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Little is known about the functions of downstream regulatory element antagonist modulator (DREAM) in embry-
onic stem cells (ESCs). However, DREAM interacts with cAMP response element-binding protein (CREB) in a
Ca®*-dependent manner, preventing CREB binding protein (CBP) recruitment. Furthermore, CREB and CBP are
involved in maintaining ESC self-renewal and pluripotency. However, a previous knockout study revealed the
protective function of DREAM depletion in brain aging degeneration and that aging is accompanied by a progres-
sive decline in stem cells (SCs) function. Interestingly, we found that DREAM is expressed in different cell types,
including human ESCs (hESCs), human adipose-derived stromal cells (hASCs), human bone marrow-derived
stromal cells (hBMSCs), and human newborn foreskin fibroblasts (hFFs), and that transitory inhibition of
DREAM in hESCs reduces their pluripotency, increasing differentiation. We stipulate that these changes are partly
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DREAM mediated by increased CREB transcriptional activity. Overall, our data indicates that DREAM acts in the regulation
KChiP-3 of hESC pluripotency and could be a target to promote or prevent differentiation in embryonic cells.
EaRlé;mlm © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Downstream regulatory element antagonist modulator (DREAM) is
a multifunctional Ca?*-binding protein, in the EF-hand subfamily
of neuronal calcium sensors, with specific roles in different cell
compartments (Carrion et al., 1999; An et al., 2000). In the nucleus,
DREAM acts as a Ca® "-dependent transcriptional repressor (Carrion
et al., 1999; Campos et al., 2003; Ledo et al., 2000, 2002; Rivas et al.,

Abbreviations: SCs, stem cells; hESCs, human embryonic stem cells; hASCs, human
adipose-derived stromal cells; hBMSCs, human bone marrow-derived stromal cells;
hFFs, human newborn foreskin fibroblasts; DREAM, downstream regulatory element an-
tagonist modulator (also termed KChIP-3, potassium channel interacting protein-3, or
calsenilin); CREB, cAMP response element-binding protein; pCREB, phosphorylated
CREB; CBP, CREB binding protein.
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2004) and a transcription factor interacting directly with DNA at a
specific sequence, the downregulatory element (DRE) (Carrion et al.,
1999; Campos et al., 2003). Outside of the nucleus, DREAM interacts
with Kv4 potassium channels, directing their trafficking to the plasma
membrane and regulating channel gating properties (An et al., 2000;
Takimoto et al., 2002; Fontan-Lozano et al., 2011). In addition, DREAM
appears to directly or indirectly affect synaptic plasticity by modulating
N-methyl-p-aspartate (NMDA) receptors (Fontan-Lozano et al., 2011;
Wu et al,, 2010; Zhang et al.,, 2010). In the cytosol, DREAM binds to
presenilins (Buxbaum et al., 1998), blocks the release of Ca>* from
the endoplasmic reticulum, and induces apoptosis of presenilin mutants
associated with Alzheimer disease (Lilliehook et al., 2002).

Expression of DREAM is also upon cyclic adenosine monophosphate
(cAMP) signaling (Carrion et al., 1999). It has been reported that
DREAM interacts with CREB (cAMP response element-binding protein)
within its kinase-inducible domain (KID) (Ledo et al., 2002). CREB binds
to cAMP-response element sequences (CRE site) (Zhang et al., 2005). To
attain full transcriptional activity, CREB interacts with the histone acetyl
transferase enzyme CBP dependent on Ser-133 phosphorylation (Mayr
and Montminy, 2001). Unphosphorylated CREB interacts with DREAM
to abolish CREB-CBP interaction in a Ca? *-dependent manner (Ledo
et al., 2002).

Embryonic stem cells (ESCs) display two important characteristics:
self-renewal, which allows them to be indefinitely expanded while
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maintaining the undifferentiated state, and pluripotency, which allows
them to differentiate into almost all cell types. ESCs are able to differenti-
ate into all derivatives of the three primary germ layers (ectoderm,
endoderm, and mesoderm). Pluripotency distinguishes ESCs from the
stem cells (SCs) in an adult organism, thus adult SCs are multipotent
and differentiate into a limited number of cell types. Furthermore, ESCs
in culture can differentiate spontaneously and give rise to cell types that
derive from different primary germ cell layers (Hmadcha et al., 2009).

ESC differentiation requires the repression of transcription factors in-
volved in maintaining pluripotency and the activation of developmental
genes (Horrillo et al., 2013). Little is known about the relationship
between CREB/CBP and SCs. A previous study showed that leukemia
inhibitory factor (LIF) in mouse ESCs produces LIF-dependent phosphor-
ylation of CREB. This process is partially under the control of the RSK2
kinase and as a consequence CREB regulates pluripotency and survival
genes in mouse ESCs (Boeuf et al., 2001). CREB is also involved in
differentiation and survival process of neural SCs in the evolutionary
scale (Dworkin and Heath, 2007; Dworkin et al., 2009). Dworkin et al.
(2009) have shown a specific role for CREB in mammalian embryonic
neurogenesis. Another study associated CREB with early neurogenesis
(Peltier et al., 2007) but presented only indirect evidence of PI3K/Akt
stimulation activating both CREB and neurogenesis. Phosphorylation of
CREB at serine 133 (Ser133) is a required step for inducing the transcrip-
tion of multiple genes through the cAMP response element (CRE).
Several kinases possess the capability of phosphorylating CREB at this
site, including protein kinases A and C (Manier et al., 2001), MAP kinase
activated protein kinase-2 (Xing et al., 1998), and Akt (Peltier et al.,
2007; Caravatta et al,, 2008). In particular, the kinase Akt and its activator
PI3K play a significant role in multiple cellular functions, such as cell sur-
vival, proliferation, and cytoskeletal rearrangements (Cantley, 2002;
Engelman et al.,, 2006; Xue and Hemmings, 2013). While the role of the
PI3K/Akt signaling pathway in the function of adult neural stem or pro-
genitor cells is still unclear, its role during development has been widely
demonstrated. For instance, Akt is implicated in maintaining self-
renewal of embryonic cortical progenitors (Sinor and Lillien, 2004) and
ESC lines (Paling et al., 2004; Watanabe et al., 2006). Furthermore, the
PI3K antagonist phosphatase and tensin homolog (PTEN) has been
shown to negatively regulate proliferation of embryonic neural SCs
(Groszer et al., 2006). The activation of the PI3K/Akt signaling pathway
is also associated with neurogenesis in progenitor cells derived from
the subventricular zone and in olfactory SCs (Vojtek et al., 2003). In
line with these reports, Akt3-deficient mice showed reduced brain size
and weight (Tschopp et al., 2005), revealing that Akt is crucial for the cor-
rect brain development. All the above demonstrate a mechanistic link
between PI3K/Akt, CREB, and neurogenesis.

ESCs and cancer cells share self-renewal capacity, which allows
them to be indefinitely expanded. Moreover, the recent recognition
that CREB may have oncogenic properties leads us to hypothesize that
over-activation of CREB could contribute to the development of some
types of tumors (Ghosh et al., 2007; Abramovitch et al., 2004; Linnerth
et al., 2005; Shankar et al., 2005). This suggests that CREB could have a
role in regulating genes related to self-renewal. At a mechanistic level,
CREB is perhaps one of the best-understood phosphorylation-
dependent transcription factors. In principle, phosphorylation of CREB
at Ser133 seems to be sufficient to promote target gene activation
through recruitment of CBP'4, On the other hand, unphosphorylated
CREB interacts with DREAM to abolish the CREB-CBP interaction in a
Ca%*-dependent manner (Ledo et al., 2002; Fontan-Lozano et al., 2009).

CBP is implicated in different biological functions with an essential
role in maintaining normal germ cells development. CBP is expressed
in primordial germ cells (PGCs) and in ESCs but is highly expressed in
PGCs compared with ESCs. Proper levels of CBP have been shown to
be important for hematopoietic SCs; CBP deficient hematopoietic SCs
fail to self-renew (Rebel et al., 2002). Interestingly, the deletion of
CREB, which could affect CBP binding to DNA-associated transcription
factors, results in apoptosis in numerous cell types (Zhang et al., 2002;

Barton et al., 1996; Jaworski et al., 2003; Reusch and Klemm, 2002;
Dworet and Meinkoth, 2006; Scobey et al., 2001).

In contrast, only two studies associate DREAM with SCs. First, Sanz
et al. (2001) found that DREAM regulates the expression of the apopto-
tic protein Hrk within the hematopoietic system. Second, Cebolla et al.
(2008) implicated DREAM in the differentiation of neural progenitors
into astrocytes. More recently, our team described that the loss of
DREAM protects the brain from degeneration during aging (Fontan-
Lozano et al., 2009). DREAM could be directing a depletion of stem/
precursor cell reservoirs. This may indicate a possible relationship
between DREAM and SCs; our results uncover a hitherto unknown
role of DREAM in regulating human ESCs (hESCs) pluripotency and
differentiation.

2. Materials and methods
2.1. Ethics for the hESCs

The HS-181 hESC line was obtained from the Karolinska Institute
courtesy of Dr. Outi Hovatta. The cell line was derived from a normal
and healthy blastocyst donated for research in accordance with the
legal requirements of the country of origin and the donors gave written
informed consent. The HS-181 line is included in the European Union
hESC registry (http://www.hescreg.eu/).

2.2. Cell line culture

HS-181 was cultured, as described by Hovatta et al. (2003 ), onto BD
Matrigel™ hESC-Qualified Matrix coated flasks (BD Biosciences, San
Diego, CA, USA), in human feeder-conditioned medium consisting of
knockout DMEM (Gibco, Grand Island, NY, USA) supplemented with
20% serum replacement (Gibco), 2 mM L-glutamine (Gibco), 1% non-
essential amino acids (Gibco), 50 U/ml penicillin (Gibco), 50 pg/ml strep-
tomycin (Gibco), 0.1 mM R-mercaptoethanol (Gibco), and 4 ng/ml basic
fibroblast growth factor (bFGF) (R&D Systems, Minneapolis, MN, USA).
To promote in vitro spontaneous differentiation, undifferentiated colo-
nies (hESCs at day 0: 0 d) were detached by treatment with Accutase
(Gibco, Grand Island, NY, USA), bFGF was withdrawn from the medium,
and cells were subjected to embryoid body (EB) formation using the
hanging drop method for 48 h. Cells were then plated and incubated as
floating aggregates for 13 days (hESCs at day 15: 15 d) in ultra-low
attach-flasks without bFGF.

Human adipose-derived stromal cells (hASCs) (ATCC®, Manassas,
VA, USA; PCS-500-011™) and human bone marrow-derived stromal
cells (hBMSCs) (Lonza, Basilea, Switzerland; PT-2501) were purchased
and used in experiments because they are known to contain subsets
of stem cells. hASCs and hBMSCs were cultured in low glucose DMEM
supplemented with 10% FBS and were characterized by their surface
markers (CD13, CD29, CD31, CD34, CD45, CD73, CD90, HLA-II, and
CD105) and differentiation potential after cell expansion (data not
shown).

The human newborn foreskin fibroblasts (hFFs) (ATCC® CRL-2429)
were cultured in DMEM supplemented with 10% FBS.

2.3. Quantitative RT-PCR

Total RNA was extracted with TRIzol® Reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer's instructions. cDNA
was synthesized from 2 pg total RNA using MMLV reverse transcriptase
(Promega, Madison, WI, USA). Quantitative real-time RT-PCR (qRT-
PCR) analysis was performed on an ABI 7500 FAST Sequence Detection
System (Applied Biosystems, Foster City, CA, USA) using the SensiFAST
SYBR Lo-ROX Kit (Bioline, London, UK). The expression level of each
gene was normalized to TATA box binding protein (TBP) mRNA levels
(D101-D136, TATAA Biocenter AB, Goteborg, Sweden). The results
were expressed using the AACt method as the number of the fold


http://www.hescreg.eu

570 A. Fontdn-Lozano et al. / Stem Cell Research 16 (2016) 568-578

change relative to the expression of control samples. Primer sequences
are listed in Supplementary Table S1.

24. Flow cytometry

24.1. Cell preparations

Undifferentiated cells (0 d) were disaggregated by incubation in
Accutase (5 min, 37 °C). The reaction was stopped with human
feeder-conditioned medium and cells were then centrifuged and
resuspended in PBS. Differentiated cells (15 d) were disaggregated by
incubation in trypsin (5 min, 37 °C). The reaction was stopped with
media supplemented with FBS and cells were then centrifuged and
resuspended in PBS. A single-cell suspension was obtained.

24.2. Cell cycle analysis

Cells were fixed and permeabilized overnight at —20 °C in cold 70%
ethanol. Cells were collected by centrifugation and resuspended in PBS
with 1% FBS and 10 mM HEPES. Samples were labeled with propidium
iodide (PI) and subjected to analysis using FL-2A to score the DNA
content of the cells' PI Fluorescence (FL2) using a flow cytometer (BD
FACSCalibur Cytometry System, San Jose, CA, USA). Data were processed
with CellQuest Pro v 5.2.1. software (BD, San Jose, CA, USA) and
analyzed in the ModFit program.

2.4.3. Apoptosis analysis

To analyze the apoptosis levels provoked by DREAM inhibition, we
used the FITC Annexin V Apoptosis Detection Kit I (BD Pharmingen).
Analysis was performed using flow cytometry, considering PI
Fluorescence (FL2) and Annexin V-FITC fluorescence (FL1) in the flow
cytometer (BD FACSCalibur Cytometry System). Data were processed
with CellQuest Pro v 5.2.1. software (BD). We calculated the percentage
of cells at each stage of apoptosis. Early apoptosis was defined as
cells that are positive for FITC Annexin V and negative for PI (Annexin
V*/PI™); necrosis was defined as cells that are negative for FITC Annexin
V and positive for PI (Annexin V™ /PI™); late apoptosis was defined as
cells that are positive for FITC Annexin V and PI (Annexin V*/PI").
Total apoptosis was expressed as the sum of early and late apoptosis.

2.4.4. SSEA4 and TRA-1-60 expression analysis

Cells labeled with the fluorescent antibodies FITC Mouse anti-
Human TRA-1-60 Antigen (BD Pharmingen) or FITC Mouse anti-SSEA-
4 (BD Pharmingen) were analyzed using Flow Cytometry (BD
FACSCalibur Cytometry System). The data were processed with
CellQuest Pro v 5.2.1. software (BD).

2.5. Human pluripotent stem cell proteome array

The protein expression profiles were assayed using the specific
Human Pluripotent Stem Cell Array Kit ‘Proteome Profiler Array’ (R&D
Systems Europe, Abingdon, UK; Catalog No. ARY010) following the
manufacturer's instructions. This array allowed us to simultaneously
detect 15 different SCs markers related to pluripotency and differentia-
tion. The densitometry analysis of the resulting spots was carried out
using Image] 1.41 software (Wayne Rasband, NIH, Bethesda, MD, USA)
and expressed as arbitrary units (a.u.) of spot density.

2.6. Immunofluorescence

Cells were cultured in Matrigel™-coated confocal plates. Cells were
fixed for 20 min in 4% paraformaldehyde solution, washed three times
with 0.05% PBS-Tween, and permeabilized for 1 h with PBS containing
0.1% Triton-X 100. After 1 h of blocking incubation with PBS supple-
mented with 5% goat serum and 0.05% Tween, cells were incubated
with the primary antibody diluted on blocking solution overnight at
4 °C. Then, cells were washed three times with PBS and incubated
with secondary antibodies for 1 h at room temperature. Next, cells

were washed three times with PBS and incubated with 1 mg/ml
Hoechst 33342 (DNA dye) for 5 min at RT, and finally washed three
times with PBS. Digital images were obtained using a Leica SP5 confocal
microscope (Leica, Mannheim, Germany) or an Olympus IX71 inverted
microscope (Olympus, Tokyo, Japan). The images were quantified by
Image] 1.41 software (Wayne Rasband, NIH, Bethesda, MD, USA). The
antibodies used in this study are listed in Supplementary Table S2.

2.7. Western blot and immunoblotting

Harvested cells were lysed for protein extraction using RIPA buffer
(Sigma-Aldrich), supplemented with protease and phosphatase inhibi-
tor cocktail. Then, proteins from whole cell lysates were resolved
using 10% Tris-Glycine gel electrophoresis and transferred to a
polyvinylidene difluoride membrane (GE Healthcare Life Sciences,
Buckinghamshire, UK). Membranes were then blocked with 5% non-
fat milk and primary antibodies were probed (see Supplementary
Table S2 for antibody information). Detection was performed with the
appropriate horseradish-peroxidase conjugated secondary antibodies
(Supplementary Table S2) using the enhanced chemiluminescence
reagent (GE Healthcare Life Sciences). Densitometry analyses for the
blots were performed using Image] software (version 1.4r; National
Institute of Health, Bethesda, MD, USA).

2.8. Small interfering RNA (siRNA)

Non-specific control siRNA (Santa Cruz Biotechnology, sc-37007,
Santa Cruz, CA, USA) and a recommended DREAM siRNA (Santa Cruz
Biotechnology, sc-42398) were used to ensure silencing of DREAM ex-
pression. Cell transfections were carried out with siRNA and Lipofecta-
mine 2000 Reagent (Life Technologies, Carlsbad, CA, USA) following the
manufacturer's instructions. After testing different concentrations of
DREAM siRNA (20, 40, and 80 pmol), the concentration of 40 pmol was
selected as effective for DREAM depletion because 90% of inhibition was
detected by qRT-PCR 24 h after transfection of hESCs (data not shown).

2.9. Statistical analysis

All experiments were repeated at least in triplicate (n > 3 indepen-
dent experiments) and data were analyzed using the SPSS package for
Windows (SPSS, Chicago, IL). Values are presented as the mean +
SEM. Statistical significance was calculated using ANOVA or t-test. The
Mann-Whitney Rank Sum Test was used in samples that were not
normally distributed or that had unequal variance.

3. Results
3.1. DREAM is expressed in human embryonic stem cells

The lack of DREAM is implicated in the delay of brain aging and in
prevention of the loss of SCs with age. In this study, the results demon-
strated that DREAM CREB and CBP mRNA are expressed in hESCs, and
that the expression of DREAM and CBP increased when cells initiated
spontaneous differentiation (Fig. 1A). In contrast, no changes in gene
expression for CREB were detected and Oct4 expression was decreased
when cells were cultured under conditions that promote differentiation.
We also detected expression of DREAM, CREB, and CBP in the other eval-
uated cell types. Oct4 was only expressed in undifferentiated hESCs
(0 d) and in hFFs (Fig. 1A). DREAM signaling and its related proteins
were further analyzed; immunofluorescence results revealed that
hESCs (0 d), hASCs, hBMSCs, and hFFs were positive for DREAM, CREB,
pCREB, and CBP (Fig. 1B). The expression of DREAM coincided with a
hESC specific marker, TRA-1-60 (Fig. 1C). Unfortunately, despite using
different antibodies, we have been unable to detect DREAM by Western
blot. Together, these data suggest that DREAM and its related genes are
expressed in different cell types and indicate a possible role of DREAM in
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Fig. 1. DREAM protein is expressed in stem cells: A. qRT-PCR analysis of relative gene expression levels of DREAM, CREB, CBP, and Oct4 in undifferentiated hESC (0 d), spontaneously
differentiated (15 d) hESCs, hASCs, hBMSCs, and hFFs. Note the statistically significant difference of undifferentiated hESCs (0 d) compared with differentiated hESC (15 d) groups for
DREAM and CBP (**p £ 0.01 and ***p < 0.001). B. Immunofluorescence detection of DREAM, CREB, pCREB, and CBP (red) expression in cultured hESCs, hASCs, hBMSCs, and hFFs. 3-
actin (green) was used as a fiducial marker and nuclei were stained with Hoechst 33342 (blue). Note that all four markers were expressed in all assessed cells types. The scale bar is
250 pm. C. Immunofluorescence analysis of DREAM (red) and TRA-1-60 (green) expression in hESCs. Nuclei are stained with Hoechst 33342 (blue). The scale bar is 40 um.

hESCs when their pluripotency is diminished and cells begin to
differentiate.

3.2. Spontaneous differentiation of hESCs affects DREAM expression

We evaluated the expression of DREAM and its related proteins dur-
ing spontaneous differentiation. We first evaluated changes in DREAM
gene expression by qRT-PCR in undifferentiated (0 d) and spontaneous-
ly differentiated (15 d) hESCs (Fig. 2A). We observed a clear increase of
DREAM and CBP and no significant changes of CREB expression in
differentiated cells compared with undifferentiated cells. Moreover, to
confirm these changes we performed immunofluorescence in both
groups to detect the DREAM protein and its related proteins, CREB,
pCREB, and CBP (Fig. 2B), and quantified the fluorescence intensity
(Fig. 2C). We observed that DREAM and pCREB protein levels signifi-
cantly increased in spontaneous differentiation (15 d) hESCs compared
with undifferentiated (0 d) cells, while CREB and CBP expression
decreased. We noted that mRNA levels for CREB and CBP were not
reflected in the fluorescent intensity as a surrogate for protein expres-
sion, which could be caused by post-translational events. To confirm
that differentiation provokes an increase in pCREB expression, we
analyzed the phosphorylation of CREB at Ser133 by Western blot
and found a clear increase in pCREB (Ser133) in spontaneously differen-
tiated cells (Fig. 2D). These results suggest a possible role of DREAM
in regulation of pluripotency and differentiation, possibly through
modulation of CREB-CBP.

3.3. DREAM depletion in hESCs (DREAM-siRNA)

The slight increase in DREAM observed upon hESCs entry into differ-
entiation may suggest a role for this protein in differentiation. We
proceeded to transiently inhibit DREAM expression using small interfer-
ing RNA (siRNA) against DREAM (a pool of 3 target-specific 19-25 nt
siRNAs designed to knock down DREAM gene expression) and studied
the knockdown effects 24 h after transfection in spontaneously differen-
tiated cells. As shown in Fig. 3A, we obtained a reduced expression of
DREAM mRNA in DREAM-siRNA transfected cells compared with
Control cells and cells treated with Control-siRNA (a scrambled

sequence that does not lead to specific degradation of any known
cellular mRNA). To confirm the inhibition of DREAM, we detected its
expression by immunofluorescence and quantified the resulting images
(Image] software). Immunofluorescence images revealed a weak
staining for DREAM and the SCs marker TRA-1-60 in DREAM-siRNA
cells (Fig. 3B). Quantification revealed a significant decrease in total in-
tensity for DREAM staining in the transfected group (DREAM-siRNA)
compared with total intensity for Control and Control-siRNA staining
(Fig. 3C). As DREAM is a multifunctional protein with specific roles in
different cell compartments, we evaluated differential DREAM expres-
sion in the cytoplasm and nuclei by analyzing the immunofluorescence
confocal images. For cells transfected with DREAM-siRNA, we obtained
a significant decrease in nuclear and cytoplasmic protein fluorescence
intensity (expression) compared with Control and Control-siRNA cells
(Fig. 3D). These results confirm the efficacy of DREAM-siRNA used in
the transient inhibition of DREAM expression in hESCs.

3.4. Cellular effects of DREAM inhibition (DREAM-siRNA)

Cell cycle-control mechanisms are functionally linked to self-
renewal and differentiation in hESCs. Consequently, we used flow
cytometry to evaluate if DREAM-siRNA provoked changes in a hESC
cell cycle. Fig. 4A represents the percentage of cells in different cell
cycle phases: G1, S, G2m (G2 and mitosis) and apoptosis in Control,
Control-siRNA, and DREAM-siRNA transfected cells. No significant
differences were found in the cell cycle, and we only observed a
trend toward increased apoptosis in DREAM-siRNA treated cells. As
DREAM protein has been considered pro-apoptotic (Lilliehook
et al., 2002), we also evaluated if DREAM inhibition in hESCs could
induce apoptosis using a FITC Annexin V Apoptosis Detection Kit I,
which discriminates early apoptosis from late apoptosis. Fig. 4B
represents the percentage of cells in early, late, or total apoptosis
and necrosis for Control, Control-siRNA, and DREAM-siRNA cells.
We observed an increase of early and total apoptosis in DREAM-
siRNA transfected cells compared with Control and Control-siRNA
cells. These data indicate that DREAM inhibition could affect hESC
survival.
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Fig. 2. Spontaneous differentiation results in changes in DREAM expression levels: A. qRT-PCR analysis of relative gene expression levels of DREAM, CREB and CBP for undifferentiated
hESCs (0 d) and differentiated hESCs (15 d). Note the statistically significant increase of DREAM and CBP in differentiated hESCs (15 d) compared with undifferentiated hESCs (0 d)
(**p £0.01 and ***p < 0.001). B. Differential expression of DREAM, CREB, pCREB, and CBP (red) in cultured undifferentiated (0 d) and spontaneously differentiated (15 d) hESCs. -
actin (green) was used as a fiducial marker and nuclei were stained with Hoechst 33,342 (blue). The scale bar is 250 pm. C. Bar graph representing the fluorescence intensity in
arbitrary units (a.u.) for immunostaining images in A. Note that DREAM and pCREB levels were significantly increased in spontaneously differentiated (15 d) hESCs compared with
undifferentiated (0 d) cells, while CREB and CBP levels were decreased (**p < 0.01 and ***p < 0.001). D. The phosphorylation of CREB was analyzed by Western blot in undifferentiated
(0 d) and spontaneously differentiated (15 d) hESCs; GAPDH was used as the internal control. Bar graph represents the resulting densitometry quantification of Western blots

(**p < 0.001).
3.5. DREAM-siRNA induces modifications in hESC pluripotency

To test the effect of DREAM inhibition upon hESC entry into
differentiation, we performed qRT-PCR to evaluate changes in plu-
ripotent gene markers (Oct4, Nanog, and Sox2) and differentiation
gene markers (Pax6, Nrgl, erbB2, erbB3, and erbB4) and studied
the effects of siRNA transfection in undifferentiated (0 d) and spon-
taneously differentiated cells (15 d). As shown in Fig. 5A, pluripotent
gene expression was decreased in all cell groups (Control, Control-
siRNA, and DREAM-siRNA) after spontaneous differentiation. In

contrast, we observed that DREAM-siRNA transfection provoked a
significant increase in the expression of the differentiation gene
Pax6 in spontaneously differentiated cells (15 d). Furthermore, we
evaluated changes in Nrgl and its receptors (erbB2, erbB3, and
erbB4) and found that Nrg1 and erbB4 expression significantly in-
creased with transfection (DREAM-siRNA) for differentiated cells
(15 d). Overall, the expression of pluripotency markers decreased
in a DREAM-independent fashion and expression of differentiation
markers Pax6, Nrg1, and erbB4 was enhanced by DREAM knockdown
during differentiation.
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Fig. 3. siRNA-DREAM induces decreased DREAM expression in hESCs: A. Relative gene expression analysis of DREAM 24 h after transfection for Control, Control-siRNA, and DREAM-siRNA
transfected hESCs. DREAM expression was significantly reduced (***p < 0.001). B. Inmunofluorescence analysis of DREAM (red) and TRA-1-60 (green) expression in Control, Control-
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protein signal in nuclei and cytoplasm compartments for the immunostaining images in B. There were statistically significant differences between conditions and groups (***p < 0.001

and ¥+ p <0.001, respectively).

The analysis of protein expression levels with a hESC-specific
protein array (Fig. 5B) revealed that spontaneous differentiation
(15 d) results in a decrease in expression of OCT4, NANOG, SOX2,
GATA4, and OTX2 in all cell groups (Control, Control-siRNA, and
DREAM-siRNA). Interestingly, there was a clear and significant
decrease for protein expression of OCT4, NANOG, SOX2, SOX17,
0TX2, TP63/73L, GSC, SNAIL, and VEGF/R2 in DREAM-siRNA depen-
dent manner. However, when comparing protein levels between
undifferentiated cells (0 d) and spontaneously differentiated cells
(15d), no significant differences of protein expression were detected
for E-CADHERIN, AFP, GATA4, FOXA2, IFP1, and HCG in all groups
(Control, Control-siRNA, and DREAM-siRNA). The protein decrease
induced by DREAM-siRNA in OCT4, NANOG and SOX2 shown in
Fig. 5B was not reflected in the lack of change in mRNA levels as
shown in Fig. 5A.

In addition, we evaluated the percentage of cells that express SSEA4
and TRA-1-60 proteins by flow cytometry (Fig. 5C). Consistent with our
results for other pluripotency markers (OCT4, NANOG, and SOX2), we
observed that spontaneous differentiation (15 d) results in a clear de-
crease in expression for SEEA4 and TRA-1-60 in all cell groups (Control,
Control-siRNA, and DREAM-siRNA). Remarkably, there was a significant
decrease in expression upon reduction of DREAM (DREAM-siRNA).
These data indicate that there is a variable expression of pluripotency
and differentiation markers in a DREAM-independent fashion during
early differentiation of hESCs.

3.6. DREAM-siRNA induces changes in CREB transcription activity

To determine whether CREB is implicated in increased expression of
some differentiation markers in hESCs treated with DREAM-siRNA
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Fig. 4. Cellular effects of siRNA-DREAM: A. Bar graph obtained from cell cycle analysis of Control, Control-siRNA, and DREAM-siRNA transfected hESCs showing the percentage of cells in
different phases of cell cycle (G1, S, G2m [G2 and mitosis], and apoptosis). B. Flow cytometry analysis of the percentage of cells with early, late, or total apoptosis and necrosis for Control,
Control-siRNA, and DREAM-siRNA transfected hESCs. Note the statistically significant increase of early and total apoptosis in DREAM-siRNA transfected hESCs (*p < 0.05).

during differentiation, we first evaluated changes in relative gene ex-
pression for DREAM, CREB, and CBP in undifferentiated (0 d) Control,
Control-siRNA, and DREAM-siRNA cells compared with differentiated
(15 d) Control, Control-siRNA, and DREAM-siRNA cells (Fig. 6A). We
observed that DREAM expression increased in Control and Control-
siRNA cells with differentiation (15 d), but, as expected, DREAM-
siRNA resulted in a decrease in DREAM expression in differentiated
cells. We also observed an increase in CBP gene expression in differenti-
ated cells (15 d) but not for cells treated with DREAM-siRNA. A non-
significant increasing trend of CREB gene expression was detected
between undifferentiated and differentiated cells for all conditions.

We also examined the phosphorylation of the CREB protein in undif-
ferentiated cells (0 d) and differentiated cells (15 d). Immunofluores-
cence results demonstrated that the CREB signal was similar for all
conditions (Fig. 6B); however, pCREB significantly increased when
cells initiated spontaneous differentiation and interestingly transient
inhibition of DREAM (DREAM-siRNA) significantly increased pCREB
(Fig. 6C). Taken together, these results indicate that the transient inhibi-
tion of DREAM in differentiated hESCs induces an increase of CREB
phosphorylation.

4. Discussion

Aging is a process that depends on diverse molecular and cellular
mechanisms, such as genome maintenance and inflammation. Mecha-
nisms to maintain genomic stability are thought to counteract the
aging process, whereas inflammation is considered a driving force of
human aging (Troen, 2003). Organisms have different anti-aging mech-
anisms to maintain genome integrity, such as DNA repair and cell cycle
control, and to remove and recycle heavily damaged cells from the body,
such as apoptosis and cellular senescence. Even if these mechanisms
may be very efficient, they cannot cope with all genomic damage,
leading to a gradual accumulation of DNA damage and mutations, thus
contributing to organismal aging (Garinis et al., 2008). DREAM is
considered a pro-inflammatory gene (Tiruppathi et al., 2014) and has
arole in the modulation of inflammatory pain (Cheng et al., 2002; Jin
et al.,, 2012), suggesting a possible implication in the aging process.

Moreover, in an in vivo study (18-month-old dream ~/~ mice), we
found that DREAM is a key regulator of memory and brain aging; thus,
DREAM could be a potential target to not only reduce pain but also
to control decline of neurons in aging (Fontan-Lozano et al., 2009),
indicating a possible relationship between DREAM and SCs. However,
the ex vivo data presented here indicates that loss of DREAM enhanced
the loss of stem cell characteristics and increased the level of some
differentiation markers.

Chronic inflammation has been associated with age-related decline
in the function of hematopoietic SCs and tissue-specific stem/progenitor
cells (Chambers et al., 2007; Lepperdinger, 2011) and has been impli-
cated as a mediator of almost all aging-associated diseases (Gadalla
et al., 2015), such as vascular diseases, diabetes, neurodegenerative
diseases, and cancer (Medzhitov, 2010; Freund et al, 2010; De
Martinis et al., 2005; Sarkar and Fisher, 2006). Aging is accompanied
by a progressive decline in SC function, which results in less effective
tissue homeostasis and repair in mammals (Jones and Rando, 2011;
Capilla-Gonzalez et al., 2013). For these reasons, we checked for a
possible role of DREAM in SCs. As a first approximation, we detected
DREAM expression in different cell types, including hESCs, hASCs, and
hBMSCs. DREAM interacted with CREB in a Ca? *-dependent manner,
preventing CBP recruitment. We likewise detected expression of CREB
and CBP in hESCs, hASCs, and hBMSCs. All these findings point toward
a possible role of DREAM in SC biology.

Aging of SCs leads to impaired self-renewal and aberrant differenti-
ation potential (Jones and Rando, 2011). Mechanisms controlling self-
renewal and the proliferative capacity of SCs are essential to maintain-
ing functional SCs during aging. It remains unknown whether declines
in SCs functionality during aging influences organismal longevity. To
elucidate the role(s) of DREAM in SC pluripotency, we studied the inhi-
bition effects of DREAM on spontaneous differentiation of hESCs. During
spontaneous differentiation, the expression of DREAM increased, no
changes were observed in CREB, and there was an increase in the
expression of CBP. In addition, we detected a decrease in CBP protein
and an increase of Ser133-CREB phosphorylation. It would appear that
CREB is phosphorylated in response to DREAM inhibition. Although
CBP recruitment is known to require phosphorylation of Ser133 in

Fig. 5. siRNA-DREAM alters the expression of pluripotency markers: A. Relative gene expression of pluripotency genes (Oct4, Nanog, and Sox2) and differentiation genes (Pax6, Nrgl,
erbB2, erbB3, and erbB4) in undifferentiated (0 d) and differentiated (15 d) Control, Control-siRNA, and DREAM-siRNA transfected hESCs. Note the statistically significant decrease for
pluripotency genes in all differentiated (15 d) cell groups compared with undifferentiated (0 d) cell groups and an increase of Pax6, Nrg1, and erbB4 in differentiated (15 d) DREAM-
siRNA transfected hESCs (***p < 0.001; **p < 0.01). B. Relative protein expression levels of pluripotency markers in undifferentiated hESCs (0 d) and differentiated (15 d) Control,
Control-siRNA, and DREAM-siRNA hESCs evaluated by the human pluripotent stem cell antibody array. **p < 0.01 denotes a statistically significant difference for OCT4, NANOG, SOX2,
SOX17, OTX2, TP63/73L, GSC, SNAIL, and VEGF/R2 proteins. C. Quantification of the percentage of cells expressing the surface pluripotent markers SSEA4 and TRA-1-60 in
undifferentiated (0 d) and differentiated (15 d) Control, Control-siRNA, and DREAM-siRNA treated cells. Significant reduction in SSEA4 and TRA-1-60 expression was detected in

DREAM-siRNA cells (**p < 0.01).
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Fig. 6. siRNA-DREAM induces changes in CREB transcription activity: A. Relative gene expression of DREAM, CREB, and CBP genes in undifferentiated (0 d) and differentiated (15 d) Control,
Control-siRNA, and DREAM-siRNA transfected cells. **p <0.01 and ***p < 0.001 indicate a statistically significant difference. B. Representative immunofluorescence images of CREB protein
detection in undifferentiated (0 d) and differentiated (15 d) Control, Control-siRNA, and DREAM-siRNA transfected cells. The scale bar is 50 um. The quantification of fluorescence intensity
in arbitrary units (a.u.) for these images showed non-significant differences. C. Representative immunofluorescence images of pCREB protein detection in undifferentiated (0 d) and
differentiated (15 d) Control, Control-siRNA, and DREAM-siRNA transfected cells. The scale bar is 50 um. The quantification of fluorescence intensity in arbitrary units (a.u.) revealed
that pCREB was significantly increased in spontaneously differentiated (15 d) hESCs compared with undifferentiated (0 d) cells and in DREAM-siRNA transfected hESCs (**p < 0.01 and

*p <0.001).

CREB, there must be additional mechanisms (perhaps further cofactor
interactions) that are also required for CBP recruitment (Zhang et al.,
2005; Ooi and Wood, 2008). However, we must keep in mind that
CBP is essential in maintaining normal germ cell development (Elliott
et al.,, 2007) and is necessary for neural differentiation (Rebel et al.,
2002). These data could suggest the existence of mechanisms conver-
gent on DREAM and CREB protein phosphorylation, however the role
of CBP within the hESC differentiation remains to be elucidated.
Keeping SCs out of the active cell cycle phase and minimizing the
risk of DNA damage may be especially important in aging and has led
to a SC hypothesis of aging (Sharpless and DePinho, 2007; Beausejour
and Campisi, 2006). We succeeded in transiently inhibiting DREAM
expression 24 h after siRNA transfection. This inhibition of DREAM
does not affect the cell cycle but provokes an increase in apoptosis.
Taking this into account, programmed cell death is a fundamental pro-
cess throughout mammalian development (Jacobson et al.,, 1997), and
Caspase-3 has been shown to be crucial for mouse ESC differentiation
via Nanog deactivation (Fujita et al., 2008). These facts continue to

suggest a possible role of DREAM in hESC survival, cell proliferation,
and differentiation.

We found that the lack of DREAM was associated with a decrease in
protein levels of pluripotency markers and effected differentiation
markers differently. CREB signaling directly regulates Pax6 and is
known to control neurogenesis (Herold et al., 2011). In our case, tran-
sient inhibition of DREAM in hESCs increased the expression of Pax6,
Nrg1, and erbB4 in spontaneously differentiated cells and promoted
the phosphorylation of CREB. These results suggest that differentiation
of hESCs could be related to DREAM inhibition, which in turn activates
CREB through CREB phosphorylation.

To the best of our knowledge, this is the first study that includes
DREAM in the network hierarchy controlling the pluripotency of hESCs.
Our results provide new mechanistic insights regarding the function of
DREAM during early hESC differentiation. However, it is crucial to dissect
the additional perspectives aside from gene expression for molecular
mechanisms underlying the role of DREAM in cellular pluripotency.
Emerging studies show that post-translational modifications influence
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the regulation of cellular pluripotency through a variety of mechanisms
and provide new ways for characterizing self-renewal and differentia-
tion of pluripotent cells (Wang et al., 2014). Therefore, DREAM could
be a novel and important protein that relies on post-translational modi-
fications; the impact of DREAM could not be directly identified at the
transcriptional or translational levels in SCs. This possibility requires
further investigation to determine the precise impact of DREAM and its
specific targets in human pluripotent cells, with the goal of uncovering
critical and yet unknown mechanisms that are responsible for tuning
pluripotency in hESCs.
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