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Abstract: 

Background: Current Organ Procurement and Transplantation Network (OPTN) policy restricts 
certain blood type compatible SPK transplants. Using the Kidney Pancreas Simulated Allocation 
Model (KPSAM), we examined the effects of five alternative allocation sequences that allowed 
all clinically compatible ABO transplants  

Method: The study cohort included kidney (KI), simultaneous pancreas and kidney (SPK), and 
pancreas alone (PA) candidates waiting for transplant for at least one day between January 1, 
2010 and December 31, 2010 (full cohort), and kidneys and pancreata recovered for transplant 
during the same period. Additionally, because the waiting list has shrunk since 2010, the study 
population was reduced by random sampling to match the volume of the 2015 waiting list 
(reduced cohort).   

Results: Compared to the current allocation sequence, R4 and R5 both showed an increase in 
SPK transplants, a nearly corresponding decrease in KI transplants, and virtually no change in 
PA transplants. Life years from transplant and median years of benefit also increased. The 
distribution of transplants by blood type changed, with more ABO:A, B, and AB transplants 
performed, and fewer ABO:O across all transplant types (KI, SPK, PA), with the relative percent 
changes largest for SPK. 

Discussion: Broadened ABO compatibility allowances primarily benefitted SPK ABO:A and 
AB candidates. ABO:O candidates saw potentially reduced access to transplant. The simulation 
results suggest that modifying the current allocation sequence to incorporate broadened ABO 
compatibility can result in an increase in annual SPK transplants. 
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Simultaneous kidney and pancreas transplantation (SPK) is the treatment of choice for 

select candidates with type 1 diabetes and with end stage diabetic nephropathy. However, despite 

improving outcomes and the high prevalence of Type 1 diabetes, the number of pancreas 

transplants performed in the United States continues to decline[1, 2]. The majority of pancreas 

transplants in the US are performed as SPK transplants and particularly from local donors.  

 The ABO blood group is the most important of all the blood group systems. There are 

four different ABO blood groups (Table1), determined by whether or not an individual's cells 

carry the A antigen, the B antigen, both A and B antigens (AB) or neither (O). Normal healthy 

individuals, from early in childhood, make antibodies against A or B antigens that are not 

expressed on their own cells. Organ recipients may receive organs from donors with the same or 

compatible blood types, meaning to which they do not make antibodies. Additionally, there are 

potentially compatible combinations that involve the donor blood type A2 and instances where 

incompatible transplants are acceptable[3-9]. However, there is limited data on the outcomes of 

pancreas transplants using non identical ABO donors[10]. Current Organ Procurement and 

Transplantation Network (OPTN) policy restricts certain blood type compatible SPK transplants 

from occurring (Table 2). Specifically, blood type O donors are only shared with compatible non-

identical donors in situations where the recipient is highly sensitized (cPRA≥80) and has a 0-

ABDR HLA mismatch. Similarly, blood group B donor organs are exclusively shared with ABO 

identical recipients. Note that these policies exclusively apply to SPK allocation, with broader 

sharing allowed across all compatible ABO groups for isolated pancreas transplants such as PAK 

and PTA. Since currently the vast majority of pancreas transplants performed in the United 

States are SPKs, the restricted ABO allocation for SPK transplants fails to capitalize on the 

benefits of broader sharing for the majority of pancreas transplants. The broader sharing 

combinations allowed for PAK and PTA transplants were intended to mirror kidney allocation, 
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where there is a significant gap between the high number of candidates waiting and the limited 

number of kidneys and policy was designed to maximally utilize kidneys. For pancreas 

transplantation, however, where volumes are decreasing, it is unfortunate when there are 

situations where a pancreas allograft could be transplanted but is discarded because suitable 

recipients within the allowable ABO combinations are exhausted, yet other suitable ABO 

compatible recipients remain on the list. Broader use of blood group compatible but non identical 

pancreas allografts may encourage local use of organs, which is currently the best opportunity to 

place a pancreas allograft, and may lead to greater utilization of this scarce and underutilized 

resource.  

In order to determine the impact of broader sharing across compatible blood types, we 

examined the effects of five alternative allocation sequences that allowed all clinically 

compatible ABO transplants using the Kidney Pancreas Simulated Allocation Model (KPSAM). 

The goal was to determine if broadened ABO compatibility would increase the number of annual 

SPK transplants.  

Methods 

Study Population 

Scientific Registry of Transplant Recipients (SRTR) data were used for KPSAM 

modeling. The SRTR data system includes data on all donors, waitlisted candidates, and 

transplant recipients in the US, submitted by the members of OPTN. The Health Resources and 

Services Administration, US Department of Health and Human Services, provides oversight of 

the activities of the OPTN and SRTR contractors. All transplant candidates on the kidney, 

simultaneous kidney-pancreas (SPK), and pancreas (PA) waiting lists from January 1, 2010, to 
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December 31, 2010, and any kidney or pancreas donors whose organs were offered for transplant 

during this period were included.  

Additionally, because the SPK/PA waiting list is now notably smaller than in 2010, the 

study population was reduced by random sampling to match the volume of the 2015 period 

prevalent SPK/PA waiting list. Specifically, there were 3770 SPK candidates and 1663 PA 

candidates in 2010, and 3312 and 1373, respectively, in 2015. Therefore, the SPK candidate pool 

was reduced by 12% and the PA candidate pool by 17%. Because SPK and PA candidates are 

prioritized over kidney-alone (KI) candidates through the first five levels of the SPK/PA 

allocation system, and because deceased organ donation is roughly constant from year to year, 

not accounting for this reduction in candidate volume would overestimate the impact of broader 

ABO compatibility definitions, and kidney candidates would appear more disadvantaged by the 

change in allocation than they would be in reality. This will be referred to as the “reduced” 

cohort, and the entire study population as the “full” cohort.  

Proposed Changes to ABO Compatibility 

Under current policy, several restrictions apply to blood type compatibility of offered 

kidneys/pancreata. Simultaneous kidney-pancreas offers must meet certain restrictions with 

regard to blood type compatibility (Table 3). Specifically, offers must be ABO-identical, except 

in the case of A donors to AB candidates, and in the case of O candidates who are a 0-ABDR 

HLA mismatched with the donor organs and have a calculated panel-reactive antibody (cPRA) 

value of at least 80%. In contrast, pancreas-without-kidney offers can be made to any ABO-

compatible (i.e., biologically compatible) candidate. Neither policy is in direct alignment with 

the policy for KI offers.  
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An alternate set of ABO compatibility requirements for both SPK and PA offers was 

proposed (Table 4). It is equivalent to the current policy guiding KI offers, with the exception of 

allowing ABO:O donor organs to go to ABO:O candidates in the absence of a 0-ABDR HLA 

mismatch.  

Proposed Changes to Allocation Policy 

We evaluated several variations on existing SPK and pancreas-without-kidney allocation 

policy (also called run 1 [R1], or baseline). Table 5 shows how these alternatives differ from 

existing policy. First, we allowed for all compatible blood type exchanges (run 2 [R2]). Next, we 

allowed ABO-identical candidates complete priority over ABO-compatible candidates (run 3 

[R3]). Next, we allowed ABO-identical candidates some priority over ABO-compatible 

candidates, but only within high-cPRA (≥ 80%) designation and locality (run 4 [R4]). Then, we 

allowed ABO-identical candidates priority over ABO-compatible candidates within locality only 

(run 5 [R5]). Lastly, we gave ABO-identical candidates complete priority over ABO-compatible 

candidates (run 6 [R6]). Kidney-pancreas/pancreas allocation policy allows an organ 

procurement organization (OPO) to switch back and forth between the simultaneous SPK/PA 

waiting list and the KI waiting list, once all local offers have been made. For the purposes of 

kidney-pancreas simulated allocation model (KPSAM), we assumed that OPOs aim to maximize 

the number of organs placed by always prioritizing kidney-pancreas (KP)/PAs over KIs within a 

geographic division (local/regional/national), and with the exception of mandatory shares related 

to cPRA and 0-ABDR HLA mismatches. Therefore, OPOs were simulated to switch to KI 

allocation after local SPK/PA offers, allocate kidneys through the local level (and if a KI is 

accepted, the pancreas will be offered to pancreas candidates on the combined KP/PA list), then 

switch back to the KP/PA list for regional offers, switch back to the KI list for regional offers, 
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switch back to the KP/PA list for national offers, and finally, switch to the KI list for national 

offers. Islet candidates and offers are not simulated in KPSAM.  

Modeling Approach 

The study conducted simulations using the KPSAM, a program routinely used by the 

OPTN committees to assess policy proposals. The KPSAM simulates the arrival of donated 

organs and new candidates on the waiting list over a 1-year period; checks compatibility of 

organs with candidates on the waiting list at the time an organ becomes available; creates 

ordered lists of compatible candidates (candidates with more points have priority for receiving 

the organ over candidates with fewer points in each ordered list); simulates candidate acceptance 

or refusal of organ offers using a logistic regression model based on organ acceptance behavior 

in 2010; calculates numbers of transplants performed and organs discarded; and uses linear 

approximations to Cox proportional hazard models to project outcomes such as median allograft 

and patient survival for each transplant. Allograft failure was defined as need for dialysis or 

retransplant. The KPSAM repeated this process 10 times each for the current (1) and proposed 

(5) allocation policies, each time randomly permuting the order of donor arrivals and generating 

new random numbers to determine organ offer acceptance. Each of the six proposed allocation 

sequences was run using both the full and the reduced cohorts. Since the same donors and 

candidates are used in each of the simulations, and they are the actual donors and candidates 

from calendar year 2010 and not independent samples, statistical tests of comparisons are not 

possible. Instead, the average and the minimum-maximum range of results for the 10 iterations 

are described for the current and the new allocation policies. Of note, this range reflects 

variability of the simulation modeling, not variability in actual organ allocations.  

Limitations of KPSAM 
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KPSAM currently models organ acceptance based on acceptance patterns from 2010 

organ offers. Acceptance patterns are related to the allocation rules under which the organ was 

allocated. Since 2010, major changes have occurred to the allocation systems for both the 

kidney-alone list and the combined KP/PA list. KPSAM does not change acceptance patterns 

when a new set of allocation rules is modeled, but in reality a change in allocation rules would 

likely lead to a change in acceptance patterns. For example, groups with a relative gain in 

priority under new rules would likely become more selective, and groups with a relative loss in 

priority would likely become less selective. 

All input files use 2010 candidate and donor data; since 2010, the kidney-alone list has 

grown, and the combined KP/PA list has shrunk. Additionally, recovery of kidneys for transplant 

has increased.  

KPSAM provides results from only 1 year of organ allocation/waitlist dynamics. Effects 

of some changes to organ allocation policy may be spread over several years, and would not be 

fully identified by KPSAM output. Results should be viewed with these limitations in mind. 

Results 

In general, R2 was the most generous in that ABO-identical exchanges were not 

prioritized over ABO-compatible exchanges at any level of allocation; R6 was the most 

conservative, as ABO-identical offers received absolute priority (i.e., through the national level) 

over ABO-compatible offers. Here, we focus on results from R4, R5, and R6, with R1 shown for 

comparison.  

Simulations R4 and R5 predicted an increase in SPK transplants, a near equivalency in 

PA transplants, and a decline in KI transplants, while R6 predicted a small decrease in SPK 

transplants and consequent increases in PA and KI transplants (Table 6). Some discrepancy 
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occurred between the actual (observed in 2015) and simulated “baseline” (R1) results, which 

may be explained by changes in acceptance practices since 2010 (the KPSAM acceptance 

module was built using acceptance data from 2010) and a slightly higher deceased donor supply 

in 2015 than in 2010. Waitlist mortality rates were nearly constant across runs (data not shown). 

All simulations predicted a net increase in the metrics previously used by the OPTN 

Kidney Committee to evaluate policy changes (Table 7), specifically: “median years of benefit 

from transplant,” which is calculated per transplant recipient as the difference between estimated 

survival after transplant minus estimated survival on the waiting list, and “quality-adjusted life 

years from transplant (QA-LYFT),” which is the same concept but with years without a 

functioning graft (i.e., on the waiting list or on dialysis) weighted less (0.8) than years with a 

functioning graft (1.0). The increase in both metrics is due to a shift to more KP transplants, 

which have on average a higher QA-LYFT than KI transplants. The full cohorts predicted more 

total transplants than the reduced cohorts, which is why the total QA-LYFT per run is higher. 

These metrics can be calculated only for kidney and kidney-pancreas recipients. 

As expected, the distribution of transplant recipients by blood type changed substantially 

under the alternate allocation systems R4 and R5. For SPK transplants, numbers of ABO:A and 

ABO:B recipients increased by approximately 100 and 50, respectively. ABO:O transplants 

declined by 15 to 25, while ABO:AB transplants were roughly stable. As percentages, ABO:A 

transplants increased in prevalence by 6% to 8%, and ABO:B by 4% to 7%; ABO:O transplants 

decreased by 12% to 13%. Changes by blood type under R6 were minimal, within 10 in either 

direction, except for ABO:B under the R6 reduced cohort, which declined by 24. Although the 

total number of PA transplants did not vary by more than 20 across runs, a shift occurred toward 
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more ABO:A (+7 to +13) and ABO:B (+3 to +4) transplants, and fewer ABO:O transplants (-1 to 

-19). 

KI transplants changed in a similar manner, with ABO:A transplants increasing by 26 

(R6) and 54 (R5), and ABO:O transplants declining by 90 (R6) and 278 (R5). ABO:B and 

ABO:AB transplants both increased, from 28 (R5) to 48 (R4), and 60-66, respectively. As 

percentages, ABO:A transplants increased in prevalence by 0.1% to 0.9% and ABO:B by 0.2% 

to 0.6%; ABO:O transplants decreased by 1% to 2%.  

 The distribution of recipients changed minimally by race and age. Importantly, the 

increase in SPK transplants occurred approximately equally across race groups, with a slight 

relative increase for white recipients and a slight relative decrease for black and Hispanic 

recipients. The largest change was a decrease of 1% in the prevalence of Hispanic recipients and 

an increase of 1.7% in the prevalence of white recipients in the R5 full cohort. Likewise, the 

decrease in KI transplants was spread equitably across races, with the largest change at -0.3% in 

white recipients in the R4 reduced cohort. There was no consistent pattern of change for PA 

transplants by race; the largest change was +2.5% in the prevalence of white recipients in the R4 

reduced cohort.  

For SPK transplants, the benefit of more transplants occurred across all ages younger 

than 65 years, but inconsistently; the largest change was +2.2% among recipients aged 18-34 

years in the R4 full cohort. There was a trend toward more KI transplants at the tails of the 

distribution, i.e., ages younger than 18 years and 50 years or older; however, all changes for KI 

transplants were less than 0.5% in magnitude. The distribution of PA transplants changed 

slightly, with relatively more transplants in candidates aged 35-49 years (+0.1% to +2.7%) and 

relatively fewer in candidates aged 18-34 years (-0.5% to -2.4%).  
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 There were no consistent or sizeable changes by primary diagnosis, 0-ABDR HLA 

mismatches, or cPRA (data not shown). Of interest, transplants did not decrease for cPRA 98+ 

KI candidates. The relative frequency of local PA and SPK transplants increased under R4/R5 by 

5% to 10% and 2% to 3%, respectively. The pattern was mixed under R6, with a decrease of 

between 0.7% and 2% for local PA, and inconsistent change for local SPK. The decline in KI 

transplants was primarily for shared transplants (-0.3% to -0.6%), with local transplants slightly 

more common. 

Discussion  

The observed decline in pancreas transplantation in the US is associated with a high discard rate 

of usable pancreata and fewer candidates receiving a life changing transplant. Any barrier to 

pancreas transplantation must, therefore, be reviewed and, if an unnecessary obstacle, removed. 

The results of the KPSAM simulations show that allowing ABO compatible blood type 

allocation increases the total number of transplants, increases median years of benefit from 

transplant, shows no significant impact on candidates based on race or age, and would be a step 

towards a more efficient allocation system by making the schema the same for SPK and PA 

transplants.  

In examining how alternative allocation sequences allowing clinically compatible ABO 

transplants increased the number of annual SPK transplants, R4 and R5 appear superior to the 

other simulations in attaining these goals with greater increases in SPK and median years of 

benefit. Between the two, R4 and R5 are similar in impact on SPK, KI and PA transplants but R4 

shows a smaller reduction in KI transplants and thus a larger net increase overall. Similarly, R4 

showed a greater impact on QA-LYFT than R5, indicating that R4 seems the optimal simulation 
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to enact in policy for an efficient allocation system. Interestingly, R4 is in the middle in 

restricting priority of ABO-identical blood types over ABO-compatible blood types.  

 Broadened ABO compatibility allowances primarily benefitted SPK ABO:A and AB 

candidates, since they could receive offers from all donors (with the exception of ABO:B donors 

for ABO:A candidates). ABO:O candidates saw reduced access to transplant, as they now 

compete with all other candidates for their only compatible organs. Assuming no changes in 

acceptance practices under a changed allocation system, no other aspects of kidney-alone 

transplants were meaningfully affected. The simulation results suggest that modifying the current 

allocation sequence to incorporate broadened ABO compatibility can result in an increase in 

annual SPK transplants.  

It makes little sense to prohibit clinically compatible transplants from occurring when the 

number of pancreas transplants continues to decline. Any barrier to transplant must be highly 

justified or eliminated. In pursuit of this effort to reverse the decline of pancreas transplantation, 

the OPTN/UNOS Pancreas Transplantation Committee is submitting a proposal to enact the R4 

simulation (prioritizing high-cPRA ABO-identical candidates, then high-cPRA compatible 

candidates, then all identical, then all compatible). The Committee has also pursued other 

avenues to increase utilization of pancreas transplantations by eliminating or modifying the body 

mass index (BMI) cap for KP wait time criteria, and providing guidance on pancreas after kidney 

(PAK) transplantation.  

 These concordant efforts to increase pancreas transplantation provide the dual benefits of 

preventing transplantable organs from discard and providing life changing transplantation for 

more candidates than would receive it otherwise. An effort to improve the kidney-pancreas 
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allocation system by allowing ABO blood type compatibility as modeled in R4, therefore, is an 

important step in the right direction.   

 

Table 1 

Blood Type Antibodies in circulation Compatible blood type 
O Anti-A, anti-B, anti AB O 
A Anti-B A, O 
B Anti-A B, O 
AB None AB, A, B, O 
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Table 2   Current OPTN allocation schema for SPK transplants (Adapted from Policy 
11.4.D and Table 11-3 Allocation of Kidney-Pancreas by Blood Type) 
 
Kidney-Pancreas from 
Deceased Donors with 
Blood Type: 

Are Allocated to 
Candidates with Blood 
Type: 

O O  
O A, B or AB if the candidate 

has a zero antigen 
mismatch with the 
deceased donor and a 
CPRA greater than or 
equal to 80 percent 

A A or AB 
B B 
AB AB 
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Table 3. Blood type compatibility restrictions, SPK and PA transplants 

 Candidate: O Candidate: A/A1/A2 Candidate: B Candidate: AB/A1B/A2B 
Donor: O I C* C* C* 
Donor: A/A1 X I X C 
Donor: A2 X I X C 
Donor: B X X I X for KP; C for PA 
Donor: AB/A1B X X X I 
Donor: A2B X X X I 

 

*for SPK allowable only for 0-ABDR HLA mismatch, cPRA ≥ 80% for SPK; for PA, all allowable. 

C, compatible; cPRA, calculated panel-reactive antibody; SPK, simultaneous kidney-pancreas; PA, pancreas without kidney. 
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Table 4. Alternate ABO compatibility requirements for SPK and PA offers  

 Candidate: O Candidate: A/A1/A2 Candidate: B Candidate: AB/A1B/A2B 
Donor: O I C C C 
Donor: A/A1 X I X C 
Donor: A2 X I C2 C 
Donor: B X X I C 
Donor: AB/A1B X X X I 
Donor: A2B X X C2 I 

 

C, compatible; C2, compatible only if candidate meets A2 or A2B eligibility criteria (as for kidney); I, identical; PA, pancreas without 

kidney; SPK, simultaneous kidney-pancreas; X, incompatible, not allowed. 
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Table 5. Simulated alternate allocation sequences 

Run 1/Run2 Run 3 Run 4 Run 5 Run 6 
1. Local 0-ABDR, cPRA ≥ 80% 1, ABO-identical 

1, ABO-compatible 
1-4, ABO-identical 1-5, ABO-identical 1-5, ABO-identical 

2. Local, cPRA ≥ 80% 2, ABO-identical 
2, ABO-compatible 

1-4, ABO-compatible 1-5, ABO-compatible  

3. Regional 0-ABDR, cPRA ≥ 80% 3, ABO-identical 
3, ABO-compatible 

   

4. National 0-ABDR, cPRA ≥ 80% 4, ABO-identical 
4, ABO-compatible 

   

5. Local 5, ABO-identical 
5, ABO-compatible 

5, ABO-identical 
5, ABO-compatible 

  

*OPO may begin offering the kidney to 
kidney-alone waiting list* 

*OPO may begin offering 
the kidney to kidney-alone 
waiting list* 

*OPO may begin offering 
the kidney to kidney-alone 
waiting list* 

*OPO may begin offering 
the kidney to kidney-alone 
waiting list* 

*OPO may begin offering 
the kidney to kidney-alone 
waiting list* 

6. Regional cPRA ≥ 80% 6, ABO-identical 
6, ABO-compatible 

6, ABO-identical 
6, ABO-compatible 

6-7, ABO-identical 6-9, ABO-identical 

7. Regional 7, ABO-identical 
7, ABO-compatible 

7, ABO-identical 
7, ABO-compatible 

6-7, ABO-compatible 1-9, ABO-compatible 

8. National cPRA ≥ 80% 8, ABO-identical 
8, ABO-compatible 

8, ABO-identical 
8, ABO-compatible 

8-9, ABO-identical 
 

 

9. National 9, ABO-identical 
9, ABO-compatible 

9, ABO-identical 
9, ABO-compatible 

8-9, ABO-compatible  

10. Islet (local, regional, national) 10 10 10 10 
 

Note: Run 1is the current allocation sequence in policy. 

cPRA, calculated panel-reactive antibodies; OPO, organ procurement organization. 
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Table 6. Number of transplants by KPSAM run 

  Simulation Run Difference 
 2015 Actual R1 R4 R5 R6 R4-R1 R5-R1 R6-R1 

Full cohort         
KI 11,469 10,766.0 10,639.4 10,640.5 10,774.9 -126.6 -125.5 8.9 
PA 144 151.2 144.6 147.2 169.8 -6.6 -4.0 18.6 
SPK 717 683.7 827.5 829.1 685.7 143.8 145.4 2.0 
Total 12,330 11,600.9 11,611.5 11,616.8 11,630.4 10.6 15.9 29.5 

Reduced cohort         
KI 11469 10771.9 10666.8 10635.5 10798.0 -105.1 -136.4 26.1 
PA 144 112.9 113.7 118.8 126.2 0.8 5.9 13.3 
SPK 717 652.0 795.3 793.9 635.6 143.3 141.9 -16.4 
Total 12330 11536.8 11575.8 11548.2 11559.8 39.0 11.4 23.0 

 

KI, kidney alone; KPSAM, kidney-pancreas simulated allocation model; PA, pancreas without 

kidney; SPK, simultaneous kidney-pancreas. 
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Table 7. Projected Benefit Metrics by KPSAM run 

 Simulation Run Difference 
 R1 R4 R5 R6 R4-R1 R5-R1 R6-R1 
Median years of benefit*        

Reduced cohort 58,837 59,086 59,011 58,939 249 174 102 
Full cohort 58,679 59,097 59,095 58,881 418 416 202 

QA-LYFT†        
Reduced cohort 66,464 66,704 66,614 66,564 240 151 101 
Full cohort 66,343 66,711 66,720 66,508 368 377 165 

 

*Projected median years of benefit from transplant vs. waiting list. 

†Projected quality-adjusted life years from transplant vs. waiting list. 
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