ 1).

iv) Using the previous part, [38, Theorem 2.1] andwt(λi) = 1 imply that f can be written
in terms of compound variables yi , i.e., yi are essential variables of f .

Remark 4.2 Theorem 4.2 is especially efficient for sets D of sufficiently small dimension
(i.e., the number of linearly independent vectors), since the corresponding set 	D will con-
tain less vectors. Clearly, in the case when r = n − t = �log2 k� (#D = k), then Theorem
4.2 explicitly provides (and thus guarantees) an optimal decomposition of f .

To illustrate Theorem 4.2, we provide the following example.

Example 4.1 Consider an incompletely specified ig-function f : D = {d1, . . . , d6} ⊂
F
4
2 → {1, . . . , 6} (f (di) = i, for i ∈ [1, 6]), where the set D is given as

D = {(0, 0, 1, 0), (0, 1, 0, 1), (0, 1, 1, 1), (1, 0, 1, 0), (1, 0, 0, 0), (1, 1, 0, 1)}.
We have that dim〈D〉 = 3 and 	D = D ∪ {(1, 1, 1, 1)} (	D ⊂ 〈D〉), and let us define
the one-dimensional space S = {04, (0, 0, 1, 1)} ⊂ F

4
2 \ 	D . Defining affine subspaces

Ei as Ei = di ⊕ S, we have that Ei ∩ D = {di}, for all i ∈ [1, 6]. Consequently, by
Theorem 4.2 we may define f as f (x) = ∑

di∈D i · φEi
(x) (which means that ξi = φEi

),
and all functions φEi

can be degenerated to dim(S⊥) = 3 compound variables yi = λi · x,
i = 1, 2, 3 (due to relation (3)), where λi constitute the basis of S⊥ = 〈λ1, λ2, λ3〉 =
〈(0, 0, 1, 1), (0, 1, 0, 0), (1, 0, 0, 0)〉.

4.2 On non-existence of linear decompositions

The main question which arises in Theorem 4.2, which is further investigated in rest of
the work, is whether there always exists a subspace S ⊂ F

n
2\D (for arbitrary given set D)

for which Theorem 4.2-(i) holds. The answer is (partially) given by the following result
which describes all sets D, i.e., isig-functions defined on D, which can not be linearly
decomposed in general.

Theorem 4.3 Let f : D → {1, . . . , k} (D ⊂ F
n
2 , #D = k) be an arbitrary isig-function.

If for every z ∈ F
n
2 \ {0n} it holds that (z ⊕ D) ∩ D 	= ∅, then there does not exist a linear

vectorial mapping h(x) = (λ1 · x, . . . , λp · x) (x ∈ F
n
2) with p ≤ n − 1 which is injective

on D. Equivalently, it holds that 	D = F
n
2 \ {0n}.

Proof Suppose that h(x) = (λ1 · x, . . . , λp · x) is an injective mapping on D ⊂ F
n
2, such

that p ≤ n − 1. Let us consider a vector z 	= 0n which is orthogonal on all vectors λi (for
i ∈ [1, p]), i.e., consider a non-zero vector z ∈ 〈λ1, . . . , λp〉⊥. Clearly, such a vector exists
since dim〈λ1, . . . , λp〉 ≤ n − 1. Since for every z ∈ F

n
2 \ {0n} and d ∈ D it holds that
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z ⊕ d ∈ D, then there exists d ′ ∈ D (d ′ 	= d) such that z = d ⊕ d ′, i.e., z ∈ 	D (where
	D is defined by (7)). Recall from [34, Section II] that h is injective on D if and only if
h(v) 	= 0p , for every v ∈ 	D . However, we have that z ∈ 	D and h(z) = 0p since z ⊥ λi

for all i ∈ [1, p], which means that h is not injective.
In order to prove the equality 	D = F

n
2 \ {0n}, it is clear from the previous part (due

to the given assumption) that for every u ∈ F
n
2 \ {0n} it holds that u = d ′ ⊕ d ′′, for some

d ′ ⊕d ′′ ∈ 	D , which means that Fn
2 \ {0n} ⊆ Df ⊂ F

n
2. However, by definition (7) we have

that 0n 	∈ 	D , which proves the statement.

Remark 4.3 In the context of Theorem 4.2-(i), the inequality 	D 	= F
n
2\{0n} means that

we can find at least 1-dimensional subspace S = {0n, ˜d} (˜d 	∈ 	D , ˜d 	= 0n) for which
(d ⊕ S) ∩ D = {d} (for all d ∈ D) holds.

It is important to note that Theorem 4.3 provides an alternative solution for establishing
the minimality of the number of compound variables of a given degenerated incompletely
specified ig-function f (x) = ˜f (y1, . . . , yr ). A description of the SAT-based method, which
also reduces the number of compound variables and establishes the minimality of solution,
by verifying the fact that any further reduction of a given solution is impossible, is given in
[28] (see also [25, Section VII]). In fact, there is no guarantee that either Theorem 4.3 or
SAT-based method achieve the optimality of solution and these results can be rather used in
any algorithm for verifying whether the obtained number of compound variables is minimal
or not, cf. Step 3 in Example 5.1.

As noted by T. Sasao in [25], the SAT-based method is both time and memory consum-
ing and thus only applicable to sets D of relatively small size. Regarding the analysis of
the minimality of the solution, Theorem 4.3 (in comparison to SAT-based method) can be
used even for relatively large sets D and thus can be used in any iterative algorithm which
provides a linear decomposition (for instance, it is used in Algorithm 1 in Section 5.1). The
only condition that need to be checked in Theorem 4.3 is that 	D = F

n
2 \ {0n} and then D

can not be further decomposed.

5 An iterative method for linear decomposition

In this section we derive a new iterative algorithm for linear decomposition of a given isig-
function, which is essentially based on Theorem 4.2. While the basic mode of the new
algorithm is given in Section 5.1, in Section 5.2 we provide additional analyses along with
comparison to other known methods.

5.1 A basic mode of the new algorithm

The main idea behind the recursive employment of Theorem 4.2 is illustrated with the fol-
lowing example, where we firstly recall the following result which is known as Theorem
7.1 in [25].

Theorem 5.1 [25] Let f : D → {1, . . . , k} (D ⊂ F
n
2 , #D = k) be an arbitrary isig-

function. Then f can be degenerated to variables y1, . . . , yr , that is f (x) = ˜f (y1, . . . , yr ),
where yi = λi · x for some vectors λi ∈ F

n
2 , if and only if h(x) = (y1, . . . , yr ) = (λ1 ·

x, . . . , λr · x) is an injective mapping on D.
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Example 5.1 Let f : D = {d1, . . . , d7} → {1, . . . , 7} (D ⊂ F
6
2) be an incompletely

specified ig-function, where the set D is given as

D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

d1
d2
d3
d4
d5
d6
d7

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 1 1 1 0
0 0 0 0 0 1
1 1 1 0 1 1
0 1 0 1 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Step 1: Let us consider the vector σ1 = (0, 0, 0, 0, 0, 1) ∈ F
6
2 \ 	D and define S1 =

{06, σ1}. Now, if we define the characteristic functions φEi
(i ∈ [1, 7]), where Ei =

di ⊕S1, then by Theorem 4.2-(i) it holds that Ei ∩D = {di}. Consequently, the function
f can be represented as f (x) = ∑7

i=1 i ·φEi
(x). Furthermore, Theorem 4.2-(iii) implies

that φEi
can be degenerated to dim(S⊥

1 ) = 5 compound variables y
(1)
i = λ

(1)
i · x (i ∈

[1, 5]), where λ
(1)
i are basis vectors of S⊥

1 = {06, σ1}⊥, which we shortly denote as

S⊥
1 = σ⊥

1 . Considering the canonical basis {λ(1)
1 , . . . , λ

(1)
5 } = {e(1)

1 , . . . , e
(1)
5 } (e(1)

i has

a non-zero coordinate at the i-th position) of S⊥
1 ⊂ F

6
2, we have that y

(1)
i = xi for

i ∈ [1, 5]. Now, due to Theorem 5.1, we can construct a vectorial linear injective function
h1 : D ⊂ F

6
2 → D(1) ⊂ F

5
2 as

h1(x) =
(

y
(1)
5 , . . . , y

(1)
1

)

= (x5, . . . , x1) = xM1, x ∈ F
6
2,

where the matrix M1 is given as M1 = (λ
(1)
5 , . . . , λ

(1)
1 )6×5, and λ

(1)
j (j ∈ [1, 5]) are

written as column vectors.
Step 2: Using the same reasoning as in Step 1, we proceed further with transforming

D(1) to some set D(2) ⊂ F
4
2. Hence, taking σ2 = (0, 0, 0, 0, 1) ∈ F

5
2 \ 	D(1) (	D(1)

defined by (7) with respect to D(1)), we define S2 = {05, σ2}, and consequently for the
second transformation we may take the set {λ(2)

1 , . . . , λ
(2)
4 } = {e(2)

1 , e
(2)
2 , e

(2)
3 , e

(2)
4 } which

is the canonical basis of S⊥
2 = σ⊥

2 ⊂ F
5
2. Thus, the second transformation of D(1) is the

mapping h2 : D(1) → D(2) ⊂ F
4
2 defined as

h2(x) =
(

y
(2)
4 , . . . , y

(2)
1

)

= (x4, . . . , x1) = xM2, x ∈ F
5
2,

where the matrix M2 is given as M2 =
(

λ
(2)
4 , . . . , λ

(2)
1

)

5×4
.

Step 3: Let σ3 = (0, 0, 1, 1) ∈ F
4
2 \ 	D(2) , and define S3 = {04, σ3}. For the

third transformation we may take the basis set
{

λ
(3)
1 , λ

(3)
2 , λ

(3)
3

}

= {(0, 0, 1, 1),
(0, 1, 0, 0), (1, 0, 0, 0)} of S⊥

3 = σ⊥
3 ⊂ F

4
2. Hence, for y

(3)
i = λ

(3)
i (i = 1, 2, 3), the

linear mapping h3 : D(2) → D(3) ⊆ F
3
2 we may define as

h3(x) =
(

y
(3)
1 , y

(3)
2 , y

(3)
3

)

= (x3 ⊕ x4, x2, x1) = xM3, x ∈ F
4
2,

where M3 = (λ
(3)
3 , λ

(3)
2 , λ

(3)
1 )4×3.

At this point, noticing that 	D(3) = D(3) = F
3
2 \ {03} implies, by Theorem 4.3, that D(3)

can not be further transformed by any injective linear mapping with less than 3 coordinate



Cryptography and Communications

functions, i.e., f can not be degenerated to less than 3 variables. These three transformations
of the space D are given by

D
h1−→ D(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 1 1 0 0
0 0 0 0 0
1 0 1 1 1
1 1 0 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

h2−→ D(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1
1 0 0 1
0 1 0 1
0 1 1 1
0 0 0 0
1 1 0 1
1 0 1 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

h3−→ D(3) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0
1 0 1
1 1 0
0 1 0
0 0 0
1 1 1
0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Finally, the linear transformation, say h, which maps D to D(3) = F
3
2 is given as a

composition h(x) = (h3 ◦ h2 ◦ h1)(x), i.e., h(x) = (y1, y2, y3) = xM1M2M3 = (x4 ⊕
x5, x3, x2) (x ∈ F

6
2), and h is an optimal decomposition of D. Also, the function f can

be easily written in terms of compound variables y1, y2, y3 from D(3) as f (x) = ∑7
i=1 i ·

mh(di )(y1, y2, y3).

Before we formally provide an algorithm which is based on the previously presented
idea, we firstly discuss the underlying ideas behind its main steps, as illustrated in Example
5.1. Namely, Theorem 4.2 and Theorem 4.3 ensure that the sequence of injective transfor-
mations reduces the number of compound variables by 1 in each step. Clearly, at each step
one can proceed further if and only if there exists a one-dimensional space Si for which the
condition from Theorem 4.2-(i) is satisfied.

However, with the following example we show that not all choices of (non-zero) vectors
σi in each step lead to the same number of compound variables at the end (and thus an
optimal decomposition is not always guaranteed).

Example 5.2 Consider the setD given as in Example 5.1 and let the first two vectors of transfor-
mations σ1, σ2 be given as σ1 = (1, 1, 0, 1, 1, 1) ∈ F

6
2\	D, σ2 = (1, 0, 1, 0, 1) ∈ F

5
2\	D(1) .

Let the corresponding basis sets {λ(1)
1 , . . . , λ

(1)
5 } of σ⊥

1 and {λ(2)
1 , . . . , λ

(2)
4 } of σ⊥

2 be given as

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ
(1)
1

λ
(1)
2

λ
(1)
3

λ
(1)
4

λ
(1)
5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0 0
1 0 0 0 0 1
1 0 0 0 1 0
1 0 0 1 0 0
1 1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

⎛

⎜

⎜

⎜

⎝

λ
(2)
1

λ
(2)
2

λ
(2)
3

λ
(2)
4

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 0 0 1 0
0 1 0 0 0
1 0 0 0 1
1 0 1 0 0

⎞

⎟

⎟

⎠

.

Now, if we define h1(x) = (λ
(1)
1 · x, . . . , λ

(1)
5 · x) (x ∈ F

6
2) and h2(x) = (λ

(2)
1 ·

x, . . . , λ
(2)
4 ·x) (x ∈ F

5
2), then the linear mapping h2 ◦h1 injectively transforms D to D(2) =

{(0, 0, 0, 1), (0, 0, 1, 1), (0, 0, 1, 0), (1, 0, 1, 0), (0, 1, 0, 0), (1, 0, 1, 1), (1, 1, 1, 1)} so that
	D(2) = F

4
2 \ {04}, which means that D(2) can not be further transformed (Theorem 4.3).

Remark 5.1 It is worth mentioning that for an arbitrary set D there does not always exist
an optimal decomposition (see for instance [25, Example 7.2]), and therefore the optimal-
ity/minimality of a decomposition (in terms of definitions given in Section 2) is not simple
to prove in general.
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The iterative method presented in Example 5.1 (which is based on Theorem 4.2) is
formally described as follows.

Remark 5.2 Note that in Step 1 if for some σi it holds that (σi ⊕D(i−1))∩D(i−1) = ∅, then
σi 	∈ 	D(i−1) , i.e., D(i−1) can be transformed further since D(i−1) 	= F

n−(i−1)
2 \ {0n−(i−1)}

(Theorem 4.3). Thus, by Theorems 4.2 and 4.3, we have that Algorithm 1 provides a
sequence of linear injective transformations of D, given as hi(x) = x ̂Mi, where ̂Mi =
[λ(i)

1 , . . . , λ
(i)
n−i](n−i+1)×(n−i) and the output injective mapping h : D → D(n−r) ⊂ F

r
2 is

given as h(x) = (hn−r ◦ · · · ◦ h1)(x) = x ̂M1 ̂M2 · · · ̂Mn−r = xMn−r (x ∈ F
n
2), where

Mn−r = [λ1, . . . , λr ] is of the size n × r .

Remark 5.3 If we in Step 1 add the condition that wt(σi) = 1, then consequently σ⊥
i

always contains a basis whose vectors are of weight 1. Thus, Algorithm 1 may provide
compound variables of degree equal to 1, which are actually the essential variables of f

(Theorem 4.2-(iv)).

Remark 5.4 In general, Algorithm 1 can produce a transformation of D which reduces the
number of compound variables more than 1 per step. This is achieved if in Step 1 instead of
σi we consider a subspace Si ⊂ F

n−(i−1)
2 \	D(i−1) with dim(Si) ≥ 2 (due to Theorem 4.2).

Clearly, in such a case we are reducing the number of compound variables by dim(S⊥
i ).

However, the problem which we encounter in this case is an efficient search for a subspace
Si outside of 	D(i−1) .

An efficient method of selecting a basis of a given vector σ ∈ F
k
2 (which is needed in

Step 2) is given in the following simple result.

Proposition 5.1 Let σ = (α1, . . . , αk) ∈ F
k
2 \ {0k} be an arbitrary vector, and let

e1, . . . , ek ∈ F
k
2 be the canonical basis of F

k
2. Suppose that p ∈ [1, k] is the minimal integer
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for which αp = 1 (i.e., αj = 0 for j < p), and denote by êj the vectors obtained by
modifying ei as follows:

êj =
{

ej , αj = 0
ep ⊕ ej , αj = 1

, j ∈ {1, . . . , k} \ {p}.

Then the set {̂ej : j ∈ {1, . . . , k} \ {p}} is basis of σ⊥ = {z ∈ F
k
2 : σ · z = 0}.

Proof Let S = {1, . . . , k}\{p} and define A = {j ∈ S : αj = 0} and B = {t ∈ S : αt = 1}.
Then, clearly for all indices j ∈ A it holds that σ · êj = σ · ej = αj · 1 = 0, since
αj = 0. Also, for indices t ∈ B = S \ A (which correspond to αt = 1) we have that
σ · êt = σ · (ep ⊕ et ) = αp · 1 ⊕ αt · 1 = 0, since αt = 1 and αp = 1. Consequently, all
êj are orthogonal to σ . Moreover, due to the definition of êj (j ∈ {1, . . . , k} \ {p}) it is not
difficult to see that they are linearly independent, which completes the proof.

An example which illustrates Proposition 5.1 is given in Appendix. Note that the effi-
ciency of Proposition 5.1 lies in the fact that it keeps the weights of basis vectors at
minimum, and later our experimental results will show that Algorithm 1 in combination with
Proposition 5.1 produces linear decompositions with very low weights (thus suitable for
efficient hardware implementation). Now, the representation of an incompletely specified
ig-function f decomposed by Algorithm 1 is given as follows.

Theorem 5.2 Let f : D = {d1, . . . , dk} → {1, . . . , k} (D ⊂ F
n
2) be an arbitrary

isig-function. Assuming that a linear injective transformation h : D = {d1, . . . , dk} →
D(n−r) ⊂ F

r
2 is obtained by Algorithm 1 (or any other algorithm), where h(x) =

(y1, . . . , yr ) = (λ1 · x, . . . , λr · x) (λi ∈ F
n
2), then the function f is given as

f (x) = ˜f (y1, . . . , yr ) =
k

∑

i=1

i · mh(di )(y1, . . . , yr ).

It is important to notice that Algorithm 1 actually efficiently uses the construction results
given in Section 4 (related to the design of Boolean coordinate functions) in an iterative
manner in order to obtain a decomposition of a given isig-function. Using the same idea,
one may derive various new algorithms (or modifications of Algorithm 1) by considering
other approaches that provide the degeneration of f .

5.2 Analysis of Algorithm 1 and comparisons

In this section we analyze the running time complexity of Algorithm 1 and give a
performance comparison to other methods.

5.2.1 Complexity analysis

The most time-consuming part in Algorithm 1 regards the decision which σi does not belong
to 	D(i−1) (Remark 5.2), due to (plausibly) large cardinality of #	D(i−1) . The problem of
finding such σi is included in the well-known (t, k, v)−T argetSumq (q = 2) problem for
vector spaces, which has been considered in [3] (see also [33, Section 3.1]).

The idea of checking whether (σi ⊕D(i−1))∩D(i−1) = ∅ rather than generating 	D(i−1)

utilize the property that #D � 2n and is similar to the approach taken in [3, Section 4].
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Table 4 Complexities of existing methods

Methods [19] [24] [31] [17] [12] [22] [1]

Time O(n5k) O(nt k log(k)) NA O(nsk log(k)) O(ntk log(k)) Too long O
(

(

n
s∗

)2
n2m

)

(generates 	D)

Space O(nk) O(nt k) O(nk2) O(nk) O(nk) O(k22n) NA

This implies that the time complexity of deciding whether σi outside of 	D(i−1) (for fixed
i ≥ 1) in Step 1 is at most k · O(n − i + 1) to compute σi ⊕ d, for d ∈ 	D(i−1) . A loose
upper bound on this complexity is kn since the verification that (σi ⊕D(i−1))∩D(i−1) = ∅
may be terminated before computing σi ⊕d for all d ∈ 	D(i−1) and the length of the vectors
σi and d is in general n − i − 1 < n. In average, also confirmed by computer simulations,
one needs to check approximately less than k many vectors σi until a suitable σi is found
which satisfies (σi ⊕D(i−1))∩D(i−1) = ∅. Thus, an upper bound on finding σi is therefore
O(k2n).

In addition, using that the complexity of computing a product of two quadratic matrices
of size n × n is O(n2.34) and taking into account that our matrices n × (n − i + 1) and
(n−i+1)×(n−i) a good estimate for this operation isO(n2) since the sizes are smaller than
n × n. This implies that the complexity in each step (upper bound) is O(k2n + n2). Notice
that, for a standard size of parameters k and n, the complexity of computing the orthogonal
basis using the method given in Proposition 5.1 is neglected. Thus, the time complexity of
Algorithm 1 is then (n−r+1)O(k2n+n2) taking into account that there are in total n−r+1
steps. The memory complexity refers to storing the matrix Mi and the set D(i) ⊂ F

n−i
2

so that it can be upper bounded by O(n2 + kn). The above complexity estimates are very
conservative but they anyway provide a rough upper bound for the purpose of a performance
comparison to other algorithms. In most cases n � k and therefore the time and memory
complexity are (n − r + 1)O(k2n) and O(kn), respectively.

Remark 5.5 Note that further complexity reduction of Step 1 can be achieved by imple-
menting the algorithm described in [3, Section 4 ], which is based on Fast Fourier Transform
and convolution (for more details see [3, Facts 6-7]). In that case, the time of finding σi in
Step 1 can be solved in deterministic 2O(2) · k · O(n) time (cf. [3, Theorem 13]).

In Tables 4 and 5 we compare the running complexities between various methods which
provide either compound variables or essential variables in the decomposition process.
Here, n is the number of variables, k is the number of indices (#D = k), t is the maxi-
mum compound degree, and s is the number of initial variables taken out of n variables to
initialize the method. Note that [1] is tested on s∗-out-of-n binary code with m variables.

Table 5 Complexity of our
method with respect to different
modes

Methods Ours Ours

(basic mode) ([3, Theorem 13] mode)

Time (n − r + 1)O(k2n) 2O(2)(n − r + 1)O(kn)

Space O(kn) O(kn)
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Table 6 The performance of Algorithm 1 on arbitrary sets D ⊂ F
n
2: �log2 k� is the optimal number of

compound variables, L = 2�log2(k + 1)� − 4

n #D = k Number
of random
sets D

Average value
of #	D

Average number
of compound vari-
ables derived by
Algorithm 1 (in
brackets are given
lower and upper
bounds over all D)

Maximal compund
degree over all D

�log2 k� L

5 5 50 23.2 3 Mostly 1 (Over all ≤ 2) 3 2

10 50 24.7 4 ≤ 2 4 4

10 50 25.3 4 Mostly 1 − 2 (Over all ≤ 3) 4 4

7 20 50 26.7 5.5 (5-6) Mostly 1 − 2 (Over all ≤ 3) 5 6

30 50 26.9 6.2 (6-7) ≤ 2 5 6

20 50 27.3 5.5 (5-6) ≤ 3 5 6

9 35 50 28.5 6.8 (6-7) Mostly 1 − 2 (Over all ≤ 4) 6 8

50 50 28.9 7.4 (7-8) ≤ 3 6 8

20 50 27.5 5.5 (5-6) ≤ 3 5 6

50 50 29.8 7.6 (7-8) ≤ 3 6 8

11 80 30 210.6 8.9 (8-9) Mostly 1 − 2 (Over all ≤ 3) 7 10

100 20 210.8 9 Mostly 1 − 2 (Over all ≤ 3) 7 10

200 20 210.9 11 − 8 12

100 10 211.8 9 ≤ 4 7 10

13 300 10 212.9 12 ≤ 2 9 14

500 5 212.9 13 − 9 14

700 5 212.9 13 − 10 16

100 10 212.3 9 ≤ 4 7 10

17 200 10 214.2 11 Mostly 1 − 2 (Over all ≤ 3) 8 12

300 5 215.2 12 ≤ 3 9 14

25 50 50 − 7.6 (7-8) ≤ 3 6 8

100 50 − 9 ≤ 3 7 10

5.2.2 Comparisons to other methods

In Tables 6 and 7 we show the performance of Algorithm 12 for randomly selected sets D,
where in Step 1 of the algorithm a basis of σ⊥

i is selected as described in Proposition 5.1
(which appears to be quite efficient approach). Also, the performance of Algorithm 1 in
providing essential (and compound) variables, along with comparison to other methods, is
given by Tables 7 and 8.

Note that Tables 6, 7 and 8 illustrate the performance of our method on randomly selected
sets D exclusively. We find certain methods that justify the algorithm performance on m-
out-of-n sets (codes) D, as slightly misleading since such sets possess a structure which

2Algorithm 1 was implemented in Wolfram Mathematica 9, on the machine with the following characteris-
tics: Lenovo ThinkPad E540, OS Windows 7 (64-bit), Intel Core i5-4200M-2.5GHz, RAM 4Gb.
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Table 8 The performance of Algorithm 1 on arbitrary sets D ⊂ F
n
2 in providing essential variables: Ceiling

of M50 is the lower bound given by [32, Property 4.1], L = 2�log2(k + 1)� − 4

n #D = k Number of
random sets D

Average number of compound
variables derived by Algorithm 1
(in brackets are given lower and
upper bounds over all D)

�log2 k� M50 L

5 5 100 3.1 (3-4) 3 2.01 2

10 100 4.5 (4-5) 4 3.69 4

10 30 100 7.4 (7-8) 5 6.22 6

50 100 8.7 (8-10) 6 7.80 8

100 100 9.9 (9-10) 7 9.61 10

15 80 100 9.9 (9-10) 7 8.45 10

150 100 11.6 (11-13) 8 10.38 12

250 50 13.1 (12-14) 8 12.05 12

17 80 50 10 (9-10) 7 8.25 10

200 30 12.4 (12-13) 8 10.97 12

350 20 14 (13-16) 9 12.76 14

20 100 50 10.5 (9-12) 7 8.67 10

300 20 13.6 (13-14) 9 11.85 14

400 20 14.2 (13-15) 9 12.72 14

Note: Algorithm 1 stops when in Step 1 there does not exist a vector σi with wt(σi) = 1

can be utilized in order to obtain claimed efficiency (see for instance [24, Section V], [15,
Section 7.1], [9, Section 3]). Recall that, by definition, the set D is not generated by any
rule and therefore the assumption on randomness is well motivated.

The main properties of Algorithm 1 can be summarized as follows:

• From presented results (Tables 6, 7 and 8) we conclude that Algorithm 1 can be seen
as a semi-deterministic algorithm since it provides compound variables whose degree
in most of the cases is upper bounded by 3 for various parameters n and k (set D

is random). In addition, it provides a linear decomposition of a given isig-function
which is nearly optimal (Table 6) in almost all cases for which the decomposition is not
considered to be difficult (in terms of [32, Property 4.2]).

• The presented results indicate that the number of compound variables agrees with
Properties 4.1, 4.2 and 4.3 given in [32]. In this context, Algorithm 1 shows some-
what weaker performance in derivation of essential variables (Tables 7 and 8) than the
derivation of compound variables whose degree is not necessarily equal to 1 (Table 6).
Regarding [32, Property 4.1], the difference |r − �M50�| in Table 7 for t = 1 ranges
from 2.4 to 3.6, while in Table 8 is at maximum 2.

Remark 5.6 Notice in Table 6 that for sets D with large #	D Algorithm 1 does not provide
a significant reduction of compound variables, which actually agrees to the upper bound
n ≤ L, which is Property 4.2 in [32]. In other words, for n relatively close to L, with L ≤ n,
the reduction of variables is considered to be difficult.
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6 Conclusions

In this work we have shown that the linear decomposition of a given isig-function (defined
on a set D ⊂ F

n
2) is closely related to Walsh supports of its coordinate Boolean func-

tions and the structure of D. It turns out that the representation of an isig-function, which
refers to defining its coordinate functions on whole space F

n
2, plays an important role. In

this context, we have provided several general/specific construction methods of coordinate
functions for which the linear decomposition is possible, along with the general test for
checking whether the linear decomposition is possible at all (that is Theorem 4.3). In addi-
tion, we showed that the recursive employment of these results, in order to derive a linear
decomposition of a given isig-function, is a promising approach which may lead to various
new (semi)deterministic algorithms such as our Algorithm 1 given in Section 5.1.

Regarding the questions posed in Section 3, using the representation of an isig-function
as in (4), by Theorem 4.2 and Algorithm 1 we have partially answered the question (I).
While the question (II) is completely answered by Theorem 3.3, the question (III) is to a
certain extend addressed by Theorem 4.2 in the case when 	D is not too large, since it
provides an explicit method of linear decomposition of an isig-function.
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Appendix

The performance of Algorithm 1 shown in Tables 6, 7 and 8 uses Proposition 5.1 for finding
a basis of σ⊥

i in Step 1.

Example A.1 Let us consider σi = (α1, . . . , α4) = (1, 0, 1, 1) ∈ F
4
2 (n − (i − 1) = 4).

We have that p = 1 is the minimal index in {1, . . . , 4} such that αp = 1. Note that one
may consider other indices p as well (not necessary the minimal one). Using the vectors
e1, . . . , e4 ∈ F

4
2, we have that êj (for j ∈ {2, 3, 4} = {1, 2, 3, 4} \ {p}), defined as in

Proposition 5.1, are given as
⎛

⎝

ê2
ê3
ê4

⎞

⎠ =
⎛

⎝

e2
e1 ⊕ e3
e1 ⊕ e4

⎞

⎠ =
⎛

⎝

0 1 0 0
1 0 1 0
1 0 0 1

⎞

⎠ .

Thus the set {̂e2, ê3, ê4} is basis of σ⊥.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.



Cryptography and Communications

References
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