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The existence of stationary solitary waves in symmetric and non-symmetric complex potentials
is studied by means of Melnikov’s perturbation method. The latter provides analytical conditions
for the existence of such waves that bifurcate from the homogeneous nonlinear modes of the system
and are located at specific positions with respect to the underlying potential. It is shown that the
necessary conditions for the existence of continuous families of stationary solitary waves, as they arise
from Melnikov theory, provide general constraints for the real and imaginary part of the potential,
that are not restricted to symmetry conditions or specific types of potentials. Direct simulations
are used to compare numerical results with the analytical predictions, as well as to investigate the
propagation dynamics of the solitary waves.
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I. INTRODUCTION

Wave self-localization in spatially inhomogeneous, nonconservative and nonlinear systems emerges as a subject of
increasing research interest from both a theoretical and a technological point of view. The formation of solitary waves in
nonconservative systems has distinct properties, as compared to the case of conservative systems; the most important
difference is that, generally, such waves correspond to isolated stationary solutions in the former case, whereas they
form continuous solution families in the latter case [1]. From a practical point of view, significant technological
applications related to non-Hermitian photonics necessitate the consideration of the interplay between nonlinearity
and refractive index as well as gain/loss inhomogeneity, with respect to light localization and propagation [2–4]. In
this context, the formation and propagation of solitary waves has been studied under spatially periodic modulation
of the linear refractive index with homogeneous [5–7] or inhomogeneous [8–14] gain and loss, as well as in aperiodic
configurations where defect [15–27] and surface [28–30] localized modes have been shown to be supported by localized
gain distributions. Moreover, cases of spatial modulation of the nonlinear refractive index and gain/loss properties
have been considered [31–35].
The spatial inhomogeneity of the refractive index and the gain/loss properties of such media correspond to the

real and the imaginary part of a complex potential in a nonlinear Schrödinger (NLS) equation governing the wave
profile formation and propagation. Based on concepts originating from the context of quantum mechanics, the case
of Parity-Time (PT) symmetric complex potentials has been initially considered [36, 37]. In such cases, the spatial
profiles of the refractive index and the gain/loss are, respectively, even and odd functions. However, in several realistic
photonics applications such complex potentials can be either inherently or intentionally asymmetric, necessitating the
extension of studies on solitary wave formation and dynamics in non-symmetric complex potentials [38–40]. Although
wave localization in PT-symmetric complex potentials has been well-studied, and the existence of continuous families
of solitary waves has been shown [36], the existence of such families in non-symmetric complex potentials is still
under investigation. Recently, continuous families of solitary waves were found to exist [41–45] in non-PT-symmetric
potentials of a special form (so-called Wadati-type) [46]; it has been shown that such form is a necessary condition
for the existence of continuous solitary wave families bifurcating from the linear modes of the system [47].
In this work, we revisit the conditions for the formation of solitary waves in the most general, either symmetric or

non-symmetric, linear and nonlinear complex potentials, starting from the homogeneous limit. The wave formation
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is governed by a two-degree-of-freedom non-autonomous dynamical system, with the solitary wave solutions corre-
sponding to homoclinic points of the system. The existence of such points is investigated by means of Melnikov’s
perturbation theory [48–52] that provides analytical results elucidating conditions for the existence of multiple contin-
uous families of solitary waves, located at specific points within the spatially inhomogeneous structures. While such
persistence conditions have often been used in the presence of Hamiltonian perturbations [53, 54], their application is
less common, to the best of our knowledge, in setups such as the present one with (especially unbalanced) gain and
loss. The analytical results and the estimations for the specific wave locations are utilized in the numerical solution of
the dynamical system towards identifying such analytically predicted waves. Notably, the conditions for the existence
of continuous families of solitary waves are much more general than those corresponding to PT-symmetry or to the
aforementioned special form of the complex potential. The latter appears as a necessary condition for the existence

of a homoclinic orbit, corresponding to a solitary wave, when starting from the linear modes of the inhomogeneous
system [47]. On the contrary, in our approach, the starting point consists of the homogeneous nonlinear system
which is integrable and features a homoclinic orbit, and our conditions ensure its persistence under inhomogenous
perturbations, so that the resulting continuous families of solitary waves bifurcate from the nonlinear modes of the
homogeneous system.
The paper is organized as follows. In Section II, we present the model of solitary wave formation and propagation and

the utilization of Melnikov’s perturbation method for the existence of homoclinic points corresponding to stationary
solitary solutions of the system. In section III we utilize the analytical results of Melnikov’s theory in order to provide
conditions for solitary wave existence, as well as to pinpoint their location within the inhomogeneous structure for
linear and nonlinear, symmetric or asymmetric complex potentials; the spatial profiles and the propagation dynamics
of the stationary solutions are presented. Finally, the conclusions of this work and some possible future directions are
summarized in Section IV.

II. NLS WITH COMPLEX POTENTIAL AND MELNIKOV’S METHOD

Wave propagation in a nonlinear optical medium with spatially inhomogeneous refractive index and gain/loss
modulation is described by the inhomogeneous NLS equation:

iψz + ψxx + 2|ψ|2ψ + ǫ
[

U1(x) + U2(x)|ψ|2
]

ψ = 0, (1)

where ψ is the wave field envelope, z the normalized propagation distance, and x the scaled transverse coordinate.
Ui = Vi(x) + iWi(x) (i = 1, 2) are the linear and nonlinear complex potentials with their real and imaginary parts
corresponding to the inhomogeneity of the linear (i = 1) and the nonlinear (i = 2) refractive index and gain/loss,
respectively, and ǫ is a dimensionless parameter related to the strength of the modulation. The solitary wave solutions
that can be supported in such configurations can be found as the stationary nonlinear modes of the system having
the form:

ψ(x, z) = [u(x) + iv(x)] eiβz, (2)

with β being the real propagation constant and u(x), v(x) being real functions describing the complex transverse
profile of the stationary mode. Substitution of the stationary solutions (2) in the NLS Eq. (1) leads to the following
system of coupled ODEs:

uxx − βu + 2(u2 + v2)u + ǫ
{

V1(x)u −W1(x)v + [V2(x)u −W2(x)v](u
2 + v2)

}

= 0,

vxx − βv + 2(u2 + v2)v + ǫ
{

V1(x)v +W1(x)u + [V2(x)v +W2(x)u](u
2 + v2)

}

= 0. (3)

In order to study solitary waves bifurcating from the respective nonlinear modes of the homogenous system, we assume
that ǫ is sufficiently small, so that the terms of the inhomogeneous complex potentials Ui(x) can be considered as
perturbations of the unpertubed system:

uxx − βu + 2(u2 + v2)u = 0,

vxx − βv + 2(u2 + v2)v = 0. (4)

These coupled ODEs are the equations of motion of a two-degree-of-freedom integrable Hamiltonian system, with
Hamiltonian:

H(u, ux, v, vx) =
1

2

(

u2x + v2x
)

− 1

2
β
(

u2 + v2
)

+
1

2

(

u2 + v2
)2
. (5)
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The Hamiltonian is an invariant of the system along with the quantity

F (u, ux, v, vx) = uvx − vux. (6)

The dynamical system (4) corresponds to a two-degree of freedom nonlinear oscillator, with x playing the role of time,
for which H is the total energy and F is the angular momentum. Using the transformation u = r cos θ, v = r sin θ,
the quantities H and F become:

H =
1

2
ṙ2 − 1

2
βr2 +

1

2
r4 +

F 2

2r2
, (7)

and

F = r2θ̇. (8)

For F 6= 0 the Hamiltonian goes to infinity when r, ṙ go to zero, therefore solitary wave profiles correspond to the
case where F = 0 and have the following form

u0(x) = p0(x− x0) cos θ0,

v0(x) = p0(x− x0) sin θ0, (9)

where

p0(x;β) =
√

βsech
(

√

βx
)

, (10)

and θ0, x0 being arbitrary constants. The arbitrariness of θ0 is related to the invariance of the perturbed (and the
unperturbed) NLS equation (1) under the transformation ψ → ψ exp(iθ0) and θ0 can be set equal to zero, without loss
of generality, whereas the arbitrariness of x0 reflects the translational invariance of the unperturbed NLS equation.
These solutions are members of a two-parameter (β, x0) family of orbits homoclinic to the saddle located at the origin
in the four-dimensional phase space of the system.
The presence of the inhomogeneous perturbation in Eq. (3) removes the translational invariance of the system; the

stable and unstable manifolds of the origin are no longer joined smoothly to form homocilinc orbits, but may intersect
transversely. The orbits corresponding to such transverse intersections are the stationary solitary wave profiles of
the perturbed system, with the discrete set of x0 parametrizing the respective solutions and providing the transverse
positions where solitary waves are located with respect to the inhomogeneous complex potential [55]. For sufficiently
small perturbations, Melnikov’s method provides analytical information for the existence of such homoclinic points
[48–52], in terms of the simple zeros of the Melnikov vector:

~M = [M1(x0; θ0, β),M2(x0; θ0, β)], (11)

with

M1(x0; θ0, β) =

∫ +∞

−∞

dH(γ0(x; θ0, β))g(x − x0, γ0(x; θ0, β))dx, (12)

M2(x0; θ0, β) =

∫ +∞

−∞

dF (γ0(x; θ0, β))g(x − x0, γ0(x; θ0, β))dx. (13)

Here, dH = ∂H/∂ ~X, dF = ∂F/∂ ~X, ~X = (u, v, ∂u/∂x, ∂v/∂x), and

g = g1 + g2(u
2 + v2), (14)

with gi = −[0, 0, Vi(x)u −Wi(x)v, Vi(x)v +Wi(x)u] being the perturbative part evaluated at the unperturbed ho-
moclinic orbit (9), γ0(x; θ0, β) = (u0, v0, ∂u0/∂x, ∂v0/∂x), according to [49, 50]. Therefore, the components of the
Melnikov vector are given as

M1(x0; θ0, β) =

∫ +∞

−∞

[

∂V1(x− x0)

∂x
+
∂V2(x− x0)

∂x
p20(x;β)

]

p20(x;β)dx, (15)

M2(x0; θ0, β) = −
∫ +∞

−∞

[

W1(x − x0) +W2(x− x0)p
2
0(x;β)

]

p20(x;β)dx. (16)
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This form of the Melnikov vector is general and valid for all types of inhomogeneity of the system, including spatially
localized or extended, periodic or quasiperiodic, symmetric or asymmetric transverse profiles of the complex potentials.

The set of x0, defining the homoclinic points, are determined as the intersection of the two sets of x
(i)
0 defined by

Mi(x
(i)
0 ) = 0, (i = 1, 2). The conditions for existence of common solutions of the two equations for x0 determine the

forms of the complex potentials that support the existence of solitary waves, in terms of relations between their real
and imaginary parts, in the most general way.
For the case of only linear complex potential (U2(x) ≡ 0), the two equations

M1(x0; θ0, β) =

∫ +∞

−∞

∂V1(x− x0)

∂x
p20(x;β)dx = 0 (17)

M2(x0; θ0, β) = −
∫ +∞

−∞

W1(x− x0)p
2
0(x;β)dx = 0 (18)

correspond to balance conditions for the “force” (−∂V1/∂x) exerted to the wave by the real part (refractive index)
of the potential and the gained/lost wave “mass” (

∫

|ψ|2dx) due to the imaginary part (gain/loss) of the potential.
The first condition implies that the position of the solitary wave with respect to the profile of the real part of the
potential must be such that the overlap integral of the wave profile with the “force” is zero, suggesting that x0 is
related to a sign change of (−∂V1/∂x), corresponding to a local extremum of V1(x). The second condition implies
that the overlap integral of the wave profile with the linear gain and loss is zero, suggesting that x0 is related to a
sign change, that is a zero, of W1. The necessary condition for the existence of a homoclinic point, and therefore a
solitary wave, is that the spatial forms of the real and imaginary part are such that an x0 fulfilling both requirements
can be found. It is worth mentioning that PT-symmetric linear complex potentials, for which V1(−x) = V1(x) and
W1(−x) = −W1(x), given the symmetry of p0, fulfill the condition for the existence of a common solution of Eqs.
(18) at x0 = 0, rendering PT-symmetry a sufficient (but not necessary) condition for the existence of solitary waves
bifurcating from the nonlinear modes of the homogeneous system. More generally, for any type of inhomogeneity, the
two sets of solutions for x0 coincide under the condition:

W1(x) = C
∂V1(x)

∂x
, (19)

with C being an arbitrary constant, which has also been found as a condition for the existence of an invariant of
soliton dynamics, under an effective particle approach [38, 39]. The above arguments suggest that it is the relation

between the real and the imaginary part that determines the existence of solitary waves in complex potentials and not

their spatial symmetry properties, as we will also show in several examples. When nonlinear complex potentials U2(x)
are also considered the respective conditions involve the interplay between the real and imaginary parts of both Ui(x)
and can be fulfilled in even more general asymmetric confgurations. In all cases we will show that the zeros of the
Melnikov vector will provide suitable initial guesses for the relative position of the solitary waves with respect to the
underlying complex potentials, analogously to the case of NLS with real potential [55].

III. EXISTENCE AND PROPAGATION PROPERTIES OF SOLITARY WAVES

In the following, we consider characteristic cases, where the potentials can be periodic or quasiperiodic and spatially
symmetric or asymmetric, given by the following form:

Vi =
∑

l

vi,l cos (Ki,lx+ φi,l) , (20)

Wi =
∑

l

wi,l sin (Li,lx+ ξi,l) , (21)

with i = 1, 2 corresponding to the linear and nonlinear complex potential. For such complex potentials, the integrals
involved in the Melnikov vector can be calculated analytically as follows:

M1(x0;β, θ0) =
∑

l

v1,lK1,lF1(K1,l, β) sin (K1,lx0 − φ1,l) +
∑

l

v2,lK2,lF2(K2,l, β) sin (K2,lx0 − φ2,l) ,

M2(x0;β, θ0) =
∑

l

w1,lF1(L1,l, β) sin (L1,lx0 − ξ1,l) +
∑

l

w2,lF2(L2,l, β) sin (L2,lx0 − ξ2,l) , (22)
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where

F1(Y, β) =
πY

2 sinh
(

πY
2
√
β

) ,

F2(Y, β) =
πY (Y 2 + 4β)

12 sinh
(

πY
2
√
β

) . (23)

These functions depend strongly on the ratio of the two characteristic spatial length scales of the system: the width
of the unperturbed soliton (∼ β−1/2) and the period of the potential (∼ Y −1), with Y = Ki,l, Li,l. Moreover, it is
clear that the components of the Melnikov vector have simple zeros since their partial derivatives with respect to x0
(and β) are not vanishing at the zeros, so the latter correspond to homoclinic points where the stable and unstable
manifolds intersect transversely.
In the following, we focus our investigation to intermediate perturbation strength values (ǫ) and to localized solutions

with a transverse spatial extent comparable to the characteristic scales of the complex potentials corresponding to
propagation constant β = 0.1 for the case of Ki,l, Li,l = 1− 2; in such cases the effect of the potential on the solitary
wave profile is more pronounced. Moreover, we consider cases where the amplitude of the imaginary part of the
potential is smaller than the amplitude of the real part, since in the opposite case, not only the solitary waves but
even the zero background solution is generally unstable.
Prior to showing the properties of stationary soliton solutions of Eq. (3), we will briefly discuss the numerical

methods used for attaining the spatial profile of such solitary waves. As it is well known (and also checked during this
study), numerically exact (up to machine precision) waveforms can be found in the case of PT-symmetric potentials by
using fixed-point algorithms like the Newton-Raphson method. The most tricky issue arises when non-PT-symmetric
potentials are considered, as fixed-point algorithms, at least in our experience, do not generally converge to machine
precision. Thus, alternative methods must be used. First of all, we considered the Levenberg-Marquardt algorithm
(LMA) which, for instance, has proved to be useful for finding capillary solitary waves [56]. The main drawback of
such an algorithm (which is detailed in [40]) lies in the fact that it is an optimization method, and consequently, it
looks for local minima of the residual which do not necessarily have to be zero. The other option is to use a boundary
value problem solver which is implemented in Matlab by means of bvp4c command. From the description of Ref. [57]
(in particular, from p.167 therein), in this case the solver residual is indicated to be found by means of a five-point
Lobatto quadrature formula.
We have applied both the LMA and the boundary value problem solver bvp4c for getting stationary soliton solutions

when the Newton-type algorithms fail because of the breaking of the PT-symmetry of NLS equation. In both methods,
the initial guesses have been chosen with the utilization of the analytical results of the Melnikov’s method, so that
the unperturbed solutions (9) with x0 corresponding to the simple zeros of the Melnikov vector (18) have been used.
In particular, we have observed that generally the L2-norm of the residual is larger –typically ∼ 10−6– for the former
algorithm and smaller –typically can be made to be around ∼ 10−10– for the latter. The spatial profiles obtained by
the two algorithms are almost identical. In order to study the propagation dynamics of the various stationary solutions
we resort to direct numerical computations based on a standard beam propagation (split-step Fourier) method. In
all cases, a level of random noise has been superimposed to the initial profiles in order to trigger possible instabilities
and check their robustness.

A. Linear potential

Without loss of generality we consider a linear complex potential consisting of two sinusoidal modulations of different
amplitude, period and phase, namely:

V1(x) = v1,1 cos(K1,1x) + v1,2 cos(K1,2x+ φ1,2),

W1(x) = w1,1 sin(L1,1x) + w1,2 sin(L1,2x+ ξ1,2). (24)

For a monochromatic real and imaginary part of the complex potential (v1,2 = w1,2 = 0) we always have a PT-
symmetric configuration. When K1,1, L1,1 are incommensurable (K1,1/L1,1 = irrational) the equations (18) have only
one common solution at x0 = 0, whereas when they are commensurable (K1,1/L1,1 = m/n), they have common
solutions at x0 = l1π/K1,1 = l2π/L1,1 for integers l1,2 such that ml2 = nl1. The condition (19) is fulfilled when
K1,1 = L1,1; in such case we have the maximum number of common solutions x0 = lπ/K1,1 = lπ/L1,1 with l being
any integer. For a non-monochromatic real and imaginary part of the potential (v1,2, w1,2 6= 0) with φ1,2, ξ1,2 6= 0 the
configuration is not PT-symmetric, in general. The condition (19) is fulfilled when K1,1 = L1,1, K1,2 = L1,2, for any
value of φ1,2 = ξ1,2 and all the solutions of the two equations (18) are common, whereas in the general case where
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K1,1 6= L1,1, K1,2 6= L1,2, common solutions may exist for some x0, depending on the values of K1,l and L1,l and the
propagation constant β.
In Fig. 1 we show the zeros of the components of the Melnikov vector for a PT-symmetric periodic complex potential

with parameters, ǫ = 0.1, v1,1 = 1, w1,1 = w1,2 = 0.2, K1,1 = L1,1 = 1, K1,2 = L1,2 = 3/2 and φ1,2 = ξ1,2 = 0.
For the case where v1,2 = 1 the condition (19) is not fulfilled and the common zeros of M1,M2 are located at
x0 = 2πl, l = 0,±1,±2, ... for all propagation constants β, as shown in Fig. 1(a). When v1,2 = 2/3 the condition
(19) is fulfilled and the zeros of M1 and M2 coincide for all β as shown in Fig. 1(b). In comparison to the previous
case, additional common zeros exist, with their position depending on β and there exist zeros bifurcating for higher
values of β. The fullfilment of the condition (19) in terms of v1,2 is depicted in Fig. 1(c) where the respective
value of v1,2 is denoted with a horizontal line. The transverse profiles of solitary waves with β = 0.1 and centers
corresponding to the zeros of the Melnikov vector are shown in Fig. 2(a,b) for the cases corresponding to Figs. 1(a)
and (b), respectively. The projection of the real (u) and the imaginary (v) parts the homoclinic solutions as well as
the propagation dynamics for these cases are shown in Fig. 3 and Fig. 4. It is worth emphasizing the existence of an
asymmetric solitary wave of two-humped profile in this PT-symmetric case [58] shown in Fig. 4; this solitary wave is
unstable and it evolves to a solution oscillating around one of the stable symmetric solutions.
For K1,2 = L1,2 =

√
2 (and all the other parameters having their aforementioned values) the potential is still

PT-symmetric but also quasiperiodic. When v1,2 = 1 the condition (19) is not fullfiled and the only common zero of
M1 and M2 is at x0 = 0 for all values of β as shown in Fig. 5(a); the corresponding solitary wave has a symmetric
profile [Fig. 6(a)] and it appears to remain robust under the dynamical propagation shown in Fig. 7. On the contrary,

when v1,2 = 1/
√
2 the condition (19) is fulfilled and all the zeros of M1 and M2 are common [Fig. 5(b,c)]. In that

case there exists a multitude of solitary waves with asymmetric profiles centered at the zeros of the Melnikov vector,
as shown in Fig. 6(b) and Figs. 8.
The most general case occurs when a non-zero phase difference (φ1,2 = ξ1,2 = π/3) is considered (all the other

parameters having their aforementioned values). In such case the complex potential is not PT-symmetric, and when
the condition (19) is not fullifiled there are no zeros of the Melnikov vector [Fig. 9(a)] and therefore no solitary waves.
When the condition is fullfiled, although the potential is still non-PT-symmetric, the zeros of M1 and M2 coincide
[Figs. 9(b,c)] for all β and this yields a multitude of continuous families of solitary waves with asymmetric profiles
centered at the zeros of the Melnikov vector as shown in Fig. 10 and Fig. 11, with the two-humped solution profiles
being typically unstable evolving to a single-humped profile undergoing position and amplitude oscillations and the
single-humped solution profiles being asymmetric and typically pinned at a fixed transverse position and ungergoing
very small amplitude growth or decay.

B. Nonlinear potential

We consider now the case of a complex potential having both linear and nonlinear parts [34, 55], and more specifically

V1(x) = v1,1 cos(K1,1x+ φ1,1), W1(x) = w1,1 sin(L1,1x+ ξ1,1),

V2(x) = v2,1 cos(K2,1x+ φ2,1), W2(x) = w2,1 sin(L2,1x+ ξ2,1). (25)

For φ1,1 6= ξ1,1 and φ2,1 6= ξ2,1 neither the linear nor the nonlinear part of the potential are PT-symmetric. An
appropriate parameter selection for the fullfilment of the condition (19) is the following:

K1,1 = L2,1, K2,1 = L1,1, φ1,1 = ξ2,1, φ2,1 = ξ1,1, (26)

and

v2,1
v1,1

=
w1,1

w2,1

K1,1

K2,1

36

(K2
1,1 + 4β)(K2

2,1 + 4β)
, (27)

as it can be verified by Eqs. (22) and (23). This parameter selection ensures that the zeros of the first and the second
term of M1 coincide with the zeros of the second and the first term of M2, respectively. It is worth mentioning that,
for this particular case of nonlinear potential, the parameter values that enable the fulfillment of the condition (19)
depend on the specific solitary wave through the propagation constant β, in contrast to the linear case where the
condition is fulfilled simultaneously for all values of β under appropriate conditions. Thus, in this case there do not

exist continuous families of solitary waves for any set of fixed values of the potential parameters. It is worth noting
that this non-existence of continuous families refers to the specific form of Eq. (25) and does not characterize nonlinear
complex potentials in general; e.g. for a purely nonlinear complex potential (with U1 = 0) continuous families can be
found similarly to the previous case of a linear potential.
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We consider a nonlinear complex potential of the form (25) with parameters ǫ = 0.02, v1,1 = 1, w1,1 = w2,1 = 0.2,
K1,1 = L2,1 = 1, K2,1 = L1,1 = 3/2, φ1,1 = ξ2,1 = 0, φ2,1 = ξ1,1 = π/3 and v2,1 provided by Eq. (27). The value of ǫ
has been chosen smaller than in the case of the linear potential due to the fact that larger values of v2,1 result from
the use of Eq. (27) and, hence, the effective magnitude of the perturbation (∼ ǫmax(vi,j , wi,j)) is larger in this case,
in comparison to the ones discussed previously. It is worth emphasizing that this nonlinear potential has no spatial
symmetry. The zeros of the two components of the Melnikov vector are depicted in Fig. 12 for the case where v2,1 is
given by Eq. (27) for β = 0.1 [Fig. 12(a)] and for the case where it is different for every β according to Eq. (27) [Fig.
12(b)]. In the first case the condition (19) is fulfilled and the zeros of M1 and M2 coincide only for β = 0.1, whereas
in the second case this happens for all values of β. Solitary wave profiles along with their position with respect to
the linear part of the potential and the zeros of the Melnikov vector are depicted in Fig. 13. The projection of the
real (u) and the imaginary (v) parts the homoclinic solutions as well as the propagation dynamics for cases shown in
Fig. 13 are presented in Fig. 14, where it is shown that the solitary waves may have instabilities related to amplitude
decay as well as position oscillations.

IV. CONCLUSIONS AND FUTURE CHALLENGES

Solitary wave formation in symmetric and non-symmetric, linear and nonlinear complex potentials has been studied
by means of Melnikov’s perturbation method. Conditions for the existence of stationary solitary waves, bifurcating
from the nonlinear modes of the homogenous system, have been obtained analytically. The conditions are expressed
as relations involving the real and the imaginary part of the potential, as well as the unperturbed nonlinear solution.
This Melnikov analysis suggests that continuous families of stationary solitary waves may exist for complex potentials
not restricted by being PT-symmetric or of Wadati-type, for linear as well as nonlinear complex potentials. In a
concrete (yet, generic in its nature due to its Fourier mode nature) example, specific positions around where these
solitary waves are located, with respect to the prescribed underlying potential.
The analytical predictions were numerically tested and the propagation dynamics of the solitary waves has also

been demonstrated. Returning to the point of steady-state numerical computations, the use of different numerical
methods yielded results of different accuracy, as detailed in the main text. In that light, it would be desirable to obtain
a deeper numerical analysis of standing wave problems in such non-Hermitian potentials, as both the LMA and other
Newton–Krylov-type methods (such as nsoli) [59] that we used only allowed convergence up to 10−6 rather than
machine precision, contrary to what was the case with bvp4c (which typically indicated convergence to 10−10). This
suggests that the identification of efficient numerical methods for this type of computation may be highly desirable.
Also, systematic investigations on the spectral stability of the solutions via eigenvalue computations would be of
interest.
Aside, however, from some of these intriguing numerical challenges, the analytical results based on the Melnikov

method provide a fundamental understanding of the essentially necessary features of a complex potential that can
support the existence of continuous families of stationary solitary waves and are applicable to generic classes of
potentials of both theoretical and practical interest. It would naturally be of relevance from such a practical perspective
to generalize the present considerations to other settings, including self-defocusing nonlinearities (see relevant work in
the context of PT-symmetric systems, e.g., in Ref. [60]), that typically bear “dark” structures, such as dark solitons,
vortices, vortex rings, and so on [61], as well as multi-dimensional systems (where vortical patterns are also of wide
interest [62]). Such studies will be deferred to future publications.
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(a) (b)

(c)

FIG. 1. Zeros of the two components of the Melnikov vectorM1 (red, solid) andM2 (blue, dashed), for a periodic PT-symmetric
complex potential with ǫ = 0.1, v1,1 = 1, w1,1 = w1,2 = 0.2, K1,1 = L1,1 = 1, K1,2 = L1,2 = 3/2 and φ1,2 = ξ1,2 = 0. (a)
v1,2 = 1 (the condition (19) is not fulfilled), (b) v1,2 = 2/3 (the condition (19) is fulfilled), (c) β = 0.1 and varying v1,2 (the
black dotted line denotes the value of v1,2 for which the condition (19) is fulfilled).
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(a)

(b)

FIG. 2. Transverse profiles of solitary waves with β = 0.1 and centers corresponding to the zeros of the Melnikov vector for
the cases corresponding to Figs. 1(a) and (b), respectively. The black solid and dashed lines depict the real and the imaginary
part of the potential and the red circles denote the location of the zeros of the Melnikov function.

FIG. 3. Projection of the real (u, red) and the imaginary (v, blue) parts the homoclinic solutions and propagation dynamics
for the case corresponding to Fig. 1(a) and Fig. 2(a).
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FIG. 4. Projection of the real (u, red) and the imaginary (v, blue) parts the homoclinic solutions and propagation dynamics
for the case corresponding to Fig. 1(b) and Fig. 2(b).
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(a) (b)

(c)

FIG. 5. Zeros of the two components of the Melnikov vector M1 (red, solid) and M2 (blue, dashed), for a quasiperiodic PT-
symmetric complex potential with v1,1 = 1, w1,1 = w1,2 = 0.2, K1,1 = L1,1 = 1, K1,2 = L1,2 =

√
2 and φ1,2 = ξ1,2 = 0. (a)

v1,2 = 1 (the condition (19) is not fulfilled), (b) v1,2 = 1/
√
2 (the condition (19) is fulfilled), (c) β = 0.1 and varying v1,2 (the

black dotted line denotes the value of v1,2 for which the condition (19) is fulfilled).
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(a)

(b)

FIG. 6. Transverse profiles of solitary waves with β = 0.1 and centers corresponding to the zeros of the Melnikov vector for
the cases corresponding to Figs. 5(a) and (b), respectively. The black solid and dashed lines depict the real and the imaginary
part of the potential and the red circles denote the location of the zeros of the Melnikov function.

FIG. 7. Projection of the real (u, red) and the imaginary (v, blue) parts the homoclinic solutions and propagation dynamics
for the case corresponding to Fig. 5(a) and Fig. 6(a).
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FIG. 8. Projection of the real (u, red) and the imaginary (v, blue) parts the homoclinic solutions for the case corresponding to
Fig. 5(b) and Fig. 6(b).
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(a) (b)

(c)

FIG. 9. Zeros of the two components of the Melnikov vector M1 (red, solid) and M2 (blue, dashed), for a quasiperiodic non
PT-symmetric complex potential with v1,1 = 1, w1,1 = w1,2 = 0.2, K1,1 = L1,1 = 1, K1,2 = L1,2 =

√
2 and φ1,2 = ξ1,2 = π/3.

(a) v1,2 = 1 (the condition (19) is not fulfilled), (b) v1,2 = 1/
√
2 (the condition (19) is fulfilled), (c) β = 0.1 and varying v1,2

(the black dotted line denotes the value of v1,2 for which the condition (19) is fulfilled).

FIG. 10. Transverse profiles of solitary waves with β = 0.1 and centers corresponding to the zeros of the Melnikov vector for
the case corresponding to Figs. 9(b). The black solid and dashed lines depict the real and the imaginary part of the potential
and the red circles denote the location of the zeros of the Melnikov function.
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FIG. 11. Projection of the real (u, red) and the imaginary (v, blue) parts the homoclinic solutions and propagation dynamics
for the case corresponding to Fig. 9(b) and Fig. 10.
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(a) (b)

FIG. 12. Zeros of the two components of the Melnikov vector M1 (red, solid) and M2 (blue, dashed), for a non-symmetric
nonlinear complex potential of the form (25) with ǫ = 0.02, v1,1 = 1, w1,1 = w2,1 = 0.2, K1,1 = L2,1 = 1, K2,1 = L1,1 = 3/2,
φ1,1 = ξ2,1 = 0, φ2,1 = ξ1,1 = π/3 and v2,1 given by Eq. (27) for β = 0.1 (a), and every β (b). The condition (19) is fulfilled
only for β = 0.1 (black dotted line) in (a) and all values of β in (b), where v21 is different for every β according to Eq. (27).

FIG. 13. Transverse profiles of solitary waves with β = 0.1 and centers corresponding to the zeros of the Melnikov vector for
the case corresponding to Figs. 12. The black solid and dashed lines depict the real and the imaginary part of the linear part of
the potential and the red circles denote the location of the zeros of the Melnikov function. Two succesive zeros of the Melnikov
vector correspond to stationary solutions [Fig. 14(c,d)] with identical amplitude profile (|ψ|).
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FIG. 14. Projection of the real (u, red) and the imaginary (v, blue) parts the homoclinic solutions and propagation dynamics
for the case corresponding to Fig. 12 and Fig. 13.
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