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ABSTRACT

RNA-binding proteins (RBPs) control the regulation of gene expression in eukaryotic genomes at post-transcriptional level by
binding to their cognate RNAs. Although several variants of CLIP (crosslinking and immunoprecipitation) protocols are
currently available to study the global protein–RNA interaction landscape at single-nucleotide resolution in a cell, currently
there are very few tools that can facilitate understanding and dissecting the functional associations of RBPs from the resulting
binding maps. Here, we present Seten, a web-based and command line tool, which can identify and compare processes,
phenotypes, and diseases associated with RBPs from condition-specific CLIP-seq profiles. Seten uses BED files resulting from
most peak calling algorithms, which include scores reflecting the extent of binding of an RBP on the target transcript, to
provide both traditional functional enrichment as well as gene set enrichment results for a number of gene set collections
including BioCarta, KEGG, Reactome, Gene Ontology (GO), Human Phenotype Ontology (HPO), and MalaCards Disease
Ontology for several organisms including fruit fly, human, mouse, rat, worm, and yeast. It also provides an option to
dynamically compare the associated gene sets across data sets as bubble charts, to facilitate comparative analysis.
Benchmarking of Seten using eCLIP data for IGF2BP1, SRSF7, and PTBP1 against their corresponding CRISPR RNA-seq in K562
cells as well as randomized negative controls, demonstrated that its gene set enrichment method outperforms functional
enrichment, with scores significantly contributing to the discovery of true annotations. Comparative performance analysis
using these CRISPR control data sets revealed significantly higher precision and comparable recall to that observed using ChIP-
Enrich. Seten’s web interface currently provides precomputed results for about 200 CLIP-seq data sets and both command line
as well as web interfaces can be used to analyze CLIP-seq data sets. We highlight several examples to show the utility of Seten
for rapid profiling of various CLIP-seq data sets. Seten is available on http://www.iupui.edu/∼sysbio/seten/.

Keywords: RNA-binding proteins; CLIP (crosslinking and immunoprecipitation); gene set enrichment; functional enrichment;
genotype–phenotype; post-transcriptional networks

INTRODUCTION

Genes are transcribed into RNAs but these RNAs are not ma-
ture, especially in eukaryotic organisms where there are sev-
eral layers of post-transcriptional regulation. Therefore, they
must be processed before they are translated into protein
products in the ribosomes. These post-transcriptional pro-
cesses include 5′ capping, 3′ polyadenylation, splicing, and
possibly RNA editing. Processes such as 5′ capping and 3′

polyadenylation ensure that ends of the RNA are protected
during their maturation and their stability regulated

(Shatkin and Manley 2000). The splicing process joins differ-
ent parts of a protein coding sequence together as a typical
eukaryotic gene includes exons separated by long noncoding
sequences (i.e., introns) (McManus and Graveley 2011). It
also provides the ability to produce different protein products
(by joining different exons) as a result of alternative splicing
of the same gene in eukaryotes. RNA editing is another
mechanism of post-transcriptional regulation that results in
the alteration of one or more nucleotides in the RNA
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molecule (Samuel 2003). These processes, as well as trans-
port, degradation, and translation of the RNAs, are mediated
by RNA-binding proteins (RBPs) (Gerstberger et al. 2014;
Neelamraju et al. 2015). In cells, RNA is found to be as-
sembled with RBPs and other proteins forming ribonucleo-
protein complexes (RNPs) (Janga 2012). For example, the
SR protein SF2/ASF acts from alternative splicing to transla-
tion of an RNA (Kim et al. 2009). Moreover, some heteroge-
neous nuclear ribonucleoproteins (hnRNPs) are known to
participate in RNA splicing, 3′-end processing, transcription-
al regulation, and immunoglobulin gene recombination
(Chaudhury et al. 2010).
Understanding these dynamic post-transcriptional regula-

tory networks requires the study of interactions between
RNAs and RBPs. For this purpose, crosslinking and immu-
noprecipitation (CLIP) and related experimental protocols
have been devised. All CLIP protocols involve RNA–RBP ul-
traviolet (UV) crosslinking followed by immunoprecipita-
tion against an RBP of interest (Ule et al. 2003). There are
several CLIP protocols: CLIP-seq, PAR-CLIP, HITS-CLIP,
and iCLIP. CLIP-seq protocol involves sequencing the
cDNA library created from the RNA, which was previously
purified by proteinase digestion after UV crosslinking and
immunoprecipitation (Konig et al. 2011). For instance,
PAR-CLIP (photoactivatable-ribonucleoside-enhanced cross-
linking and immunoprecipitation) is a modified CLIP-seq
technology that involves the use of photoreactive ribonucle-
oside analogs. These analogs can be ultraviolet crosslinked to
interacting RBPs and are modified upon crosslinking. Hence,
they can be used to separate RNAs bound by the RBP of in-
terest from the background unbound RNAs (Spitzer et al.
2014). HITS-CLIP (high-throughput sequencing of RNA iso-
lated by crosslinking and immunoprecipitation) is another
CLIP protocol that overcomes the limitation in the low num-
ber of tags by yielding a higher number of tags for the same
cost (Darnell 2010). iCLIP (individual-nucleotide resolution
UV crosslinking and immunoprecipitation) is yet another
CLIP protocol that provides genome scale, high-resolution,
and specificity methods to enable analysis of cDNAs that
are truncated at the RNA–RBP crosslink sites (Huppertz
et al. 2014). Several computational methods have been devel-
oped for peak detection indicating the extent of binding from
the data produced by these protocols. A common first step in
all these frameworks before the peak detection is to map all
the reads to the genome/transcriptome using algorithms
such as Bowtie, RMAP, Novoalign (http://www.novocraft.
com/products/novoalign/), and TopHat (Langmead et al.
2009; Smith et al. 2009; Trapnell et al. 2009; Kim et al.
2013). After mapping, cluster detection is performed, where
a read belongs to a cluster if it overlaps at least one nucleotide
with another read from the cluster. At this step, in order to
filter noise, reads with a length greater than a determined
threshold and clusters with a minimum number of unique
reads can be selected for peak detection. The most common
approach for peak detection is to analyze cluster distribution

profiles by improving the signal-to-noise ratio, and hence re-
moving background and false positives. The software that use
this strategy include WavClusteR, PARalyzer, Piranha, PIPE-
CLIP, and dCLIP (Corcoran et al. 2011; Uren et al. 2012;
Chen et al. 2014; Reyes-Herrera and Ficarra 2014; Wang
et al. 2014; Comoglio et al. 2015).
Although these tools are available for post-processing

CLIP-seq data, there is no specific tool to either perform an
enrichment analysis on such data sets or to compare them
for functional or phenotypic differences. Perhaps the only
tool that can perform gene set enrichment analysis for
ChIP-seq data sets and could be configured for CLIP-seq
data sets is ChIP-Enrich (Welch et al. 2014). Although
ChIP-seq and CLIP-seq protocols are fundamentally differ-
ent at several levels including approaches used for cross-link-
ing, reagents used for sequencing library preparation,
efficiency of crosslinking, as well as the peak calling algo-
rithms employed, ChIP-Enrich provides an option to per-
form enrichment analysis of CLIP-seq processed outputs.
The principle of an enrichment analysis is to associate gene
sets (i.e., groups of relevant genes; e.g., processes, pheno-
types, or diseases) with a given study by using the fact that
the cofunctioning genes should have a higher potential to
be detected by the high-throughput technologies (e.g.,
CLIP protocols). Such an approach can make the analysis
of large gene lists move from an individual gene-oriented
view to a relevant gene group-based analysis (Huang da
et al. 2009). Huang da et al. (2009) categorize the available
enrichment analysis methods into three groups. First, the sin-
gular enrichment analysis (SEA) group: Enrichment P-value
in these methods is calculated on each gene set from the pre-
selected interesting gene list utilizing Fisher’s exact test, χ2, or
binomial statistical methods. In the second group, gene set
enrichment analysis (GSEA) methods, a complete set of
genes (without preselection) and corresponding experimen-
tal values are given, and they utilize Kolmogorov–Smirnov-
like, t-test, permutation, or z-score statistical methods. The
last group is modular enrichment methods, which are similar
to SEA but hierarchy among gene sets or genes are considered
into the enrichment P-value calculation by utilizing κ statis-
tics and Czekanowski–Dice Pearson’s correlation (Huang da
et al. 2009). While these methods are available for functional
analysis or functional enrichment of genes from microarray
and RNA-seq with some efforts specific to RIP-chip data
(Erhard et al. 2013), no methods are available that can con-
sider the binding affinity or scores of an RBPs binding poten-
tial on an RNA from CLIP-seq protocols to identify/perform
an enrichment analysis using both functional and gene set
enrichment approaches. Since it is increasingly appreciated,
and an array of new technologies such as RBP Bind-n-Seq
(Lambert et al. 2014, 2015) and DO-RIP-seq (Nicholson
et al. 2016) are being developed to study the binding affinities
of RBPs on target sites, it becomes important to leverage the
signal strength of binding from CLIP-seq profiles for down-
stream functional analysis. Seten is able to do so by assuming
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that the binding score resulting from a
peak calling method is a proxy for the ex-
tent of regulatory control of the RBP on
the target transcript.

The primary foundation of Seten (http
://www.iupui.edu/~sysbio/seten/) is to
identify and compare processes, pheno-
types, and diseases associated with RNA-
binding proteins from condition-specific
CLIP-seq profiles, given binding profile
data sets provided asBED (browser exten-
sible data) files. Seten comes with a web
interface (WI) developed in JavaScript
and a command line interface (CLI) de-
veloped in Python. Seten WI provides an
easy to use front end without the need
for installation and a better visualization
and comparison of the enrichment re-
sults. Seten CLI is able to analyzemultiple
data sets in a single command and both
the interfaces canbe configuredwithmul-
tiple options.

RESULTS

Overview of Seten

In Seten, for each input BED file that has
at least the five columns, namely, chro-
mosome, chromosome start, chromo-
some end, feature name, and score
associated with the binding of an RBP re-
sulting from running a peak calling algo-
rithm on a genome-aligned CLIP-seq
data set, a gene set enrichment analysis
(GSEA) is performed against the gene
set collections selected by the user (Fig.
1, see Materials and Methods). Both the
web interface (WI) and command line
interface (CLI) versions of Seten current-
ly support the gene sets from BioCarta,
KEGG, Reactome, Gene Ontology (GO) biological process,
GO molecular function, GO cellular compartment, Human
Phenotype Ontology (HPO), and MalaCards Disease
Ontology for organisms including fruit fly, human, mouse,
rat, worm, and yeast, with the CLI allowing the user to in-
clude additional gene set collections and organisms
(Supplemental Table S1). To facilitate easy access and naviga-
tion of existing CLIP-seq data sets, Seten WI includes results
from precomputed functional analysis of 68 human RBPs ob-
tained from CLIPdb as well as 138 human RBPs profiled
in the ENCODE project (Supplemental Tables S2, S3). In ad-
dition to providing precomputed integrated functional anal-
ysis of dozens of CLIP-seq experiments, Seten WI also
provides a user-friendly interface to compare the resulting

annotations across experiments and RBPs as exportable bub-
ble charts.

Seten’s gene set enrichment outperforms functional
enrichment, with peak scores contributing to the
discovery of true annotations

In order to evaluate the performance of Seten, we employed
the gene set and functional enrichment implementations in
Seten and compared their performance against “negative
control” BED files generated using BEDTools (Quinlan and
Hall 2010) for eCLiP peaks of RBPs (IGF2BP1, PTBP1,
SRSF7 in K562 cell line) (see Materials and Methods). For

FIGURE 1. Flowchart showing an overview of Seten’s implementation for doing gene set and
functional enrichment analysis from CLIP-seq data sets. Peak-detected data sets from RBP-spe-
cific CLIP-seq studies, CLIPdb, and ENCODE projects (Yang et al. 2015; Van Nostrand et al.
2016) are obtained as BED files to provide input to Seten. We organized several gene set collec-
tions for multiple genomes including fruit fly, human, mouse, rat, worm, and yeast. Currently
included gene set collections comprise pathway annotations (BioCarta, KEGG, and Reactome),
Gene Ontology annotations (biological process, molecular function, cellular compartment),
Human Phenotype Ontology (HPO—human only), and MalaCards Disease Ontology (human
only) (Kanehisa and Goto 2000; Nishimura 2001; Milacic et al. 2012; Kohler et al. 2014;
Rappaport et al. 2014; Fabregat et al. 2016; Kanehisa et al. 2016). Supplemental Table S1 shows
the number of gene sets across gene set collections currently available across organisms in Seten.
Scores associated with each gene from a BED file are employed for gene set enrichment analysis by
organizing the scores according to the chosen scoring method. Scores mapped onto the genes are
used to compute an enrichment using a competitive permutation test, and corrected P-values
from multiple testing are reported. In contrast, the functional enrichment method only uses
the associated genes and not the scores fromBED files for enrichment analysis using Fisher’s exact
test and computes a false discovery rate.
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each eCLIP data set and their corresponding negative con-
trols, we benchmarked the performance of the gene set and
functional enrichment implementations against the annota-
tions identified using the CRISPR RNA-seq gold standard
for the corresponding RBPs in the K562 cell line (see
Materials and Methods). We ran Seten using default param-
eters (i.e., corrected P-value [<0.01], gene set size [<350],
number of gene set hits per RBP [>10]) for both the eCLIP
and each negative BED separately. The F1 score, which is
the harmonic mean of precision and recall, was computed
for respective Seten runs against CRISPR gold standard
annotations (Materials and Methods). For random data, we
repeated the process for five random negative controls for
each RBP and report the average F1 score for each RBP, as
shown in Figure 2. Our results show that gene set enrichment
exhibits relatively higher performance than functional en-
richment for both the Reactome and GO Biological Process
annotations (Fig. 2). F1-scores were also found to be signifi-
cantly higher for eCLIP data compared to the negative
controls resulting from randomized scores or genomic coor-
dinates, for the gene set enrichment method (Fig. 2). In con-
trast, for functional enrichment, although results compared

to randomized coordinates were higher, there was no signifi-
cant difference in F1-scores compared to the randomized
peak scores, suggesting that while functional enrichment is
not impacted by the scores, gene set enrichment implemen-
tation has a significant improvement due to the use of scores
(Fig. 2). Overall, although we have employed the maximum
score for each gene as the scoring method, our analysis dem-
onstrates that Seten’s gene set enrichment implementation is
likely to outperform functional enrichment for inference of
annotations from eCLIP profiles, by exploiting the scores
that can act as proxy for the extent of binding.

Seten can identify human phenotypic associations
for RBPs profiled using diverse CLIP protocols

We ran Seten CLI on 206 human CLIP-seq data sets collected
fromCLIPdb and ENCODE to obtain gene set and functional
enrichment results for multiple gene set collections (see
Materials andMethods). We then filtered the gene set enrich-
ment results for gene sets according to a corrected P-value
(<0.01), gene set size (<350), number of gene set hits per
RBP (>10), and limited the gene set collection to Human
Phenotype Ontology (HPO) only. Since functional analysis
on several of the RBPs using Gene Ontology (GO) and path-
way level annotations has been performed in respective orig-
inal CLIP studies, we preferred to focus our analysis in this
section on the phenotypes identified by Seten using gene set
enrichment, which was found to outperform the simple func-
tional enrichment analysis. The results of these phenotype as-
sociations after the above-described filters have been applied
are shown as a heatmap in Figure 3, generated by using the R
package pheatmap (Kolde 2015). As can be seen in the heat-
map, RBPs that belong to the same family were generally
found to be clustered together, suggesting their phenotypic
impact is likely similar. Among heterogeneous nuclear ribo-
nucleoproteins (hnRNPs), hnRNP A1 and hnRNP U clus-
tered together and were found to have the most number of
HPO associations. hnRNP A1 nucleocytoplasmic shuttling
activity has been reported to be required for normal myelo-
poiesis and BCR/ABL leukemogenesis (Iervolino et al.
2002). Our results from Seten for hnRNP A1 (K562 cell
line/chronic myelogenous leukemia) indicate strong links to
HPO gene sets such as erythroid hypoplasia (P-value =
0.001), acute leukemia (P-value = 0.001), and thrombocyto-
sis (P-value = 0.001). hnRNP U has been shown to be linked
withmyeloid leukemia factor 1 (MLF1), which is an oncopro-
tein associated with hemopoietic lineage commitment and
acute myeloid leukemia (Winteringham et al. 2006). In addi-
tion, hnRNPUhas also been shown to regulate the β-transdu-
cin repeat-containing protein ubiquitin ligase (E3RS), which
is linked to colorectal cancer (Davis et al. 2002; Ougolkov
et al. 2004). Our results for hnRNP U include colon cancer
(P-value = 0.0110) and acute leukemia (P-value = 0.0210).
Additionally, we have obtained a recent iCLIP data set of
FASTKD2 (FAS-activated serine/threonine kinase D2—in

FIGURE 2. Comparison of Seten’s gene set and functional enrichment
methods against negative control. Histograms showing the performance
comparison of Seten’s gene set enrichment analysis (GSEA) and func-
tional enrichment (FE) options along with their corresponding random
BED files for each RBP, benchmarked against their CRISPR RNA-seq
gold standard. F1 score, harmonic mean of precision and recall, repre-
sented on y-axis for each data set/option, was computed against CRISPR
gold standard separately for (A) Reactome and (B) GO Biological
Process by running Seten using eCLiP peaks (in red) and “negative con-
trol” peaks (test peaks with randomized peak score shown in orange, test
peaks with randomized peak coordinates shown in gray). Negative con-
trol BED files for each RBP were generated using BEDTools, as described
in Materials and Methods.

Gene set enrichment on peak-detected CLIP-seq data
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HEK293, human embryonic kidney cell line) where
FASTKD2’s role as an RBP is investigated (Popow et al.
2015) (see Materials and Methods). FASTKD2 is a recently
discovered noncanonical RBP, which has been shown to be
linked to mitochondrial encephalomyopathy (Ghezzi et al.
2008).We ran SetenCLI for this data set using default options,
and the results from MalaCards Disease Ontology clearly in-
dicated MELAS syndrome (P-value = 0.001) as one of the
most significantly associated diseases. MELAS stands for mi-
tochondrial encephalomyopathy, lactic acidosis, and stroke-
like episodes and is one of the family of mitochondrial
cytopathies.MELAS is known to affectmanyof the body’s sys-
tems, particularly the brain and nervous system (encephalo-)
and muscles (myopathy), and is documented to be caused by
mutations in the genes in mitochondrial DNA. Similarly, the
FASTKD2 (K562) data set we obtained from ENCODE pro-
ject also had MELAS syndrome as one of the significant hits
(P-value = 0.0240) in its MalaCards Disease Ontology results.

Cell type-specific differences in gene set associations
can be identified by Seten

The above results also suggest that it is possible to not only
identify the gene set associations of an RBP, but RBPs pro-
filed in different cell lines and conditions can be compared
for one or more gene set collections. Such a feature is avail-
able in Seten WI for both precomputed CLIP-seq data sets
as well as for user uploaded BED formatted CLIP results.

Seten can compare one or multiple gene set collections across
conditions/cell lines of one or more RBPs to dynamically
generate bubble charts for easy comparison of differences
in the significance of associated gene sets. In both CLIPdb
and ENCODE data sets, some RBPs have CLIP data from dif-
ferent cell lines, which allowed us to use Seten for comparing
these cell type-specific data sets.
The two FASTKD2 data sets discussed in the previous sec-

tion also exhibit cell line-specific differences as shown in
Figure 4A. While the FASTKD2/K562 (human bone marrow
cell line having chronic myelogenous leukemia) gene set en-
richment results show pure red-cell aplasia (P-value =
0.001) and Diamond–Blackfan anemia (P-value = 0.001),
the other FASTKD2/HEK293 does not exhibit these disease
annotations.
DEAD-box helicase 6 (DDX6) is an RNA helicase found in

P-bodies and stress granules and it functions in mRNA deg-
radation and translation suppression (Wang et al. 2015). It
has been shown to contribute to lymphoma genesis by dereg-
ulation of BCL6 (B-Cell CLL/Lymphoma 6) in nodal margin-
al zone lymphoma (Stary et al. 2013). It has also been shown
to be required for efficient hepatitis C virus replication
(Jangra et al. 2010). Figure 4B (a small subset of Supplemen-
tal Fig. S2) shows a bubble chart comparing the significance
scores for MalaCards Disease Ontology term associations for
DDX6/K562 (chronic myelogenous leukemia cell line) and
DDX6/HepG2 (hepatocellular carcinoma cell line). As is ev-
ident from the chart, while monocytic leukemia (P-value =

FIGURE 3. The inset of a heatmap (given in Supplemental Fig. S1) showing the clustering of RBPs based on their predicted human phenotypic as-
sociations from Seten. A total of 51 RBPs that had at least 160 phenotypic associations at a minimal gene set P-value of 0.01 were employed to generate
this heatmap. Hierarchical clustering of the data on both axes revealed RBPs, which are likely to exhibit similar phenotypes as well as phenotypes
shared by the RBPs included in this study. Only RBPs that had more than 10 gene sets associated and only gene sets that had less than 350 genes
and exhibited a minimal P-value of 0.01 are included in this heatmap.
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0.0110) is specific to the K562 sample, fatty liver disease (P-
value = 0.0140), liver cirrhosis (P-value = 0.001), and hepa-
toblastoma (P-value = 0.001) are specific to the HepG2 sam-
ple. However, we also see acute promyelocytic leukemia to be
significant (P-value = 0.008) for DDX6/HepG2. This might
be seen because DDX6 activation has been observed in acute
leukemia (Poppe et al. 2004). Additionally, mantle cell lym-
phoma (P-value = 0.001 for DDX6/K562) and anaplastic
large cell lymphoma (P-value = 0.005 for DDX6/K562 and
0.001 for DDX6/HepG2) appear as significant hits.
Moreover, viral hepatitis is one of the significant hits for
DDX6/HepG2 (P-value = 0.0150). These results suggest
that Seten can be employed to study and navigate condition
and cell line, as well as tissue-specific variations in the gene
set associations for RBPs, starting from CLIP-seq data.

Seten’s GO Biological Process and Reactome results
agree with ChIP-Enrich gene set enrichment tool results

Since there are no existing tools to perform a gene set en-
richment analysis on CLIP-seq data sets, in order to compare
our results we used the ChIP-Enrich (C-E) gene set enrich-
ment tool originally developed for ChIP-seq data sets by con-
figuring its options to make it suitable for CLIP-seq data sets
(Welch et al. 2014). We set the locus definition option to
“Nearest gene” to assign all peaks to the nearest gene that
is similar to our approach. We limited our comparison to
GO Biological Process (GOBP) from Gene Ontology and
Reactome from pathway databases. We filtered out the gene
sets having more than 350 genes to be consistent with the de-
fault threshold in Seten. We ran both tools for several data
sets from the ENCODE project. To compare the results, we
filtered the enriched gene sets using the P-value threshold

(corrected P-value <0.05 in the respective tools) and then
ranked them separately. Finally, we took the overlapping
gene sets between them and did a hypergeometric test to
determine the significance of the overlap between the two
approaches. We first compared Alanyl-tRNA Synthetase
(AARS–K562) GOBP and Reactome results, which yielded
a GOBP P-value of 6.15 × 10−14 and a Reactome P-value of
5.44 × 10−27 (hypergeometric test), indicating a significant
agreement of the discovered processes and pathways between
the two methods (Fig. 5A; Supplemental Table S2). We then
compared the putative RNA-binding protein 15 (RBM15–
K562) results for GOBP and Reactome gene set collections
and obtained a GOBP P-value of 6.42 × 10−25 and a
Reactome P-value of 2.70 × 10−49, suggesting a significant
overlap (Fig. 5B; Supplemental Table S3). We finally com-
pared Fragile X Mental Retardation 1 (FMR1–K562) GOBP
and Reactome results, which yielded a GOBP P-value of
2.59 × 10−24 and a Reactome P-value of 6.90 × 10−35, indicat-
ing the reproducibility of the enriched processes/pathways
between the methods (Fig. 5C; Supplemental Table S4).

Benchmarking of Seten and ChIP-Enrich against CRISPR
RNA-seq reveals superior performance of Seten

Recent progress in utilizing CRISPR/Cas9 technologies for
genome editing has enabled rapid sequencing-based profiling
of genomic phenotypes (D’Agostino and D’Aniello 2017).
Although the majority of the RBPs are known to be encoding
for essential genes (Mittal et al. 2009), the ENCODE project
has been successful in generating RNA-sequencing data of
CRISPR/Cas9 based knockouts of several RBPs, including
IGF2BP1, SRSF7, and PTBP1 in the human K562 cell line
(The ENCODE Project 2017). Hence, to generate a gold

FIGURE 4. (A) The dynamically generated bubble chart from Seten WI, showing the comparison of significantly enriched MalaCards Disease
Ontology terms for FASTKD2 in HEK293 and K562 cell lines. (B) The inset of a dynamically generated bubble chart from Seten WI (given in
Supplemental Fig. S2), showing the comparison of significantly enriched MalaCards Disease Ontology terms for DDX6 in K562 and HepG2 cell lines.
Only gene sets that had >5% of the total genes and exhibited a minimal P-value of 0.05 in one of the cell lines are included in this comparison. The
radius of bubbles is computed as negative log10 (corresponding P-value).
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standard set of functional annotations impacted by these
RBPs and to benchmark both Seten and ChIP-Enrich tools
against this common reference set for which both eCLIP
and CRISPR data are available, we processed and organized
the CRISPR RNA-seq data as described in Materials and
Methods. By utilizing the functional annotations obtained
from gene set enrichment analysis of the relative gene expres-
sion changes from CRISPR control versus knockout for each
of these RBPs, as the gold standard, we compared the perfor-
mance of both the tools against this reference by computing
precision and recall (see Materials and Methods). As shown
in Figure 6, for each of these three RBPs, Seten was found
to exhibit significantly higher precision for both Reactome
and GO Biological Process annotations compared to that ob-
served for ChIP-Enrich (C-E). Seten exhibited an average
precision of 72% and 58% for Reactome and GOBP gene
sets. In contrast, C-E was found to show an average precision
of 42% and 8%, respectively, indicating that Seten is more
suitable for functional annotation of CLIP-seq data (Fig. 6).
Comparison of the average recall values between the tools in-
dicated that, while Seten exhibited higher recall than C-E for
Reactome (51% versus 47%), an inverse trend was seen for
GOBP annotations (32% versus 45%). A major contributor
to the lower average recall of Seten is PTBP1, which was
found to exhibit a relatively lower recall for both Reactome
and GOBP annotations. In this context, it must be noted
that not all RBP loss of binding events result in correspond-
ing changes in RNA expression levels of their targets—a ma-
jor assumption in the calculation of recall. This could be due
to a number of reasons such as (i) redundancy in the func-
tionality of RBPs, where a paralogous RBP might comple-
ment the function of the mutated RBP, (ii) RNA levels
might not be impacted but protein levels might be impacted,
and (iii) quality of the binding site might be low or the func-
tional impact of the binding site might be minimal. Never-

theless, although the number of RBPs with both eCLIP and
CRISPR data is currently limited, it is possible to conclude
from this data that Seten achieves significantly higher preci-
sion and comparable recall as that of C-E.
It is important to note that currently there are very few

high-resolution CRISPR data sets that stand orthogonal to
CLIP-seq profiles. Also, since CRISPR screens are still in their
infancy, it is unclear to what extent they strictly identify only
the direct effects of regulatory molecules such as RBPs and
not secondary off-target effects (D’Agostino and D’Aniello
2017). Hence, additional orthogonal approaches to probe
and measure the genome-wide impact due to the loss/gain
of function of an RBP are needed to comprehensively under-
stand, model, and improve the functional annotations of
RBPs using CLIP-seq profiles.

DISCUSSION

Functional enrichment is a common strategy to associate a
particular list of genes with the preannotated gene sets.
However, for data sets where a score can be given per gene
in the list such as binding signals, which act as a proxy to in-
dicate the extent of binding of RBPs to their targets, it is im-
portant to include those scores in the enrichment analysis for
obtaining a better insight. While a crucial aspect of including
such scores in functional analysis of post-transcriptional net-
works resulting from CLIP-seq protocols is the quality and
resolution of the binding profiles of RBPs, it is important
to note that these scores do depend on the depth of sequenc-
ing, efficiency of cross-linkingmethod, as well as the ability of
the peak calling algorithm to uncover the true positive sites.
For instance, when the CLIP-seq protocols and/or the subse-
quent peak calling algorithms fail to produce a high-resolu-
tion binding profile, it is not possible to capture enriched
gene sets based on the binding scores. We note that the

FIGURE 5. (A) The comparison of Seten and ChIP-Enrich using AARS–K562 data set for GO Biological Process and Reactome gene set enrichment
analysis results. (B) The comparison of Seten and ChIP-Enrich using RBM15–K562 data set for GO Biological Process and Reactome gene set enrich-
ment analysis results. (C) The comparison of Seten and ChIP-Enrich using FMR1–K562 data set for GO Biological Process and Reactome gene set
enrichment analysis results.
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published CLIP-seq data from individual research laborato-
ries processed and made available via CLIPdb (Yang et al.
2015) are generally of lower sequencing depth and genomic
coverage compared to those resulting from the ENCODE
project. Hence, we anticipate that with enhanced CLIP pro-
tocols, such as those resulting from the ENCODE project
(Van Nostrand et al. 2016), it is not only possible to accurate-
ly identify and quantify the extent of binding but to also un-
cover their differences between data sets to capture the
processes, phenotypes, and diseases associated with RBPs to
rationally design experiments and therapeutics for the specif-
ic subsystem under study. Indeed, analysis of the correlations
between the corrected P-values obtained using gene set and
functional enrichment methods, as implemented in Seten
for various gene set collections and all available CLIP-seq
data sets, resulted in a weak-to-moderate extent of correla-
tion between the results, suggesting that different aspects
might be captured by the respective methods (Supplemental
Fig. S3). Nevertheless, benchmarking both gene set and func-
tional enrichment methods as implemented in Seten against
available CRISPR RNA-seq data sets revealed that scores sig-
nificantly contribute to improved inference of true functional
associations. Hence, as CLIP-seq protocols become more ac-
curate in capturing the extent of binding and regulation of
the post-transcriptional target gene, exploiting such signal in-
formation should significantly improve the downstream
functional analysis pipelines.
Our framework presented here not only performs an en-

richment analysis using the scores resulting from peak calling
algorithms on CLIP-seq data sets, but it can also perform a
comparison of the identified processes and phenotypes across
a set of profiledRBPs bothwithin and across conditions or tis-
sue types being studied. Indeed, a comparison of the number
of shared targets and binding regions for various RBPs that
have been profiled using eCLIP protocol (Van Nostrand
et al. 2016) in both the K562 and HepG2 cell lines, indicated

that several RBPs, such as RBM22,DDX6,
and TBRG4, exhibited significant differ-
ences in the targeted genes and their rec-
ognized binding regions, suggesting the
possibility of extensive rewiring in post-
transcriptional networks between cell
types. Such variations in the post-tran-
scriptional regulatory networks con-
trolled by an RBP are likely to result in
different functional outcomes, and tools
like Seten fill the gap in our understand-
ing of the downstream biological context
resulting from such alterations.

Seten is implemented as a web inter-
face (WI) using JavaScript and a com-
mand line interface (CLI) using Python
(http://www.iupui.edu/~sysbio/seten/).
Seten WI provides exportable visualiza-
tions of results as bar charts and bubble

charts (in SVG format) and requires no installation or
dependency except for an up-to-date browser. Seten CLI re-
quires an installation and some dependencies, but thanks to
the Python Package Index, a single command can take care of
the installation. Using Seten CLI, multiple data sets can be
analyzed using a single command.

MATERIALS AND METHODS

CLIP-seq data sets

To test Seten and construct a database of precomputed functional
and gene set enrichment results, we used peak-detected data sets
from CLIPdb and ENCODE projects (Yang et al. 2015; Van
Nostrand et al. 2016). We downloaded human RBP data sets with
peak calling scores from CLIPdb and merged multiple samples of
an RBP for a cell line, which resulted in 68 unique RBP-cell line pairs
(see Supplemental Table S5). Similarly, we also downloaded human
RBP data sets along with their detected peaks from the ENCODE
project in BigBed format and converted to BED format using
UCSC BigBed tools (Kent et al. 2010). There are 138 unique RBP-
cell line pairs after merging biological replicates of RBPs within a
cell line in this data set (See Supplemental Table S6). Additionally,
we obtained an iCLIP-based peak-detected data set for a noncanon-
ical RBP FASTKD2, including three replicates that we merged and
analyzed as a single data set (Popow et al. 2015). We merged the bi-
ological replicates or the data sets for the same RBP-cell line pairs by
concatenating their corresponding BED files using Unix cat com-
mand in order to maximize the number of binding data available
per RBP-cell line. In this study, the scores associated with a detected
peak from a CLIP-seq experiment are also referred to as binding af-
finity scores of an RBP on the target RNA because they represent a
proxy measure for the extent of binding on the transcript.

Gene set collections

Gene sets are groups of relevant genes that share the same pathway,
function, or phenotype. We manually downloaded and organized

FIGURE 6. Benchmarking of predicted functional annotations from Seten and ChIP-Enrich
against those identified from CRISPR-based RNA-seq data sets of RNA-binding proteins in
K562 cell line. Precision and recall plots for IGF2BP1, SRSF7, and PTBP1 using Seten and
ChIP-Enrich for the gene set collections (A) Reactome and (B) GO Biological Process. In both
cases, gene set enrichment approach as implemented in the respective tools was utilized to gen-
erate functional annotations from eCLIP-based profiles, to compare their relative performance.
Seten was found to exhibit a significantly higher precision and comparable recall to that observed
for ChIP-Enrich.
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gene set collections for fruit fly, human, mouse, rat, worm, and
yeast. The gene set collections we obtained are pathway annotations
(BioCarta, KEGG, and Reactome), Gene Ontology annotations (bi-
ological process, molecular function, cellular compartment),
Human Phenotype Ontology (HPO—human only), andMalaCards
Disease Ontology (human only) (Kanehisa and Goto 2000; Nishi-
mura 2001; Milacic et al. 2012; Kohler et al. 2014; Rappaport
et al. 2014; Fabregat et al. 2016; Kanehisa et al. 2016). The number
of gene sets in gene set collections and the availability of organisms
are given in Supplemental Table S1.

Obtaining distinct gene scores list

Binding sites from the input BED file are mapped onto their corre-
sponding gene symbols using a mapping table downloaded from
Ensembl for each available organism (Yates et al. 2016). After map-
ping is complete, in the case that multiple scores are available for
a gene, we provide multiple methods to obtain a single score to
represent that gene, which results in a distinct set of genes and their
corresponding scores representing the extent of binding by an RBP.
The available methods are maximum, minimum, mean, median,
and sum. Therefore, for instance, if the selected method is sum,
then the final score given to the corresponding gene will be the
sum of all scores available for that gene. The default method we
selected is maximum.

Gene set association analysis

We implemented a previously reported competitivemethod to apply
gene set association analysis to transcription factor binding data sets
to test whether an RBP preferentially targets to genes in a given gene
set (Patra et al. 2015). Thismethod finds the common genes between
given RBP targets and genes in a given gene set and compares the
scores of common genes to the scores of randomly permutated genes
from RBP targets by a competitive test where the Mann–Whitney U
test is used to test whether the median score of the common genes is
significantly higher than that of randomly permutated genes (Mann
and Whitney 1947). We provide options to set thresholds for maxi-
mumnumber of genes in a given gene set to allowmore specific gene
sets to be used (defaults to <350) andminimumnumber of common
genes between RBP targets and genes in a given gene set (defaults to
>5). Also, we provide an option to control the number of permuta-
tions to perform (defaults to 1000). At eachpermutation, themethod
checks if theP-value from theMann–WhitneyU test is significant us-
ing another option (defaults to < 0.05) and counts the significant
tests. At the end, the final corrected P-value is computed as

max(1− # sign. tests

# total tests
,

1

# total tests
).

Such corrected P-values resulting from gene set enrichment analysis
are referred to as P-values in the manuscript for brevity.

Functional association analysis

We also implemented a functional association analysis using a two-
sided Fisher’s exact test (FET) for traditional functional enrichment
(Fisher 1922). A correction method is used to correct the P-values
obtained from functional enrichment analysis (FET). Currently,

Seten’s web interface has only one method, which is the false discov-
ery rate method (FDR) or the Benjamini–Hochberg method
(Benjamini andHochberg 1995). Seten’s command line interface in-
cludes several other methods for correcting the resulting P-values.
Note that such correction methods are only available for functional
enrichment analysis as the gene set enrichment method employs a
different correction approach, as described above.

Processing CRISPR RNA-seq data sets of RBPs

Clustered regularly interspaced short palindromic repeats (CRISPR)/
Cas9 is a recently developed system for engineering genomes, which
has transformed our ability to manipulate genes in cell lines and an-
imalmodels (D’Agostino andD’Aniello 2017). In the ENCODEpro-
ject, multiple RBPs have been screened using the CRISPR/Cas9
system followed by RNA-sequencing to better understand the down-
stream pathways impacted by the loss of function of an RBP. Hence,
in order to generate a reference gold standard set of functional anno-
tations that are affected by an individual RBP, and as a means of
benchmarking the quality of the annotations predicted by Seten
and ChIP-Enrich (C-E) from CLIP-seq data, we obtained RNA-se-
quencing data from nonspecific CRISPR control and those treated
with gRNAs against three different RBPs, namely IGF2BP1, SRSF7,
and PTBP1 in K562 cells (The ENCODE Project 2017). Since these
RBPs had both eCLIP and CRISPR RNA-seq data sets available,
they were ideal for performing a benchmarking analysis. This data
set was composed of eight nonspecific CRISPR control RNA-seq
data sets representing wild-type K562 cells and two replicate RNA-
seq data sets each for theRBPs IGF2BP1, SRSF7, andPTBP1,wherein
gRNAswere used to deplete the functional form of RBPs, enabling us
to perform a quantitative differential expression analysis followed by
gene set enrichment for various gene set collections using Seten, to
develop a gold standard. In brief, we collected all the available
RNA-seq data for CRISPR control and knockout data for multiple
RBPs in the K562 cell line and processed the raw quality filtered
(Phred score >30) sequence reads using HISAT (Kim et al. 2015)
and StringTie (Pertea et al. 2015) pipeline with default parameters,
to generate gene expression levels in transcripts per million (TPM)
reads for all human annotated Ensembl genic features (Yates et al.
2016). The processed and gene expression quantified data were for-
matted into expression matrices and utilized for generating a refer-
ence set of functional annotations impacted by the respective RBPs,
as described below.

Generation of gold standard set of functional
annotations using CRISPR RNA-seq data sets of RBPs

Gene expression matrices comprising of CRISPR control and
knockout for each RBP were used to compute a relative change in
expression for each gene. Relative change in expression is defined
as the ratio of the absolute change in the expression difference be-
tween the mean of replicates of control and knockout, respectively,
divided by themean expression level of the gene in the control RNA-
seq data sets. By utilizing such a normalized relative change in ex-
pression of each gene across the entire genome for each combination
of control and CRISPR knockout data sets of an RBP, we performed
gene set enrichment analysis using Seten for both Reactome and
GOBP gene set collections. This enabled the identification of gene
sets enriched due to the loss of an RBP at a corrected P-value of
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0.05 using the Seten’s GSEA approach. Such gene sets have been
defined in this study as the gold standard annotations for the RBP
for the corresponding gene set collections. By utilizing these anno-
tations, precision and recall values were computed for Seten and C-E
to assess the performance of the tools. Precision was defined as the
fraction of enriched gene sets from GSEA on the control versus
CRISPR RNA-seq data for the respective RBPs that overlapped
with the gene sets from Seten’s or C-E’s GSEA on CLIP-seq data
at the same corrected P-values’ threshold of 0.05. Likewise, recall
was defined as the fraction of gene sets identified by Seten’s or
C-E’s GSEA on CLIP-seq data that overlapped with the enriched
gene sets from GSEA on the control versus CRISPR RNA-seq data
for the respective RBPs, at the same corrected P-value thresholds.
Similarly, precision and recall were also computed for the negative
control BED files described below for Seten’s gene set or functional
enrichment methods, which enabled the calculation of F1 scores to
assess the relative performance of the methods and options.

Evaluation of Seten’s performance against negative
control

In order to evaluate the performance of the tool, we generated ran-
dom BED files referred to as negative controls, corresponding to
each RBP’s eCLIP data set separately. We utilized BEDTools
(Quinlan and Hall 2010) shuffle function with “chrom” (to ensure
that each chromosome is equally represented in random BED files),
“incl” (that keeps genomic features and assigns shuffled scores for
peaks) and separately “excl” (that excludes the genomic features
and assigns random genome-wide coordinates for each peak) pa-
rameters to generate two sets of arbitrary BED files. These two
sets of negative control BED files were referred to as “test peaks
with randomized peak score” and “test peaks with randomized
peak coordinates.”We computed the F1 score, computed as the har-
monic mean of precision and recall, to measure the performance of
Seten against gold standard functional annotations described in the
previous section, for three types of BED files, namely, original eCLIP
peaks, test peaks with randomized peak score, and test peaks with
randomized peak coordinates. This enabled us to assess the relative
impact on the performance, for different options and to benchmark
the annotations predicted by Seten for each of these types of BED
files against the GSEA results obtained from the CRISPR RNA-seq
gold standard described above. We repeated the analysis for three
different RBPs that had both eCLIP and CRISPR RNA-seq data,
namely IGF2BP1, PTBP1, and SRSF7 in K562 cell line. For test
peak data, we repeated the analysis against five random BED files
for each RBP and reported the average F1 scores.

Software availability

Seten WI (Web Interface)

Seten WI server is accessible on http://www.iupui.edu/~sysbio/
seten/. Its source code, which can be used for initiating a local in-
stance of Seten WI, is available via the GitHub repository: https://
github.com/gungorbudak/seten.

Seten CLI (Command Line Interface)

Seten CLI is a Python package and can be installed via the package
manager or can be built from its source. Its GitHub repository has

detailed information about installing and using Seten CLI: https://
github.com/gungorbudak/seten-cli.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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