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ABSTRACT 
This study reports traffic monitoring results at 30 locations on a 972-mile shared-use trail network across 
the east-central United States. We illustrate challenges in adapting the principles in the Federal Highway 
Administration’s Traffic Monitoring Guide to a regional trail network. We make four contributions: (1) 
we use factor analysis and k-means clustering to implement a stratified random process for selecting 
monitoring sites; (2) we illustrate quality assurance procedures and the challenges of obtaining valid 
results from a multi-state monitoring system; (3) we describe variation in trail traffic volumes across five 
land use classes in response to daily weather and seasons; and (4) we report two performance measures 
for the network: annual average daily trail traffic and trail miles traveled. The Rails to Trails Conservancy 
deployed passive infrared traffic monitors in 2015 through 2017. Site-specific regression models were 
used to impute missing daily traffic volumes. The effects of weather were consistent across land use 
classes but the effects of temporal variables, including weekend and season-of-year, varied. A plan for 
short duration monitoring is presented. Results confirm the FHWA monitoring principles and the 
difficulties of implementing them regionally.  
 
Keywords: trails, traffic monitoring, bicycles  
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INTRODUCTION 
Transportation planners need information about demand for multiuse trails to plan new facilities, assess 
safety of facilities, prioritize investments in projects, and operate and maintain existing facilities. Despite 
progress, assessments of comprehensive monitoring programs remain rare, and managers need examples 
of approaches to designing monitoring networks, data collection and management, and interpretation.  

This study reports the results of traffic monitoring at 30 locations between 2015 and 2017 on a 
972-mile multiuse trail network in Ohio, Pennsylvania, New York, and West Virginia by the Rails to 
Trails Conservancy (RTC) and the Industrial Heartland Trails Coalition (IHTC). Our objective is to 
illustrate challenges in adapting the Federal Highway Administration’s Traffic Monitoring Guide (TMG) 
to a regional trail network (1).  

 
CHALLENGES IN NON-MOTORIZED TRAFFIC MONITORING: LITERATURE REVIEW 
In 2013, in response to pioneering efforts by engineers and advocates, the FHWA added a chapter on 
nonmotorized traffic monitoring to the TMG, the guidance document that establishes national monitoring 
principles. Chapter 4 Traffic Monitoring for Nonmotorized Traffic builds on the principles of monitoring 
motorized traffic but notes nonmotorized traffic is more variable and requires different procedures (1). 
The basic approach, however, is analogous: 

• Establish monitoring objectives, 
• Determine modes of traffic to be monitored,  
• Select monitoring sites, including permanent and short-duration stations,  
• Determine the type(s) of devices to be deployed, 
• Implement monitoring following recommended guidelines,   
• Follow recommended analytic procedures to ensure validity of data, and  
• Use factors derived from permanent monitoring stations to extrapolate short duration counts and 

estimate annual average daily bicyclists (AADB), pedestrians (AADP) or mixed-mode, undifferentiated 
nonmotorized traffic. 

The TMG also lists steps in implementation of permanent and short-duration monitoring programs. 
This approach presents new analytic challenges and are the focus of research. This review summarizes 
research that informs choices in program implementation and advances procedures used to analyze 
counts. 

 
Program Design and Evaluation 
Several recent publications inform monitoring implementation. Griffin et al. (2) provide an overview of 
considerations in nonmotorized traffic monitoring. The Institute for Transportation Research and 
Education (ITRE) at North Carolina State University, in collaboration with the North Carolina DOT, is 
leading one of the largest state-level bicycle and pedestrian data collection programs in the U.S.(3,4). 
Minge et al. (5) recently published a guide to bicycle and pedestrian data collection for the Minnesota 
Department of Transportation (MnDOT). Progress in institutionalizing nonmotorized traffic monitoring in 
Colorado, Minnesota, and Oregon has been described (6), and other states, including Washington and 
Vermont have initiated programs. Much of the implementation is by regional and local governments, such 
as San Francisco and New York City, and is described on websites and in the professional literature. The 
Delaware Valley Regional Planning Commission (DVRPC) manages one of the largest regional 
monitoring programs in the U.S. and makes estimates of AADB and AADP available through its website 
(7). The Mid-Ohio Regional Plan Commission (MORPC) maintains a network of monitors on the 
regional trail system and has reported estimates of annual average daily trail traffic (AADTT) and trail 
miles traveled for the network (8,9). The City of Vancouver, British Columbia has implemented 
monitoring and is reporting bicycle traffic volumes (10). 

 
Monitoring Site Selection 
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The TMG specifies three key decisions: “differentiating between pedestrian and bicycle traffic”, 
“selecting representative permanent count locations,” and “selecting optimal installation locations” (1). 
With respect to selecting locations, the TMG cautions against selecting sites with heaviest volumes but, 
other than recommending review of existing count data, does not specify how to determine representative 
locations. Agencies have approached this challenge differently. In North Carolina, researchers completed 
a study to determine the number and location of counters to obtain valid, reliable estimates of AADB. 
Because the cost exceeded available funds, ITRE and NCDOT established the objective of developing 
permanent stations at locations in urban, rural, and near-university areas believed to have commuting, 
recreation, and mixed traffic patterns (3,4). ITRE inspects potential locations and conducts field tests 
before permanent counters are installed. Their goal is to implement a dozen or more counters per region. 
The Minnesota Department of Transportation (MnDOT) incorporated existing counters, and established at 
least one bicycle monitor on streets and one mixed-mode monitor on trails in each administrative region. 
These sites serve as index sites to illustrate trends and demonstrate how counts can inform planning and 
engineering (11). Sites were selected with local partners to ensure results had practical significance. 

Each of these approaches has involved stratified systematic and/or purposeful selection of 
locations, absent measures of actual representativeness for the networks of interest. Davis et al. (12) 
demonstrated the feasibility of a stratified, randomized site selection for purposes of estimating regional 
bicycle miles traveled, but their approach was not designed to be augmented with short-duration counts to 
characterize network flows. Randomization of site selection typically has not been implemented by public 
agencies.  

 
Monitoring Equipment Selection 
A National Cooperative Highway Research Program (NCHRP) report, “Methods and Technologies for 
Pedestrian and Bicycle Volume Data Collection”, has become the authoritative guide to monitoring 
technologies (13,14). This report has been augmented by research papers. Nordback et al. (15) and 
Brosnan et al. (16) have evaluated the performance of inductive loops and pneumatic tubes, respectively. 
In general, tradeoffs among types of technologies are understood – they involve the need for mode-
specific information, accuracy, cost, labor for data collection, capacity for remote reporting, and vendor 
support. Trends in deployment are becoming clear: inductive loops are being used to count bicycles at 
permanent installations; pneumatic tubes are used for short-duration bicycle counts; infrared sensors are 
used to count pedestrians and trail users, sometimes with inductive loops. Automated video processing 
remains the Holy Grail of monitoring, but it has not been implemented widely.     
 
Data Quality Management 
Questions in data quality management include validation of counters, whether to correct for systematic 
error associated with sensors (e.g., undercounts due to occlusion), how to implement quality assurance / 
quality control (QAQC) procedures, and whether to impute missing counts. Analysts have addressed 
these questions in different ways, and standard procedures are being developed.  

All vendors recommend in-field validation of equipment following installation, but the duration 
of validation and periods for re-validation vary. Personnel deploying integrated inductive loop and 
infrared sensors at permanent stations may observe traffic for one to two hours following installation, 
while personnel deploying portable equipment may validate less than an hour. Some researchers have 
adjusted all hourly counts to correct for occlusion (17,18,19). Judgment must be exercised in applying 
correction factors, however, to avoid changing counts when inappropriate (e.g., for zero counts).  

The TMG describes the importance of applying QAQC procedures to nonmotorized counts, but 
notes that new checks need to be developed because of the variability of nonmotorized counts (1). 
Development of QAQC protocols for nonmotorized counts is an active area of research. Turner and 
Lasley (20) recommend, at minimum:  

 
• Visual inspection of data;  
• Use of pre-specified criteria to identify potential outliers;  
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• Assessment of zero counts; and  
• Use of professional judgment to censor counts believed to be invalid.  

 
Based on their North Carolina experience, Jackson et al. (4) recommend several protocols: weekly visual 
inspections to ensure prompt identification of problems, development of hourly data checks, interquartile 
checks to identify outliers, and automated procedures for flagging suspect data. Minge et al. (5) illustrate 
application of QAQC procedures on data from 12 sensors in Minnesota and the effects of censoring 
counts on estimates of annual average daily traffic. They show that many outliers may be valid counts 
associated with events and that it is difficult to differentiate valid and invalid hourly zero counts, 
particularly in winter. For low volume sites (e.g., less than 100 counts per day), the cost of implementing 
checks must be weighed against the practical significance of changes in estimates of volumes that might 
result from application of checks.   

One approach to missing observations is to ignore them and estimate the statistics of interest with 
available data. Another approach is to estimate values for missing days from existing data. This can be 
done by assuming the volumes are the same as the volumes for closely related days with valid counts or 
by more sophisticated statistical methods. For example, a missing count for a Thursday in March could be 
estimated as the mean of existing counts for Thursdays in March. This approach controls for day of week 
and season but not weather. An alternative approach is to estimate a regression equation that controls for 
day of week and weather, obtain weather data for the days with missing counts, and use the equations to 
estimate missing values (9,17,19). This procedure involves the judgment that errors associated with 
imputing are preferable to errors caused by the missing values.  
 
Determination of Pattern Groups 
The TMG observes that nonmotorized traffic can be classified as commuter, recreational, or mixed (i.e., 
multipurpose) traffic based on day of week and hourly relationships and that it is important to take traffic 
patterns into account when extrapolating short-term counts. Miranda-Moreno et al. (21) illustrate how 
weekend-weekday and a.m.-noon hour traffic ratios can be used to classify traffic as (1) utilitarian, (2) 
mixed-utilitarian, (3) mixed-recreational, and (4) recreational. Analysts in Colorado established a separate 
factor group for cycling in mountain regions because patterns associated with seasons diverge from those 
in urban areas. In general, most programs focus on three factor groups based on some variation of the 
ratios illustrated by Miranda-Moreno (e.g., North Carolina (3,4); Minnesota (5)). Nordback et al. (22) 
recommend a minimum of five permanent monitors per factor group to minimize error in extrapolation; 
data are not available to assess how many programs are consistent with this recommendation.  
 
Computation of Adjustment Factors 
The TMG illustrates procedures analogous to those used in motorized traffic monitoring for computation 
of adjustment factors used in extrapolation of short duration counts (i.e., hour-of-day, day-of-week, and 
month-of-year factors). Nordback et al. (22) described error in estimating AADB associated with the 
length of the short-duration counts and the season when short duration counts were taken. They 
recommended counts of at least one week between April and October. Hankey et al. (17) and Nosal (23) 
simultaneously developed an alternative approach called day-of-year factoring that reduced error in 
extrapolation compared to the standard approach. El Esaway (24) subsequently demonstrated the day-of-
year factoring approach is preferable because it better captures the effects of weather. Jessberger et al. 
(25) recently published an alternative to the standard approach that holds promise.   
 
Estimation of Performance Indicators 
A purpose of the TMG is to guide implementation that produces two performance indicators: annual 
average daily traffic and annual miles traveled. State (e.g., North Carolina, Colorado, Minnesota), 
regional (e.g., DVRPC, MORPC), and local (e.g., Vancouver, BC) agencies now are routinely reporting 
AADB and AADP for permanent monitoring locations, but fewer have implemented the short-duration 
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counts required to characterize networks. Estimates of AADT have been reported for urban trails in 
Minneapolis, MN, Columbus, OH, and Chicago, IL (9,26).   
 
Implications for Practice 
This review shows that principles of motorized traffic monitoring are being applied to nonmotorized 
traffic monitoring, that state, regional, and local agencies are implementing monitoring programs, but that 
additional research is needed to improve program quality. Tradeoffs among objectives in monitoring are 
inevitable. Because most monitoring programs are new, a gap in the literature is the absence of 
evaluations of programmatic initiatives. Additional studies of monitoring programs can inform future 
initiatives. 
 
THE INDUSTRIAL HEARTLAND TRAIL MONITORING INITIATIVE: APPROACH, 
METHODS, AND RESULTS 
The IHTC is a coalition of more than 100 public and private, nonprofit organizations supported by the 
RTC, the National Park Service, and the Pennsylvania Environmental Council in work to establish a 
1,400 mile trail network across 48 counties in Pennsylvania, Ohio, New York, and West Virginia. Nearly 
1,000 miles of trail already exist. In 2015, RTC initiated a regional monitoring program to support the 
initiative.  
 
Program Design and Evaluation 
RTC established three objectives for the program: 

• Document use on existing trails using procedures consistent with TMG principles;  
• Inform comprehensive regional monitoring efforts; and  
• Develop tools to support trail planning, including factors for extrapolating short duration counts 

and estimates of network use.  
RTC consulted with partners, obtained a grant, and consulted with researchers about program design.   
 
Monitoring Site Selection 
Considerations in monitoring site selection included geographic variation of land uses adjacent to trails 
and the desire to monitor sites characteristic of different factor groups (27). We chose a stratified random 
sampling approach to avoid bias towards high volume locations, increase the likelihood of identifying 
different patterns, and provide a stronger statistical foundation for generalizing results. A land use 
typology was used because research has shown that both traffic volumes and patterns may be associated 
with land use. 

The final classifications were based on factor analysis scores derived from 16 contextual 
measures that were classified using a k-means clustering approach. The contextual measures included 
Census data such as population and job density and remote sensing data. For logistical reasons, sample 
sites were selected from a subset of the entire 605 mile network. We randomly selected six locations 
within each class for a total of 30 monitoring sites (Figure 1). The number of sites was determined in light 
of budget constraints and the TMG recommendation that factor groups have a minimum of five sites to 
develop adjustment factors. RTC reviewed the locations to verify feasibility of access and counter 
installation.  
 
Monitoring Equipment Selection 
We selected lower-cost passive infrared monitors because this choice maximized monitoring locations 
and provided opportunities to engage local partners. The sensors can be adapted for future short duration 
monitoring as portable counters. The rationale for choosing mixed-mode over mode-specific sensors was 
it was more important to gain understanding of total traffic at more locations than mode-specific traffic at 
fewer locations. Although an integrated inductive loop-passive infrared system was installed at one 
location, mixed mode counts are reported here.  
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Data Quality Management 
Challenges in data collection and management included deployment, in-field validation of counter 
operations, application of QAQC procedures, and management of missing observations. Although RTC 
confirmed monitors were operating following deployment and periodically checked monitors for specific 
reasons, most monitors were not systematically analyzed until the end of the monitoring period because 
project partners had limited time. When researchers reviewed the data in the winter of 2017, it was the 
first comprehensive review. Although the objective was to obtain at least one year of data at each of the 
30 locations, only 22 monitors (73%) were deployed for a full-year, mainly because of logistics and 
delays in deployment, including coordination with partners (Table 1). The days of counts for the sites 
with less than one year of deployment ranged from 116 to 364.  

We followed recommended QAQC procedures: visual inspection, application of a heuristic to 
identify potential outliers, evaluation of counts of zero, and use of judgment (20). Visual inspection of 
daily volume graphs identified sites with missing data and patterns that indicated sensor malfunction. 
Inspection of data (illustrated below) showed 7 monitors (23%) had missing days, apparently associated 
with insect infestation, vandalism, or other malfunction (Table 1). Following additional QAQC checks, 
outliers were censored at three locations, resulting in 19 monitors (63%) with valid counts for at least 365 
days. Across locations, monitors were deployed for 11,127 days; counts were obtained for 10,951 days, 
98% of the deployment periods for all counters. The total number of days with counts deemed valid was 
10,698 (96% of the days of deployment). RTC decided to report published, approximate values for 
accuracy for passive infrared sensors rather than develop correction factors for each location. 

To illustrate the problems identified during QAQC, we present daily totals for the period of 
record for five sites (Figure 2). Graphs A and B show “normal” patterns that reflect daily, weekly, and 
seasonal variation. The records appear complete, and the variation does not appear abnormal. Graph C 
illustrates a case with a potential outlier: most values for the period of record are below 100 but for a 
single day, values increase more than fourfold. Graph D is from a site where no data were recorded for a 
four month period. Graph E has a jump to counts of more than 60,000 per day after a 10-month period of 
daily counts below 1,000, an obvious error. The team used professional judgment to censor daily counts 
that were associated with sensor malfunction.  

To identify potential outliers, we identified counts equal to or greater than three standard 
deviations above the mean daily count for the period of record. To decide whether to censor questionable 
counts, we computed the ADT with and without the potential outliers. For counters with ADT below 90, 
all recorded counts were retained because, even including potential outliers, the site was low-volume. The 
rationale for the threshold of 90 was that inclusion of the potentially invalid data would have minimal 
practical implications for ADT. For counters with ADT above 90, the flagged values were retained if the 
percentage reduction in ADT was less than 15% (an arbitrary threshold). If the reduction in ADT was 
greater than 15%, we assessed whether favorable weather conditions may have induced unusual use and 
searched for events that may have occurred. Professional judgment then was applied to retain or censor 
counts. We inspected days with counts of zero, but did not eliminate any zero count days.   

Another challenge in data quality management involved managing the 11 sites with missing 
observations (which ranged from 1% to 26%). For purposes of estimating AADT, we imputed values for 
missing days. Research has shown that site-specific regression models including weather and day-of-
week variables explain 85% of the variation in daily traffic and can be used to predict traffic with 
reasonable accuracy (e.g., 19). Using only days with valid counts, we assembled weather data for each 
day in the period of record and estimated negative binomial weather regression models for each site. 
Weather data for the missing days were used in site-specific models to predict daily traffic for missing 
days.   

To illustrate model specification and differences in response to weather across land use classes, 
data in each of five classes were pooled, and six additional models were estimated, one for each class and 
one with data pooled for all sites (Table 2). The magnitudes of some coefficients vary. For example, 
weekend daily traffic was statistically significantly higher than weekday daily traffic in every class. 
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Precipitation, which significantly reduced traffic at parks, suburban, rural, and forest sites, had no 
significant effect on urban traffic volumes, a departure from general patterns.  

 
Determination of Factor Groups 
The challenge in this step involved choice of criteria for establishing factor groups. Using days with 
counts deemed valid (i.e., excluding days with counts estimated with weather models), recommended 
procedures were adapted to classify sites into three factor groups (21). The weekend-weekday average 
daily traffic ratio and the a.m. (7:00 a.m. – 9:00 a.m.) – noon (11:00 a.m. – 1:00 p.m.) average hourly 
traffic ratio were computed to classify sites. Consistent with the TMG, only three factor groups were 
classified: recreational, commuter, and mixed. Application of these criteria identified only two factor 
groups: recreation (n=28) and mixed (n=2). The sites with mixed traffic patterns included one urban and 
one parks location. 
 
Computation of Adjustment Factors 
We computed hour-of-day, day-of-week, and month-of-year factors that could be applied to estimate 
AADTT from short duration counts. Because application of criteria for factor groups revealed little 
variation in patterns across sites, we computed factors for sites by the land use classification. The monthly 
average daily trail traffic (MADTT) to AADTT ratios include six sites in each class and the 30 sites 
pooled together (Figure 3). These graphs were computed using datasets with counts estimated for missing 
days. Across sites within classes, variability in MADTT/AADTT ratios is greatest with urban and forest 
classes. The convergence in patterns across classes, however, is evident, with the mean ratios for all 
classes following a general pattern. The MADTT/AADTT ratios for summer months, which reflect peak 
volumes and periods when short-duration sampling is most likely to occur, generally are between 1.5 and 
2. The mean of means ratio for summertime months for all sites is approximately 1.5, indicating that, on 
average, daily summertime traffic is 50% higher than AADTT. Hour-of-day graphs for all sites could be 
used as adjustment factors for short duration counts (Figure 4).  
 
Estimation of Performance Indicators 
Following Davis et al. (12), we multiplied the mean AADTT for each land use classification by the miles 
of trail within the classification. This approach, which was used because short duration counts have not 
been completed, deviates from standard procedure of multiplying segment counts times segment length. 
The limitation of this approach is that it does not provide segment-specific estimates of AADTT. 
Nonetheless, the approach provides an order of magnitude estimate until short duration counts can be 
completed. Mean AADTT ranged from 40 at forest locations to 251 and 258 at urban and parks locations, 
respectively (Table 3). The estimate of total trail miles traveled in 2016 for the 972-mile network was 
approximately 29.5 million miles. Urban and park trails, which account for only about 11% of total miles, 
accounted for 33% of miles traveled. Forest trails, which account for nearly half the network (47%), 
account for less than one-quarter of the trail miles traveled. Sources of uncertainly in this estimate include 
the error associated in counting (i.e., systematic undercount due to occlusion, the magnitude of which 
may vary across sites in relation to volume), error associated with imputing missing AADTT values at 
some sites, and error in extrapolating mean AADTT values to the network.     
 
Permanent and Short-Duration Site Selection 
In the future, permanent and new short-duration counts will be used to refine AADTT estimates. RTC 
plans to retain some of the monitors permanently and to shift others to portable counts to monitor the 
network. To illustrate tradeoffs in establishing the short-duration monitoring program given a limited fleet 
of counters, we present an example in which 14 counters are retained as permanent counters and 16 are 
deployed for short-duration counts. To determine which sites would be retained as permanent monitoring 
sites, we considered factor group (i.e., recreational, mixed), land use classification, volume, land use, and 
location within the region, with a goal to include all factor groups and retain 3-4 monitoring locations in 
each land use classification. Thus, this example includes both sites with mixed traffic patterns and meets 
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the TMG recommendation for recreational patterns but falls short for mixed patterns. With respect to land 
use, four urban, two suburban, two rural, three park and three forest monitoring sites were chosen for 
permanent monitoring. Fewer sites for suburban and rural were selected because their AADTTs were very 
close (87 and 81, respectively) and their weekend and weekday traffic patterns were similar. A second 
decision in planning short-duration counts involved determining segments. We assumed it would not be 
feasible given resource limitation to sample each mile of trail, so the decision was made to vary segment 
length by land use, which is associated with volume. We assumed segments of 5 miles for forest trails, 2 
miles for rural and suburban trails, and 1 mile for urban and park trails, which have the highest volumes 
and, potentially, greatest variation along consecutive segments. This approach resulted in a maximum of 
539 potential sampling points (Table 3). With a May to October monitoring period, 16 counters, and 10 
days for each seven-day short duration count, monitoring of all sites could be completed in two summers 
(Table 3). If RTC decides to retain more permanent counters, or obtains funding for portable counters, 
this plan could be revised. This example illustrates the feasibility of completing monitoring in the 
network and the tradeoffs required to achieve this objective. 
 
CONCLUSIONS AND IMPLICATIONS FOR PRACTICE 
Management of a monitoring program requires application of engineering principles and use of 
professional judgment, subject to economic constraints, in diverse geographic and socio-political settings. 
Managers must make tradeoffs in pursuit of data. Jackson et al. (3,4) observe that “data-wranglers” are 
needed to launch and manage nonmotorized traffic monitoring programs. Data-wrangling is an apt 
metaphor, for the challenges of monitoring require taking charge, rounding up, herding, and eventually, 
producing results.  
 This study illustrates the nature of data-wrangling and some of the tradeoffs required in launching 
a trail monitoring program on a multistate network. Consistent with the monitoring objectives, budget 
constraints, and logistics of installation and maintenance, RTC installed 30 counters, but complications 
resulted in less than one year of data for nearly one-quarter of the monitors. Application of QAQC 
procedures revealed missing data, erroneous counts likely associated with counter malfunction, and 
outliers judged invalid and censored. Valid counts for a one-year period were obtained for only 19 (63%) 
of the 30 sites. Overall, however, valid counts were obtained for 96% of days deployed, indicating more 
days were missed getting the program running than because of problems following deployment.   
 These results led to analytic choices that involved tradeoffs among sources of error in subsequent 
estimates. For example, regression models were used to estimate missing counts for 11 sites prior to 
computing monthly adjustment factors. We could have computed these factors for only the 19 sites with 
complete, year-long records or for only sites with, for example, 300 or more days of valid counts (n=24). 
The tradeoff involved whether to keep sites but accept the error associated with imputing missing counts 
or to reject sites and rely on fewer sites with complete records. The objective of characterizing traffic at as 
many locations as possible led to the decision to impute missing values.  
 Each of these judgments has implications for the validity of the performance measures. One 
approach to assessment is whether the results are consistent with theory and make intuitive sense. Since 
volumes are highest at parks and urban locations, lower in suburban and rural areas, and lowest in more 
remote forest areas, the results reflect population density gradients and meet this criterion. Most of the 
network occurs in rural and remote areas, thus, the volumes are substantially lower than AADTTs 
reported for urban networks measured with essentially the same approach (9,26). Because the randomized 
selection of locations avoids bias associated with purposeful selection of sites with high volumes, there is 
reason to believe these measures are representative. 
 Several features of this initiative are distinctive and inform practice. First, use of advanced geo-
spatial analytics to classify potential sampling points in the network and implement stratified-randomized 
selection of monitoring locations provided insight into volumes of trail use at sites that likely would be 
ignored in a more purposeful sampling approach. Estimates of AADTT for the network therefore reflect 
sections of trail with very low volumes. Second, studies of new or best practices often do not document or 
quantify problems in ways that facilitate comparison across programs. We report problems in 
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implementation and indicators of the reliability and validity of counts produced for the first year of a 
permanent monitoring program for a large region. Systematic application of QAQC procedures identified 
missing and invalid counts that were censored from the dataset. Ultimately, valid counts were obtained 
for 365 days at only 19 (63%) of the 30 locations. Percentages for initiatives of comparable size are not 
available, but it may be that the geographic scale of this initiative contributed to this outcome. 

Third, we show that trail traffic on this network in the east-central U.S. varies in relation to land 
use but that patterns converge. Monthly traffic patterns varied more within urban and forest classes than 
within parks, suburban, and rural classes, but mean ratios across classes were similar. Use of standard 
metrics indicated 28 sites were characterized by recreational traffic; no locations reflected commuter 
traffic. Fourth, these results complement previous estimates of AADTT and miles traveled on urban trail 
networks and contribute to our understanding of variation in trail traffic across the country.  Fifth, we 
illustrate how counters could be redeployed to complete monitoring of the entire network within a two 
year period.  

Overall, this study illustrates that the principles in the TMG can be adapted for regional trail 
monitoring. The study also illustrates that, given resource constraints and practical limitations, challenges 
will be encountered, and tradeoffs will be required in each step of the monitoring process. Decisions in 
implementation, from selection of sites to application of QAQC procedures to determination of factor 
groups, affect estimates and decisions based on those estimates. Additional studies of ways in which data 
wranglers meet these challenges can help inform practice.   
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TABLE 1  Summary Data for Counts at 30 Locations on IHTC Trail Network 
 

Counter Class Trail / Location 
Days 

Deployed 

Days 
with 

Counts 
(Pre-

QAQC) 

Days 
with 
Valid 

Counts 
(Post-

QAQC) 

Days 
with 
Valid 
Zero 

Counts 
(Pre-

QAQC) 

Maximum 
Valid 
Daily 
Count 

Minimum 
Valid 
Daily 
Count 

ADT: 
Days 
with 

Counts 
(Pre 

QAQC) 

ADT: 
Days 
with 
Valid 

Counts 
(Post 

QAQC) 

% 
Change 
in ADT 

after 
QA/QC 

1 Urban 
Ohio & Erie Canal 
Towpath (OH) 346 257 257 0 724 26 235 235 0% 

7 Urban 
Ohio & Erie Canal 
Towpath (OH) 443 443 443 0 801 3 101 101 0% 

15 Urban 
Wheeling Heritage 
Trail (WV) 364 328 328 0 842 1 244 244 0% 

16 Urban 
Three Rivers Heritage 
Trail (PA)  241 241 235 0 2901 8 402 268 -50% 

17 Urban 
Three Rivers Heritage 
Trail (PA) 116 116 116 0 650 4 123 123 0% 

25 Urban Mon River Trail (WV) 369 369 369 0 905 8 324 324 0% 

5 Suburban 
Portage Hike & Bike 
Trail (OH) 392 392 225 0 391 2 820 138 -493% 

9 Suburban 
Ohio & Erie Canal 
Towpath (OH) 444 442 362 2 928 0 6284 81 -7628% 

12 Suburban 
Mill Creek Metro 
Parks Bikeway (OH) 458 458 458 0 826 1 189 189 0% 

19 Suburban Panhandle Trail (PA) 353 351 351 0 461 2 54 54 0% 

27 Suburban 
West Fork River Trail 
(WV) 442 442 442 22 276 0 31 31 0% 

29 Suburban 
North Bend Rail-Trail 
(WV) 442 442 442 15 330 0 28 28 0% 

8 Rural 
Ohio & Erie Canal 
Towpath (OH) 444 444 444 3 1376 0 140 140 0% 

10 Rural 
Western Reserve 
Greenway (OH) 393 393 393 0 297 1 74 74 0% 

11 Rural 
Western Reserve 
Greenway (OH) 401 359 359 1 522 0 154 154 0% 

14 Rural 
Brooke Pioneer Trail 
(WV) 364 364 364 10 172 0 35 35 0% 
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TABLE 1  Summary Data for Counts at 30 Locations on IHTC Trail Network Continued 
 

Counter Class Trail / Location 
Days 

Deployed 

Days 
with 

Counts 
(Pre-

QAQC) 

Days 
with 
Valid 

Counts 
(Post-

QAQC) 

Days 
with 
Valid 
Zero 

Counts 
(Pre-

QAQC) 

Maximum 
Valid 
Daily 
Count 

Minimum 
Valid 
Daily 
Count 

ADT: 
Days 
with 

Counts 
(Pre 

QAQC) 

ADT: 
Days 
with 
Valid 

Counts 
(Post 

QAQC) 

% 
Change 
in ADT 

after 
QA/QC 

18 Rural Montour Trail (PA) 353 352 352 11 561 0 60 60 0% 
20 Rural Armstrong Trail (PA) 353 353 353 34 256 0 20 20 0% 

2 Parks 
Ohio & Erie Canal 
Towpath (OH) 368 368 368 0 1137 5 254 254 0% 

3 Parks 
Ohio & Erie Canal 
Towpath (OH) 368 368 368 0 2988 10 596 596 0% 

4 Parks 
Ohio & Erie Canal 
Towpath (OH) 368 368 368 0 2466 10 422 422 0% 

6 Parks 
Ohio & Erie Canal 
Towpath (OH) 368 368 368 0 731 11 175 175 0% 

23 Parks 
Oil Creek State Park 
Trail (PA) 367 367 367 9 452 0 65 65 0% 

24 Parks 
Oil Creek State Park 
Trail (PA) 379 378 378 50 326 0 34 34 0% 

13 Forest 
Little Beavercreek 
Greenway (OH) 240 240 240 3 534 0 63 63 0% 

21 Forest Armstrong Trail (PA)  241 241 241 29 99 0 15 15 0% 

22 Forest 
Allegheny River Trail 
(PA) 382 379 379 33 3064 0 94 94 0% 

26 Forest Mon River Trail (WV) 442 442 442 55 435 0 21 21 0% 

28 Forest 
North Bend Rail-Trail 
(WV) 442 442 442 171 93 0 4 4 0% 

30 Forest 
Ohio & Erie Canal 
Towpath (OH) 444 444 444 1 323 0 54 54 0% 
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TABLE 2  Pooled Regression Models of Daily Counts by Land Use Class 
 

 Urban 
(n=1,740) 

Suburban 
(n=2,227) 

Rural 
(n=2,184) 

Parks 
(n=2,184) 

Forest 
(n=2,193) 

All Sites 
(n=10,528) 

Dependent 
Variable: ADT 

216 87 81 258 42 137 

Average Dew 
Point (⁰F) 

-0.014*** -0.003 -0.021*** 0.001 -0.024*** -0.014*** 

Average Wind 
Speed (Knots) 

-0.045*** 0.068*** 0.007 0.070*** -0.018* 0.012*** 

Maximum 
Temperature (⁰F) 

0.073*** 0.069*** -0.010 0.081*** 0.077*** 0.054** 

Maximum 
Temperature 
Squared (⁰F2) 

-0.0004*** -0.0003*** 0.0004*** -0.0005*** -0.0001 -0.0001*** 

Precipitation 
(inches) 

0.079 -0.587*** -0.349*** -0.795*** -0.361*** -0.444*** 

Weekend (dummy) 0.165*** 0.333*** 0.538*** 0.672*** 0.850*** 0.526*** 
Spring (dummy) 0.552*** 0.665*** 0.568*** 0.648*** 0.093 0.458*** 
Summer (dummy) 0.615*** 1.057*** 0.512*** 1.158*** 0.019 0.532*** 
Fall (dummy) 0.349*** 0.705*** 0.522*** 0.623*** 0.020 0.387*** 
Constant 2.686*** 0.280 3.242*** -0.802** 1.573*** 1.714*** 
Pseudo R2  0.039 0.049 0.037 0.039 0.046 0.028*** 
*p<.01 
**p < .005 
***p<.001  
Modeling approach: negative binomial regression. 
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TABLE 3  Performance Indicators for IHTC Trail Network (2016) 
 

 Performance Indicators 
Measurable 

Results 

Proposed 
Permanent 
Counters 

Proposed Short Duration 
Counters 

Sample 
Class 

Number 
of 

Sample 
Points 

Estimated 
Trail 
Miles 

AADTT 

Estimated 
Trail 
Miles 

Traveled 

% of 
Sample 
Points 
(Miles) 

% of 
Miles 

Traveled 
Rec. Mixed Rec. Mixed 

Segment 
Length 

Maximum 
Points 

Per 
Year 

Forest 497 457 40 6,700,000 47% 23% 6 0 3 0 5 157 79 

Low 
Intensity 
Dev. and 
Rural 

248 228 84 7,000,000 23% 24% 

6 0 2 0 2 153 77 
Parks 72 66 258 6,200,000 7% 21% 6 0 2 0 2 128 64 
Suburban 196 180 90 5,900,000 19% 20% 5 1 3 1 1 36 18 
Urban 43 40 251 3,600,000 4% 12% 5 1 2 1 1 65 33 

Totals 1056 972 137 29,500,00
0 100% 100% 28 2 12 2  539 270 

 30 14  
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FIGURE 1  Monitoring locations in the IHTC Trail Network. 
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FIGURE 2  Examples of Daily Counts at Five Locations Prior to QAQC.
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FIGURE 3  MADTT/AADTT Ratios by Land Use Classification.
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FIGURE 4  Hourly Weekday and Weekend Traffic. 

     

     


