
Computing and Informatics, Vol. 35, 2016, 687–718

FAST HARDWARE IMPLEMENTATIONS
OF STATIC P SYSTEMS

Juan Quiros

ID2 Group, Department of Electronic Technology, University of Seville
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
e-mail: jquiros@dte.us.es

Sergey Verlan

LACL, Département Informatique, Université Paris Est
61, av. Général de Gaulle, 94010 Créteil, France
e-mail: verlan@univ-paris12.fr

Julian Viejo, Alejandro Millan, Manuel J. Bellido

ID2 Group, Department of Electronic Technology, University of Seville
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
e-mail: julian@dte.us.es, amillan@us.es, bellido@dte.us.es

Abstract. In this article we present a simulator of non-deterministic static P sys-
tems using Field Programmable Gate Array (FPGA) technology. Its major feature
is a high performance, achieving a constant processing time for each transition. Our
approach is based on representing all possible applications as words of some regular
context-free language. Then, using formal power series it is possible to obtain the
number of possibilities and select one of them following a uniform distribution, in
a fair and non-deterministic way. According to these ideas, we yield an implemen-
tation whose results show an important speed-up, with a strong independence from
the size of the P system.

Keywords: Reconfigurable hardware, P systems, static P systems, FPGA, mem-
brane computing, parallel implementations of membrane computing, simulator of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/186618054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

688 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

membrane computing, hardware implementations of membrane computing, parallel
implementations of static P systems, simulator of static P systems

Mathematics Subject Classification 2010: 94-04, 68-04, 68U20

1 INTRODUCTION

The beginning of the membrane computing goes back to the end of the nineties,
when G. Păun introduced it [1]. This area gets its essence of living cells and, in con-
sequence, the first models are defined as a hierarchical structure or a tree topology of
compartments (membranes that delimits cells), which contains objects (chemicals),
which evolves according to applicability rules (chemical reactions). Using this con-
cept as a starting point, more variations, based on more biological processes which
take place in living cells, have been detailed during following years (and it contin-
ues nowadays). One of the most relevant modifications was the introduction of the
tissue P systems [2], in which the tree topology of the structure of membranes is
substituted for a graph topology, where the structure is composed by cells, instead
of tree nodes [3].

This work is based on the formal framework introduced in [4], in which a general
class of multiset rewriting system, which contains P systems and tissue P systems,
is designed. So, this section only describes, in a non-formal way, the most relevant
aspects for the introduced work. For more details about P systems, we refer to the
books [3, 5], and to [4] for specific information relative to the formal framework.

A P system, Π, can be describe as a network of cells

Π = (n, V, w, Inf, R), (1)

where

• n is the number of cells.

• V is the alphabet, which contains symbols for each object in the system.

• w is a tuple (w1, . . . , wn), where wi corresponds to the multiset of objects (o ∈ V)
contained in cell i.

• Inf represents which symbols are provided by the environment. In this case,
a cell can receive an infinite number of objects. Inf = (Inf1, . . . , Infn), where
Infi ⊆ V determines which elements of the alphabet are received by cell i from
the environment.

• R is a finite set of rules, ri, with the form ri : X → Y ;P,Q. X → Y are vectors of
multisets, which can be written as ((x1, 1), . . . , (xn, n)) → ((y1, 1), . . . , (yn, n)),
meaning that objects in X, also called lhs(ri), left-hand-side of ri, are consumed
by the evolving rule, whereas objects in Y , also called rhs(ri), right-hand-side
of ri, are produced. Attending to P and Q, they are also vectors of multisets,

Fast Hardware Implementations of Static P Systems 689

called permitting and forbidding conditions, but in the form P = (p1, . . . , pn)
and Q = (q1, . . . , qn). These last ones affect the applicability of the rule in the
following way: a rule can be applied, or is applicable, if all elements in P are
contained by the cells and none of the elements in Q are contained by them.
Obviously, it is necessary that there also exist all elements which are going to
be consumed by the rule, i.e. all elements in X.

For the design of the simulator, we have only considered static tissue-like P sys-
tems. According to above definition, a P system is static when its cells do not change
along the computation. Moreover, in order to reduce complexity, we have removed
the permitting and forbidding conditions from the original rule definition. As it is
shown in Section 5, these elements can be added easily to the simulator.

The computation of any P system starts with its initial configuration C0. A con-
figuration describes the state of the system at a particular time. So, in the case of
a static P system, the objects contained in each cell of the system are only required,
because the structure does not change along the computation. In consequence, the
computation begins with C0 = w and, from this state, the system evolves to next
configuration C1 by means of application of rules, what is called a computation step,
and continues until a halt condition is reached. We will not enter into details about
halting conditions, they are discussed in the bibliography suggested above. How-
ever, the most typical conditions take place when the system reaches a configuration
in which it is not possible to apply any rule, called total halting condition; or it is
equal to previous configuration, i.e. although rules which can be applied exist, their
application does not change the configuration, called adult halting condition.

For our purpose, the most interesting aspect of P systems is the computation
step, i.e., how they evolve from a configuration Ci, to the next one, Ci+1. This
process is described below.

1. At the beginning of the step, the system has a configuration Ci.

2. Given Ci, there will be rules which can be applied, called as applicable rules,
and others which cannot. According to some restrictions, called as deriva-
tion mode (δ), it is possible to define multisets of applicable rules. We define
Appl(Π, Ci, δ) as the set of all multisets of applicable rules which verify the re-
strictions imposed by δ. We note that Appl is associated to a P system Π,
a configuration Ci and a derivation mode δ. Hence, computing Appl(Π, Ci, δ)
will be the first mini-step.

As the reader can deduce, derivation modes play an important role in the se-
mantic of the model. They can be seen as some restrictions which should be
accomplished by a multiset of applicable rules, R, to be included in the Appl
set. There are several types, and we refer again to bibliography for more details.
Maximal parallelism, max, was the first derivation mode and the most used
until now. In an informal way, it says that a multiset of applicable rules, R, can
be included in Appl if, and only if it does not exist another rule, not included
in R, and which can be applied; in other words, if we remove from the system

690 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

all objects consumed by rules in R, there will not be enough resources so that
another rule can be applied. Formally, maximal parallelism is defined as:

Appl(Π, C,max) = {R′|R′ ∈ Appl(Π, C) and

@R′′ ∈ Appl(Π, C) such that R′′ % R′}. (2)

3. Once the Appl(Π, C, δ) has been computed, an element R must be selected from
it. The criteria which must be followed depends on the type of P system.
An example is extracting an element following an equi-probable distribution,
i.e., all elements have the same probability of being chosen.

4. Finally, the last mini-step is applying the selected R. It consists in, for each
rule r : (X → Y ;P,Q) in R, removing all objects contained in X and adding
all those ones contained in Y . After that, a new next configuration, Ci+1, is
obtained.

In this paper we detail basic ideas about simulation of non-deterministic P sys-
tems with a choice of the applicable set of rules following a uniform distribution.
Our point of view is slightly different from other approaches, achieving a perfor-
mance close to an ideal. Although it implies a loss of flexibility, reducing the range
of input P systems, it is worth to note that the acceptance of a P system does not
depend on its class, as it happens in other simulators, but on the complexity of
the dependences of its rules, achieving a wide range of target P systems. In or-
der to exemplify our approach, we present a hardware implementation using FPGA
technology and based on our ideas, with a performance of around 2 × 107 compu-
tational steps per second, independently of the number of used rules or types of
objects.

This paper is organized as follows. Firstly, in Section 2 we describe previous
implementations of P systems simulators, focusing on those ones using FPGA tech-
nology. Besides, we give a brief introduction to the theory of formal power series
(Subsection 2.1), giving examples of the computation of generating series for dif-
ferent languages. In Section 3 we explain our method of pre-computation of all
possible applications of rules (Subsection 3.1), and the general architecture of our
simulator (Subsection 3.2). Section 4 gives an example of a FPGA implementation
of a concrete P system using our ideas: firstly, we present the mathematical details
concerning the example, secondly, Subsection 4.1 overviews the specific hardware
design for the simulator and lastly, Subsection 4.2 presents the obtained results.
Finally, in Section 5 we discuss about some improvements and future research tasks,
and in Section 6 we summarize our conclusions.

2 PRELIMINARIES

The problem of computer simulation of different variants of P systems arose at
the very beginning of the area development. The first software simulators [6, 7]
were quite inefficient, but they provided an important understanding of related

Fast Hardware Implementations of Static P Systems 691

problems. Since most variants of P systems are by definition inherently parallel and
non-deterministic, it is natural to use distributed or parallel architectures in order
to achieve better performances [8, 9, 10].

Another fruitful idea is to use a specialized hardware for the simulation. This
approach was taken in [11, 12] using FPGA reconfigurable hardware technology.
The first implementation from [11] is based on region processors which have rules
as instructions and multiplicity of objects as data. Although it has several limita-
tions what limits its performance (parallelism across membranes only and a reduced
extensibility and scalability), it demonstrates that P systems can be executed on
FPGAs. In the other [12, 13, 14] two possible designs are detailed: rule-oriented
and region-oriented systems. In the first one, each rule is considered as a basic
processing unit and, in consequence, has a specific hardware core. As a result, the
system achieves a maximum degree of parallelism, because of all rules are executed
in parallel by specific hardware components. In the second case, the basic process-
ing units are regions. Thus, communication between regions acquire more relevance:
local rules are processed by the region processors and, after that, a communication
process between regions takes place in order to update the multiplicity of objects.
In both architectures, there is a control logic which synchronizes the operations of
processing units and updating of registers what saves the configuration of the sys-
tem. How registers are grouped and what is considered as a basic processing unit
depends on the approach (rules or regions).

An important point for a (parallel) computing platform for membrane computing
is to achieve a good balance between performance, flexibility and scalability. This is
especially important for hardware simulators because the high performance comes
often at an important price of flexibility or scalability. The important drawback of
FPGA simulators from [11, 12] is that they suppose that the evolution of a P system
is deterministic, and thus these simulators will yield always the same result for the
same initial configuration. However, the non-determinism in P systems plays an
important role and its absence reduces drastically the classes of P systems that can
be used with the above simulators.

Furthermore, the simulators are based on the model detailed in the foundational
article [1]. As a consequence, they have strong restrictions about topology, type of
objects and rules of the P system. So, a more flexible simulator would be desirable.
In that way, some theoretical results, as [4], can be a starting point in order to
develop a simulator which covers most of the restrictions about topology, rules and
objects, that is to get a more flexible one.

2.1 Context-Free Grammars as Generators of Formal Power Series

We assume that the reader is familiar with some notions from the formal power series
theory, especially related to the theory of formal languages. We suggest reading
of [15] for more details on this topic. We denote by |w| the length of the word w or
the cardinality of the multiset or set w. For our purposes we consider that a formal
power series f is a mapping f : A∗ → N, where A is an alphabet and N is the set of

692 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

non-negative integers (in the general case a formal power series is a mapping from
a free monoid to a semiring). This mapping is usually written as

f =
∑
w∈A∗

f(w)w. (3)

It is known that a context-free grammar G = (N, T, S, P) can be seen as a set
of equations xi = α1 + · · · + αni

, for each non-terminal xi of G, where αj are the
right-hand sides of productions xi → αj, 1 ≤ j ≤ ni. A solution of G is a set
of formal power series s1, . . . , sk, such that the substitution of xi by si in above
equations converts them to the identity, i.e., corresponding series are equal term by
term. It is well known [16] that si =

∑
w∈A∗ fi(w)w, where fi(w) is the number of

distinct leftmost derivations of w starting from xi. Under the mapping that sends
any symbol from A to the same symbol, say x, we obtain the generating series for
a non-terminal xi:

fi =
∞∑
n=0

∑
|w|=n

fi(w)xn. (4)

Let fi(n) =
∑
|w|=n fi(w). Then the above equation can be rewritten as:

fi =
∞∑
n=0

fi(n)xn. (5)

Suppose that x1 = S, where S is the starting symbol of G. Then f1 is called the
generating series of G. If G is unambiguous, then f1(n) gives the number of words
of length n in G. We denote by [xn]f the nth coefficient of f , i.e. [xn]f = f(n).

Let φ be the morphism defined by

φ(λ) = 1,

φ(a) = x, ∀a ∈ T, (6)

φ(xi) = fi, xi ∈ N.

Let xi → vi1 | · · · | vik be the set of productions associated to xi. Then fi can
be obtained as the solution of the following system of equations:

fi =
k∑

j=1

φ(vij). (7)

For a regular grammar G the system (7) becomes linear. By considering a fi-
nite automaton A = (V,Q, q0, Qf , δ) equivalent to G we obtain that system (7)
corresponds to the following system (recall that x is considered as a constant)

Q = xMQ+ F, (8)

where:

Fast Hardware Implementations of Static P Systems 693

• Q = [q1 . . . qn]t, qi ∈ Q, 1 ≤ i ≤ n is the vector containing all states.

• F = [a0 . . . an]t, is the final state characteristic vector, i.e., ai = 1 if qi is a final
state and 0 otherwise.

• M is the transfer matrix of the automaton A, i.e. the incidence matrix of the
graph represented by A with negative values replaced by zero.

We remark that in the case of a regular language it is also possible to count the
number of words of length n by summing the columns corresponding to the final
states of the nth power of the transfer matrix of the corresponding automaton:

fi(n) =
∑
qj∈Qf

(Mn)i,j. (9)

It is known that the generating series f for a regular language is rational. That
implies that there exists a finite recurrence f(n) =

∑k
j=1 ajf(n− j), k > 0, aj ∈ Z

which holds for large n.

Example 1. Considering the regular language LI recognized by the following au-
tomaton

q2

1

// q0

0

??

1 // q1
0 // q3

0 //
1cc

q4

1

��

the final state characteristic vector F of this automaton is defined by F = [0, 1, 0, 1,
0]t and the transfer matrix M by

M =

0 1 1 0 0
0 0 0 1 0
0 1 0 0 0
0 1 0 0 1
0 1 0 0 0

 . (10)

694 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

The corresponding system (8) of linear equations has the following solution:

q0 =
x3 + 2x2 + x

1− x2 − x3
,

q1 =
x+ 1

1− x2 − x3
,

q2 =
x2 + x

1− x2 − x3
, (11)

q3 =
x2 + x+ 1

1− x2 − x3
,

q4 =
x2 + x

1− x2 − x3
.

We can expand q0 to obtain q0(n) (= [xn]q0),

q0 = x+ 2x2 + 2x3 + 3x4 + 4x5 + 5x6 + 7x7 + 9x8 + . . . (12)

The coefficients of the above series give the number of words of the corresponding
length. For example, there are 9 words of length 8 in LI .

It is not difficult to verify that the obtained coefficients [xn]qk, 0 ≤ k ≤ 4, of
the corresponding power series are particular cases of the Padovan sequence qk(n) =
qk(n− 2) + qk(n− 3), n > 3, with the following starting values:

k qk(0) qk(1) qk(2)
0 1 1 2
1 1 1 1
2 0 1 1
3 1 1 2
4 0 1 1

3 DESIGN OF THE SIMULATOR

3.1 Formal Part

As it was detailed in Section 1, there are several features of a static P system which
define it: topology, type of objects, rules, derivation mode and how a multiset
of rules is chosen from the Appl set. The formal framework lets us remove the
topology, type of objects and rules from this list. Hence we must only worry about
the application of the rules. In this section, we consider a (static) P system, Π,
of any type evolving in any derivation mode, chosen a multiset of rules in a non-
deterministic way. The main idea for the construction of a fast simulator is to avoid
the computation of the set Appl(Π, C, δ) and to compute R, the multiset of rules
to be applied directly. In this article we are interested in algorithms that permit to

Fast Hardware Implementations of Static P Systems 695

perform this computation on FPGA in constant time. We remark that, in a digital
FPGA circuit synchronized by a global clock signal, in one cycle of FPGA, it is
possible to compute any function where implementation has a delay which does not
exceed the period of the global clock signal. A pipeline using arithmetical operations
and, in general, any combinatorial and sequential asynchronous subsystems, are
usually included in this group.

In order to simplify the problem we split it into two parts corresponding to the
construction of the following recursive functions:

NBVariants(Π, C, δ):
gives the cardinality of the set Appl(Π, C, δ).

Variant(n,Π, C, δ), where 1 ≤ n ≤ NBVariants(Π, C, δ):
gives the multiset of rules corresponding to the nth element of some initially
fixed enumeration of Appl(Π, C, δ).

It is clear that if each function is computed in constant time, then the multiset
of rules to be applied can also be computed in a constant time. In the following, we
will discuss methods for the construction of these two functions for different classes
of P systems.

We will need the notion of the rules’ dependence graph. This is a weighted
bipartite graph where the first partition U contains a node labeled by a for each
object a of Π, while the second partition V contains a node labeled by r for each
rule r of Π. There is an edge between a node r ∈ V and a node a ∈ U labeled by
a weight k if ak ∈ lhs(r) (and ak+1 6∈ lhs(r)).

Example 2. Considering a P system Π1 having two rules r1 : ab→ u and r2 : bc→
v. These rules have the following dependence graph:

r1 r2

a b c

Let Na, Nb and Nc be the number of objects a, b and c in a configuration C. We
define

N1 = min(Na, Nb),

N2 = min(Nb, Nc), (13)

N = min(N1, N2).

Suppose that Π evolves in a maximally parallel derivation mode. Then the set
Appl(Π, C,max) can be computed as follows:

Appl(Π, C,max) =
⋃

p+q=N

{
rp+k1

1 rq+k2
2

}
, (14)

696 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

where kj = Nj 	N , 1 ≤ j ≤ 2, where 	 is the positive subtraction operation.1 The
dependence of r1 and r2 is captured by condition p + q = N , considering p and q
are greater than N , while kj cover those situations in which Nj > N .

From this representation it is clear that NBVariants(Π, C,max) = N + 1, which
can be computed in constant time on an FPGA.

The Variant(n,Π, C,max) function can be defined as the nth element in the
lexicographical ordering of elements of Appl(Π, C,max) and it has the following
formula

Variant(n,Π, C,max) = rN−n−1+k1
1 rn−1+k2

2 . (15)

We remark that the above formula can also be computed in constant time using
an FPGA.

We could obtain the NBVariants formula using formal power series. In order to
do this we observe that the language ∪N>0LN , where LN = {rp1r

q
2 | p + q = N} is

regular. Moreover, it holds that LN = r∗1r
∗
2∩AN , with A being the alphabet {r1, r2}.

Below we give the automaton A1 for the language r∗1r
∗
2.

// q0

r1

		
r2 // q1

r2

		

The transfer matrix of this automaton is

(
1 1
0 1

)
and the final state character-

istic vector is [1, 1]t. Using Equation (8) this yields the generating function for LN :
q0 = 1

(1−x)2
. It is easy to verify that [xn]q0 = n+ 1.

We modify the previous example by considering weighted rules.

Example 3. Considering a P system Π1 having two rules r1 : akabkb1 → u and
r2 : bkb2ckc → v. These rules have the following dependence graph:

r1 r2

a

ka

b

kb1 kb2

c

kc

Let Na, Nb and Nc be the number of objects a, b and c in a configuration C. We
define

N1 = min([Na/ka], [Nb/kb1]),

N2 = min([Nb/kb2], [Nc/kc]),

N = min(N1, N2), (16)

N̄ = min(kb1N1, kb2N2).

1 a	 b is equal to a− b when a > b and 0 otherwise.

Fast Hardware Implementations of Static P Systems 697

Supposing that Π evolves in a maximally parallel derivation mode. Let A2 be
the automaton recognizing the language (rkb11)∗(rkb22)∗.

// q0

r
kb1
1

		
r
kb2
2 // q1

r
kb2
2

		

Let L′N = A2 ∩ AN (A = {r1, r2}). Then it is clear that

Appl(Π, C,max) =
⋃

pkb1+qkb2=N̄

{
rp+k1

1 rq+k2
2

}
, (17)

where k1 = ka(N1 	N), k2 = kc(N2 	N).

The transfer matrix of A2 (considering the weights) is

(
kb1 kb2
0 kb2

)
and the vector

F = [1, 1]. This gives the following generating function for A2:

q0 =
1

(1− xkb1)(1− xkb2)
. (18)

The coefficients [xn]q0 can be obtained by the recurrence

a(n) = a(n− kb1) + a(n− kb2)− a(n− kb1 − kb2);n ≥ kb1 + kb2. (19)

The initial values are given by the following cases (we suppose that kb1 ≥ kb2):

1, n = 0,

0, 1 ≤ n ≤ kb2 − 1,

1, kb2 ≤ n ≤ kb1 − 1 and n = 0 (mod kb2),

0, kb2 ≤ n ≤ kb1 − 1 and n 6= 0 (mod kb2),

2, kb1 ≤ n ≤ kb1 + kb2 and n = 0 (mod kb2) and n = 0 (mod kb1),

1, kb1 ≤ n ≤ kb1 + kb2 and n = 0 (mod kb2) or n = 0 (mod kb1),

0, kb1 ≤ n ≤ kb1 + kb2 − 1 and n 6= 0 (mod kb2) or n 6= 0 (mod kb1).

(20)

Now we concentrate on the function Variant. If the set Appl(Π, C, δ) is regu-
lar, then we can use the following algorithm to compute Variant(n,Π, C, δ). Let
A(Π, C, δ) = (Q, V, q0, F) be the automaton corresponding to the language defined
by rules joint applicability and let sj, qj ∈ Q be the generating series for the state qj.

Algorithm 1.

1. In the initial situation, the current state is q0, and the other variables take the
following values: step = 0, nb = s0(n), out = λ.

2. If step = n then the system stops.

698 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

3. Otherwise, let {t : (qi, at, qjt)}, 1 ≤ t ≤ ki be the set outgoing transitions from

qi, the systems computes S(k) =
∑k

m=1 sjm(n − step). We put by definition
S(0) = 0. Then, there exists k such that S(k) ≥ nb and there is no k′ < k such
that S(k′) > nb.

4. nb and out variables are updated with the following values: nb = nb− S(k − 1)
and out = out · ak.

5. The system goes to step 2.

The main idea of this algorithm is to compute the nth variant using the lexical
ordering of transitions using an algorithm similar to the computation of the number
written in the combinatorial number system. Being in a state q and looking for
a sequence of applications of k rules we will use the transition t : (q, r, q′) (and add r
to the multiset of rules) if the transition t is the first in the lexicographical ordering
of transitions having the property that the number of words of length k − 1, that
can be obtained using all outgoing transitions from state q, that are less than or
equal to t is greater than n.

3.2 Hardware Implementation

The goal or design key for the implemented architecture is to achieve a good bal-
ance between flexibility, scalability, extensibility and performance. From the point
of view of a hardware designer, one of the major drawbacks about implementa-
tion and/or simulation of P systems is not their inherent parallelism, which is al-
ready an important challenge, but the great range of types, consequence of being
an oriented-machine model. As a consequence, a machine must be generated for
each instance of the problem, what makes non-reprogrammable hardware, as cus-
tom hardware or Application-Specific Integrated Circuit (ASIC), unfeasible. In that
way, FPGAs are the only alternative in hardware to implement this computational
model. FPGAs contain lots of reprogrammable logic blocks and interconnections.
Users can change the hardware design a number of times limited only by the num-
ber of writing supported by the device store technology. Thus, users obtain all
advantages associated to reprogram, although at the performance cost, if compared
to ASIC or custom hardware. When a design is implemented using FPGAs, find-
ing a path which communicates two logic blocks is usually the task where speed,
i.e. performance, is compromised. As a result, modular designs which minimize long
paths between logic components are the ones which best fit in this kind of tech-
nology. Our design is based on layers with interfaces clearly defined. Each layer
is a block which performs a main task of the algorithm, and it only communicates
with the previous layer, where outputs are its inputs, and next layer, which receives
its outputs.

In order to design the simulator, the graph of dependences between rules has
been chosen as a starting point to model P systems. This approach reduces com-
plexity, because of deleting some elements, like membranes and, in consequence,

Fast Hardware Implementations of Static P Systems 699

the hierarchical structure of them. Objects and rules are the only elements which
have been having in mind to model the system. Moreover, the implementation is
based on the mathematical foundations described in the previous section, following
a division of tasks, which assures enough encapsulation to achieve a design with
a right flexibility and performance. The objects are explicitly represented using
registers, but it is not the case for the rules. Their logic is distributed along most
of the components, thus there is no correspondence between a rule and a hardware
core.

An execution of a P system consists of running iterations until it reaches a halting
condition. At each iteration there is a set of operations to be carried out in order to
obtain the next configuration. To implement the simulator, these tasks have been
divided in the following stages:

1. Persistence stage: Obviously, it is necessary to save the states for which the
system goes through.

2. Independent stage: How Appl is built and how a multiset of rules is selected
from it depends on the type of the P system. Whereas there are some auxiliary
operations which are independent of this computation and common to most of
the types: according to the rules and to the multiplicity of each type of object
in the system, it is needed to know the maximum number of times that each
rule can be applied without considering no others.

3. Assignment stage: In this stage the system chooses which rules will be applied
(and how many times).

4. Application stage: In this level, the selected rules are applied, computing new
values for multiplicity of objects.

5. Updating stage: In this stage, the current configuration is updated with the
result of the computation of the previous stage.

6. Halting stage: Finally, the system has to check if the halting condition has been
reached.

The simulator is divided into six blocks, two of them are dedicated to the control
of it and input/output interface. So, all specific functionality of the P systems is
achieved by four blocks, which follow the principle of encapsulation. All blocks take
only one clock cycle to perform their tasks, except for assignBlock, which requires
two cycles. In consequence, the simulator is able to compute and apply a transition
and save the new configuration in only five clock cycles. In order to simplify the
explanation, the blocks which compound the design are described following the
functional division commented above (Figure 1).

persistenceBlock:

Its goal is to persist the current configuration of the P system, update it and
check adult halting condition. Hence, it implements persistence, updating and
a portion of halting stages. Concerning to the two first ones, it is independent

700 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

Stages Tasks Block Clk cycles

appBlockApplication Stage 1cycle

Persistence Stage

Update confguration

Save current confguration

Check halting condition (partial)

persistenceBlock 1cycle

Independent Stage Preliminary arithmetical operations independentBlock 1cycle

Assignment Stage

Detect independent chains

Compute NBVariants (Π ,C ,δ)

Compute Variant (n ,Π ,C ,δ)

assignBlock 2cycles

Compute changes in multiplicities

Control Stage
Communication and control logic
Check halting condition (partial) controlBlock hidden by rest

of operations

- Input/Output Interface inoutBlock

Depending of
operation type,

number of objects
and width of buses

Objects' multiplicity

Maximum number of
Applications (for each rule)

Multiset of rules
which will be applied

Changes in the
objects' multiplicity Control signals

Objects' multiplicity

Figure 1. Overview of the architecture. This illustration shows the main blocks and the
flow of information between them.

of the type of the system, being only dependent on the number of different
objects and their maximum multiplicities. There is one register per type of
object, that saves its current multiplicity as an unsigned integer, because it is
not possible to have a negative number of any objects. An adder performs the
operation of updating the current configuration. Because the multiplicity can
decrease, this arithmetical component uses signed integers, making the conver-
sion of the value saved in the register from unsigned to signed integer. This
block receives, for each object, the differences between current and next multi-
plicities, and it sends the current number of objects in the system to the next
module.

Although the major principle which guides the design is the modularity, some
logic related to checking halting condition must be done in this block. There
are several halting conditions, and which one is used it depends on the type of
the system chosen. If this condition is reached when the state of the system
does not change, it is necessary to compare the current and new multiplicities.
It is done using a comparator and a logic and gate which indicates to the unit
control when the system fits it.

Fast Hardware Implementations of Static P Systems 701

independentBlock:

It receives as input the number of objects of the current configuration from
persistenceST and implements the independent stage functionality. It is, in
a consequence, an arithmetical component. In that sense, the Xilinx IP Core
xilinx.com:ip:mult gen:11.2 has been used in order to implement divisions and
multiplications, being configured with a latency of 1 cycle. Although this oper-
ation is independent of the derivation mode, the fact of considering it can help
to optimize the design. So, instead of giving the maximum number in absolute
terms to the next block, this one usually gives this parameter in the context of
the derivation mode (see Section 1 for more details).

assignBlock:

This block computes the assignment stage, so it is dependent of the derivation
mode and how a multiset of rules is chosen to be applied. Moreover, and as
it has been previously detailed, these functionalities are performed through the
implementation of the automaton which recognizes the regular language associ-
ated to dependence graph of rules. In consequence, a third dependence should
be kept in mind: the resource’s consumption of the rules. According to hard-
ware design, it is not possible to give a general implementation. However, we
give an overview about the architecture of this block and we refer to Section 4.1
for a concrete implementation.

This unit receives the maximum number of times which a rule can be applied
without considering the rest, and it gives the number of applications of each
rule, i.e. the multiset of rules which will be applied to evolve to the next con-
figuration to the next one. It contains one sub-block per rule which imple-
ments the logic of the automaton. Interconnections between these components
are based on design keys and propagation concepts: each sub-block is only
connected to those ones associated to rules which have a direct dependence,
being similar to a daisy chain network topology. Two additional components
are required: the non-deterministic block (ndBlock) and a small unit control.
The last one controls the computation of this block, because it is usually the
most complex task and it takes more than one clock cycle. It is also con-
nected to all sub-blocks. The ndBlock gives to the system the non-deterministic
behaviour. Its implementation and connection with the other sub-blocks de-
pend on the necessities of the system, but the most basic form is a pseudo-
random number generator. The design of this block is based on a LFSR,
whose width and taps depend on the number of rules and dependences among
them.

appBlock:

It performs the application stage. It is an arithmetical component which con-
tains adders and multipliers (same IP Core and configuration that is used in
the independentBlock) according to the rules. It gives the number of objects
which must be added to current multiplicities to evolve into the next configura-

702 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

tion. Although other blocks (persistenceBlock partially) use unsigned integers
in order to save hardware resources, this one operates with signed integers, be-
cause some objects can be consumed (negative number) or produced (positive
number).

controlBlock:

It is required to provide communication and control logic. Control is imple-
mented using a finite state machine, which requires five states, and it generates
all control signals. This block contains the rest of the logic associated to halting
conditions and its complexity depends on the type of P system. The most fre-
quent conditions are executing a fixed number of transitions; when, given a con-
figuration, the Appl set is empty; or when the configuration does not change,
even when Appl is not empty.

inoutBlock:

Besides the previous cores, an additional block is required to provide commu-
nication with the computer. It is strictly linked to software which runs in the
computer. We are developing a new software which is able to be connected to
a wide range of simulators, using a serial port as a first approach. Although,
it is not complete yet. In consequence, some debug cores are used to control
execution and to get results.

4 EXAMPLE OF SIMULATOR CONSTRUCTION

Once general architecture and the ideas (modelling of P Systems applying formal
framework) and algorithms on which it is based have been presented in previous
sections, we used the following example to illustrate the FPGA implementation for
our ideas. We considered multiset rewriting rules working in set-maximal mode
(smax). This mode corresponds to the maximally parallel execution of rules, but
where the rules cannot be applied more than once. This mode can be formally
defined as follows (where asyn is the asynchronous mode [4] and R is the set of all
rules):

S1 = {R ∈ Appl(Π, C, asyn) | |R|rj ≤ 1, 1 ≤ j ≤ |R|},
Appl(Π, C, smax) = {R ∈ S1 | there is no R′ ∈ S1 such that R′ ⊃ R}. (21)

We remark that smax mode corresponds to min1 mode [4] with a specific partition
of rules: the size of the partition is |R| and each partition pj contains exactly one
rule rj ∈ R.

Considering now a multiset rewriting system (corresponding to a P system with
one membrane) evolving in smax mode. To simplify the construction we consider
rules having a dependence graph in a form of chain without weights.

Fast Hardware Implementations of Static P Systems 703

r1 r2 . . . rn

a0 a1 a2 an−1 an

Let Nai be the number of objects ai in configuration C. The number of variants
of applications of a chain of rules r1, . . . , rk to the configuration C in smax mode is
denoted by NBV ([r1, . . . , rk], C), k > 0 . We remark that for a P system Π having
the set of rules R, NBVariants(Π, C, smax) = NBV (R, C).

It is possible to distinguish 3 cases with respect to the number of objects Nai ,
0 ≤ i ≤ n (considering that 0 ≤ s ≤ i ≤ e ≤ n):

• Nai = 0. Then the two surrounding rules (ri and ri+1) are not applicable. In
this case the parts of the chain at the left and right of ai are independent, so
the number of variants is a product of corresponding variants:

NBV (rs, . . . , re, C) = NBV (rs, . . . , ri−1, C) ∗NBV (ri+2, . . . , re, C). (22)

• Nai > 1. As in the previous case the chain can be split into two parts because
both rules ri and ri+1 can be applied:

NBV (rs, . . . , re, C) = NBV (rs, . . . , ri, C) ∗NBV (ri+1, . . . , re, C). (23)

• Nai = 1. In this case ri and ri+1 are in conflict.

Now let us concentrate on the last case. Without loss of generality we can
suppose that Nai = 1, 0 ≤ i ≤ n. We remark that the language of binary strings of
length n corresponding to the joint applicability vector of rules r1, . . . , rn coincides
with the language LI from Example 1. Therefore the number of possibilities of
application of such a chain of rules of length n is equal to NBV (r1, . . . , rn, C) =
[xn]q0, i.e., q0(0) = 1, q0(1)− 1, q0(2) = 2 and q0(n) = q0(n− 2) + q0(n− 3), n > 3.

Hence, in order to compute NBVariants(Π, C, smax) we first split the chain into
k > 0 parts of length nj according to the multiplicities of objects and compute the
NBV function for each part using the decomposition above.

The function Variant for each part can be computed using Algorithm 1.
The next section gives more details on the implementation of the above algo-

rithms on FPGA.

4.1 Implementation Details

Starting from general architecture, there are only two blocks which can be affected
by the implementation of a new type of P system: controlBlock and assignBlock.
The first modification is originated by the halting conditions, and its impact is
reduced to controlBlock. In this case, the halting configuration is reached when the
configuration of the system does not change, even the Appl set being not empty.

704 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

Attending to assignBlock, the derivation mode of the P system changes the way in
which P system evolves, being needed to modify it. These situations are explained
in Section 3.2, so we will not give more details about it here.

The implementation of assignBlock depends on the selected evolving mode, smax
mode in this case. According to algorithms explained in previous sections, it has to
perform the following steps:

Algorithm 2.

1. The input chain is split into k parts as it is described in Section 4.

2. For each part:

(a) The system computes NBVariants(Π, C, smax). For this purpose, algorithms
detailed in 2.1 and 4 are used.

(b) The value of n, which indicates which combination will be chosen (nth el-
ement), is obtained. It is worth to note that its domain is from 0 to
NBVariants(Π, C, smax)−1, so, considering that the random number genera-
tor produces numbers in binary format, the following correction is sometimes
needed in order to obtain it.

i. A random number, rn, is generated by the random number generator,
where

0 ≤ width(rn) ≤ dlg2(NBVariants(Π, C, smax))e.

ii. If rn < NBVariants(Π, C, smax) then n = rn.
Otherwise, n = rn+ NBVariants(Π, C, smax).

(c) Compute Variant(n,Π, smax), according to Algorithm 1.

We note that the computation of NBVariants(Π, C, smax) uses a subset of op-
erations needed to compute Variant(n,Π, smax), moreover, these operations can be
done in parallel with the generation of the random number n, necessary to compute
Variant(n,Π, smax). Hence, this stage can be performed in 2 clock cycles by divid-
ing operations into two sets, called left and right propagation, respectively. As it is
shown by Figure 2, left propagation is the first to be executed. In this sub-stage,
steps 2.a and 2.b.i of Algorithm 2 are computed from the last rule to the first one.
Right propagation, which is the compound of steps 2.b.ii and 2.c, is executed in
opposite way in the next clock cycle. One advantage of this approach is that it is
not necessary to divide, implicitly, the chain of rules in k parts, deleting a step of the
algorithm which let us reduce the number of required cycles from three to two. This
logic is implemented, explicitly, by signals prevIsDep and chainStateSignal. After
this stage, all rules have a random multiplicity assigned.

In consequence, the architecture of this block is divided into one sub-block per
rule (Figure 2), which implements the operations required in order to obtain the
number of applications of its associated rule (left and right propagation). The in-
terconnections between these components are based on design keys and propagation
concepts: a sub-block is only connected to blocks located on its right and left.

Fast Hardware Implementations of Static P Systems 705

Nx
r _ i

n
r _ i

Nx
r _ i

Nx
r _ i+1

… …

UnitControlcalcNx

values_of_Automaton [NBVariants part(Π ,C , smax)]

chainStateSignal [indChainDetector]

randomMask
randomNumber

combs_in [Variant part(n ,Π ,C , smax)]

autState_in [state2visit]
prevIsDep [indChainInd]

RuleBlock r _ i+1

AutSubBlock r _ i+1

ControlSubBlock r _ i+1

ndSubBlock r _ i+1

… …

RandomNumberGenerator

n
r _ i

n
r _ i+1

… …

INIT chainStateSignal INIT randomMask UPDATE chainStateSignal UPDATE randomMask
UPDATE values_of_automaton

according to chainStateSignal and
values generated by previous block

L
ef

t
P

ro
p

ag
at

io
n

SET
AutState = AutState_in

SET
Combs = Combs_in

SET
AutState = Q

0

INIT combs
according to

randomNumber

R
ig

ht

P
ro

p
ag

at
io

n

N
r
 != 1 N

r
 == 1

prevIsDep == 1 prevIsDep != 1

N
r
 != 1 N

r
 == 1

SET
IsDep = 1

SET
IsDep = 0

SET
N

r
 = N

r

According to autState and combs
SET combs_out

According to autState and combs
SET nextAutState

According to autState and combs
SET N

r

RuleBlock r _ i

AutSubBlock r _ i

ControlSubBlock r _ i

ndSubBlock r _ i

debugSignalschangeSeedclk execute
(1)

(2)

Figure 2. Details of sub-blocks which compound the assignRule block. Flow of informa-
tion between sub-blocks in left and right propagation is shown at the top of the
figure (1). Below it, the algorithm is detailed using UML notation (2).

706 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

Because assignBlock is the most critical component in order to achieve the
maximum performance of the simulator, all operations which are required to com-
pute NBVariants(Π, C, smax) and Variant(n,Π, smax) are defined recursively and
are pipelined for the sake of a powerful performance. Hence, each sub-block as-
sociated to the nth rule computes asynchronously the number of times which the
associated rule will be applied, based on values obtained by previous block. It
permits to execute all operations in only two cycles, one for left propagation and
another for right propagation, in contrast to synchronous version, which requires,
at least, n cycles, due to dependences between rules and, in consequence, between
operations for computing Variant and NBVariants.

4.2 Experimental Results

Experimental results are divided into two tests. In the first one, the accuracy of the
results generated by the simulator has been proved. Right after, we have obtained
some results about the limitations of the physical hardware (FPGA) regarding size
of the P system, and the relation performance-area required by the simulator in the
device.

The P systems are the same in both tests, only modifying its size (number of
rules and objects). All of them consider rules where dependence graph forms a chain,
the difference being in the right-hand side. Using these four types of dependences
between rules let us check the accuracy of the results, because their design makes
their behaviour predictable. We consider four P systems with the alphabet O =
{o0, . . . , oN}, N > 0 and having the following rules (we consider index operations
modulo N + 1):

• System 1 (circular)

ri :

{
oi−1oi → oioi+1, 1 ≤ i < N − 1,

oN−1oN → o0o1, i = N.
(24)

• System 2 (2-circular)

ri : oi−1oi → oi+1oi+2, 1 ≤ i ≤ N. (25)

• System 3 (linear)

ri :

{
oi−1oi → oioi+1, 1 ≤ i < N − 1,

oN−1oN → oNoN , i = N.
(26)

• System 4 (opposite), 1 ≤ i ≤ N

ri :

{
oi−1oi → oioi+1, i mod 2 = 0,

oioi+1 → oioi−1, otherwise .
(27)

Fast Hardware Implementations of Static P Systems 707

The target circuit for executions was the Xilinx Virtex-7 XC7VX485T, al-
though similar results have been obtained with a Xilinx Virtex-5 FXT70 FPGA.
Regarding code generation and extraction of results, different P systems were gen-
erated by a Java software and this code was synthesised, placed and routed using
Xilinx tools. Since the input/output interface has not been developed yet, Chip-
Scope, a Xilinx debug tool has been used. This tool lets us, synchronously, change
and capture the results, i.e. computation results and consumption of hardware re-
sources, directly from the FPGA.

In order to carry out accuracy tests, an initial multiplicity of all objects equal to
one and values 10, 20 and 50 were considered for N parameter for accuracy test. The
P systems with these sizes are manageable enough to let us check this parameter
of the simulator. Values 10, 30, 50, 70, 90, 110, 150 and 200 for N parameter
were considered in case of hardware test. These values are enough in order to give
a general idea about the relationship between consumption of hardware resources by
the simulator and the size of the P systems. Then, for each obtained system, 1 024
executions of 8 192 transitions have been carried out. Each execution differs from
the others by the seed required by the random number generator in the initialization
stage. In consequence, different values are obtained during the assignment stage,
which results in different executions. As results of experiments, the following values
are collected: the cardinality of objects in the last configuration, the seed of the
random number generator (just for internal results) and the number of steps to
reach the halting configuration, in case the system reached it.

Table 1 gives some statistics concerning the experiments. For each P system
(type, size), the table shows if the stop condition is reached and, in this case, the
minimum and maximum number of required transitions to achieve it (column Halt-
ing). The third column shows how many different configurations have been reached
by the system. This parameter indicates the grade in which the system evolves
following an equiprobable distribution. As expected, linear and 2-circular systems
reach a halting configuration, while in the other two cases it cannot, due to depen-
dences among their rules. It can be seen that the simulation of non-determinism
is done correctly – in some cases all resulting configurations are different. Fig-
ure 3 shows the maximal, the minimal and the mean value of the number of dif-
ferent objects. Due to size of the obtained graphs, we only show the case of 10
rules, the other cases present a similar picture. It can be seen that in the case
of the linear system there is a high chance to have a big value for the last ob-
ject and in the case of 2-circular systems the second and penultimate objects are
never present. In the case of circular systems it is possible to see an equiprobable
distribution of objects, while for the opposite systems even values have a higher
multiplicity. It can be easily seen that the rules used should exhibit exactly this
behavior.

Concerning performance tests, they only differ in the N parameter from val-
ues of the P systems. The Xilinx tools let user control the generation of final
bitstream providing some parameters. In that way, three sets of parameters, with
three implementation goals, have been used: one to maximize performance, another

708 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

Type N
Different

final
conf.

Halting

Y/N min max

Circular
10 982 No – –
20 1 024 No – –
50 1 024 No – –

2-circular
10 161 Yes 5 89
20 818 Yes 11 197
50 1 024 Yes 57 609

Linear
10 204 Yes 7 17
20 944 Yes 14 29
50 1 024 Yes 50 65

Opposite
10 4 No – –
20 938 No – –
50 1 024 No – –

Table 1. Statistics concerning the executions of example systems

to minimize area and a balanced configuration. For each hardware design and set
of parameters, values relative to performance (Table 2) and hardware resource con-
sumption (Figure 4) were taken. In Table 2 and Figure 4 only the best results are
shown: those ones achieved with performance configuration and area minimization,
respectively.

Table 2 shows hardware period in ns of the system without the debug logic and
Figure 4 shows resource consumption using relative values of LUTs and Slices. The
implementation achieves high performance, with frequencies higher than 100 MHz,
i.e., it allows to simulate around 2 × 107 computational steps per second. A run-
time comparison between P-Lingua simulator and our hardware simulator is shown
in Table 3. P-Lingua is a Java software framework developed by members of the
Research Group on Natural Computing, at the University of Seville. In order to
make the comparison, several opposite P systems, see Definition 27, with a num-
ber of rules between 10 and 200, have been chosen. These P systems have been
converted to equivalent probabilistic P systems: they have an environment with
a membrane, they follow the same dependences between rules as opposite P Sys-
tems and they have the same number of rules and objects. The computing plat-
form for execution was an Intel Core i5 5220 at 3 GHz, with 8 GB of RAM. The
comparison shows that hardware architecture is 5 600 times faster than P-Lingua
implementation in the worst case, when a P system with 10 rules is used, and ap-
prox. 30 000 times faster than P-Lingua in the best case, when the P system has
200 rules.

Attending to the hardware resource consumption, it only depends on the number
of rules. This result is coherent with the fact that rules of all systems do not change

Fast Hardware Implementations of Static P Systems 709

objA objB objC objD objE objF objG objH objI objJ objK
0

2

4

6

8

10

12

Max
Min
Mean

a)

objA objB objC objD objE objF objG objH objI objJ objK
0
1
2
3
4
5
6
7
8
9
10

Max
Min
Mean

b)

objA objB objC objD objE objF objG objH objI objJ objK
0

1

2

3

4

5

6

7

Max
Min
Mean

c)

the total number of objects and share the same dependence graph. While the period
is stable, with a slightly linear increase, the resources grow exponentially, reducing
the use of the simulator for really large problems, in terms of thousands of rules.
Current implementation has problems for P systems with more than 1 000 rules. In
this case, configurations composed of several devices can be developed to move this
barrier.

710 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

objA objB objC objD objE objF objG objH objI objJ objK
0

0,5

1

1,5

2

2,5

Max
Min
Mean

d)

Figure 3. Objects min/max/mean values for the experiments using 10 rules; a) Linear,
b) 2-circular, c) Circular, d) Opposite

Type \ Size Circular 2-circular Linear Opposite

10 7.06 ns 5.63 ns 5.46 ns 7.85 ns
30 8.23 ns 8.55 ns 7.33 ns 6.99 ns
50 7.69 ns 6.71 ns 6.11 ns 6.03 ns
70 9.14 ns 7.33 ns 7.34 ns 6.87 ns
90 7.32 ns 6.38 ns 7.02 ns 7.89 ns

110 7.00 ns 7.84 ns 6.23 ns 8.30 ns
150 7.85 ns 7.42 ns 8.88 ns 7.40 ns
200 7.74 ns 8.42 ns 7.98 ns 8.35 ns

Table 2. Period of hardware implementation for each combination (type, sizes)

5 DISCUSSION

One of the major characteristics of the simulator is its speed, offering a constant time
execution step (in terms of clock cycles). Its design is based on the method discussed

Size Software Hardware

10 0.22 s 3.927× 10−5 s
30 0.326 s 3.495× 10−5 s
50 0.453 s 3.017× 10−5 s
70 0.542 s 3.435× 10−5 s
90 0.639 s 3.945× 10−5 s

110 0.742 s 4.151× 10−5 s
150 0.911 s 3.7× 10−5 s
200 1.245 s 4.174× 10−5 s

Table 3. Runtime comparison between a software simulation using P-Lingua, and a hard-
ware simulation using architecture

Fast Hardware Implementations of Static P Systems 711

10 30 50 70 90 110 150 200
0

10

20

30

40

50

60

Circular

2-circular

Linear

Opposite

Size of the P system (rules)

L
U

T
s
 (

%
)

a)

10 30 50 70 90 110 150 200
0

2

4

6

8

10

12

Circular

2-circular

Linear

Opposite

Size of the P system (rules)

S
li
c
e
s
 (

%
)

b)

Figure 4. LUTs and Slices consumption of hardware implementation for each combination
(type, sizes) in rules; a) LUTs, b) Slices

in Section 3.1 where, although it is possible to design ad-hoc functions that describe
the execution strategy of the rules, we concentrated on the cases where the multisets
of rules that can be applied form a non-ambiguous context-free language. This fact
allows to easily compute the generating function of the corresponding language and
gives a simple algorithm for the enumeration strategy.

In this work we have focused on P systems whose rules are restricted to de-
pendence graphs which form chains. However, the class of P systems where the set
Appl(Π, C, δ) corresponds to a non-ambiguous context-free language is quite big. For
example, considering a set of rules forming a circular dependence graph for a system
working in the smax mode.

712 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

r1 r2 . . . rn

a0 a1 a2 an−1

Now let C be a configuration where all these rules are applicable exactly one time
(corresponding to the case 3 described in Section 4). Then the joint applicability
vectors of these rules (i.e. binary strings of length n with value 1 in ith position
corresponding to the choice of rule ri) can be described by taking the words of
length n of the following automaton:

q2
1 // q1

0 // q3
0 //

1cc
q4

1

��

// q0

0

@@

1 // q1
0 // q3

0 //
1

aa q4

1

��

This automaton is obtained from the automaton for the language LI from Exam-
ple 1 by adding an additional condition: if rule r1 is chosen then rn is not chosen
and conversely.

Using similar ideas it is possible to describe sequences of rules forming more
complicated structures with regular languages. For example, the following structure

r1 r2 r3 r4

a0 a1 a2 a3 a4

r5

a5

can be represented as a regular language over the binary alphabet if the number
of symbols a2 is known. This language can be constructed in a similar way as
the language above for circular dependence. This permits to compute the function
NBVariants(Π, C, smax) by first choosing the appropriate automaton based on the
value of Na2 and after that by computing its generating function. Clearly, this can
be done in constant time on FPGA.

In a similar way it is possible to describe regular languages for the applicability
of rules having the dependence graph that has no intersecting cycles.

We would like to point out another algorithm for the rule application, applicable
to any type of rule dependence.

Let Π be a P system evolving in the set-maximal derivation mode. Let R be
the set of rules of Π and n = |R|. Let C be a configuration.

Fast Hardware Implementations of Static P Systems 713

Algorithm 3.

1. Compute a permutation of rules of R: σ = (ri1 , . . . , rin), ik 6= im, k 6= m.

2. For j = 1, 2, . . . , n if rij is applicable then apply rij to C.

The step 1 of the above algorithm can be optimized using the Fisher-Yates shuffle
algorithm [17] (Algorithm P). However, the implementation of Algorithm 3 is slower
than the implementation we presented in Section 3 because the computation of the
rules’ permutation needs a register usage, so it cannot be done in one clock cycle
and it is dependent on the number of rules.

By extending Algorithm 3 it is possible to construct a similar algorithm for the
maximally parallel derivation mode.

Algorithm 4.

1. Compute a permutation of rules of R: σ = (ri1 , . . . , rin), ik 6= im, k 6= m.

2. Compute the applicability vector of rules V = (m1, . . . ,mn), beingmj, 1 ≤ j ≤ n
the number of times rule rij can be applied.

3. If the vector V is null, then stop.

4. Otherwise, repeat step 5 for j = 1, . . . , n.

5. Compute a random number t between 0 and V [j]. Apply rij t times.

6. Goto step 2.

This algorithm has similar drawbacks and the number of clock cycles it uses is
at least proportional to the number of rules.

In Section 1 we simplified the model removing the forbidding and permitting
conditions. Adding this feature only affects independentBlock. In case of forbid-
ding conditions, a specific comparator which checks if the objects exist should be
added, this new component only differs in a not gate in its output, hence its logical
function is the inverse of others. Then, if it returns false, the maximum number of
applications of the rule will be set to zero. Modifications required to give support to
permitting condition are similar, but checking the existence of the object, instead
of inexistence.

On the other hand, P systems are a machine-oriented computational model. In
consequence, each instance of a problem has a tailor-made machine which resolves it,
and each machine has associated a specific hardware which simulates it. So, once we
have defined an architecture which is able to simulate P systems, we need a software
which generates the specific hardware design in order to program the FPGA and
obtain the results. Additionally, a software which gets the results, processes it and
shows it to the user will be welcome, specially for this last one.

As it is said in Section 4.2, the generation of the hardware design is done by
an ad-hoc software written in Java. Although this solution is acceptable for testing
purposes, it has several limitations, all of them derived from its poor flexibility,
extensibility and modularity. In addition, there are several research lines whose

714 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

straight results are simulators. Each research group deals with the same developing
problems, giving different solutions and building incompatible systems, taking a high
cost in effort. The P system framework can resolve, or mitigate in the worst case,
all these problems. This software will resolve general problems related to end-user
and developer interface, debugging and generation of code. Thus, it let developers
focus on the implementation of the algorithm of its simulator. For this purpose,
Model Drive Engineering (MDE) is the most suitable technology [18]. Simulators
and classes of P systems will be represented as models connected by transformations:
in order to generate the simulator code of a P system we need a transformation from
the model of the class to which the P system belongs, to the model of the simulator.
Once an instance of the simulator model is created, generating the associated code
is possible using MDE.

Concerning this work, the P system framework constitutes an elegant solution
for software problems. The general architecture can be seen as the model of our
simulator, thus, the input is resolved by the transformation from the meta model
which represents the class of P systems where the set Appl(Π, C, δ) corresponds
to a non-ambiguous context-free language to the first one, and the hardware code
generation by the transformation from the model of our simulator directly to code.
In that sense, the software tool of our simulator will be highly flexible, scalable, and
modular. Additionally, end-user interface will be also resolved by this framework.

Attending to performance, results show that hardware architecture is approx.
30 000 times faster than P-Lingua in the best case, when the P system has 200
rules. This result only refers to execution time. In that sense, if generation time is
considered, i.e. from specification of P system to bitfile generation, first execution
would take about 3 hours more.2 This can be an important drawback if the P
system is only executed one time. However, this kind of simulators are widely
used in problems where thousands of computatios are needed. In consequence, user
should use software or hardware simulator, depending on the number of executions
and size of the problem.

6 CONCLUSIONS

In this article we have introduced a fast hardware simulator for static P systems
whose set Appl(Π, C, δ) corresponds to a non-ambiguous context-free language. Its
major feature is the performance that it is possible to achieve: the hardware im-
plementation is able to execute one transition in a constant time of 5 clock cycles,
closed to the ideal value of one transition per clock cycle. In addition, the range of
P systems which can be simulated is only affected by the dependences between their
rules. The key point of our approach is to represent all possible applications as words
of some regular or non-ambiguous context-free language. Then it is possible, using
formal power series for the corresponding language, to generate the total number of

2 The computing platform for execution was an Intel Core i5-5220 at 3 GHz, with 8 GB
of RAM.

Fast Hardware Implementations of Static P Systems 715

possible applications and select and apply one of them. It is worth to note that the
number of clock cycles is independent of any P system structure, including number
of rules or types of objects. Nevertheless, a relationship between size of P systems
and required hardware resources exists. According to our experimental results, the
area grows exponentially, limiting really large P systems. In these situations, the
hardware platform should use several devices or new architectures which combine
this one with others in order to simulate the system. Besides, P systems which
can be simulated only have to verify that its set Appl(Π, C, δ) is a non-ambiguous
context-free language, accepting a wider range of P systems as input in contrast to
other simulators which depend on structural elements, as type of objects.

In order to exemplify our approach, we developed several hardware simulators
using a FPGA. Input P systems work in a maximal set mode with rules dependence
graph in a form of chain. We obtained a speed greater than 2× 107 computational
steps per second. Our different tests gave right values, showing a non-deterministic
behaviour in the computations and obtaining expected mean values for the outputs.
Moreover, the architecture of the simulator is highly modular, enclosing all depen-
dent logic of the type of the P system in one block, and reducing the impact of any
other modification.

As a future research we plan to develop a software which generates the hardware
implementation automatically from the regular language describing the rules joint
applicability. This software will be integrated in a framework of P system simulators
with the objective to resolve common problems in P systems development, specially
those based on hardware development, and standardize them as well as their related
tools.

Acknowledgements

This work has been partially supported by the Ministry of Science and Innovation
of the Spanish Government under the project TEC2011-27936 (HIPERSYS), by the
European Regional Development Fund (ERDF) and by the Ministry of Education of
Spain (FPU grant AP2009-3625). Authors also acknowledges the support of ANR
project SynBioTIC.

REFERENCES

[1] Păun, G.: Computing with Membranes. Journal of Computer and System Sciences,
Vol. 61, 2000, pp. 108–143.

[2] Păun, G.—Sakakibara, Y.—Yokomori, T.: P Systems on Graphs of Restricted
Forms. Publicationes Mathematicae Debrecen, Vol. 60, 2002, pp. 635–660.

[3] Păun, G.—Rozenberg, G.—Salomaa, A.: The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

716 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

[4] Freund, R.—Verlan, S.: A Formal Framework for Static (Tissue) P Systems.
In: Eleftherakis, G. et al. (Eds.): Proceedings of WMC 2007, Thessaloniki, Greece.
Springer, Lecture Notes in Computer Science, Vol. 4860, 2007, pp. 271–284.

[5] Păun, G.: Membrane Computing. An Introduction. Springer-Verlag, 2002.

[6] Maliţa, M.: Membrane Computing in Prolog. In: Calude, C. S. et al. (Eds.): Pre-
Proceedings of the Workshop on Multiset Processing, Curtea de Argeş, Romania,
CDMTCS TR 140, University of Auckland, 2000, pp. 159–175.

[7] Suzuki, Y.—Tanaka, H.: On a LISP Implementation of a Class of P Systems.
Romanian Journal of Information Science and Technology, Vol. 3, 2000, pp. 173–186.

[8] Ciobanu, G.—Wenyuan, G.: P Systems Running on a Cluster of Computers.
In: Martin-Vide, C., Păun, G., Rozenberg, G., Salomaa, A. (Eds.): Workshop on
Membrane Computing 2003. Springer, Lecture Notes in Computer Science, Vol. 2933,
2004, pp. 123–139.

[9] Syropoulos, A.—Mamatas, E. G.—Allilomes, P. C.—Sotiriades, K. T.: A
Distributed Simulation of Transition P Systems. In: Martin-Vide, C., Păun, G.,
Rozenberg, G., Salomaa, A. (Eds.): Workshop on Membrane Computing 2003,
Springer, Lecture Notes in Computer Science, Vol. 2933, 2004, pp. 357–368.

[10] Martinez-del-Amor, M. A.—Perez-Hurtado, I.—Perez-Jimenez, M. J.—
Cecilia, J. M.—Guerrero, G. D.—Garcia, J. M.: Simulation of Recognizer P
Systems by Using Manycore GPUs. In: Martinez-del-Amor, M. A. et al. (Eds.): Sev-
enth Brainstorming Week on Membrane Computing, Fenix Editora, Sevilla, Spain,
Vol. II, 2009, pp. 45–58.

[11] Petreska, B.—Teuscher, C.: A Reconfigurable Hardware Membrane System.
In: Martin-Vide, C. et al. (Eds.): International Workshop on Membrane Computing
(WMC 2003), Tarragona, Spain, 2003, Revised Papers. Springer, Lecture Notes in
Computer Science, Vol. 2933, 2004, pp. 269–285.

[12] Nguyen, V.—Kearney, D.—Gioiosa, G.: An Extensible, Maintainable and El-
egant Approach to Hardware Source Code Generation in Reconfig-P. The Journal of
Logic and Algebraic Programming, Vol. 79, 2010, No. 6, pp. 383–396.

[13] Nguyen, V.—Kearney, D.—Gioiosa, G.: An Implementation of Membrane
Computing Using Reconfigurable Hardware. Computing and Informatics, Vol. 27,
2008, No. 3, pp. 551–569.

[14] Nguyen, V.—Kearney, D.—Gioiosa, G.: A Region-Oriented Hardware Imple-
mentation for Membrane Computing Applications. In: Păun, G. et al. (Eds.): 10th

International Workshop on Membrane Computing (WMC 2009), Curtea de Arges,
Romania, 2009, Revised Selected and Invited Papers. Springer, Lecture Notes in
Computer Science, Vol. 5957, 2010, pp. 385–409.

[15] Rozenberg, G.—Salomaa, A. (Eds.): Handbook of Formal Languages. Springer-
Verlag, Berlin, 1997.

[16] Chomsky, N.—Schützenberger, M.-P.: The Algebraic Theory of Context-Free
Languages. In: Braffort, P., Hirschberg, D. (Eds.): Computer Programming and
Formal Systems. North Holland, 1963, pp. 118–161.

[17] Knuth, D. E.: The Art of Computer Programming. Volume 2: Seminumerical Al-
gorithms. Third Edition. Addison-Wesley, 1997.

Fast Hardware Implementations of Static P Systems 717

[18] Mukerji, J.—Miller, J.: MDA Guide V1.0.1. 2001, http://www.omg.org/

cgi-bin/doc?omg/03-06-01.pdf.

Juan Quiros graduated from the University of Seville (Spain)
in computer engineering in 2009. He is currently a Ph.D. can-
didate in computer engineering at the University of Seville. His
research focuses on designing of hardware architectures simu-
lating P systems. He has expertise in MDE, hardware design,
FPGA technology, design of embedded systems and development
in C, Java and Python.

Sergey Verlan received his Ph.D. degree in computer science
from the University of Metz, France in 2004 and habilitated in
computer science in 2010. Currently he is Associated Professor
at the University of Paris Est, France. His research interests
belong to the area of theoretical computer science and natural
computing. He has expertise in the area of formal language
theory, DNA computing, membrane computing and modeling of
biological systems.

Julian Viejo received his M.Sc. and Ph.D. degrees in compu-
ting engineering from the University of Seville, Spain in 2004
and 2011, respectively. He works as Assistant Professor at the
Department of Electronics Technology of that university and
has contributed by several research works to international jour-
nals and conferences in the area of digital signal processing and
system-on-chip design.

Alejandro Millan received his M.Sc. degree in computer en-
gineering in 1999 and his Ph.D. degree in 2008, from the Uni-
versity of Seville. He works as Professor at its Department of
Electronics Technology. Since 1999, he has taught at the School
of Computer Engineering and the Polytechnic School of Engi-
neering. He is a member of its ID2 Research Group where he
has participated in 23 research projects and has published more
than 50 conference papers and a total of 19 journal papers.

718 J. Quiros, S. Verlan, J. Viejo, A. Millan, M. J. Bellido

Manuel J. Bellido received his B.Sc. degree in 1987 and his
Ph.D. degree in 1994 in physics from the University of Seville,
Spain. He has been with the Electronics Technology Department
at the same university since 1990 where he holds a post as Asso-
ciate Professor. Currently he is the co-director of ID2 research
group (http://www.dte.us.es/id2). He has contributed by
tens of research works to international journals and conferences
in the area of metastability, delay modelling and logic level sim-
ulation. Lately, his main interests are the embedded systems
based on open systems. He also acted as scientific consultant for

a number of international journals like IEEE Transactions on Circuits and Systems, Elec-
tronics Letters, etc. Currently he is also a member of the editorial board of the Journal
of Low Power Electronics.

