
UNIVERSIDAD DE SEVILLA

DEPARTAMENTO DE LENGUAJES Y SISTEMAS INFORMÁTICOS

Técnicas de Inteligencia Artificial Aplicadas
a Sistemas de Detección y Clasificación de

Señales de Tráfico

Tesis Doctoral presentada por
D. Álvaro Arcos García

dirigida por
Dr. Juan Antonio Álvarez García
y Dr. Luis Miguel Soria Morillo.

Septiembre 2018





A mi familia.

Por hacer siempre todo lo posible para hacerme feliz.





Agradecimientos

Quisiera expresar mi más sincero agradecimiento a mis directores de Tesis,

Dr. D. Juan Antonio Álvarez García y Dr. D. Luis Miguel Soria Morillo,

por todo el apoyo, tiempo y esfuerzo que le han dedicado a la elaboración

de este trabajo. Me habéis ayudado a crecer tanto personal como profesio-

nalmente durante estos años, gracias por confiar en mí. En especial a Juan

Antonio, te estaré eternamente agradecido por estar siempre pendiente de

mí, preocupándote por todo lo que pasaba a mi alrededor, y ofreciéndome

siempre tu apoyo incondicional.

A toda mi familia y amigos, tanto los que están como los que se fueron, por

haberme apoyado siempre en todas las decisiones de mi vida sin poner nunca

ninguna objeción, y haberme inculcado valores como el trabajo, el esfuerzo

y la superación, los cuales me han permitido alcanzar grandes objetivos en

mi vida. Os quiero.

A los compañeros del Departamento de Lenguajes y Sistemas Informáticos,

en especial a José María Luna y José Antonio Fábregas. No me canso de

decirlo, sois dos grandes amigos y habéis sido un pilar fundamental en los

momentos difíciles, preocupándoos por mí, sacándome sonrisas y aconseján-

dome siempre lo mejor. Todos esos momentos, y a vosotros como persona,

jamás lo olvidaré. También me gustaría agradecer a Pepe Riquelme Santos

y a Jorge García Gutiérrez haberme dado la oportunidad de trabajar en

vuestro grupo de investigación, así como por los grandes consejos que me

habéis dado durante esta etapa.

A todos, muchas gracias de corazón.







ÍNDICE GENERAL

I Prefacio

1 Introducción 15

1.1 Motivación de la investigación . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Metodología de investigación . . . . . . . . . . . . . . . . . . . . . . . 18

1.3 Pregunta de investigación . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Criterios de éxito . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Propiedades analizadas y discutidas . . . . . . . . . . . . . . . . . . . 21

1.6 Esquema de la tesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

II Trabajos de investigación seleccionados

2 Exploiting synergies of mobile mapping sensors and deep learning

for traffic sign recognition systems 27

3 Deep neural network for traffic sign recognition systems: An analy-

sis of spatial transformers and stochastic optimisation methods 41

página vii



ÍNDICE GENERAL

4 Evaluation of deep neural networks for traffic sign detection sys-

tems 53

III Observaciones finales

5 Conclusiones y trabajo futuro 71

5.1 Conclusiones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Trabajo futuro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A Curriculum 75

A.1 Revistas indexadas JCR . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.2 Otras Revistas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.3 Conferencias Internacionales . . . . . . . . . . . . . . . . . . . . . . . 76

A.4 Conferencias Nacionales . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.5 Proyectos I+D+i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliografía 79

página viii



ÍNDICE DE FIGURAS

5.1 Resultados German Traffic Sign Recognition Benchmark. . . . . . . . 73

ÍNDICE DE TABLAS

1.1 Resumen de artículos publicados en revistas JCR indexadas. . . . . . 23

página ix





Resumen

Esta tesis, presentada como conjunto de artículos de investigación, estudia y

analiza soluciones para los sistemas de detección y clasificación de señales de tráfico

que suponen un reto en aplicaciones de la actualidad, como son la seguridad y

asistencia en carretera a conductores, los coches autónomos, el mantenimiento de

señalización vertical, o el análisis de escenas de tráfico.

Las señales de tráfico constituyen un activo fundamental dentro de la red de

carreteras porque su objetivo es ser fácilmente perceptible por los peatones y con-

ductores para advertirles y guiarlos tanto de día como de noche. El hecho de que las

señales estén diseñadas para ser únicas y tener características distinguibles, como

formas simples y colores uniformes, implica que su detección y reconocimiento sea

un problema limitado. Sin embargo, el desarrollo de un sistema de reconocimiento

de señales en tiempo real aún presenta desafíos debido a los tiempos de respuesta,

los cuales son cruciales para tomar decisiones en el entorno, y la variabilidad que

presentan las imágenes de escenas de tráfico, que pueden incluir imágenes a distin-

tas escalas, puntos de vista complicados, oclusiones, y diferentes condiciones de luz.

Cualquier sistema de detección y clasificación de señales de tráfico debe hacer frente

a estos retos.

En este trabajo, se presenta un sistema de clasificación de señales de tráfico

basado en aprendizaje profundo (Deep Learning). Concretamente, los principales

componentes de la red neuronal profunda (Deep Neural Network) propuesta, son

capas convolucionales y redes de transformaciones espaciales (Spatial Transformer

Networks). Dicha red es alimentada con imágenes RGB de señales de tráfico de

distintos países como Alemania, Bélgica o España. En el caso de las señales de

Alemania, que pertenecen al dataset denominado German Traffic Sign Recognition

Benchmark (GTSRB), la arquitectura de red y los parámetros de optimización pro-

puestos obtienen un 99.71% de precisión, mejorando tanto al sistema visual humano

como a todos los resultados previos del estado del arte, siendo además más eficiente

en términos de requisitos de memoria. En el momento de redactar esta tesis, nuestro



método se encuentra en la primera posición de la clasificación a nivel mundial.

Por otro lado, respecto a la problemática de la detección de señales de tráfico, se

analizan varios sistemas de detección de objetos propuestos en el estado del arte, que

son específicamente modificados y adaptados al dominio del problema que nos ocupa

para aplicar la transferencia de conocimiento en redes neuronales (transfer learning).

También se estudian múltiples parámetros de rendimiento para cada uno de los

modelos de detección con el fin de ofrecer al lector cuál sería el mejor detector de

señales teniendo en cuenta restricciones del entorno donde se desplegará la solución,

como la precisión, el consumo de memoria o la velocidad de ejecución. Nuestro

estudio muestra que el modelo Faster R-CNN Inception Resnet V2 obtiene la mejor

precisión (95.77% mAP), mientras que R-FCN Resnet 101 alcanza el mejor equilibrio

entre tiempo de ejecución (85.45 ms por imagen) y precisión (95.15% mAP).



PARTE I

Prefacio
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CAPÍTULO 1

INTRODUCCIÓN

Our greatest weakness lies in giving up. The most certain way to succeed is

always to try just one more time. - Thomas Alva Edison

1.1. Motivación de la investigación

De acuerdo con la Federación Europea de Carreteras (ERF), existe una tenden-

cia negativa con respecto a las inversiones en infraestructura vial y mantenimiento,

ya que la financiación de esos gastos está disminuyendo desde 2008 [12]. Este reporte

señala que esta tendencia tiene un impacto económico masivo a medio y largo plazo,

ya que tanto las inversiones requeridas para el mantenimiento de la infraestructu-

ra como el coste de los vehículos necesarios para realizar dicha tarea, aumentan

exponencialmente a medida que la condición de la carretera se deteriora.
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Las señales de tráfico son un activo esencial que regula el tráfico y guía tanto

a conductores como a peatones. Debido a esto, las inspecciones periódicas deben

garantizar que la visualización de las señales sea correcta. Sin embargo, el ERF

señaló la existencia de un retraso alarmante en el mantenimiento de señales de

tráfico en muchos países europeos que reduce la seguridad de las carreteras ya que

las señales de tráfico podrían tener colores deteriorados o perder sus propiedades

reflectivas. Dado que los accidentes causados por deficiencias en la infraestructura

de las carreteras resultan en altos costes humanos y económicos, invertir en dicha

infraestructura (especialmente en señalización vertical) tiene un impacto positivo en

términos de seguridad vial y rentabilidad económica. Existen diferentes estrategias

para el mantenimiento y la sustitución de las señales de tráfico. Se pueden reemplazar

en intervalos de tiempo fijos o periódicos. Por lo general, se llevan a cabo de forma

in situ y manual.

Hoy en día, la tecnología basada en sensores remotos permite que las carreteras

sean analizadas con mayor rapidez, seguridad y con un menor gasto de recursos, lo

que mejora significativamente los resultados de las inversiones en infraestructuras

viales. Los Sistemas de Mapeo Móvil (MMS) son capaces de recolectar grandes

cantidades de datos 3D y 2D utilizando la tecnología Mobile Laser Scanner (MLS)

junto con sistemas de imágenes. Las representaciones 3D de los entornos escaneados

son densas, precisas, y proporcionan información relevante. Sin embargo, a pesar de

la creciente atención que está recibiendo esta tecnología, existen limitaciones dadas

por la resolución del sistema de escaneo y la necesidad de altas capacidades de

almacenamiento y procesamiento.

En el sector de la conducción autónoma, la detección y la clasificación de señales

de tráfico es un pilar fundamental para conseguir un nivel de independencia real

del conductor, y por lo tanto, es un tema de investigación actual basado en los

campos de la visión por computador y la inteligencia artificial. El desarrollo de un

sistema robusto de reconocimiento de señales de tráfico que funcione en tiempo

real es aún una tarea desafiante debido a la variabilidad del mundo real, como por

ejemplo variaciones de escala o tamaño de las señales en las imágenes, puntos de vista



complejos, desenfoques debido al movimiento, decoloración de las señales, oclusiones

y distintas condiciones de luz. Además, hay más de 300 categorías diferentes de

señales de tráfico definidas por la Convención de Viena sobre el tráfico y carreteras

[78]. Este tratado ha sido firmado por 63 países, aunque existen algunas variaciones

visuales menores de pictografías de señales de tráfico, lo cual supone una mayor

complicación para la tarea de reconocimiento automatizado.

Esta tesis doctoral presenta el trabajo desarrollado en técnicas de inteligencia

artificial aplicadas a sistemas de detección y clasificación de señales de tráfico sobre

imágenes 2D. Concretamente, las contribuciones de esta tesis son las siguientes:

(1) Un sistema de reconocimiento de señales de tráfico basado en una red neuronal

convolucional (Convolutional Neural Network) que incluye redes de transformadores

espaciales (Spatial Transformer Networks), que establece un nuevo hito en el estado

del arte superando los resultados y trabajos previamente publicados relacionados

con el German Traffic Sign Recognition Benchmark (GTSRB) [69]. (2) Un estudio

profundo de las capacidades de la red neuronal convolucional propuesta y del impacto

en el rendimiento que tienen las capas de transformadores espaciales dentro de la

red. (3) Análisis del efecto que tienen distintos algoritmos de optimización basados

en gradientes descendentes sobre la red neuronal propuesta. (4) Evaluación de la red

neuronal utilizando distintos conjuntos de datos públicos europeos de clasificación

de señales de tráfico. (5) Evaluación del sistema de clasificación propuesto teniendo

como entrada las imágenes detectadas a través del procesado de nubes de puntos 3D.

(6) Presentación y estudio de algoritmos actuales de detección de objetos basados en

redes neuronales convolucionales, como Faster R-CNN, R-FCN, SSD y YOLO. (7)

Análisis y evaluación de detectores de objetos específicamente adaptados al problema

de la detección de señales de tráfico sobre imágenes 2D. Dicha evaluación incluye

métricas clave a la hora de tomar decisiones, como son la precisión media promedio

(mAP), consumo de memoria, tiempo de ejecución, número de operaciones de punto

flotante, número de parámetros de los modelos y el efecto que tienen el tamaño de

las imágenes a la hora de realizar inferencias.

Estas contribuciones tienen aplicaciones prácticas reales, como por ejemplo en



coches autónomos, o en el inventariado automatizado y mantenimiento de la se-

ñalización en carreteras. La red neuronal convolucional de clasificación propuesta

supera al sistema visual humano, su tiempo de inferencia es bajo y puede desple-

garse como un servicio independiente que funciona en tiempo real. Por otro lado, el

trabajo realizado sobre los detectores de señales de tráfico, permite a los lectores e

investigadores elegir el modelo que mejor se adapte a las restricciones del entorno,

siendo R-FCN Resnet 101 el detector que alcanza el mejor equilibrio entre precisión

y tiempo de ejecución o inferencia, Faster R-CNN Inception Resnet V2 el que logra

la mejor precisión, y SSD Mobilenet el que mejor se adapta a entornos móviles y

dispositivos embebidos.

Toda la investigación de esta tesis doctoral ha sido parcialmente respaldada por

el Ministerio de Economía y Competitividad de España a través de los proyectos

"Hermes-Smart Citizen"(TIN2013-46801-C4-1-R) y "VICTORY"(TIN2017-82113-

C2-1-R). Además, queremos dar las gracias a NVIDIA por la GPU Titan Xp donada

a nuestro equipo de investigación para realizar este trabajo.

1.2. Metodología de investigación

Este trabajo sigue una técnica de investigación científica estándar [36] que incluye

las siguientes fases:

1. Definir el problema de investigación. Los sistemas de detección y clasifi-

cación de señales de tráfico conforman una parte esencial coches autónomos, y

mantenimiento e inventariado de la infraestructura de las carreteras, aplicán-

dose en la mayoría de los casos sistemas con un alto coste económico. En esta

tesis se propone un sistema de clasificación de señales de tráfico en tiempo real

que supera al sistema visual humano y varios sistemas de detección de señales

de tráfico que se pueden utilizar en distintos casos de uso, dependiendo de las

restricciones del entorno.

2. Revisión de la literatura. Durante el periodo de esta tesis doctoral, se ha



realizado una búsqueda y lectura profunda sobre investigaciones basadas en

sistemas de reconocimiento de señales de tráfico, tal como se muestra en las

referencias incluidas en cada artículo.

3. Formular hipótesis. El grupo de investigación discutió cómo aplicar sistemas

de reconocimiento de señales de tráfico basados en técnicas de inteligencia

artificial, como pueden ser las redes neuronales convolucionales, con el fin de

crear sistemas más precisos y eficientes.

4. Diseño de la investigación. Los sistemas de detección y clasificación fueron

analizados para encontrar puntos claves susceptibles de ser modificados, co-

mo pueden ser distintas arquitecturas de redes convolucionales, o la inclusión

de redes de transformadores espaciales en las arquitecturas de red neuronal

propuestas previamente en el estado del arte.

5. Recolectar datos. Varios conjuntos de datos comúnmente utilizados y va-

lidados por la comunidad científica para tareas de reconocimiento de señales

de tráfico fueron analizados y empleados durante esta tesis doctoral. Además,

se generó un dataset de señales de tráfico españolas utilizando los sistemas de

detección y clasificación descritos en los posteriores artículos.

6. Ejecución del proyecto. Las arquitecturas de redes neuronales diseñadas

fueron entrenadas y validadas utilizando los datos anteriormente citados.

7. Análisis de datos. La información y resultados obtenidos por los sistemas

desarrollados fueron analizados usando métricas estándar y comparados con

resultados de investigaciones previas.

8. Interpretar e informar. Una vez que los sistemas propuestos han sido ana-

lizados y sus resultados interpretados, varios artículos de investigación fueron

publicados como resultados de nuestras hipótesis.



1.3. Pregunta de investigación

La pregunta de investigación que conduce esta tesis doctoral es: ¿podemos me-

jorar la precisión de sistemas de reconocimiento de señales de tráfico sin disminuir

la eficiencia en términos de requisitos de memoria utilizando técnicas englobadas en

el ámbito de la inteligencia artificial?

Dentro del contexto de la clasificación de señales de tráfico, nos centramos en

desarrollar varias arquitecturas de red de neuronal que estuviesen compuestas tanto

por capas convolucionales como por capas de transformadores espaciales. Los trans-

formadores espaciales permiten realizar operaciones de transformaciones afines sobre

las imágenes y los mapas de características, de modo que la red aprende a centrarse

exclusivamente en la señal de tráfico, eliminado el fondo, realizando rotaciones, tras-

laciones, etc. El objetivo final fue analizar cómo estos elementos se comportaban al

aplicar diferentes optimizadores basados en algoritmos de descenso de gradientes.

Dentro del contexto de la detección de señales de tráfico, nos centramos en ana-

lizar y comparar exhaustivamente el comportamiento de distintas redes neuronales

propuestas en la literatura, adaptadas específicamente al contexto de la detección

de señales.

1.4. Criterios de éxito

El éxito se logrará si la pregunta de investigación se resuelve. Esto significa

que debemos comprobar, por un lado, que el sistema de clasificación es capaz de

categorizar la señal de tráfico dada como entrada (stop, prohibido el paso, límite de

velocidad 50, etc.) en imágenes de escenarios reales. Por otro lado, que el sistema

de detección es válido para localizar dónde se encuentran las señales de tráfico dada

una imagen de un escenario real como puede ser una carretera de autovía o una

urbana. Los resultados mostrados en esta tesis en forma de artículos de investigación

demuestran que coinciden con la predicción formulada en la hipótesis de partida.



En el primer caso, esta tesis establece un nuevo récord de precisión en el German

Traffic Sign Recognition Benchmark, superando incluso al sistema visual humano.

En el segundo caso, el análisis y comparación exhaustiva de ocho detectores de

señales de tráfico basados en aprendizaje profundo, nos permite ofrecer modelos

preparados para ser usados en entornos reales, así como ayudar a los lectores a

elegir el mejor modelo que se adapte a sus necesidades en términos de precisión,

tiempo de ejecución, consumo de memoria, etc.

1.5. Propiedades analizadas y discutidas

La detección y clasificación de señales de tráfico se abordan desde varios puntos

de vista:

Precisión. En relación a la precisión de los modelos de redes neuronales entre-

nados y evaluados utilizando conjuntos de datos públicos de reconocimiento

de señales de tráfico. Esta propiedad es importante para que el sistema sea

robusto.

Eficiencia. En relación al coste computacional, consumo de memoria, y tiem-

po de ejecución, entre otros, que tienen dichos modelos. Esta propiedad permite

seleccionar el modelo que mejor se adapte a las necesidades del lector.

El trabajo presentado en este documento propone una solución para mejorar la

robustez de los sistemas de reconocimiento de señales de tráfico, al mismo tiempo

que se mejora la eficiencia.

1.6. Esquema de la tesis

Este documento está estructurado de la siguiente forma. En la Parte I se pre-

senta la introducción. En la Parte II se muestran los tres artículos de investigación



derivados de esta tesis doctoral, divididos en 3 capítulos: Capítulo 2 - “Exploiting

synergies of mobile mapping sensors and deep learning for traffic sign recognition

systems”; Capítulo 3 - “Deep neural network for traffic sign recognition systems: An

analysis of spatial transformers and stochastic optimisation methods”; Capítulo 4 -

“Evaluation of deep neural networks for traffic sign detection systems”. Las revis-

tas donde se han publicado estos artículos están incluidas en el ranking JCR de

Thomson Reuters y todos ellos están relacionados con el problema de la detección

y clasificación de señales de tráfico:

Exploiting synergies of mobile mapping sensors and deep learning

for traffic sign recognition systems. Álvaro Arcos-García, Mario Soilán,

Juan A. Álvarez-García, Belén Riveiro. Publicado en Expert Systems with Ap-

plications, Elsevier, ISSN: 0957-4174, Fecha de Publicación: Diciembre 2017,

Volumen: 89, En Páginas: 286-295, DOI: https://doi.org/10.1016/j.eswa.

2017.07.042, [JCR-2017 3.768] [Q1 en Computer Science, Artificial Intelligen-

ce (20/132)].

Deep neural network for traffic sign recognition systems: An analy-

sis of spatial transformers and stochastic optimisation methods. Ál-

varo Arcos-García, Juan A.Álvarez-García, Luis M.Soria-Morillo. Publicado

en Neural Networks, Elsevier, ISSN: 0893-6080, Fecha de Publicación: Marzo

2018, Volumen: 99, En Páginas: 158-165, DOI: https://doi.org/10.1016/j.

neunet.2018.01.005, [JCR-2017 7.197] [Q1 en Computer Science, Artificial

Intelligence (7/132)].

Evaluation of deep neural networks for traffic sign detection systems.

Álvaro Arcos-García, Juan A.Álvarez-García, Luis M.Soria-Morillo. Publica-

do en Neurocomputing, Elsevier, ISSN: 0925-2312, Fecha de Publicación: No-

viembre 2018, Volumen: 316, En Páginas: 332-344, DOI: https://doi.org/

10.1016/j.neucom.2018.08.009, [JCR-2017 3.241] [Q1 en Computer Scien-

ce, Artificial Intelligence (27/132)].

https://doi.org/10.1016/j.eswa.2017.07.042
https://doi.org/10.1016/j.eswa.2017.07.042
https://doi.org/10.1016/j.neunet.2018.01.005
https://doi.org/10.1016/j.neunet.2018.01.005
https://doi.org/10.1016/j.neucom.2018.08.009
https://doi.org/10.1016/j.neucom.2018.08.009


Un resumen del ranking de estos artículos de investigación se puede encontrar

en la Tabla 1.1.

Título Revista F.I. Ranking

Exploiting synergies of mobile mapping sensors

and deep learning for traffic sign recognition systems

Expert Systems

with Applications

2017

3.768 Q1

Deep neural network for

traffic sign recognition systems:

An analysis of spatial transformers

and stochastic optimisation methods

Neural Networks

2018
7.197 Q1

Evaluation of deep neural networks

for traffic sign detection systems

Neurocomputing

2018
3.241 Q1

Tabla 1.1: Resumen de artículos publicados en revistas JCR indexadas.

Finalmente, en la Parte III, se exponen comentarios finales, conclusiones y se

discute el trabajo futuro.





PARTE II

Trabajos de investigación seleccionados
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CAPÍTULO 2

EXPLOITING SYNERGIES OF MOBILE

MAPPING SENSORS AND DEEP LEARNING

FOR TRAFFIC SIGN RECOGNITION SYSTEMS

Resumen

Este trabajo nace de una colaboración con investigadores del grupo de Geotec-

nologías Aplicadas de la Universidad de Vigo en el contexto del proyecto "Healthy

and Efficient Routes in Massive Open-Data Based Smart Cities-Citizen"(TIN2013-

46801-C4-1-R), financiado por el Ministerio de Econonomía y Competitividad de

España. Los miembros de dicho grupo de investigación son expertos en el uso de

Mobile Mapping Systems (MMS) en sistemas de mantenimiento de inventario de la

vía pública.

El artículo de investigación presenta un sistema eficiente de reconocimiento de

señales de tráfico divido en dos fases. En primer lugar, los datos de nubes de puntos

3D se adquieren mediante un sistema LINX Mobile Mapper y se procesan para

detectar automáticamente las señales de tráfico basándose en el material reflectivo
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que contienen. En segundo lugar, la clasificación de las señales se lleva a cabo sobre

la proyección de la nube de puntos en imágenes RGB, aplicando una red neuronal

profunda que contiene capas de transformadores espaciales y convolucionales. Esta

red se evalúa utilizando tres conjuntos de datos de señales de tráfico europeas. En

el German Traffic Sign Recognition Benchmark (GTSRB), la red propuesta supera

a los trabajos publicados previamente y logra el primer puesto del ranking con una

precisión del 99,71%. Además, se genera y publica un nuevo conjunto de imágenes de

señales de tráfico españolas que puede ser utilizado en futuras tareas de clasificación.
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a b s t r a c t 

This paper presents an efficient two-stage traffic sign recognition system. First, 3D point cloud data is 

acquired by a LINX Mobile Mapper system and processed to automatically detect traffic signs based on 

their retro-reflective material. Then, classification is carried out over the point cloud projection on RGB 

images applying a Deep Neural Network which comprises convolutional and spatial transformer layers. 

This network is evaluated in three European traffic sign datasets. On the GTSRB, it outperforms previous 

state-of-the-art published works and achieves top-1 rank with an accuracy of 99.71%. Furthermore, a 

Spanish traffic sign recognition dataset is released. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

According to the European Union Road Federation (ERF), there 

exists a negative trend regarding road infrastructure investments 

and maintenance, as the funding for those expenses is decreasing 

since 2008 ( European Union Road Federation, 2015 ). This report 

points out that this negative trend has a massive economic im- 

pact in the mid and long term, as both the investments required 

for the maintenance of the infrastructure and the vehicle operating 

costs increase exponentially as the condition of the road deterio- 

rates. Vertical signs are an essential asset which regulate the traffic 

and guide road users. Traffic signs need to be visible during both 

day and night time, therefore periodic inspections should ensure 

the visual performance of the sign. However, the ERF pointed out 

the existence of an alarming backlog in traffic sign maintenance in 

many European countries because it reduces the safety of the roads 

as traffic signs might have faded colors or lose their retro-reflective 

properties. Given that accidents caused by infrastructure deficien- 

cies result in high human and economic costs, investing in road 

infrastructure (and specifically in vertical signage) will have a posi- 

tive impact in terms of road safety and economic return. There are 

different strategies for the maintenance and replacement of traf- 

fic signs. They can be replaced in fixed time intervals, or periodic 

∗ Corresponding author. 

E-mail addresses: aarcos1@us.es (Á. Arcos-García), msoilan@uvigo.es (M. Soilán), 

jaalvarez@us.es (J.A. Álvarez-García), belenriveiro@uvigo.es (B. Riveiro). 

inventories can be established. Typically, these inventories are car- 

ried out manually and in situ. Nowadays, remote-sensing technol- 

ogy allows the road to be measured faster, safer and expending 

less resources, hence significantly improving the outcomes of in- 

vestments in road infrastructures. Mobile Mapping Systems (MMS) 

are able to collect large amounts of 3D and 2D data using Mo- 

bile Laser Scanner (MLS) technology together with imagery sys- 

tems. The 3D representations of surveyed environments are dense 

and accurate and provide reliable information about the geometric 

and radiometric properties of the scanned areas ( Puente, González- 

Jorge, Martínez-Sánchez & Arias, 2013a ). However, despite the in- 

creasing attention this technology is receiving, there exist some 

limitations given by the resolution of the scanning system and the 

storage and processing capabilities of the computers. For that rea- 

son, imagery data may be useful for some applications. Classifying 

2D images of traffic signs captured by RGB sensors is a traditional 

research topic in computer vision since developing a robust traffic 

sign recognition system is still a challenging task. 

This research is motivated by (1) the need to develop method- 

ologies allowing for the automation of road infrastructure inspec- 

tion activities and therefore improving inventory and maintenance 

of a huge financial public asset as it is the road network, and (2) 

the potential usefulness of combining different data sources from 

a Mobile Mapping System, complementing an accurate 3D descrip- 

tion of the road network with RGB imagery, in order to offer pre- 

cise semantic descriptions. 

http://dx.doi.org/10.1016/j.eswa.2017.07.042 

0957-4174/© 2017 Elsevier Ltd. All rights reserved. 
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A robust pipeline is proposed to efficiently process LiDAR data, 

detect with high accuracy vertical traffic signs and recognize their 

classes applying a Deep Neural Network (DNN) to the correspond- 

ing 2D images. The growing acceptance in developed countries of 

the benefits of LiDAR implies several countries can apply this ro- 

bust methodology. 

The rest of the paper is organized as follows. Section 2 analy- 

ses the state of the art of traffic sign recognition systems from two 

points of view, LiDAR and 2D images. Section 3 shows the proposed 

methodology and results are explained in Section 4 . Finally conclu- 

sions are drawn in Section 5 . 

2. Related works 

Traffic sign recognition systems (TSRS) are helpful for Advanced 

Driver Assistance Systems (ADAS) or autonomous vehicles, never- 

theless, a wide range of challenges needs to be overcome such as 

changing ambient lighting conditions, occlusions, focusing or blur- 

ring problems and deterioration or deformations due to ageing or 

vandalism. Furthermore, the variety of different traffic signs that 

have to be distinguished is very wide and diverse for different 

countries. For example, there are more than 200 traffic sign classes 

in Spain ( Spanish Government, 2003 ), Germany 1 and Belgium. 2 All 

of these issues affect TSRS and are important factors that should 

be considered. 

One of the main problems before the year 2011 was the lack of 

a public traffic sign dataset. The Belgian Traffic Sign Classification 

dataset (BTSC) ( Timofte, Zimmermann, & Van Gool, 2011 ) and the 

German Traffic Sign Recognition Benchmark (GTSRB) ( Stallkamp, 

Schlipsing, Salmen, & Igel, 2011 ), a multi-category classification 

competition, solved this issue and boosted the research in TSRS. 

GTSRB made publicly available a traffic sign dataset with more 

than 50,0 0 0 labeled samples divided into 43 classes. It is com- 

monly used to evaluate the performance of computer vision al- 

gorithms and compare them versus the human visual system 

( Stallkamp, Schlipsing, Salmen, & Igel, 2012 ). 

Mathias, Timofte, Benenson, and Van Gool (2013) propose 

fine grained classification applying different methods through a 

pipeline of three stages: feature extraction, dimensionality reduc- 

tion and classification. On GTSRB, they reach 98.53% of accuracy 

merging grayscale values of traffic sign images and Histogram of 

Oriented Gradients (HOG) based features, reducing the dimen- 

sionality through Iterative Nearest Neighbors-based Linear Pro- 

jections (INNLP) and classifying with Iterative Nearest Neighbors 

(INN). Although Support Vector Machines (SVMs) ( Maldonado- 

Bascón, Acevedo-Rodríguez, Lafuente-Arroyo, Fernández-Caballero, 

& López-Ferreras, 2010 ), Random Forests ( Zaklouta, Stanciulescu, 

& Hamdoun, 2011 ) and Nearest Neighbors ( Gudigar, Chokkadi, 

Raghavendra, & Acharya, 2017 ) classifiers have been used to recog- 

nize traffic sign images, Convolutional Neural Networks (ConvNets 

or CNNs) ( Lecun, Bottou, Bengio, & Haffner, 1998 ) showed par- 

ticularly high classification accuracies in the competition. Cire ̧s an, 

Meier, Masci, and Schmidhuber (2012) won the GTSRB contest with 

a 99.46% accuracy thanks to a committee of 25 ConvNets with 3 

convolutional layers and 2 fully connected layers each. Sermanet 

and LeCun (2011) use multi-scale ConvNets achieving an accuracy 

of 98.31% and second place in the GTSRB challenge. In 2014, Jin, 

Fu, and Zhang (2014) proposed a hinge loss stochastic gradient de- 

scent method to train ConvNets that brought off 99.65% accuracy 

and offered a faster and more stable convergence than previous 

works. 

1 https://www.adac.de/ _ mmm/pdf/fi_ verkehrszeichen _ engl _ infobr _ 0915 _ 30482. 

pdf (accessed 17.03.22). 
2 http://wiki.openstreetmap.org/wiki/Road _ signs _ in _ Belgium (accessed 17.03.22). 

Most TSRS rely exclusively on image or video processing, 

for instance, Kaplan Berkaya, Gunduz, Ozsen, Akinlar, and Gunal 

(2016) propose a circle detection algorithm along with an RGB- 

based color thresholding procedure during detection stage over 2D 

images which are classified applying an ensemble of features com- 

prising HOG, Gabor and local binary patterns (LBP) within a SVM 

afterward. Nevertheless, the use of MMS allows new approaches. A 

MMS is formed by different com ponents, namely mapping sensors 

(typically laser scanners and RGB or infrared cameras), a navigation 

unit which is composed of Global Navigation Satellite Systems, In- 

ertial Measuring Units and Distance Measurement Indicators, and 

a time referencing unit which allows the temporal synchronization 

of the different measurements collected. In recent years, a large 

number of methodologies have been developed which automati- 

cally process the geometric and radiometric information acquired 

by a MMS for different applications. Among them, object detec- 

tion and recognition is a topic that has received considerable at- 

tention in the literature. Oliveira, Nunes, Peixoto, Silva, and Moita 

(2010) propose the semantic fusion of point cloud data gathered 

with laser scanners and computer vision to detect pedestrians in 

urban scenarios. 

With regard to traffic signs, Pu, Rutzinger, Vosselman, and El- 

berink (2011) classify planar shapes in point clouds using geomet- 

ric based approaches. González-Jorge, Riveiro, Armesto, and Arias 

(2013) show that laser scanner systems can capture the geome- 

try of traffic sign panels based on the intensity values of those 

laser beams that are reflected on the panels. These values are 

much higher than those in their surroundings, owing to the retro- 

reflective properties of traffic signs paint. Riveiro, Díaz-Vilarino, 

Conde-Carnero, Soilán, and Arias (2016) rely on the intensity at- 

tribute of the point clouds in order to segment reflective elements. 

Then, they recognize the shape of the detected elements by eval- 

uating their contour and fitting a polynomial curve to it, which 

is compared with a set of patterns that represent simple shapes. 

However, this approach faced some limitations; distinguishing be- 

tween circular shapes and octagonal shapes was not possible due 

to the low resolution of the point cloud, and the specific mean- 

ing of a traffic sign could not be retrieved. Recently, some work 

has been published which combines 3D point cloud information 

and imagery data. Wen et al. (2016) detect traffic signs on a pre- 

processed point cloud using a single threshold value and imple- 

ment an on-image sign detection which consist on the projection 

of detected signs on 2D images and a classification by means of 

SVM using a combination of Hue SIFT and HOG feature vectors. 

Yu et al. (2016) present a similar approach which uses a bag of vi- 

sual phrases for the detection and a deep Boltzmann machine hi- 

erarchical classifier, which is a deep learning model that allows to 

generate highly distinctive features. 

3. Methodology 

In this work we propose the next methodology: initially our ve- 

hicle equipped with LiDAR and RGB cameras gathers information 

(3D point cloud and 2D imagery). Then, the point cloud is pro- 

cessed to automatically detect traffic signs based on their retro- 

reflective properties. Furthermore, each detected traffic sign is as- 

sociated with its respective RGB images. Finally, a DNN is applied 

to classify the type of traffic sign from the filtered set of RGB im- 

ages (see Fig. 1 ). 

The next subsections detail the traffic sign detection, point 

cloud projection on RGB images and traffic sign classification. 

3.1. Traffic sign detection from 3D point clouds 

This subsection summarizes the traffic sign detection method. 

It is based on Soilán, Riveiro, Martínez-Sánchez, and Arias (2016) 
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Fig. 1. Proposed methodology. Traffic sign detection by means of LiDAR data processing and traffic sign recognition through a DNN. 

Fig. 2. Point cloud processing. Workflow of the point cloud processing methodology. 

work and consists of a sequence of data processing modules which 

aim to detect traffic sign panels in 3D point clouds acquired by a 

MMS. The global processing chain can be seen in Fig. 2 . 

3.1.1. Point cloud preprocessing 

In order to reduce the amount of data processed, redundant or 

unnecessary information should be removed from the input point 

cloud. For that purpose, the distance from the 3D point cloud 

points to the trajectory registered by the MMS is computed. Once 

all the distances are computed, points further than 15 m from the 

trajectory are filtered out, as the objects to be studied are sup- 

posed to be displayed alongside the road. 

3.1.2. Ground segmentation 

Next step of the method consists of the segmentation of the 

ground. Let P = (x, y, z, I, t) be a 3D point cloud acquired by a 

MMS, where ( x, y, z ) are the 3D coordinates of the point cloud, I 

is the intensity of the returned pulse for each measured 3D point, 

and t is the time stamp of each point. Let T = (x r , y r , z r , t r ) be the 

trajectory of the MMS during the acquisition of the point cloud P , 

as measured by the positioning system of the vehicle. 

Here, the input point cloud P is voxelized, that is, a N x × N y × N z 

cubic grid with size g s is defined such that a voxel with a coordi- 

nate (x v 
i 
, y v 

i 
, z v 

i 
) within the grid and a voxel index is assigned to 

every point ( x i , y i , z i ) in according to Eqs. (1) –(4) . 

x v i = round(x i − min (x )) /g s (1) 

y v i = round(y i − min (y )) /g s (2) 

z v i = round(z i − min (z)) /g s (3) 

id v i = (z i − min (z)) /g s (4) 

Let V (P ) = (x, y, z, μz , v z ) be the voxelized point cloud of P , and 

V (P, id v ) = (x, y, z, μz , v z ) be the voxel with index id v , where ( x, y, 

z ) is the centroid, and ( μz , v z ) are the vertical mean and variance, 

of the points in P with index id v . 

At this point, the ground segmentation is conducted based on 

a modification of Douillard et al. (2011) method for the partition 

of the ground. They cluster together adjacent voxels whose verti- 

cal mean and variance differences are less than certain thresholds, 

and select the largest partition as the ground. Here, voxels that be- 

long to the ground are selected as seeds for a region growing pro- 

cess where vertical mean and variance differences between adja- 

cent voxels are used as criteria to decide whether a voxel belongs 

to the ground or not. 

The ground seeds are selected using the trajectory T and the 

fact that the mapping system always travels over the ground. A K- 

Nearest-Neighbor algorithm is used to obtain the closest voxel for 

each point in the trajectory such that the elevation of the voxel is 

smaller than the elevation of the trajectory. That way, a set of vox- 

els in the ground is obtained, making the region growing process 

faster and eliminating the necessity of clustering and selecting the 

largest region. 

This process is driven by two parameters, which are the thresh- 

olds for vertical mean and vertical variance differences, d μ and d σ . 

This method aims for a coarse segmentation of the ground, includ- 

ing curbs and speed bumps. The parameters have been empiri- 

cally tuned, and for the study case experiments their values are 

d μ = 0 . 1 m and d σ = 0 . 05 . 

3.1.3. Detection of traffic signs based on the intensity data 

Let P ng ⊂ P be the non-ground segment point cloud ( Fig. 3 a), 

which is obtained after filtering out the ground segment from the 

point cloud. 

Traffic signs are panels made of retro-reflective materials. 

Therefore, the intensity property of the point cloud, which is di- 

rectly related with the reflectance of the objects can be used for 

the detection of traffic signs. It can be assumed that the intensity 

distribution of both reflective and non-reflective points in P ng fol- 

lows a normal distribution ( Riveiro et al., 2016 ). Therefore, an unsu- 

pervised classification algorithm based on Gaussian Mixture Mod- 

els (GMM) is proposed. GMM are multivariate distributions con- 

sisting of one or more Gaussian distribution components. Here, a 

mixture distribution with two components is estimated given the 

intensity values of the points in P ng . Then, each point in the cloud 

is assigned to one of the components, and those points assigned 

to the component with largest mean are selected for the next pro- 

cessing step. 
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Fig. 3. Traffic sign detection. (a) The ground segment is filtered out from the point cloud. Therefore, only non-ground points (colored in red) are analyzed in the subsequent 

steps. (b) Both intensity and geometry filters are applied in order to segment traffic sign panels (colored in red). (c) The 3D point cloud traffic sign panels are projected on 

2D images and the bounding box of the projection is used for cropping the images, facilitating the traffic sign recognition process. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.) 

The selected points have large intensity values, but they are still 

unorganized, that is, there is no relation between the points in the 

cloud. Hence, a clustering algorithm is applied in order to group 

together points that may belong to the same object. DBSCAN al- 

gorithm ( Ester, Kriegel, Sander, & Xu, 1996 ) groups points which 

are closely packed together while selecting isolated points as out- 

liers. This algorithm allows to group points that belong to different 

objects in a set of clusters C = { C 1 , . . . , C i , . . . , C n }| C i ⊂ P ng . That is, 

each cluster C i contains a group of points from P ng which belong 

to the same object and have large intensity values. 

Finally, C is filtered using the knowledge about the geometry 

of the traffic sign panels, that is, they are planar surfaces, and they 

have an enclosed range of heights. First, the dimensionality of each 

cluster is analyzed. For each C i ⊂ P ng a Principal Component Analy- 

sis (PCA) of the covariance matrix of the points within the cluster 

is carried out such that the planarity of C i is according to Eq. (5) , 

where λi is the i − th eigenvalue returned by PCA. 

a 2 D = 

(√ 

λ2 −
√ 

λ3 

)/ √ 

λ1 (5) 

If a 2 D < 1/3, the cluster cannot be labeled as a plane ( Gressin, 

Mallet, Demantké, & David, 2013 ) and therefore it is filtered out. 

Subsequently, a height filter is applied such that clusters with 

heights smaller than 25cm are also filtered out. Both filters elim- 

inate objects with reflective properties which are not planar or 

small, such as vehicle license plates. The detection process outputs 

a subset of C, C ts ⊂ C which contain traffic sign panels ( Fig. 3 b). 

3.2. Point cloud projection on RGB images 

The resolution of traffic sign panel clusters C ts is not enough to 

obtain semantic information of the traffic sign. Although it is pos- 

sible to recognize different shapes, most of the visual information 

is lost in the 3D point cloud. Therefore, the traffic sign recogni- 

tion task is carried out using RGB images taken by four cameras 

installed in the MMS. The camera calibration parameters, namely 

radial distortion parameters ( k 1 , k 2 ), focal length ( f j , j = 1 . . . 4) , 

pixel size ( s pix ), and pixel coordinates of the principal point ( c x , 

c y ) are known, together with the orientation parameters that relate 

the camera coordinate system and the vehicle ( Puente, González- 

Jorge, Riveiro, & Arias, 2013b ). Moreover, the position of the vehicle 

and the time stamp is known for each RGB image. For each clus- 

ter C i ⊂ C , the average time stamp t ave of the 3D points is computed 

and only those images whose time stamp is in the interval t ave ± 5 s 

are analyzed. Let p ih be 3D homogeneous coordinates of the points 

of the traffic sign panel i . First, the coordinates are transformed 

from the global coordinate system to the vehicle coordinate sys- 

tem following ( Eq. (6) ): 

p c ih = (T ab T ac ) 
−1 p A ih (6) 

Where A is the global coordinate system, B is the GNSS coor- 

dinate system, C is the vehicle coordinate system, and T ab , T ac are 

the transformation matrices between AB and BC . 

Once the traffic sign panel coordinates and the camera position 

are both related to the vehicle coordinate system, the 3D points 

can be projected onto the plane of each camera and the coordi- 

nates with respect to the camera frame ( d u , d v ) can be obtained. A 

radial distortion model is applied to correct the coordinates (tan- 

gential distortion is not considered), and pixel coordinates can be 

retrieved using the pixel size value together with the coordinates 

of the principal point ( Eqs. (7) and (8) ). 

x pix = d u (k 1 r 
2 + k 2 r 

4 ) + c x /s pix (7) 

y pix = d v (k 1 r 
2 + k 2 r 

4 ) + c y /s pix (8) 

Once every point of a traffic sign panel is projected into an im- 

age, the bounding box of the pixel coordinates is retrieved. The im- 

age is automatically cropped according to the bounding box with 

a margin of a 25% ( Fig. 3 c) to compensate for possible calibration 

errors and add some background for training classification models. 

3.3. Traffic sign recognition 

Once the RGB images have been selected and the image sam- 

ples containing the traffic signs have been stored, the classification 

process starts. As seen in Section 2 , ConvNets have been widely 

used to classify traffic signs. In our work a traffic sign recognition 

system based on DNN is proposed, whose main blocks are convolu- 

tional and spatial transformer layers. In the following subsections, 

the initial dataset, the data preprocessing and our DNN architec- 

ture are described. 

3.3.1. Initial dataset preparation 

In Spain there is not any public dataset available for its 252 

traffic sign categories. Gathering a sufficient number of images of 

all the categories is a challenging task. In this work, an initial 

dataset with 83 classes has been obtained thanks to the filtered 

images collected with the MLS explained above, combined with 

images from the German and Belgian dataset that are similar to 



290 Á. Arcos-García et al. / Expert Systems With Applications 89 (2017) 286–295 

Fig. 4. Mixset dataset. (a) Traffic sign categories. (b) Relative class frequencies. 

Table 1 

European datasets mixed. 

Dataset Training images Validation images Classes 

GTSRB 39,209 12,630 43 

Adapted BTSC 4024 2263 58 

Spain 897 452 43 

Mixset 44,130 15,345 83 

Spanish case. The dataset is available at https://daus-lab.github.io/ 

spanish- traffic- sign- dataset . 

All the collected images from Spain were manually classified 

in a collaborative way through a web site designed specifically for 

that task. Only those categories with more than six examples were 

used in the initial dataset. Later, images are randomly mixed and 

split into training and validation sets five times in order to evalu- 

ate the recognition system through cross-validation. Each of these 

folds is composed by 897 training images and 452 validation im- 

ages distributed in 43 categories. As may be seen, the scale of the 

collected dataset is small and will be enlarged in future work even 

though the current dataset version along with the Mixset ground 

truth files will be kept for reproducibility and comparability pur- 

poses. 

In the German traffic sign recognition dataset, the training set 

has 39,209 images and validation set consists of 12,630 that are 

used to measure the performance of algorithms in the GTSRB 

( Stallkamp et al., 2011 ). All the German categories are included in 

the Spanish Road Traffic Regulations document ( Spanish Govern- 

ment, 2003 ). 

The Belgian traffic sign classification dataset was carefully re- 

vised because it contains categories that cluster different traffic 

signs types (e.g. 50 speed limit sign and 70 speed limit sign). It 

also includes some classes that were removed because they are not 

defined in the Spanish Road Traffic Regulations document. Thus, 

testing images from Belgian dataset were used as validation set. 

Some empty categories were filled selecting one random sample 

per each road track from training set and moving it to our valida- 

tion set, according to Sermanet and LeCun (2011) . After adaptation, 

the Belgian dataset consists of 4024 training images and 2263 val- 

idation images divided into 58 categories. 

Classes of the three datasets were related to each other, result- 

ing in an initial dataset ( Table 1 ) of 44,130 training images, 15,345 

validation images and 83 traffic sign types ( Fig. 4 a). The usage of 

the Spanish dataset permits to add 13 unique traffic sign categories 

that were not in the German or Belgian ones. From now on, we 

will refer to this dataset as Mixset. Note that Mixset is highly im- 

balanced, for example, 9 out of 83 categories in training set and 

21 out of 83 classes in validation set have less than 10 samples. By 

contrast, 17 out of 83 types of traffic signs contain more than 10 0 0 

training samples ( Fig. 4 b). 

3.3.2. Data pre-processing of Mixset images 

Mixset samples are raw RGB and sizes vary from 21 × 22 to 

700 × 700 pixels. All of them are up-sampled or down-sampled to 

4 8x4 8 pixels and preprocessed with global and local contrast nor- 

malization with Gaussians kernels ( Jarrett, Kavukcuoglu, Ranzato, & 

LeCun, 2009 ) that centers each input image around its mean value 

and enhances edges. 

3.3.3. Deep Neural Network architecture 

The proposed method to recognize traffic signs is a DNN that 

combines several convolutional, spatial transformer, non-linearity, 

contrast normalization and max-pooling layers. It acts as a feature 

extractor that maps raw pixel information of the input image into a 

tensor to be classified by two fully connected layers. Spatial trans- 

former layers are used to perform explicit geometric transforma- 

tions on input images and feature maps in order to focus on the 

object to be learned, removing progressively background and geo- 

metric noise. All variable parameters used in each of these layers 

are optimized together through minimization of the misclassifica- 

tion error over the Mixset training set. 

The convolutional layers carry out a 2-dimensional convolution 

of its n − 1 input maps with a filter of size F n x × F n y , where x and 

y represent the size of each dimension. Each convolutional layer 

is composed by neurons which have learnable biases and weights. 

During the feed forward process of the neural network, each fil- 

ter is convolved across the height and width of the input map, 

performing a dot product that produces a 2-dimensional activation 

map of that filter. The resulting activations of the n output maps 

are given by the sum of the n − 1 convolutional responses that are 

passed through a non-linear activation function f where n is the 

convolutional layer, i and j represent the input map and the out- 

put map respectively, a indicates a map of size x × y , the weights 

w ij are represented as a filter of size F x × F y which connects the in- 

put map with the output map, and b j is the bias of the output map 

( Eq. (9) ). Rectified Linear Units (ReLU) layers are used to compute 
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Fig. 5. Spatial transformer network. Input images on the first row and computed output images on the second row. 

the non-linear activation function. 

a n j = 

n −1 ∑ 

i =1 

a n −1 
i 

∗ w 

n 
i j + b n j (9) 

ReLU layers are made up of neurons that apply the activation 

function f (x ) = max (0 , x ) , where x is the input to a neuron. It en- 

hances the non-linear properties of the network, including the de- 

cision function, without affecting the learnable parameters of the 

convolutional layer. 

Max-pooling layers are used to reduce progressively the spa- 

tial size of the representation, in order to decrease the amount of 

parameters, computation in the network and to control overfitting 

by selecting superior invariant features, and improving generaliza- 

tion. The output of this layer is given by the maximum activation 

over non-overlapping regions of filter size F x × F y , where the input 

map is downsampled by a factor of F x and F y along both width and 

height, nevertheless depth dimension remains unchanged. 

Contrast normalization layers ( Jarrett et al., 2009 ) are used to 

normalize the contrast of an input map through subtractive local 

normalization and divisive local normalization. Both operations use 

a Gaussian kernel, and are computed at local spatial regions of the 

input map on a per feature basis. 

Fully connected layer neurons have full connections to all acti- 

vations in the previous layer, in other words, it combines the out- 

puts of the previous layer into a 1-dimensional feature vector. The 

last fully-connected layer of the network performs the classifica- 

tion task since they have one output neuron per class, followed by 

a logarithmic soft-max activation function. 

Spatial Transformer Networks ( Jaderberg, Simonyan, Zisserman, 

Kavukcuoglu, 2015 ) aim to perform geometric transformation on 

an input map so that provides to ConvNets the ability to be spa- 

tially invariant to the input data in a computationally efficient 

manner. Thanks to such transformations, there is no need for ex- 

tra training supervision, handcrafted data augmentation (e.g. ro- 

tation, translation, scale, skew, cropping) or dataset normalization 

techniques. This differentiable module can be inserted into exist- 

ing convolutional architectures since the parameters of the trans- 

formation that are applied to feature maps are learned by means 

of a backpropagation algorithm. Spatial transformer networks con- 

sist of 3 elements: the localization network, the grid generator and 

the sampler ( Fig. 6 ). 

The localization network f loc () takes an input feature map 

U ∈ R H × W × C , where H, W and C are the height, width and channels 

respectively, and outputs the parameters θ of the transformation 

T θ to be applied to the feature map θ = f loc (U) . The dimension of 

θ depends on the transformation type T θ that is being parameter- 

ized, being 6-dimensional in our proposed net since it performs a 

2D affine transformation A θ which allows translation, cropping, ro- 

tation, scale and skew. The localization network can comprise any 

number of convolutional and fully connected layers, and must have 

at least one final regression layer to generate the transformation 

parameters θ . Such parameters are used by the grid generator to 

create a sampling grid, which is a set of points where the input 

map has to be sampled to obtain the desired transformed output. 

Fig. 6. Spatial transformer network components ( Jaderberg et al., 2015 ). 

Finally, the sampler uses as inputs the sampling grid and the input 

feature map U in order to perform a bilinear sampling which pro- 

duces the transformed output feature map V ∈ R H 
′ ×W 

′ ×C , where H 

′ , 
W 

′ are the height and width of the sampling grid. 

For source coordinates in the input feature map (x s 
i 
, y s 

i 
) and a 

learned 2D affine transformation matrix A θ , the target coordinates 

of the regular grid in the output feature map (x t 
i 
, y t 

i 
) are given as 

follows ( Eq. (10) ): 

(
x s 

i 

y s 
i 

)
= A θ

⎛ 

⎝ 

x t 
i 

y t 
i 

1 

⎞ 

⎠ = 

[
θ11 θ12 θ13 

θ21 θ22 θ23 

]⎛ 

⎝ 

x t 
i 

y t 
i 

1 

⎞ 

⎠ (10) 

Regarding traffic sign recognition, spatial transformer networks 

learn to focus on the traffic sign removing gradually geometric 

noise and background so that only the interesting zones of the in- 

put are forwarded to the next layers of the network ( Fig. 5 ). Up to 

our knowledge, no peer review work has been published includ- 

ing the spatial transformer unit into a ConvNet for the traffic sign 

recognition task. 

Our proposed DNN consists of three main blocks that act as 

feature extractors and comprises a spatial transformer network, a 

convolutional layer, a ReLU layer, a max-pooling layer and a local 

contrast normalization layer. Then, the classification is carried out 

by two fully-connected layers separated by a ReLU layer. The last 

fully-connected layer is made of 83 neurons corresponding to each 

the traffic sign categories to be classified ( Fig. 7 ). 

The localization network of the three spatial transformer net- 

works is built with a max-pooling layer followed by two blocks of 

convolutional, ReLU and max-pooling layers. Also in this case, the 

classification stage has 2 fully-connected layers and a ReLU one al- 

though the last fully-connected only contains 6 neurons that cor- 

respond to the parameters of the affine transformation matrix. 

The DNN architecture proposed is shown in Tables 2 and 3 . 

Convolutional layers stride is set to 1 in order to leave all spa- 

tial down-sampling computation to max-pooling layers, and zero 

padding is set to 2, in contrast with max-pooling layers, whose 

stride is set to 2 and zero padding to 0. The total parameters 

learned (weights) by this single DNN is 14,629,801 which is much 

less than in other ConvNets proposed for traffic sign recognition 
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Fig. 7. DNN for traffic sign recognition proposed. Local contrast normalization layers have been omitted in the figure above to simplify its visualization as well as localization 

networks of spatial transformers. The st layers refer to spatial transformer networks, conv to convolutional layers, mp to max-pooling layers, fc to fully-connected layers and 

sm to soft-max layer. 

Table 2 

Detailed DNN architecture proposed for traffic sign recognition. 

Layer Type # Maps and neurons Kernel # Weights 

0 Input 3 m. of 48 × 48 n. 

1 Spatial Transformer 1 3 m. of 48 × 48 n. 3,833,506 

2 Convolutional 200 m. of 46 × 46 n. 7 × 7 29,600 

3 Non-linearity (ReLU) 200 m. of 46 × 46 n. 

4 Max-Pooling 200 m. of 23 × 23 n. 2 × 2 

5 Contrast Norm. 200 m. of 23 × 23 n. 

6 Spatial Transformer 2 200 m. of 23 × 23 n. 1,742,456 

7 Convolutional 250 m. of 24 × 24 n. 4 × 4 800,250 

8 Non-linearity (ReLU) 250 m. of 24 × 24 n. 

9 Max-Pooling 250 m. of 12 × 12 n. 2 × 2 

10 Contrast Norm. 250 m. of 12 × 12 n. 

11 Spatial Transformer 3 250 m. of 12 × 12 n. 1,749,956 

12 Convolutional 350 m. of 13 × 13 n. 4 × 4 1,400,350 

13 Non-linearity (ReLU) 350 m. of 13 × 13 n. 

14 Max-Pooling 350 m. of 6 × 6 n. 2 × 2 

15 Contrast Norm. 350 m. of 6 × 6 n. 

16 Fully connected 400 neurons 1 × 1 5,040,400 

17 Non-linearity (ReLU) 400 neurons 

18 Fully connected 83 neurons 1 × 1 33,283 

19 Soft-max 83 neurons 

Table 3 

Localization network details of spatial transformers used in the main 

DNN. Kernel size of convolutional layers is set to 5 × 5 and max-pooling 

layers to 2 × 2. The annotation shown in the table is simplified, for in- 

stance, 3 of 48 × 48 stands for 3 maps of 48 × 48 neurons each one. 

Layer/Type Loc. net of ST 1 Loc. net of ST 2 Loc. net of ST 3 

0/Input 3 of 48 × 48 200 of 23 × 23 250 of 12 × 12 

1/Max-Pool 3 of 24 × 24 200 of 11 × 11 250 of 6 × 6 

2/Conv 250 of 24 × 24 150 of 11 × 11 150 of 6 × 6 

3/ReLU 250 of 24 × 24 150 of 11 × 11 150 of 6 × 6 

4/Max-Pool 250 of 12 × 12 150 of 5 × 5 150 of 3 × 3 

5/Conv 250 of 12 × 12 200 of 5 × 5 200 of 3 × 3 

6/ReLU 250 of 12 × 12 200 of 5 × 5 200 of 3 × 3 

7/Max-Pool 250 of 6 × 6 200 of 2 × 2 200 of 1 × 1 

8/Fc 250 neurons 300 neurons 300 neurons 

9/ReLU 250 neurons 300 neurons 300 neurons 

10/Fc 6 neurons 6 neurons 6 neurons 

( Table 4 ), leading this advantage to lower memory consumption, 

computational cost and simpler pipeline. 

Table 5 

Number of 3D points analyzed in two 

different scenarios. 

Area Points 

Urban 129,553,905 

Road 145,759,301 

4. Results 

In this section, the performance of the traffic sign detection and 

classification methodologies are presented. 

4.1. Acquisition hardware 

The LYNX Mobile Mapper by Optech was used for the collec- 

tion of the data ( Puente et al., 2013b ). The methodology presented 

in Sections 3.1 and 3.2 was tested in two different scenarios. The 

first one is an urban area, that comprises 2.5 km three-lane av- 

enue that encircles the city center of Lugo, in northwest Spain. 

The second one is a road environment that includes 7.5 km section 

of AP-9 highway and N-552, N-554 roads in the outskirts of Vigo. 

The number of 3D points that were analyzed for each scenario, as 

noted in Soilán et al. (2016) can be found in Table 5 . 

4.2. Traffic sign detection results 

The traffic sign detection process was evaluated using the urban 

and road areas of the study case. The ground truth was created by 

manually annotating the position of the traffic signs in these areas. 

The ground truth is compared with the output of the road sign de- 

tection algorithm for traffic signs, which is a set of 3D point clus- 

ters, C . The evaluation is carried out using Precision, Recall and F1- 

score for measuring the performance. The results, based in Soilán 

et al. (2016) are shown in Table 6 together with a comparison with 

Riveiro et al. (2016) and Wen et al. (2016) results. 

4.3. RGB processing results 

Finally, regarding the projection of traffic sign points in RGB im- 

ages, a data reduction metric is provided which shows the quality 

of the image cropping process and aim to prove that the 3D point 

cloud processing highly diminishes the non-meaningful data to be 

analyzed by a 2D TSRS. A ratio that compares the total number 

of images available over the number of images obtained after the 

Table 4 

Proposed DNN information compared with previous state-of-the-art methods. 

Paper Data augment. or jittering # trainable parameters # ConvNets 

Ours No 14,629,801 1 

Jin et al. (2014) Yes ∼ 23 millions 20 (ensemble) 

Cire ̧s an et al. (2012) Yes ∼ 90 millions 25 (committee) 
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Fig. 8. Confusion matrices. GTSRB on the left, BTSC in the middle and Mixset on the right. 

Table 6 

Traffic sign detection results. 

Area Precision (%) Recall (%) F1 score (%) 

Urban 86.1 95.4 90.5 

Road 92.8 100 96.3 

Global performance 

This paper 89.7 97.9 93.4 

Riveiro et al. (2016) 91.3 90.9 91.1 

Wen et al. (2016) 91.92 90.53 91.22 

Table 7 

GTSRB, BTSC and Mixset precision, recall and f1-score recogni- 

tion results. Mixset includes the cross-validation percentage. 

Dataset Precision (%) Recall (%) F1 score (%) 

GTSRB 99.71 99.71 99.71 

BTSC 98.95 98.87 98.86 

Mixset 99.37 ± 0.03 99.36 ± 0.03 99.35 ± 0.03 

projection of the 3D points of sign panel was computed, obtaining 

a value of 5.275. 

4.4. Traffic sign recognition results 

The following subsections describe the experiments and 

achieved results in the GTSRB dataset, BTSC dataset and Mixset 

dataset. As development tools, Torch scientific computer frame- 

work 3 and an implementation of spatial transformer networks 4 

were used. Overall recognition results of each dataset are shown 

in Table 7 and confusion matrices in Fig. 8 . 

4.4.1. GTSRB dataset results 

Firstly, to find empirically the best DNN architecture, GTSRB 

dataset was used in the execution of more than 200 experiments 

run during 10 epochs with a wide range of DNN configurations 

composed by the layers described in Section 3.3.3 . Each of them 

consists of 39,209 training images, 12,630 validation traffic signs, 

a base learning rate fixed to 0.01 and a vanilla Stochastic Gradient 

Descent algorithm (SGD) as loss function optimizer. 

Secondly, top-10 DNN configurations were revised and executed 

again increasing the number of epochs to 26 expecting to improve 

accuracy results. Nevertheless, in some cases the accuracy of the 

DNNs trained grew a little and in other cases it was the same. The 

3 http://torch.ch/ (accessed 17.03.22). 
4 https://github.com/qassemoquab/stnbhwd (accessed 17.03.22). 

best one reached an accuracy of 99.71% in GTSRB, whose config- 

uration is the DNN architecture deeply detailed in Section 3.3.3 . It 

outperforms several GTSRB methods used previously ( Table 8 ). By 

the time of writing this paper our proposed DNN is top-1 in the 

GTSRB out of the previously published works. 

4.4.2. BTSC dataset results 

The Belgian traffic sign classification dataset ( Mathias et al., 

2013 ) has 4533 training images and 2562 validation ones split into 

62 traffic sign types. Even though an adaptation of this dataset was 

handcrafted to populate the Mixset showed off in Section 3 , in the 

current subsection experiment the original dataset was used with- 

out any further modification in order to measure the performance 

of the DNN proposed. Considering that this dataset has different 

traffic sign pictograms, lighting conditions, occlusions, image reso- 

lutions and so on than in the GTSRB dataset, our DNN configura- 

tion achieves an accuracy of 98.87% ( Table 9 ). 

4.4.3. Mixset dataset results 

Mixset dataset was generated using the original images from 

the GTSRB dataset, the adapted ones from the BTSC dataset and 

the ones from the Spanish dataset. As a result, Mixset consists of 

44,130 training traffic sign images and 15,345 validation ones. To 

evaluate the performance of our DNN in this dataset, five mod- 

els were trained and tested corresponding each one to a cross- 

validation fold. The DNN model reaches an average accuracy of 

99.36 ± 0.03% being the second fold used in the cross-validation 

the best one ( Table 10 ). Even though we have a highly imbalanced 

dataset, the DNN performs well classifying traffic signs that belong 

to categories with a small number of training instances ( Table 11 ). 

Some misclassified samples are shown in Fig. 9 . 

4.5. Processing time 

Detection processing times are shown in Table 12 . A section 

of point cloud data of the urban dataset was selected and the 

methodology presented in Section 3.1 was applied several times to 

get the average execution time for each algorithm within the pro- 

cessing chain. It was tested using an Intel Core i7-4771 CPU at 

3.5 GHz. It can be seen that the ground segmentation process is 

the most demanding, and the whole processing of almost 30 mil- 

lion points takes about four minutes. 

Regarding traffic sign recognition, experiments were performed 

in a computer built with an Intel Core i7-6700k CPU, 16 GB of RAM 

and a Nvidia Geforce GTX 1070 discrete GPU which has 1920 CUDA 

cores and 8 GB of RAM. Training and testing execution times are 

shown in Table 13 . 
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Table 8 

Recognition rate of different methods on GTSRB dataset. 

Paper Method Accuracy (%) 

Ours CNN with 3 STNs 99.71 

Jin et al. (2014) HLSGD (20 CNNs ensemble) 99.65 

Cire ̧s an et al. (2012) MCDNN (25 CNNs committee) 99.46 

Yu et al. (2016) GDBM 99.34 

Jurisic, Filkovic, and Kalafatic (2015) OneCNN 99.11 ± 0.10 

Stallkamp et al. (2011) Human performance (avg.) 98.84 

Mathias et al. (2013) INNLP + INNC(I,PI,HOGs) 98.53 

Fig. 9. Misclassified samples. Some misclassified samples of the Mixset model trained. As may be seen, the main reason behind them are occlusions and blurred pictographs, 

being their recognition even hard for the human visual system. Columns labeled with S refer to sample, R to real traffic sign category and P to prediction. 

Table 9 

Recognition rate of different methods on BTSC dataset. 

Paper Method Accuracy (%) 

Yu et al. (2016) GDBM 98.92 

Ours CNN with 3 STNs 98.87 

Jurisic et al. (2015) OneCNN 98.17 ± 0.22 

Mathias et al. (2013) INNLP + SRC(PI) 97.83 

Table 10 

Mixset model cross-validation results. 

Fold Precision (%) Recall (%) F1 score (%) 

1 99.37 99.36 99.34 

2 99.40 99.38 99.38 

3 99.36 99.34 99.34 

4 99.33 99.32 99.30 

5 99.40 99.38 99.38 

Avg. 99.37 ± 0.03 99.36 ± 0.03 99.35 ± 0.03 

Table 11 

Second fold results of Mixset model for categories with a small size of train- 

ing examples. The first column represents those categories which contains a 

determined number of training samples included in the range [ Min –Max ]. 

[Min–Max] Avg. precision (%) Avg. recall (%) Avg. F1 score (%) 

[4–20] 99.47 93.28 95.60 

[21–50] 99.14 98.33 98.65 

[51–100] 97.48 99.03 98.15 

[101–500] 98.97 99.14 99.04 

[501–10 0 0] 99.33 99.58 99.45 

[1001–1500] 99.65 98.62 99.13 

[1501–20 0 0] 98.82 99.92 99.36 

[2001–2504] 99.83 99.78 99.81 

Table 12 

Traffic sign detection processing time. 

Algorithm Time (s) # Input points 

Preprocessing 13.75 28,032,301 

Ground Segmentation 117.97 20,440,211 

Detection 77.6 17,127,358 

Image Projection 25.86 6 86 8 

Total 240.34 28,032,301 

Table 13 

Processing time needed by the DNN 

proposed to train and test 1 sample. 

Process Time (ms) 

Learn 1 sample 11.18 ± 0.02 

Test 1 sample 4.28 ± 0.02 

5. Conclusions and future work 

In this paper a method for the automatic detection and recogni- 

tion of vertical traffic signs is presented. 3D point clouds collected 

by a Mobile Mapping System are processed in order to detect traf- 

fic sign panels using both geometric and radiometric features. The 

3D data are projected on 2D images given the spatio-temporal re- 

lationship between the laser scanners and the images taken by the 

RGB cameras. The images that contain traffic signs are properly 

cropped and classified using a single DNN that alternates convo- 

lutional and spatial transformer modules. Although there are other 

approaches that combine LiDAR techniques and 2D imagery ( Tan, 

Wang, Wu, Wang, & Pan, 2016; Wen et al., 2016; Yu et al., 2016 ) 

our methodology outperforms the previous ones. 

The traffic sign detection methodology is tested in different 

scenarios in Spain, obtaining a F1-score of 93.4%. Projecting the 

3D traffic signs detected in the LiDAR point cloud on 2D images 

drastically reduces the amount of data which is fed to the Traffic 

Sign Recognition System. For traffic sign classification, we propose 

and analyze the performance of a single DNN on multiple traffic 

sign classification datasets. It outperforms previous state-of-the-art 

methods reporting a recognition rate accuracy of 99.71% in the GT- 

SRB. Also, the DNN avoids the need of handcrafted data augmenta- 

tion and jittering used in prior approaches ( Cire ̧s an et al., 2012; Jin 

et al., 2014; Sermanet & LeCun, 2011 ). Moreover, there is less mem- 

ory requirements and the network has less number of parameters 

to learn compared with existing methods since we keep away from 

using several ConvNets in an ensemble or in a committee way. 

The main drawback of this method is that it cannot lead to real 

time applications, as 3D point cloud processing is computation- 

ally intensive. Furthermore, setting up the Mobile Mapping System 
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is expensive and complex. The calibration of the cameras has to 

be precise, as well as the geometric transformations with respect 

to the positioning system, where measuring errors of centimeters 

may lead to large accuracy losses when a 3D point cloud is pro- 

jected on 2D imagery. Regarding to the traffic sign classification 

system, the DNN proposed needs a huge amount of traffic sign 

samples of many categories, taken by cameras with different light- 

ing and weather conditions (fog, rain, sun glare), occlusions, bad 

viewpoints, faded colors, etc., in order to train a robust model that 

could cope well with such issues. This is a disadvantage with re- 

spect to computer vision approaches based on color and shape fea- 

ture engineering since such methods do not need any prior knowl- 

edge of traffic signs. 

The main contributions of this work are four-fold: (1) The 

methodology presents state-of-the-art results for traffic sign de- 

tection through 3D point clouds processing and classification in 

2D imagery by means of a DNN, both integrated in the same 

automated framework. (2) We provide an insight into the pro- 

posed DNN capabilities and how do spatial transformer modules 

work with traffic signs. (3) Multiple public available traffic sign 

classification datasets are analyzed and used by the classification 

model, including a dataset with traffic sign images from three Eu- 

ropean countries. (4) A scalable, publicly available dataset contain- 

ing around 1500 images of Spanish traffic signs. These contribu- 

tions lead to practical applications such as automated inventory 

and maintenance of vertical signage using a data source (i.e. 3D 

point clouds) which can be simultaneously processed in order to 

detect a wide range of infrastructure elements, feeding road net- 

work information layers to a spatial database. Furthermore, the 

classification model on its own can be used for real time TSRS 

since its inference time is quite low and it can be deployed as a 

standalone service. For instance, expert systems as self-driving cars 

could benefit from this classification system once the traffic sign 

has been detected. 

Future work should study the impact of different loss func- 

tion optimizers for ConvNets, other kind of non-linearity layers, 

dropout layers, and state-of-the-art ConvNets architectures for im- 

age recognition like ResNet ( He, Zhang, Ren, & Sun, 2016 ) or Incep- 

tion ( Szegedy, Ioffe, Vanhoucke, & Alemi, 2017 ) along with spatial 

transformer networks. Finally, DNN for traffic sign detection should 

be further investigated in order to build cost-effective car-mounted 

devices that handle similar pipelines in real time. 
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CAPÍTULO 3

DEEP NEURAL NETWORK FOR TRAFFIC

SIGN RECOGNITION SYSTEMS: AN ANALYSIS

OF SPATIAL TRANSFORMERS AND

STOCHASTIC OPTIMISATION METHODS

Resumen

Este artículo de investigación presenta un nuevo enfoque para sistemas de reco-

nocimiento de señales de tráfico basado en aprendizaje profundo. Se llevan a cabo

varios experimentos de clasificación sobre conjuntos de datos de señales de tráfico de

Alemania y Bélgica que están públicamente disponibles, utilizando una red neuronal

profunda que contiene capas convolucionales y redes de transformadores espaciales.

Dichos ensayos están diseñados para medir el impacto de diversos factores con el ob-

jetivo final de diseñar una red neuronal convolucional que pueda mejorar los sistemas

de clasificación de señales de tráfico propuestos hasta el momento. En primer lugar,

se evalúan diferentes algoritmos de optimización de gradientes descendentes esto-

cásticos adaptativos y no adaptativos, tales como SGD, SGD-Nesterov, RMSprop y

página 41



Adam. Posteriormente, se analizan múltiples combinaciones de redes de transforma-

dores espaciales ubicadas en distintas posiciones dentro de la red neuronal principal.

La tasa de reconocimiento de la red neuronal convolucional propuesta alcanza una

precisión del 99,71% en el German Traffic Sign Recognition Benchmark (GTSRB),

superando los métodos propuestos anteriormente en la literatura, al mismo tiempo

que es más eficiente en términos de requisitos de memoria.
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a b s t r a c t

This paper presents a Deep Learning approach for traffic sign recognition systems. Several classification
experiments are conducted over publicly available traffic sign datasets from Germany and Belgium using
a Deep Neural Network which comprises Convolutional layers and Spatial Transformer Networks. Such
trials are built to measure the impact of diverse factors with the end goal of designing a Convolutional
Neural Network that can improve the state-of-the-art of traffic sign classification task. First, different
adaptive and non-adaptive stochastic gradient descent optimisation algorithms such as SGD, SGD-
Nesterov, RMSprop and Adam are evaluated. Subsequently, multiple combinations of Spatial Transformer
Networks placed at distinct positions within the main neural network are analysed. The recognition rate
of the proposed Convolutional Neural Network reports an accuracy of 99.71% in the German Traffic Sign
Recognition Benchmark, outperforming previous state-of-the-art methods and also being more efficient
in terms of memory requirements.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Traffic sign recognition systems (TSRS) are essential in many
real-world applications such as autonomous driving, traffic surve-
illance, driver safety and assistance, road network maintenance,
and analysis of traffic scenes. Normally, a TSRS concerns two
related subjects which are traffic sign detection (TSD) and traffic
sign recognition (TSR). The former focuses on the localisation of the
targets in the pictureswhile the latter performs a fine-grained clas-
sification to identify the type of targets detected (De La Escalera,
Moreno, Salichs, & Armingol, 1997).

Traffic signs constitute a fundamental asset within the road
network because their aim is to be easily noticeable by pedestrians
and drivers in order to warn and guide them during both the day
and night. The fact that signs are designed to be unique and to have
distinguishable features such as simple shapes anduniformcolours

* Corresponding author.
E-mail addresses: aarcos1@us.es (Á. Arcos-García), jaalvarez@us.es

(J.A. Álvarez-García), lsoria@us.es (L.M. Soria-Morillo).

implies that their detection and recognition is a constrained prob-
lem. Nevertheless, the development of a robust real-time TSRS
still presents a challenging task due to real-world variability, such
as scale variations, bad viewpoints, motion-blur, faded colours,
occlusions, and lightning conditions. On top of that, there aremore
than 300 different traffic sign categories defined by the Vienna
Convention on Road Traffic (United Nations Economic Commission
for Europe, 1968). This treaty has been signed by 63 countries,
although a few minor visual variations of traffic sign pictographs
still exist between countries, which can lead to complications in
the automated recognition task. Any TSRS must cope well with
such issues.

The main contributions of this work are four-fold: (1) A state-
of-the-art traffic sign recognition system based on a Convolutional
Neural Network (CNN) that includes Spatial Transformer Networks
(STN) and outperforms previously publishedwork relatedwith the
German Traffic Sign Recognition Benchmark (GTSRB) (Stallkamp,
Schlipsing, Salmen, & Igel, 2011); (2) An insight into the proposed
CNN capabilities along with the performance impact of spatial
transformer layers within the network; (3) Analysis of the effect

https://doi.org/10.1016/j.neunet.2018.01.005
0893-6080/© 2018 Elsevier Ltd. All rights reserved.
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of diverse gradient descent optimisation algorithms on the CNN
presented. (4) Multiple publicly available European traffic sign
classification datasets are reviewed and evaluated by the CNN.
These contributions lead to practical applications, such as self-
driving cars and automated inventory and maintenance of vertical
signage, since the CNN can perform fine-grained classification once
the traffic sign has been detected. Moreover, as the CNN outper-
forms the human visual system, its inference time is low and can
also be deployed as a stand-alone service, it can therefore be used
in real-time applications.

The rest of the paper is organised as follows. Section 2 reviews
related works of traffic sign recognition systems. Section 3 de-
scribes the experiments conducted to analyse the impact of both
spatial transformers and stochastic optimisation algorithms on the
proposed CNN. Recognition results are then shown in Section 4.
Finally, conclusions are drawn and further work is proposed in
Section 5.

2. Related work

Chronologically, approaches of published studies on traffic sign
recognition systems have evolved from colour and shape-based
methods to machine-learning-based methods. In recent times,
Deep Neural Networks (DNN) have attracted attention in pattern
recognition and computer vision research, and have been widely
adopted for both object detection (Liu et al., 2016; Redmon &
Farhadi, 2016; Ren, He, Girshick, & Sun, 2015) and recognition
(Huang, Liu, Weinberger, & van der Maaten, 2016; Szegedy, Ioffe,
Vanhoucke, & Alemi, 2017), thanks to the release of several pub-
licly available datasets composed of millions of images (Evering-
ham, Van Gool, Williams, Winn, & Zisserman, 2010; Krizhevsky,
Sutskever, & Hinton, 2012; Lin et al., 2014). Moreover, DNNs have
been applied in autonomous driving related challenges such as car
(Huval et al., 2015), lane (Li, Mei, Prokhorov, & Tao, 2017), and
pedestrian (Tian, Luo, Wang, & Tang, 2015) detection.

With regard to the traffic sign detection and classification prob-
lem domain, colour-based approaches are very common. These
methods use different colour spaces for segmentation of the road
image, such as RGB (Escalera, Moreno, Salichs, & Armingol, 1997),
HIS (Maldonado-Bascon, Lafuente-Arroyo, Gil-Jimenez, Gomez-
Moreno, & Lopez-Ferreras, 2007), and HSV (Shadeed, Abu-Al-Nadi,
& Mismar, 2003). The shape-based method is another popular ap-
proach for traffic sign recognition and detection. Symmetry infor-
mation of circular, triangular, square andoctagonal shapes are used
in Loy and Barnes (2004), a radial symmetry detector is proposed in
Barnes, Zelinsky, and Fletcher (2008), Hough transforms are inves-
tigated in Barnes, Loy, and Shaw (2010) and a circular traffic sign
recognition system is studied in Kaplan Berkaya, Gunduz, Ozsen,
Akinlar, and Gunal (2016). Hence, neither colour nor shape-based
techniques, need any prior knowledge of traffic signs and heavily
depend on custom-designed algorithms and feature engineering.

One of the main problems before the year 2011 was the lack
of publicly available traffic sign datasets. The Belgian Traffic Sign
Dataset (BTSD) (Timofte, Zimmermann, & Van Gool, 2011), the
German Traffic Sign Recognition and Detection Benchmark (GT-
SRB and GTSDB) (Stallkamp et al., 2011), the Croatian traffic sign
dataset (rMASTIF) (Jurisic, Filkovic, & Kalafatic, 2015), the Dataset
of Italian Traffic Signs (DITS) (Youssef, Albani, Nardi, & Bloisi, 2016)
and the Tsinghua-Tencent 100 K benchmark (Zhu et al., 2016)
solved this issue and boosted research into TSRS since several of
these datasets are commonly used to evaluate the performance of
computer vision algorithms for traffic sign detection and recog-
nition. These kinds of datasets are crucial to generate robust ma-
chine learning and deep learning models as they contain a huge
amount of traffic sign samples of multiple categories, taken by
cameras with various weather and lighting conditions, occlusions,
bad viewpoints, etc.

More recently, machine learning has started to play a key role
in the traffic sign classification task. Mathias, Timofte, Benenson,
and Van Gool (2013) propose fine-grained classification by apply-
ing different methods through a pipeline of three stages: feature
extraction, dimensionality reduction and classification. On GTSRB,
they reach 98.53% accuracy by merging grey-scale values of traffic
sign images and features based on the Histogram of Oriented
Gradients (HOG), reducing the dimensionality through Iterative
Nearest Neighbours-based Linear Projections (INNLP) and finally
classifying with Iterative Nearest Neighbours (INNC) (Timofte &
Van Gool, 2015). Although othermachine learning algorithms such
as Support Vector Machines (SVM) (Salti, Petrelli, Tombari, Fio-
raio, & Di Stefano, 2015), Random Forests (Zaklouta, Stanciulescu,
& Hamdoun, 2011) and Nearest Neighbours (Gudigar, Chokkadi,
Raghavendra, & Acharya, 2017) have beenwidely used to recognise
traffic sign images, Convolutional Neural Networks (Lecun, Bottou,
Bengio, &Haffner, 1998), also known as ConvNets or CNNs, showed
particularly higher classification accuracies in the competition.
Neural networks are data driven self-adaptive methods because
they can adjust themselves to the data without any explicit spec-
ification of functional or distributional form for the underlying
model (Huang, 1996). In addition, there are universal functional
approximators in the neural networks that can approximate any
functionwith arbitrary accuracy (Huang, 1999; Huang &Du, 2008).
Cireşan, Meier, Masci, and Schmidhuber (2012) won the GTSRB
contest (Stallkamp, Schlipsing, Salmen, & Igel, 2012) with 99.46%
accuracy thanks to a committee of 25 CNNs by using data aug-
mentation and jittering. Sermanet and LeCun (2011) used a multi-
scale CNN and achieved an accuracy of 98.31%, thereby granting
them second place in the GTSRB challenge. Later, Jin, Fu, and Zhang
(2014) proposed a hinge loss stochastic gradient descent method
to train an ensemble of 20 CNNs that resulted in 99.65% accuracy
and offered a faster and more stable convergence than previous
work. However, these approaches can still be improved through
the avoidance of the use of hand-crafted data augmentation and of
the application ofmultiple CNNs in an ensemble or via a committee
for the reason that these normally lead to higher memory and
computation costs.

3. Methodology

In this work, we propose a traffic sign recognition system that
carries out fine-grained classification of traffic sign images through
a CNN whose main blocks are convolutional and spatial trans-
former modules. In order to find an accurate and efficient CNN
for such a purpose, the effect of using several STNs and different
stochastic gradient descent optimisation methods are researched
and discussed.

3.1. Dataset and data pre-processing

Several publicly available traffic sign datasets have been gath-
ered in countries such as the United States (Mogelmose, Trivedi,
& Moeslund, 2012), Belgium (Timofte et al., 2011), Germany (Stal-
lkamp et al., 2011), Croatia (Jurisic et al., 2015), Italy (Youssef et al.,
2016), Sweden (Larsson & Felsberg, 2011), and China (Zhu et al.,
2016).

This paper focuses on both the spatial transformer effective-
ness and cost function optimisation experiments on the GTSRB
(Stallkamp et al., 2011) dataset. There are multiple reasons for
choosing this dataset over the others, including the fact that it is
highly accepted and is used for comparing traffic sign recognition
approaches in the literature. Moreover, its authors and the organ-
isation behind them held a public competition whereby scientists
from different fields contributed with their results and tested the
GSTRB dataset. Nowadays, a GTSRB website is maintained where
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Fig. 1. GTSRB dataset pre-processed.

submissions of results are still accepted, processed and shown
in a leaderboard. Such ranking helps to find out which are the
state-of-the-art methodologies utilised for the task of traffic sign
classification. Last but not least, the GTSRB dataset contains traffic
sign samples with different resolutions and image distortions that
were extracted from 1-second video sequences. These samples
each belong to one of the 43 existing classes. Its ground truth data is
reliable due to its semi-automatic annotation, the training set has
39,209 images, and the validation set consists of 12,630 images,
which are used to measure the performance of the algorithms.
Traffic sign samples are raw RGB images whose size varies from
15 × 15 to 250 × 250 pixels.

During the pre-processing stage, all the samples are down-
sampled or up-sampled to 48 × 48 pixels, and both global nor-
malisation and local contrast normalisationwithGaussians kernels
(Jarrett, Kavukcuoglu, Ranzato, & LeCun, 2009) are computed for
the purpose of centring each input image around its mean value as
well as for the enhancement of the edges (Fig. 1).

3.2. Convolutional neural network architecture

Inspired by the approach by Cireşan et al. (2012), the proposed
method for the recognition of traffic signs is a single CNN that com-
bines several types of layers: convolutional, spatial transformer
(Jaderberg, Simonyan, Zisserman, et al., 2015), Rectified Linear
Units (ReLU) (Nair & Hinton, 2010), local contrast normalisation
(Jarrett et al., 2009) and max-pooling (Scherer, Müller, & Behnke,
2010). These layers act as a feature extractor that maps raw pixel
information of the input image to a tensor which is classified later
into a particular traffic sign category by two fully connected layers.
All variable parameters of these layers are optimised together
through the minimisation of the misclassification error over the
GTSRB training set.

The convolutional layers carry out a 2-dimensional convolution
of their n − 1 input maps with a filter of size F n

x × F n
y , where x and

y represent the size of each dimension. Each convolutional layer
is composed of neurons which have learnable biases and weights.
During the feed-forward process of the neural network, each filter
is convolved across the height and width of the input map, and a
dot product is performed that produces a 2-dimensional activation
map of that filter. The resulting activations of the n outputmaps are
given by the sum of the n − 1 convolutional responses, which are
passed through a non-linear activation function f , that is computed
by a ReLU layer in our case, where n is the convolutional layer, i
and j represent the input map and the output map respectively, a
indicates a map of size x × y, the weights wij are represented as a
filter of size Fx × Fy which connects the input map with the output
map, and bj is the bias of the output map (Eq. (1)).

anj =

n−1∑
i=1

an−1
i ∗ wn

ij + bnj . (1)

ReLU layers (Nair & Hinton, 2010) are made up of neurons that
apply the activation function f (x) = max(0, x), where x is the

Fig. 2. Spatial transformer network components (Jaderberg et al., 2015).

input to a neuron. These layers enhance the non-linear properties
of the network, including the decision function, without affecting
the learnable parameters of the convolutional layer.

Local contrast normalisation layers (Jarrett et al., 2009) nor-
malise the contrast of an input map through subtractive local
normalisation and divisive local normalisation. Both operations
use a Gaussian kernel, and are computed in local spatial regions
of the input map on a per-feature basis.

Max-pooling layers (Scherer et al., 2010) progressively reduce
the spatial size of the feature maps, by directly decreasing the
amount of parameters along with computation costs. Moreover,
these layers control overfitting by selecting superior invariant
features and generalisation is improved. The output of this layer
is given by the maximum activation over non-overlapping regions
of filter size Fx × Fy, where the input map is downsampled by a
factor of Fx and Fy along both width and height, although depth
dimension remains unchanged.

Fully connected layer neurons have full connections to all ac-
tivations in the previous layer and therefore they combine the
outputs of the previous layer into a 1-dimensional feature vector.
The last fully-connected layer of the network performs the classi-
fication task since it has one output neuron per class, followed by
a logarithmic softmax activation function.

Spatial transformer units (Jaderberg et al., 2015) aim to perform
a geometric transformation on an input map so that CNNs are
provided with the ability to be spatially invariant to the input data
in a computationally efficient manner. Thanks to such transforma-
tions, there is no need for extra training supervision, hand-crafted
data augmentation (such as rotation, translation, scaling, skewing,
cropping), or dataset normalisation techniques. This differentiable
module can be inserted into existing CNN architectures since the
parameters of the transformation that are applied to feature maps
are learnt bymeans of a back-propagation algorithm. Spatial trans-
former networks consist of 3 elements: the localisation network,
the grid generator and the sampler (Fig. 2).

The localisation network floc() takes an input feature map U ∈

RH×W×C , where H , W and C are the height, width and channels
respectively, and outputs the parameters θ of the transformation
Tθ to be applied to the feature map θ = floc(U). The dimension of θ
depends on the transformation type Tθ that is being parameterised:
this is 6-dimensional in our proposed network since it performs a
2D affine transformation Aθ , which allows translation, cropping,
rotation, scaling, and skewing. The localisation network can com-
prise any number of convolutional and fully connected layers and
must have at least one final regression layer with 6 output neurons
in order to generate the transformation parameters θ . It should be
borne in mind that this final output layer is initialised with the
identity transformation matrix. Such parameters are used by the
grid generator to create a sampling grid, which is a set of points
where the input map has to be sampled to obtain the desired
transformed output. Finally, the sampler uses the sampling grid
and the input featuremapU as inputs in order to perform a bilinear
sampling, which produces the transformed output feature map
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Fig. 3. Spatial transformer network. Input images above and output images below after computing affine transformations.

V ∈ RH ′
×W ′

×C , where H ′, W ′ are the height and width of the
sampling grid respectively.

For source coordinates in the input feature map (xsi , y
s
i ) and a

learnt 2D affine transformation matrix Aθ , the target coordinates
of the regular grid in the output feature map (xti , y

t
i ) are given as

follows (Eq. (2)):(
xsi
ysi

)
= Aθ

⎛⎝xti
yti
1

⎞⎠ =

[
θ11 θ12 θ13

θ21 θ22 θ23

]⎛⎝xti
yti
1

⎞⎠ . (2)

As regards traffic sign recognition, spatial transformer networks
learn to focus on the traffic sign by gradually removing geometric
noise and background so that only the interesting zones of the
input are forwarded to the next layers of the network (Fig. 3). To
the best of our knowledge, no peer reviewwork has been published
that has included the spatial transformer unit in a CNN for the
traffic sign recognition task.

In order to measure the performance of spatial transformer
layers for traffic sign recognition,we set themain CNN architecture
shown in Table 1, which contains no STN. This CNN progressively
increases the number of feature maps extracted from the input
image through convolutional layers. At the same time, the input
image’s dimension is reduced bymax-pooling layers and therefore
the network is able to extract features on different scales. Finally, a
fully-connected layer performs the classification of the traffic sign
fed into the network. The stride of each convolutional layers is set
to 1 in order to leave all spatial down-sampling computation to
max-pooling layers, and zero-padding is set to 2. Regarding max-
pooling layers, their stride is set to 2 and zero-padding to 0. Input
and output feature maps of convolutional layers, as well as kernel
sizes, are fixed.1

Due to the possibility of combining up to 3 STNs in different
parts of the CNN, several network architectures were set in order
to measure their influence in the final result. Note that no more
than three STNs are included in the analysis since the size of output
feature maps of the subsequent network’s layers could not be
further decreased. Progressively, spatial transformer modules are
added immediately before the convolutional layers of the main
network. The localisation network of the three spatial transformer
layers is built with a max-pooling layer followed by two blocks
of convolutional, ReLU and max-pooling, and finally, two fully-
connected layers joined by a ReLU unit. The output of the last
fully-connected layer consists of 6 neurons, which correspond to
the parameters of the affine transformationmatrix. Detailed archi-
tectures of localisation networks are drawn in Table 2. Analogous
to the configuration of convolutional layers, kernel sizes and the
number of input and output feature maps are fixed.

In total, there are eight different CNN architectures as a result
of the possible combinations described. To denote such configura-
tions, on one hand, c refers to a convolutional blockwhich includes
convolutional, ReLU,max-pooling and local contrast normalisation
layers. On the other hand, si indicates the ith configuration of a

1 https://github.com/aarcosg/tsr-torch.

Table 1
Main CNN architecture without spatial transformer modules.

Layer Type # Maps & neurons Kernel

0 Input 3 m. of 48 × 48 n.
1 Convolutional 200 m. of 46 × 46 n. 7 × 7
2 ReLU 200 m. of 46 × 46 n.
3 Max-Pooling 200 m. of 23 × 23 n. 2 × 2
4 Local Contrast Norm. 200 m. of 23 × 23 n.
5 Convolutional 250 m. of 24 × 24 n. 4 × 4
6 ReLU 250 m. of 24 × 24 n.
7 Max-Pooling 250 m. of 12 × 12 n. 2 × 2
8 Local Contrast Norm. 250 m. of 12 × 12 n.
9 Convolutional 350 m. of 13 × 13 n. 4 × 4

10 ReLU 350 m. of 13 × 13 n.
11 Max-Pooling 350 m. of 6 × 6 n. 2 × 2
12 Local Contrast Norm. 350 m. of 6 × 6 n.
13 Fully connected 400 neurons 1 × 1
14 ReLU 400 neurons
15 Fully connected 43 neurons 1 × 1
16 Softmax 43 neurons

Table 2
Localisation network details of spatial transformers used in the basic CNN. Kernel
size of convolutional layers is set to 5 × 5 and max-pooling layers to 2 × 2. The
annotation shown in the table is simplified, for instance, 3 of 48 × 48 stand for 3
feature maps of 48 × 48 neurons each.

Layer/Type Loc. net of ST 1 Loc. net of ST 2 Loc. net of ST 3

0/Input 3 of 48 × 48 200 of 23 × 23 250 of 12 × 12
1/Max-Pool 3 of 24 × 24 200 of 11 × 11 250 of 6 × 6
2/Conv 250 of 24 × 24 150 of 11 × 11 150 of 6 × 6
3/ReLU 250 of 24 × 24 150 of 11 × 11 150 of 6 × 6
4/Max-Pool 250 of 12 × 12 150 of 5 × 5 150 of 3 × 3
5/Conv 250 of 12 × 12 200 of 5 × 5 200 of 3 × 3
6/ReLU 250 of 12 × 12 200 of 5 × 5 200 of 3 × 3
7/Max-Pool 250 of 6 × 6 200 of 2 × 2 200 of 1 × 1
8/Fc 250 neurons 300 neurons 300 neurons
9/ReLU 250 neurons 300 neurons 300 neurons
10/Fc 6 neurons 6 neurons 6 neurons

spatial transformer module. For instance, a network with only one
spatial transformer at the beginning is expressed as s1_c_c_c . Note
that s1 can only be placed before the first convolutional layer, s2
ahead of the second convolutional unit, and s3 preceding the third
convolutional module.

3.3. Stochastic gradient descent optimisation algorithms

Optimisation is the process of finding the set of parameters w

that minimise the loss function L. The loss function L quantifies
the quality of a particular set of parameters w based on how well
the inferred scores match the ground truth labels in the training
data. In this work, the last layer of the CNNs proposed is a softmax
classifier that uses the cross-entropy loss function (Eq. (3)), where
i enumerates the different classes, y is the predicted probability
distribution, and y′ is the true distribution represented as a one-
hot vector. The softmax function (Eq. (4)) is employed to compute
y. It takes a K -dimensional vector of arbitrary real-valued scores
z and squashes it to a K -dimensional vector f (z) of values in the
range (0, 1] that add up to 1, where j represents the jth element of
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Table 3
Configuration parameters of stochastic gradient descent optimisation algorithms.

SGD w/o momentum SGD with Nesterov

Momentum = 0 Momentum = 0.9
Weight decay = 0 Weight decay = 1e−4
Learning rate = 1e−2 Nesterov

Learning rate = 1e−3

RMSprop Adam

α = 0.99 β1 = 0.9
ϵ = 1e−8 β2 = 0.999
Weight decay = 0 ϵ = 1e−8
Learning rate = 1e−5 Weight decay = 0

Learning rate = 1e−4

the vector f .

Hy′ (y) = −

∑
i

y′

i log(yi)

yi ∈ (0, 1) :

∑
i

yi = 1∀i
(3)

fj(z) =
ezj∑K
j=1 ezk

. (4)

Gradient descent is the most common and established algo-
rithm for the optimisation of the neural network’s loss function.
Iteratively, it computes the gradient of the objective function Lwith
respect to themodel’s parametersw and thenupdates them.One of
its variants is the mini-batch gradient descent that can be written
as follows:

wk+1 = wk − ηk∇̌L(wk). (5)

This computes the gradient ∇̌L(wk) := ∇L(wk; x
(i:i+n)
k ; y(i:i+n)

k ) of
the loss function L and performs an update for every mini-batch
of n training examples x(i) and labels y(i), where η represents the
learning rate.

In order to accelerate training, certain techniques, such as Nes-
terov’s Accelerated Gradient method (NAG) (Nesterov, 1983), and
Polyak’s heavy-ball method (HB) (Polyak, 1964), have been widely
used. These can be categorised as stochastic momentummethods.

Adaptive optimisation methods constitute another family of
gradient descent algorithms. In contrast to non-adaptive methods,
they perform local optimisation by choosing a local distance mea-
sure constructed from the history of iteratesw1, . . . , wk. Examples
in this category include theAdaptiveGradient algorithm (AdaGrad)
(Duchi, Hazan, & Singer, 2011), Root Mean Square Propagation
(RMSprop) (Tieleman & Hinton, 2012), and Adaptive Moment Esti-
mation (Adam) (Kingma & Ba, 2015).

In this paper, we compare the effectiveness of four mini-batch
gradient descent optimisation algorithms applied to the CNNs pro-
posed in Section 3.2: Stochastic Gradient Descent (SGD) without
momentum (Qian, 1999), SGD with Nesterov’s accelerated gradi-
ent, RMSprop, and Adam.

For hyper-parameter tuning, several networks were trained for
several epochs in order to find an adequate initial learning rate
value that reaches model convergence. We observed that a high
learning rate such as 0.01 fails toworkwell in the cases of RMSprop
and Adam, since it achieves low accuracy scores. The main reason
could be that, unlike SGD where the learning rate is fixed and it
can optionally follow an annealing schedule, RMSprop and Adam
calculate adaptive learning rates for eachmodel’s parameter based
on the history of iterates. Consequently, a lower learning rate is set
for suchmethods in order to prevent loss values becoming stuck at
bad spots in the optimisation landscape. The initial parameters of
these algorithms are shown in Table 3.

Table 4
Recognition rate accuracy achieved by CNNs configurations described in
Section 3.2 using different loss function optimisers: SGD without momentum
(SGD), SGD with Nesterov accelerated gradient (SGD-N), Root Mean Square
Propagation (RMSprop) and Adaptive Moment Estimation (Adam). c refers to
convolutional block and s to spatial transformer module. Experiments were run
for 15 epochs.

CNN/Optimiser SGD SGD-N RMSprop Adam # Parameters

c_c_c 98.31 98.33 98.66 98.81 7,303,883
s1_c_c_c 99.09 99.15 99.37 99.20 11,137,389
c_s2_c_c 99.22 99.13 99.28 99.15 9,046,339
c_c_s3_c 99.02 99.04 99.11 99.39 9,053,839
s1_c_s2_c_c 99.31 99.30 99.38 99.23 12,879,845
s1_c_c_s3_c 99.21 99.25 99.32 99.32 12,887,345
c_s2_c_s3_c 99.34 99.23 99.45 99.28 10,796,295
s1_c_s2_c_s3_c 99.49 99.43 99.40 99.42 14,629,801

4. Results

Having described the CNN architectures and the loss function
optimisers, 32 experiments were run on a computer built with
an Intel Core i7-6700k CPU, 16 GB of RAM, and a Nvidia Geforce
GTX 1070 discrete GPU which has 1920 CUDA cores and 8 GB
of RAM, whereby the Torch scientific computer framework (Col-
lobert, Kavukcuoglu, & Farabet, 2011) and an implementation of
spatial transformer networks for Torch (Oquab, 2017)were applied
as development tools. The objective is to identify the best places
to add the STNs within the CNN at the same time as adding the
best stochastic gradient descent optimiser. With a mini-batch size
of 50, each experiment is a two-stage process that trains the
neural network with the GTSRB training set and then tests it with
the GTSRB validation set for 15 epochs. The results presented in
Table 4 show the maximum accuracy percentage achieved by each
CNN model over the validation set. The best configuration found
contains three spatial transformer modules (s1_c_s2_c_s3_c) and
the computed loss value is optimised by means of SGD without
momentum algorithm. On the other hand, the worst results are
obtained by the CNN that includes no spatial transformer (c_c_c)
regardless of the optimiser, and the second-worse results are given
by the CNN with a spatial transformer located immediately before
the last convolutional layer (c_c_s3_c). It should be borne in mind
that the winning configuration contains double the number of the
model parameters of the worst CNN. As a consequence, for the
SGD without momentum algorithm, the training time per epoch
of the CNN with three spatial transformers is 355.05 ± 0.8 s while
the CNN with no spatial transformer takes 212.12 ± 0.1 s. To
sum up, the inclusion of spatial transformer units into the main
CNN leads to superior classification performance, especially when
they are added between at least the first layers. This improvement
in performance is due to the fact that the spatial transformer
scale-normalises and crops out the appropriate traffic sign region,
thereby simplifying the subsequent classification task.

By considering such results and choosing the CNN s1_c_s2_c_
s3_c (Fig. 4), certain insights relatedwith the comparison of the op-
timisation algorithmswere revealed. Firstly, the solutions obtained
by adaptive methods (RMSprop, Adam) generalise worse than
those attained by non-adaptive methods (SGD, SGD-N). Early on in
training, all fourmethods achieve nearly perfect training accuracy;
however, during testing time, non-adaptive methods outperform
adaptive methods in terms of accuracy and they display a more
stable behaviour as shown in Fig. 5(b). Secondly, the adaptive
methods achieve similar training loss values and lower testing loss
values than non-adaptivemethods. Nevertheless, their testing per-
formance is worse, which again leads to the idea that non-adaptive
algorithms generalise better than adaptive algorithms. Finally, it
should be emphasised that Adam and RMSprop required the initial
learning rate to be tuned, as detailed in previous section, since
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Fig. 4. CNN for traffic sign recognition. Local contrast normalisation layers and the localisation network of spatial transformers have been omitted in the figure above to
simplify its visualisation. The st layers refer to spatial transformer networks, conv to convolutional layers, mp to max-pooling layers, fc to fully-connected layers, and sm to
the softmax layer.

(a) GTSRB (Train).

(b) GTSRB (Test).

Fig. 5. Comparison of training loss and testing loss versus accuracy for four different
loss function optimisers on applying the CNN model with 3 STNs s1_c_s2_c_s3_c .

with default settings, they achieved very low accuracy scores in
comparison with those of non-adaptive methods. Although these
insights should be studied in greater depth using other kinds of
deep neural network architectures and datasets, they do coincide
with the authors’ findings and with the results of a recent research
(Wilson, Roelofs, Stern, Srebro, & Recht, 2017).

Therefore, henceforth, the CNN s1_c_s2_c_s3_c along with the
SGD without momentum algorithm constitutes our proposed
method for traffic sign classification, whose processing times for
training and for testing one sample are 11.18 ± 0.02 µs and
4.28 ± 0.02 µs, respectively.

The following subsections describe the German and Belgian
traffic sign datasets along with the classification results attained.
The structure of each dataset is shown in Table 5 together with
the overall recognition results. Note that these datasets are highly
imbalanced, as can be observed in Fig. 6.

Table 5
European traffic sign classification datasets with their precision, recall and f1-score
recognition results.

Dataset Training images Testing images Classes

Germany 39,209 12,630 43
Belgium 4,533 2,562 62

Precision (%) Recall (%) F1 score (%)

Germany 99.71 99.71 99.71
Belgium 98.95 98.87 98.86

Table 6
Recognition-rate accuracy of various methods on GTSRB.

Paper Method Accuracy (%)

Ours Single CNN with 3 STNs 99.71
Jin et al. (2014) HLSGD (20 CNNs ensemble) 99.65
Cireşan et al. (2012) MCDNN (25 CNNs committee) 99.46
Yu et al. (2016) GDBM 99.34
Stallkamp et al. (2011) Human performance (best) 99.22
Jurisic et al. (2015) OneCNN 99.11 ± 0.10

Table 7
Number of learneable parameters of our proposed CNN compared with that of pre-
vious state-of-the-art approaches.

Paper Data augment.
or jittering

# trainable
parameters

# ConvNets

Ours No 14,629,801 1
Jin et al. (2014) Yes ∼23 million 20 (ensemble)
Cireşan et al. (2012) Yes ∼90 million 25 (committee)

4.1. GTSRB dataset results

The GSTRB dataset was introduced in Section 3.1. Our proposed
CNN with three spatial transformer layers and SGD without mo-
mentum as the loss function optimiser achieves an accuracy of
99.71% at the 21st epoch (6more than in the previous experiment).
At the time of writing this paper, our method is top-1 ranked in
the GTSRB and outperforms all previously published approaches
(Table 6). In addition, the total number of parameters learnt by
this CNN is 14,629,801, which is much lower than in other CNNs
proposed for traffic sign recognition systems (Table 7), thereby
leading to the further advantages of lower memory consumption,
lower computational cost, and a simpler pipeline.

4.2. BTSC dataset results

The Belgian traffic sign classification dataset (BTSC) (Math-
ias et al., 2013) has 4533 training images and 2562 validation
images split into 62 traffic sign types. In comparison with the
GTSRB dataset, this dataset has different traffic sign pictograms,
lighting conditions, occlusions, image resolutions, etc. Moreover,
it contains categories that cluster different types of traffic signs
(e.g. 50-speed-limit sign and 70-speed-limit sign), thereby raising
the difficulty in the recognition task. By using the SGDwithoutmo-
mentum loss optimiser algorithm and the CNN with three spatial
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(a) Germany. (b) Belgium.

Fig. 6. European dataset category distribution.

Table 8
Recognition-rate accuracy of various methods on BTSC.

Paper Method Accuracy (%)

Yu et al. (2016) GDBM 98.92
Ours Single CNN with 3 STNs 98.87
Jurisic et al. (2015) OneCNN 98.17 ± 0.22
Mathias et al. (2013) INNLP+SRC(PI) 97.83

transformer layers, the model obtains an accuracy of 98.87% in the
13th epoch (Table 8).

5. Conclusions and future work

In this paper, a method for automatic fine-grained recognition
of traffic signs is presented. The classification process is carried
out by using a single CNN that alternates convolutional and spatial
transformer modules. To find out the best CNN architecture, sev-
eral empirical experiments are conducted in order to investigate
the impact of multiple spatial transformer network configurations
within the CNN, together with the effectiveness of four stochastic
gradient descent optimisation algorithms. The CNN model out-
performs all previous state-of-the-art methods and achieves a
recognition rate accuracy of 99.71% in theGTSRB, and it is therefore
currently top-1 ranked. Furthermore, our proposed approach
needs no hand-crafted data augmentation and jittering used in
prior work (Cireşan et al., 2012; Jin et al., 2014; Sermanet & LeCun,
2011). Moreover, there are fewer memory requirements and the
network has a lower number of parameters to learn comparedwith
existing methods since the use of several CNNs in a committee or
in an ensemble is avoided.

Although our method is ranked in the top positions of the Ger-
man and Belgian datasets, there have been several recent releases
of publicly available traffic sign recognition datasets: these have
not yet been tested since they are less established than previous
datasets. Nevertheless, to the best of our knowledge, no other
scientific paper analyses the use of several STNs and the compar-
ison of stochastic gradient descent optimisers in the traffic sign
classificationproblemdomain. These experiments and their results
can help other researchers to apply this new proposal to these new
datasets.

Future work should study how to build a single deep neural
network that could provide top-notch traffic sign recognition-
rate accuracy in every country whose traffic sign pictographs are
similar, which is the case of Europe, for which no particular dataset
for any of the member countries is needed. Finally, we encourage
researchers and companies to build traffic sign classifiers which
are robust to those adversarial examples that could pose security

concerns that may cause negative effects, such as in the use of self-
driving cars, and consequently, may endanger other drivers and
pedestrians alike.
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CAPÍTULO 4

EVALUATION OF DEEP NEURAL NETWORKS

FOR TRAFFIC SIGN DETECTION SYSTEMS

Resumen

Los sistemas de detección de señales de tráfico constituyen un componente clave

en aplicaciones actuales del mundo real, como la conducción autónoma, y la seguri-

dad y asistencia del conductor. Este trabajo analiza el estado del arte de varios siste-

mas de detección de objetos (Faster R-CNN, R-FCN, SSD y YOLO V2) combinados

con varios extractores de características (Resnet V1 50, Resnet V1 101, Inception

V2, Inception Resnet V2, Mobilenet V1 y Darknet-19) desarrollados previamente por

sus autores correspondientes. Nuestro objetivo es explorar las propiedades de estos

modelos de detección de objetos modificándolos y adaptándolos específicamente al

dominio del problema de la detección de señales de tráfico mediante la transferencia

de conocimiento entre redes neuronales. En particular, varios modelos de detección

de objetos disponibles públicamente que fueron entrenados previamente con el con-

junto de imágenes COCO de Microsoft, se reajustan con el conjunto de imágenes

del German Traffic Sign Detection Benchmark (GTSDB). La evaluación y compa-

página 53



ración de estos modelos incluyen métricas clave, como la precisión media promedio

(mAP), el consumo de memoria, el tiempo de ejecución, el número de operaciones

de punto flotante, el número de parámetros del modelo, y el efecto que tienen los

tamaños de las imágenes de las señales de tráfico. Nuestros experimentos muestran

que Faster R-CNN Inception Resnet V2 obtiene el mejor mAP, mientras que R-FCN

Resnet 101 logra el mejor equilibrio entre precisión y tiempo de ejecución. Destacar

igualmente los modelos YOLO V2 y SSD Mobilenet, ya que el primero logra resul-

tados de precisión competitivos y es el segundo detector más rápido, mientras que el

segundo es el modelo más rápido y ligero en términos de consumo de memoria, por

lo que es una opción óptima para desplegarse como solución en dispositivos móviles

y embebidos.



Neurocomputing 316 (2018) 332–344 

Contents lists available at ScienceDirect 

Neurocomputing 

journal homepage: www.elsevier.com/locate/neucom 

Evaluation of deep neural networks for traffic sign detection systems 

Álvaro Arcos-García 

∗, Juan A. Álvarez-García, Luis M. Soria-Morillo 

Departamento de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, Sevilla 41012, Spain 

a r t i c l e i n f o 

Article history: 

Received 25 March 2018 

Revised 21 May 2018 

Accepted 6 August 2018 

Available online 11 August 2018 

Communicated by Prof. Zidong Wang 

Keywords: 

Deep learning 

Traffic sign detection 

Convolutional neural network 

a b s t r a c t 

Traffic sign detection systems constitute a key component in trending real-world applications, such as 

autonomous driving, and driver safety and assistance. This paper analyses the state-of-the-art of several 

object-detection systems (Faster R-CNN, R-FCN, SSD, and YOLO V2) combined with various feature ex- 

tractors (Resnet V1 50, Resnet V1 101, Inception V2, Inception Resnet V2, Mobilenet V1, and Darknet-19) 

previously developed by their corresponding authors. We aim to explore the properties of these object- 

detection models which are modified and specifically adapted to the traffic sign detection problem do- 

main by means of transfer learning. In particular, various publicly available object-detection models that 

were pre-trained on the Microsoft COCO dataset are fine-tuned on the German Traffic Sign Detection 

Benchmark dataset. The evaluation and comparison of these models include key metrics, such as the 

mean average precision (mAP), memory allocation, running time, number of floating point operations, 

number of parameters of the model, and the effect of traffic sign image sizes. Our findings show that 

Faster R-CNN Inception Resnet V2 obtains the best mAP, while R-FCN Resnet 101 strikes the best trade- 

off between accuracy and execution time. YOLO V2 and SSD Mobilenet merit a special mention, in that 

the former achieves competitive accuracy results and is the second fastest detector, while the latter, is 

the fastest and the lightest model in terms of memory consumption, making it an optimal choice for 

deployment in mobile and embedded devices. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Traffic sign recognition systems (TSRS) form an important com- 

ponent of Advanced Driver-Assistance Systems (ADAS) and are es- 

sential in many real-world applications, such as autonomous driv- 

ing, traffic surveillance, driver safety and assistance, road network 

maintenance, and analysis of traffic scenes. A TSRS normally con- 

cerns two related subjects: traffic sign detection (TSD) and traffic 

sign recognition (TSR). The former focuses on the localisation of 

the target in a frame, while the latter performs a fine-grained clas- 

sification to identify the type of the detected target [1,2] . 

Traffic signs constitute a fundamental asset within the road net- 

work because their aim is to be easily noticeable by pedestrians 

and drivers in order to warn and guide them both day and night. 

The fact that signs are designed to be unique and to have distin- 

guishable features, such as simple shapes and uniform colours, im- 

plies that their detection and recognition is a constrained prob- 

lem. Nevertheless, the development of a robust real-time TSRS still 

presents a challenging task due to the latency in the testing time, 
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which is crucial in making decisions based on the environment and 

real-world variability, such as scale variations, bad viewpoints, oc- 

clusions, and light conditions. Any TSRS must cope well with such 

issues. 

An ADAS relies on LiDAR, onboard RGB cameras, GPS, and IMU 

sensors. Although traffic signs are normally geo-located and in- 

cluded in navigation maps, they are sometimes replaced or in- 

cluded before the map is updated. The fusion of complementary 

information acquired from both LiDAR and RGB cameras is a com- 

mon approach used in TSRS [3,4] . However, 3D point cloud pro- 

cessing is computationally expensive and the calibration of the 

sensors and cameras has to be precise since errors of measurement 

in the order of centimeters may lead to deficient performance. 

In recent years, most of the state-of-the-art object-detection al- 

gorithms, such as Faster R-CNN [5] , R-FCN [6] , SSD [7] , and YOLO 

[8] , have used convolutional neural networks (CNNs) and can be 

deployed in mobile devices and consumer products. In order to 

decide which detector best suits a certain application, not only 

are standard accuracy metrics important, such as the mean av- 

erage precision (mAP), but other factors, such as memory con- 

sumption and running times, also play a critical role. For instance, 

autonomous vehicles require good detection accuracy and real- 

time performance, while mobile devices require lightweight model 

architectures with low memory usage. In the literature, those 

https://doi.org/10.1016/j.neucom.2018.08.009 
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detectors are commonly evaluated in object-detection challenges, 

such as Imagenet [9] , PASCAL VOC [10] , and Microsoft COCO 

[11] , whose corresponding datasets contain numerous images 

with common objects, such as cars, planes, people, and bicycles, 

whereby only accuracy results are reported. However, recent work 

evaluated the performance of these modern detectors and reported 

the key metrics, using the Microsoft COCO dataset [12] . Since many 

of the leading state-of-the-art object-detection approaches have 

converged on a common methodology that consists of a single 

CNN that uses sliding-window-style predictions and is trained with 

a mixed regression and classification objective, the authors imple- 

ment meta-architectures of Faster R-CNN, R-FCN, and SSD com- 

bined with various feature extractors, in order to compare a large 

number of detection systems in a unified manner. 

This paper analyses and compares eight CNN models for ob- 

ject detection that have been previously developed by their corre- 

sponding authors and pre-trained on the Microsoft COCO dataset. 

We fine-tune them on the German Traffic Sign Detection Bench- 

mark dataset (GTSDB) [13] in order to perform traffic sign detec- 

tion. Considering that the training process of deep CNNs using a 

very large dataset (e.g. the COCO dataset) requires High Perfor- 

mance Computing (HPC) resources, such as multiple GPUs, and 

several weeks of continuous training time, we perform transfer 

learning through fine-tuning to deal with such issues, which con- 

sists of reusing the weights learnt by a trained network on another 

related network [14] . Evaluated detection models are combinations 

of meta-architectures (Faster R-CNN, R-FCN, SSD, and YOLO V2) 

and feature extractors (Resnet V1 50, Resnet V1 101, Inception V2, 

Inception Resnet V2, Mobilenet V1, and Darknet-19). Such models, 

pre-trained on the COCO dataset, are publicly available. 1 , 2 

To the best of our knowledge, no other scientific paper analyses 

several object detectors based on deep learning that are specifi- 

cally adapted to the domain of the traffic sign detection problem, 

while evaluating multiple important factors, such as mAP, infer- 

ence execution time, and memory consumption. The main contri- 

butions of this paper are as follows: (1) Presentation of a brief sur- 

vey of modern object-detection algorithms based on CNNs, namely 

Faster R-CNN, R-FCN, SSD, and YOLO. (2) Analysis and evaluation 

of several state-of-the-art object detectors tuned especially for the 

traffic sign detection task. The evaluation of these models includes 

key metrics, such as the mAP, memory usage, running time, num- 

ber of floating point operations (FLOPs), number of parameters of 

the model, and the effect of traffic sign image sizes. (3) Compar- 

isons and experiments that are made publicly available so that re- 

searchers and practitioners can improve their knowledge and fine- 

tune new models for their comparison with our experimentation. 

(4) Findings that show that R-FCN strikes the best trade-off be- 

tween speed and accuracy, SSD models are weak at detecting small 

traffic signs, and that Mobilenet is the best architecture suited for 

mobile and embedded devices. 

The rest of the paper is organised as follows. Section 2 re- 

views related work of traffic sign detection systems. Methodology 

and experiments conducted to analyse several state-of-the-art CNN 

architectures for object detection are explained in Section 3 . In 

Section 4 , the traffic sign detection results obtained are analysed, 

compared and discussed. Finally, conclusions are drawn and fur- 

ther work is proposed in Section 5 . 

2. Related work 

State-of-the-art research in this field is analysed from two 

points of view: firstly, traffic sign detection solutions; secondly, 

deep neural network architectures for object detection. 

1 https://github.com/tensorflow/models/blob/master/research/object_detection 
2 https://pjreddie.com/darknet/yolo 

2.1. Traffic sign detection 

Various approaches have been studied for traffic sign detec- 

tion systems. In [15] , a detector composed of two modules is pro- 

posed. The former exploits the common properties of sign borders 

and extracts regions of interest (ROI). The latter performs finer 

validations over the ROIs and detects traffic signs using a com- 

bination of Histograms of Oriented Gradients (HOG) and Support 

Vector Machines (SVM). A sliding-window detector approach is 

proposed in [16] , where integral channel features classifiers are ap- 

plied along with the search for traffic signs on different scales and 

aspect ratios. Wang et al. [17] proposed the winner method for 

the prohibitory and mandatory signs in the German Traffic Sign 

Detection Benchmark (GTSDB) [13] challenge. Their system com- 

bines a coarse filtering module based on HOG and Linear Discrim- 

inant Analysis (LDA) classification on small sliding windows, and a 

fine filtering module, which includes HOG of larger windows and 

a SVM classifier. The previous methods are based on the sliding- 

window schema and feature extraction, which is time-consuming 

and complex and hence they are not useful for real-time object 

detection. Recently, Zang et al. [18] combine a local binary pat- 

tern (LBP) feature detector with an AdaBoost classifier [19] in or- 

der to extract ROIs for coarse selection followed by cascaded CNNs 

to reduce negative samples of ROI for traffic sign recognition. In 

2016, Zhu et al. [20] develop a method to detect and recognise 

traffic signs based on proposals by the guidance of fully convo- 

lutional network. They extent the R-CNN by using an object pro- 

posal method, EdgeBox [21] and achieve state-of-the-art results on 

Swedish Traffic Signs Dataset [22] . Additionally in 2016, Aghdam 

et al. [23] propose a method that implements the multi-scale slid- 

ing window technique within a CNN using dilated convolutions. 

Dilated convolutions (also known as atrous convolutions) support 

the exponential expansion of the receptive field without any loss 

of resolution or coverage and hence they enlarge the field of view 

of convolutional filters to incorporate a larger context without in- 

creasing the amount of computation or the number of parameters 

[24] . Such an approach locates traffic signs on the GTSDB high- 

resolution images with an average precision of 99.89% and runs at 

37.72fps. An overview of these revised TSD systems, evaluated on 

GTSDB, is shown in Table 1 . 

2.2. Convolutional neural networks for object detection 

Since 2013, CNNs, which are able to learn a hierarchy of fea- 

tures by building high-level features from low-level features, have 

become the standard for object-detection tasks. Examples include 

are OverFeat [25] , which produces bounding boxes and scores us- 

ing CNNs in a sliding-window fashion, and R-CNN [26] , which fol- 

lows a multi-stage pipeline where object region proposals are ex- 

tracted from the input image by means of Selective Search [27] , 

whereby feature maps are then computed with a CNN for every 

region proposal, and finally bounding box regressors and SVM clas- 

sifiers are applied. R-CNN is expensive both in time and memory 

because it executes a CNN forward-pass for each object proposal 

without sharing computation. 

To face such issues, Spatial Pyramid Pooling networks (SPPnets) 

[28] were proposed to improve R-CNN efficiency by sharing com- 

putation. SPPnet computes the feature maps from the entire input 

image only once, and then pools features in sub-images of arbi- 

trary size to generate fixed-length representations to train the de- 

tectors. Although the repeated calculation of convolutional feature 

maps is obviated in SSPnet, it still requires training in a multi-stage 

pipeline since the fixed-length feature vectors produced by multi- 

ple SPP layers are further passed on to fully-connected layers and 

then, on top of these, bounding box regressors and SVMs are ap- 

plied. Therefore, the whole process is still slow. Moreover, SSPnet 
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Table 1 

Evaluation results, inference time and hardware utilised in various TSD systems tested on the GTSDB. P refers to prohibitory class, D to danger 

and M to mandatory. 

Paper Evaluation (%) Inference time (FPS) Hardware 

Metric P D M CPU GPU 

Liang et al.(2013) [15] AUC 100 98.85 92 1–2.5 Intel 4-core 3.7 GHz –

Mathias et al. (2013) [16] AUC 100 100 96.98 2.5 Intel Core i7 870 3.6 GHz NVIDIA GTX 470 

Wang et al. (2013) [17] AUC 100 99.91 100 0.85 Intel Core i3 3.3 GHz –

Zang et al. (2016) [18] AUC 99.45 98.33 96.5 ∗ Intel Core 2 Duo 2.2 GHz –

Aghdam et al. (2016) [23] AP 99.89 37.72 – NVIDIA GTX 980 

∗ Time of the full process is not included. 

introduces a new problem since parameters below the SPP layer 

cannot be updated while training. 

The more recent Fast R-CNN [29] proposes a new training al- 

gorithm that provides solutions to fix the disadvantages of R-CNN 

and SPPnet, while improving on their speed and accuracy by shar- 

ing computation, and by training in a single-stage using a multi- 

task loss and reducing memory consumption. Instead of applying 

multiple SPP layers as in SSPnets, Fast R-CNN uses a single-level 

SPP layer, which is called the RoI Pooling layer. Furthermore, the 

multi-task loss is calculated on top of the network where bound- 

ing box regressors and softmax classifiers are applied. The training 

of the layers below the RoI Pooling layer is possible thanks to these 

changes, thereby overcoming the original problem of SPPnets. Al- 

though SPPnet and Fast-RCNN had reduced the running time of 

these detection networks, there was a bottleneck exposed in the 

generation of regions of interest from a proposal method. 

In Faster R-CNN [5] , in order to overcome such a bottleneck, 

authors replaced the use of Selective Search with a Region Pro- 

posal Network (RPN) that shares convolutional feature maps with 

the detection network, thus enabling nearly cost-free region pro- 

posals. Similar to Faster R-CNN, the Region-based Fully Convo- 

lutional Networks (R-FCN) [6] approach applies position-sensitive 

score maps along with a fully-convolutional region-based detec- 

tor with shared computation that has no need for the per-region 

subnetwork to be executed hundreds of times per image. Other 

approaches, such as Single Shot MultiBox Detector (SSD) [7] and 

YOLO (You Only Look Once) [8] , encapsulate all the computation in 

a single fully-convolutional neural network instead of having a se- 

quential pipeline of region proposals and object classification. This 

ability leads to a much faster object detector. 

3. Experimentation 

The following subsections describe the dataset and the specific 

configuration used in several CNNs that are fine-tuned for traf- 

fic sign detection. Following [12] , our experimental setup is com- 

posed of four meta-architectures (Faster R-CNN, R-FCN, SSD, and 

YOLO V2) and six convolutional feature extractors (Resnet V1 50, 

Resnet V1 101, Inception V2, Inception Resnet V2, Mobilenet V1, 

and Darknet-19). The feature extractors considered are all well- 

known convolutional neural networks for image classification that 

are applied to the input image to obtain high-level features. 

Due to time restrictions and computational costs, all exper- 

iments presented in this paper use publicly available object- 

detection models that were pre-trained on the Microsoft COCO 

dataset [11] . By means of transfer learning [30] , we fine-tune these 

models with the GTSDB dataset in order to detect and classify traf- 

fic sign superclasses based on their shapes and colours: mandatory, 

prohibitory, and danger. At the time of writing this paper, all pre- 

trained models available at the official repositories of Tensorflow 

Object Detection API [12] and YOLO [8] were used in our exper- 

imental setup. The combinations of architectures and feature ex- 

tractors studied in this work are presented in Table 2 . It can be 

Table 2 

Feature extractors vs. architectures. Combinations of CNN architectures 

and feature extractors evaluated in this paper. 

Faster R-CNN R-FCN SSD YOLO V2 

Resnet V1 50 � 

Resnet V1 101 � � 

Inception V2 � � 

Inception Resnet V2 � 

Mobilenet V1 � 

Darknet-19 � 

observed that not all possible combinations have been explored. 

The reason is that each feature extractor must be tailored for use 

within a meta-architecture. These not trivial adjustments need sev- 

eral experiments and weeks of training, and hence only pre-trained 

combinations have been selected. 

3.1. Datasets 

Several publicly available traffic sign datasets have been gath- 

ered in countries such as the United States [31] , Belgium [32] , Ger- 

many [13] , Croatia [33] , Italy [34] , Sweden [22] , and China [35] . 

This paper focuses its experimentation on the German Traffic 

Sign Detection Benchmark (GTSDB) [13] dataset. There are multi- 

ple reasons for choosing this dataset over the others, including the 

fact that it is highly accepted and is widely used for comparing 

traffic sign detection approaches in the literature. Moreover, its au- 

thors and the organisation behind them held a public challenge, 

whereby scientists from different fields contributed their results 

and tested the GSTDB dataset. Nowadays, a GTSDB website is main- 

tained where submissions of results are still accepted, processed 

and shown in a leaderboard. Such ranking helps to reveal which 

state-of-the-art methodologies are utilised for the task of traffic 

sign detection, although their processing times are not considered. 

Last but not least, the GTSRB dataset contains natural traffic scenes 

recorded in various types of roads (highway, rural, urban) during 

the daytime and at twilight, and numerous weather conditions are 

featured. This dataset is composed of 900 full images containing 

1206 traffic signs that are split into a training set of 600 images 

(846 traffic signs) and a testing set with 300 images (360 traf- 

fic signs). Each of these images contains zero, one, or multiple 

traffic signs which normally suffer from differences in orientation, 

light conditions, or occlusions. Signs are grouped in four categories 

namely mandatory, prohibitory, danger, and other, however, signs 

labelled as other remain in minority and are not relevant to the 

challenge itself, and hence are discarded. Consequently, the train- 

ing set contains 396 prohibitory (59.5%), 114 (17.1%) mandatory and 

156 (23.4%) danger traffic sign samples while the testing set com- 

prises 161 prohibitory, 49 mandatory and 63 danger traffic sign im- 

ages. The following deep neural networks for traffic sign detection 

are trained and evaluated using this dataset. Fig. 1 shows some 

images from this dataset. The following sections and subsections 

describe each meta-architecture used and its feature extractors. 
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Fig. 1. Example images from GTSDB dataset. 

3.2. Meta-architectures for object detection 

In this subsection, the main features of each meta-architecture 

(Faster R-CNN, R-FCN, SSD, and YOLO V2) are summarised. 

3.2.1. Faster R-CNN 

As mentioned in Section 2 , Faster R-CNN [5] introduces a Re- 

gion Proposal Network (RPN), which is a fully convolutional neural 

network that simultaneously predicts object bounding boxes and 

objectness scores. It makes the model completely trainable end-to- 

end since full-image convolutional feature maps are shared with 

the detection network. Region proposals are generated in a sliding- 

window fashion, sliding a small network over the output feature 

map of the latest convolutional layer. The RPN predicts multiple 

region proposals at each sliding-window location, where k is the 

maximum number of possible proposals for each location. The k 

proposals are parameterised relative to k reference boxes called 

anchors. Each of these anchor boxes are associated with an as- 

pect and scale ratio, and centred at the sliding-window location. 

In order to reduce redundancy of overlapping RPN proposals, non- 

maximum suppression (NMS) algorithm is first performed on the 

proposal regions based on their objectness scores. The NMS algo- 

rithm is responsible for merging multiple detections that belong 

to the same object. Only the top − N ranked proposal regions are 

then forwarded to the detection network, which finally regresses 

bounding boxes and classifies each of them in a determined object 

class. 

During experimentation, the number of region proposals to be 

sent to the box classifier is set to 300 as this is the number of 

boxes used by the authors in their corresponding papers. Moreover, 

each feature extractor is trained on images scaled to 600 pixels on 

their shortest edge using a SGD with momentum (set to 0.9) as the 

loss-function optimiser [36] along with batch sizes of 1. The initial 

learning rate is set to 0.0 0 03 and is manually reduced by a factor 

of 10 twice: after 90 0,0 0 0 iterations and 1,20 0,0 0 0 iterations. 

3.2.2. R-FCN 

Region-based Fully Convolutional Networks (R-FCN) [6] take the 

architecture of Faster R-CNN but with only convolutional neural 

networks. That is, the R-FCN approach applies a fully convolutional 

region-based detector whose computation is shared across the en- 

tire image, thereby obviating the need for the computation of per- 

region subnetwork to be executed hundreds of times per image. 

To this end, authors propose position-sensitive score maps to ad- 

dress a dilemma between translation-invariance in image classifi- 

cation (where the shift of an object inside an image should be in- 

discriminate), and translation-variance in object detection (where 

the detection task needs meaningful localisation representations 

for the evaluation of how the candidate box overlaps the object). 

Therefore, R-FCN adopts a sequential two-stage pipeline of region 

proposal and region classification where candidate regions are ex- 

tracted by a fully convolutional RPN. 

In the same way as for Faster R-CNN, the training configuration 

as well as the hyper-parameter tuning is exactly the same as was 

described in Section 3.2.1 above. 

3.2.3. SSD 

In comparison with Faster R-CNN and R-FCN architectures, SSD 

[7] encapsulates all computation in a single feed-forward convolu- 

tional neural network to directly infer box offsets and object cate- 

gory scores. Consequently, a stage of bounding box proposal gen- 

eration and subsequent feature or pixel resampling is not required. 

SSD uses a set of default boxes (also known as anchors or anchor 

boxes) that are hand-picked by the developer who has to previ- 

ously observe the size of the objects to be detected. These default 

boxes aim to discretise the output space of bounding boxes over 

different scales and aspect ratios per feature map location. That is, 

at each feature map cell, SSD predicts the offsets relative to the an- 

chor shapes in the cell, as well as the category scores that indicate 

the presence of an object class instance in each of those anchors. 

Moreover, to handle objects of multiple sizes, SSD combines 

predictions from feature maps of different resolutions. The early 

network layers of an SSD model are based on a standard architec- 

ture used for high-quality image classification. An auxiliary struc- 

ture is then added to the network in order to produce multi-scale 

feature maps for detection purposes. Such a structure is composed 

of convolutional feature layers whose aim is to decrease the size 

of these feature maps progressively and allow predictions of de- 

tections on multiple scales. 

For experimentation, unlike Faster R-CNN and R-FCN, SSD mod- 

els are trained using RMSprop [37] with a momentum of 0.9 as 

the loss-function optimiser and batch sizes of 32. The base learn- 

ing rate is set to 0.004 and is exponentially decayed by a factor of 

0.95 for each 80 0,0 0 0 iterations. As regards input image sizes, they 

are resized to a fixed shape of 300 × 300 pixels. 

3.2.4. YOLO V2 

YOLO V2 [8] is inspired by the RPN of Faster R-CNN, which uses 

hand-picked anchor boxes to predict bounding boxes based on the 

offsets to these anchors at every location in a feature map. How- 

ever, on one hand, the YOLO V2 approach runs k-means clustering 

on the training-set bounding boxes using a custom distance met- 

ric ( Eq. (1) ) in order to find good anchor boxes instead of choosing 

them by hand. Picking better anchor boxes makes it easier for the 

network to learn to predict good detection. On the other hand, in 
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order to prevent any anchor box ending up at any point in the im- 

age, it predicts the width and height of the box as offsets from 

cluster centroids and location coordinates relative to the location 

of the grid cell, by applying a logistic activation to constrain the 

predictions of the network to fall between 0 and 1. 

d (box, centroid ) = 1 − IoU(box, centroid) (1) 

The classification model that is used as the base of YOLO V2 is 

called Darknet-19. Furthermore, YOLO V2 uses batch normalisation, 

which helps to regularise the model and leads to notable improve- 

ments in convergence while stabilising the model [38] . After train- 

ing, the network is modified and fine-tuned for object detection as 

described in Section 3.3.5 . 

In order to improve detection scores, standard data augmenta- 

tion, such as rotations, random crops and exposure, hue and satu- 

ration shifts, are performed along with multi-scale training, which 

re-sizes the input image size every few iterations, thereby forcing 

the network to learn to predict detections at different resolutions. 

In the same way as for SSD, the loss-function optimiser applied 

to train the model is RMSprop with a momentum of 0.9 and batch 

sizes of 64. Moreover, the input image size is 608 × 608 pixels, 

and the initial learning rate is set to 0.001, which is decayed by a 

factor of 10 at steps 40 0,0 0 0 and 450,0 0 0. 

3.3. Feature extractors 

We adopt well-known convolutional neural networks for image 

classification that will be used as feature extractors to obtain high- 

level features from input images: Resnet V1 50, Resnet V1 101, In- 

ception V2, Inception Resnet V2, Mobilenet V1, and Darknet-19. 

3.3.1. Resnet V1 50 and Resnet V1 101 

Resnet V1 101 and Resnet V1 50 are deep residual networks 

[39] that have succeeded in many challenges, such as ILSVRC, 

and COCO 2015 (detection, segmentation and classification). To 

be used as feature extractors of Faster R-CNN and R-FCN meta- 

architectures, these networks are are split into two stages. The for- 

mer performs the extraction of RPN features and the latter extracts 

box classifier features. 

Both of these feature extractors are built with four residual 

blocks: the first three (namely con v 2 _ x, con v 3 _ x, and con v 4 _ x in 

the original paper) extract RPN features, while the last layer of 

con v 4 _ x is used for predicting region proposals. Additionally, box 

classifier features are extracted by the last layer of the fourth resid- 

ual block ( con v 5 _ x ). 

3.3.2. Inception V2 

Inception V2 [40] sets the state-of-the-art in the ILSVRC2014 

detection and classification challenges. Inception networks make 

use of Inception units that are able to increase the depth and 

width of a network without increasing its computational cost. 

On one hand, when this feature extractor is used in combina- 

tion with Faster R-CNN meta-architecture, RPN feature maps are 

extracted from the Mixed _ 4 e layer and proposal classifier features 

from the Mixed _ 5 c layer. These layers are called respectively incep- 

tion (4 e ) and inception (5 b ) in the network architecture described in 

[40] . 

On the other hand, when SDD is applied as a meta-architecture, 

the feature extraction of region proposals is not required in SSD 

(as was mentioned in Section 3.2.3 ), and hence Inception V2 is not 

split, but instead the whole network model is adopted as the main 

feature extractor. However, auxiliary convolutional feature maps on 

multiple scales are needed. The topmost convolutional feature map 

and a high resolution feature map at a lower level are selected. 

A sequence of four convolutional layers with batch normalisation 

and depths 512, 256, 256, and 128, is then appended to the previ- 

ously selected layers to perform the prediction task. Each of these 

additional layers decay the spatial resolution of feature maps by 

a factor of 2. For Inception V2, multi-resolution feature maps are 

generated by the layers M ixed _ 4 c and M ixed _ 5 c. 

3.3.3. Inception Resnet V2 

In the case of Inception Resnet V2 [41] , the computation effi- 

ciency of Inception units are combined with the optimisation ben- 

efits conferred by residual connections. This feature extractor is 

only combined with Faster R-CNN meta-architecture in our exper- 

iments and hence can be split into two stages. On one hand, RPN 

features are extracted from the Mixed _ 6 a layer including its asso- 

ciated residual layers (17 × 17 grid module, known as Inception- 

ResNet-B in [41] ). On the other hand, box classifier features are 

obtained using the layers located immediately after the Inception- 

ResNet-B module up to the convolutional layer Con v 2 d _ 7 b _ 1 x 1 , 
which follows the 8 × 8 grid module named Inception-ResNet-C 

in [41] . This feature extractor is operated with dilated convolutions 

so that the effective output stride size is 8 pixels. 

3.3.4. Mobilenet V1 

The Mobilenet V1 [42] model is designed for efficient inference 

in mobile vision applications thanks to the use of depthwise sepa- 

rable convolutions that reduce both the number of parameters and 

the computational cost. In fact, Mobilenet V1 achieves the same 

level of accuracy as VGG-16 [43] on Imagenet with only 1/30 of the 

model size and computational cost. 

This feature extractor is used in combination with SDD meta- 

architecture in our experiments, for that reason, its network ar- 

chitecture is not split and auxiliary convolutional feature maps at 

multiple scales are needed. Analogously to the modifications per- 

formed when using Inception V2 with SSD ( Section 3.3.2 ), multi- 

resolution feature maps are generated by the layers con v _ 11 and 

con v _ 13 , and four additional convolutional layers are then ap- 

pended with decaying resolution and depths 512, 256, 256, and 

128, respectively. 

3.3.5. Darknet-19 

As described in Section 3.2.4 , the original object-classification 

model Darknet-19, which acts as a feature extractor, is modified 

to perform object detection. Darknet-19 is similar to the VGG 

[43] model architecture since it doubles the number of feature 

maps after every pooling layer and uses chiefly 3 × 3 kernels. 

Moreover, it applies a global average pooling to make predictions 

together with 1 × 1 kernels to reduce space dimensionality be- 

tween 3 × 3 convolutions [44] . 

This model is first trained on Imagenet using images of 224 ×
224 pixels. The model is then fine-tuned at a larger image size 

for a few epochs. This gives the network time to adjust its filters 

to work better on higher resolution inputs. Finally, the network is 

modified and fine-tuned for detection by removing the last con- 

volutional layer and replacing it by adding on three 3 × 3 con- 

volutional layers with 1024 filters each followed by a final 1 × 1 

convolutional layer with the number of outputs needed for the de- 

tection task. 

The result is the YOLO V2 model architecture shown in Table 3 . 

The output feature maps of the last convolutional layer depend on 

several factors including the number of predicted bounding boxes 

at each cell PredB , which corresponds to the number of anchor 

boxes, the number of coordinates CoorB , and the number of dif- 

ferent classes ClassB . We set CoorB = 5 as the network predicts the 

centre coordinates, width, height and confidence per each bound- 

ing box resulting in (ClassB + CoorB ) ∗ P redB = (ClassB + 5) ∗ P redB 

output feature maps. For this experiment, we set 5 anchor boxes 
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Table 3 

YOLO V2 network architecture. 

Layer Type # Maps & neurons Kernel size/stride 

0 Input 3 m. of 608 × 608 n. 

1 Conv 32 m. of 608 × 608 n. 3 × 3/1 

2 Max-Pool 32 m. of 304 × 304 n. 2 × 2/2 

3 Conv 64 m. of 304 × 304 n. 3 × 3/1 

4 Max-Pool 64 m. of 152 × 152 n. 2 × 2/2 

5 Conv 128 m. of 152 × 152 n. 3 × 3/1 

6 Conv 64 m. of 152 × 152 n. 1 × 1/1 

7 Conv 128 m. of 152 × 152 n. 3 × 3/1 

8 Max-Pool 128 m. of 76 × 76 n. 2 × 2/2 

9 Conv 256 m. of 76 × 76 n. 3 × 3/1 

10 Conv 128 m. of 76 × 76 n. 1 × 1/1 

11 Conv 256 m. of 76 × 76 n. 3 × 3/1 

12 Max-Pool 256 m. of 38 × 38 n. 2 × 2/2 

13 Conv 512 m. of 38 × 38 n. 3 × 3/1 

14 Conv 256 m. of 38 × 38 n. 1 × 1/1 

15 Conv 512 m. of 38 × 38 n. 3 × 3/1 

16 Conv 256 m. of 38 × 38 n. 1 × 1/1 

17 Conv 512 m. of 38 × 38 n. 3 × 3/1 

18 Max-Pool 512 m. of 19 × 19 n. 2 × 2/2 

19 Conv 1024 m. of 19 × 19 n. 3 × 3/1 

20 Conv 512 m. of 19 × 19 n. 1 × 1/1 

21 Conv 1024 m. of 19 × 19 n. 3 × 3/1 

22 Conv 512 m. of 19 × 19 n. 1 × 1/1 

23 Conv 1024 m. of 19 × 19 n. 3 × 3/1 

24 Conv 1024 m. of 19 × 19 n. 3 × 3/1 

25 Conv 1024 m. of 19 × 19 n. 3 × 3/1 

26 Route(17) 512 m. of 38 × 38 n. 

27 Reorg 2048 m. of 19 × 19 n. -/2 

28 Concat(25,27) 3072 m. of 19 × 19 n. 

29 Conv 1024 m. of 19 × 19 n. 3 × 3/1 

30 Conv 40 m. of 19 × 19 n. 1 × 1/1 

computed through the k-means clustering algorithm, and hence 

the number of filters of the last convolutional layer is 40. 

4. Results 

In this section we present the performance of the traffic sign 

detector experiments described in Section 3 . The analysis of each 

of these experiments includes multiple measures, such as accuracy, 

number of parameters, floating point operations (FLOPs), memory 

consumption, and processing time. The models are trained and 

evaluated on a computer built with an Intel Core i7-4770 CPU, 16 

GB of RAM and a NVIDIA Titan Xp discrete GPU, which has 3840 

CUDA cores and 12 GB of RAM. As development tools, we used 

Darknet, 3 Darkflow 

4 and the Tensorflow Object Detection API [12] . 

Timings are comprised of both GPU and CPU execution times, 

and post-processing tasks, such as NMS, are also included. Both 

execution times and memory demand are reported for a batch size 

of one and they are averaged over 300 images (GTSDB testing set). 

The Tensorflow profiler tool 5 was employed to compute these mea- 

sures as well as the number of parameters and floating point oper- 

ations (multiply-adds). Our timings are comparable to each other, 

however, they may not be directly comparable to other reported 

timing results in the literature since major differences could ex- 

ist within the computer used, such as software drivers, hardware, 

framework, and batch size. Nevertheless, factors, such as the total 

memory allocation of the models during inference, the number of 

parameters, and the floating point operations, constitute platform- 

independent measures. 

3 http://pjreddie.com/darknet/ (accessed 11.09.2017) 
4 https://github.com/thtrieu/darkflow (accessed 11.09.2017) 
5 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/core/profiler 

(accessed 27.10.2017) 

4.1. Accuracy evaluation measure 

The mean Average Precision (mAP) quantitative measure from 

PASCAL VOC 2010 [10] is used to evaluate the performance of the 

proposed traffic sign detector. First, the interpolated Average Pre- 

cision (AP), which tracks the precision/recall curve, is computed 

by setting the precision for recall r to the maximum precision ob- 

tained for any recall r ′ ≥ r ( Eq. (2) ), where p ( r ′ ) is the measured 

precision at recall r ′ . The AP measure can then be calculated as 

the area under this curve by numerical integration that is approx- 

imated by the sum of the precision at every k where the recall 

changes, multiplied by the change in recall �r ( k ) ( Eq. (3) ), where 

N is the total number of points where recall changes. Finally, the 

mAP measure is calculated by taking the average of the APs of all 

the classes. 

p(r) = max 
r ′ : r ′ ≥r 

p(r ′ ) (2) 

AP = 

N ∑ 

k =1 

p(k )�r(k ) (3) 

In order to determine true and false positive predicted bound- 

ing boxes B p , their respective intersection over union (IoU) with 

the ground truth bounding boxes B gt are computed. IoU is defined 

as the area of overlap B gt ∩ B p divided by the area of union B gt ∪ B p 
( Eq. (4) ). A prediction is correct when its IoU is greater than 0.5 

and it is a false positive otherwise. Moreover, ground truth objects 

with no matching detection are false negatives and multiple detec- 

tions on the same traffic sign in an image are considered as false 

positives. 

IoU = 

area (B gt ∩ B p ) 

area (B gt ∪ B p ) 
= 

area (B gt ∩ B p ) 

area (B gt ) + area (B p ) − area (B gt ∩ B p ) 

(4) 

4.2. Analyses 

Detailed accuracy results per traffic sign superclass are pre- 

sented in Table 4 along with precision, recall, average precision, 

and average IoU attained by each detector. On one hand, the worst 

AP belongs to the mandatory traffic sign category in almost all 

models, and noticeable differences exist between the AP of the 

other classes, especially in detectors with lightweight feature ex- 

tractors, such as SSD variants and YOLO V2. On the other hand, 

every evaluated model obtains the best AP in its detection of pro- 

hibitory traffic sign images. Faster R-CNN Inception Resnet V2 even 

achieves an accuracy of 100% in this category. These results are 

highly correlated with the number of training traffic sign samples 

that are included in the GTSDB dataset described in Section 3.1 , 

where 59.5% are prohibitory and only 17.1% are mandatory. Table 5 

includes the FPS, Megabytes of memory, Gigaflops, and millions of 

parameters of each model sorted by its mAP. 

The execution time is really a critical factor for real-time TSD 

systems. The overall mAP achieved by each model configuration to- 

gether with its processing time are drawn in Fig. 2 . Three groups 

are observed. The first group is comprised of the fastest models, 

YOLO V2 and SSD, which do not perform region proposal genera- 

tion. YOLO V2 outperforms the SSD models in terms of mAP, al- 

though they do have similar running times. SSD Mobilenet is the 

fastest of all the models, with an execution time of 15.14ms per 

image (66fps) although its accuracy is slightly worse than that of 

SSD Inception V2. The second cluster is composed of the Faster R- 

CNN models with lightweight feature extractors and R-FCN Resnet 

101. These models are more accurate and require approximately 

100 ms per image on average. In fact, the accuracies obtained by R- 

FCN and Faster R-CNN when the feature extractor is a Resnet 101 
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Table 4 

GTSDB accuracy results (in %) as attained by each traffic sign detector model. Average IoU only 

takes IoU values of true positive bounding boxes. 

Model Class Avg. IoU Precision Recall AP 

Faster R-CNN Resnet 50 Prohibitory 82.52 91.38 98.75 98.62 

Mandatory 81.21 70.00 85.71 85.15 

Danger 85.07 79.45 92.06 90.78 

Faster R-CNN Resnet 101 Prohibitory 87.29 90.29 98.14 98.13 

Mandatory 85.58 67.65 93.88 93.46 

Danger 87.05 85.51 93.65 93.64 

Faster R-CNN Inception V2 Prohibitory 82.73 81.22 99.38 99.36 

Mandatory 79.66 62.50 81.63 80.47 

Danger 85.62 81.69 92.06 92.03 

Faster R-CNN Inception Resnet V2 Prohibitory 91.37 96.99 100 100 

Mandatory 89.16 79.31 93.88 93.66 

Danger 90.11 92.19 93.65 93.65 

R-FCN Resnet 101 Prohibitory 87.93 84.66 99.38 99.37 

Mandatory 85.37 76.67 93.88 92.58 

Danger 86.95 86.76 93.65 93.52 

SSD Inception V2 Prohibitory 81.76 96.95 78.88 78.77 

Mandatory 80.85 90.00 55.10 54.46 

Danger 85.76 93.18 65.08 65.05 

SSD Mobilenet Prohibitory 80.49 92.50 68.94 67.03 

Mandatory 78.51 89.65 53.06 52.01 

Danger 81.11 79.63 68.25 65.85 

YOLO V2 Prohibitory 73.96 92.31 89.44 88.73 

Mandatory 74.66 79.07 69.39 65.70 

Danger 75.82 94.55 82.54 82.06 

Table 5 

Models’ properties ordered by mAP. 

Model mAP FPS Memory (MB) GigaFLOPS Parameters (10 6 ) 

Faster R-CNN Inception Resnet V2 95.77 2.26 18250.45 1837.54 59.41 

R-FCN Resnet 101 95.15 11.70 3509.75 269.90 64.59 

Faster R-CNN Resnet 101 95.08 8.11 6134.71 625.78 62.38 

Faster R-CNN Resnet 50 91.52 9.61 5256.45 533.58 43.34 

Faster R-CNN Inception V2 90.62 17.08 2175.21 120.62 12.89 

YOLO V2 78.83 46.55 1318.11 62.78 50.59 

SSD Inception V2 66.10 42.12 284.51 7.59 13.47 

SSD Mobilenet 61.64 66.03 94.70 2.30 5.57 

Fig. 2. Accuracy vs. execution time. 

network, are very close to the Faster R-CNN Inception Resnet V2 

model (third group), which attains the best mAP: 95.77%. How- 

ever, it is by far the slowest model due to its processing time, 

which is almost half a second. Consequently, the R-FCN Resnet 

101 model strikes the best balance between accuracy and speed 

among the model configurations studied, since it achieves an mAP 

of 95.15% and takes 85.45ms per image (11.7fps). A faster option 

with still good accuracy is that of YOLO V2, which runs at 21.48 ms 

(46.55 fps). 

Fig. 3. Accuracy classified by traffic sign size for 8 different detectors. 

Additionally, we notice that traffic sign image sizes have nega- 

tive effects on accuracy. Ground truth traffic sign samples that be- 

long to the validation set are divided into three groups regarding 

their width. The first group contains 89 images, whose width is 

in the range [0,32). The second group has 93 samples, and their 

width is included in the range [32,46). The third group clusters 91 

images, which width is greater than 45 pixels. All detectors per- 

form better on larger traffic sign images, as can be seen in Fig. 3 . 

One possible reason that explains this fact is that the initial con- 

volutional weights of the networks evaluated were pre-trained on 

the Microsoft COCO dataset and most of its images have large ob- 

jects in the centre of the image. However, traffic signs are gen- 

erally localised towards the edges of the image and are smaller. 

YOLO V2 and SSD models show poor performance on small traffic 

sign images despite reaching accuracy scores better than or similar 
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Fig. 4. FLOPS vs. execution time. 

Fig. 5. Parameters vs. execution time. 

to Faster R-CNN and R-FCN models on large traffic sign samples. 

This insight can also be observed in the papers where the mod- 

els were originally described by their authors [5–8] and in [12] . 

For instance, the YOLO V2 model, trained on the PASCAL VOC 2012 

dataset [8] , achieves a lower performance in detecting small ob- 

jects, such as plants (49.1% AP) and bottles (51.8% AP) in compari- 

son with its performance in detecting other kinds of larger objects, 

such as bikes (82% AP), airplanes (86.3% AP), and cars (76.5% AP). 

Fig. 4 represents the FLOP count against execution time. 

The number of FLOPs computed by each model is a platform- 

independent measure. On one hand, the use of denser blocks in 

residual networks leads to higher FLOPs and computation time for 

both Faster R-CNN and R-FCN detectors. On the other hand, SSD 

Mobilenet is the model with the fewest FLOPs and shortest run- 

ning time. It should be borne in mind that the FLOP counter may 

not be linear with respect to actual execution times, due to mul- 

tiple factors, such as hardware optimisation, and memory I/O. This 

fact can be observed in the comparison of YOLO V2 and SSD In- 

ception V2 models. The former executes 62.78 billion FLOPs in less 

time than the latter, which performs 7.59 billion FLOPs. Moreover, 

the number of parameters that each neural network has to learn 

(weights and bias) is not directly related with their running time, 

as shown in Fig. 5 . It can be seen that models whose feature ex- 

tractor is a Resnet 101 contain millions more parameters than de- 

tectors with higher (Faster R-CNN Inception Resnet V2) or similar 

(Faster R-CNN Resnet 50) execution times. YOLO V2 is an analo- 

gous case since having approximately 50 million learnable param- 

eters, its computation time is shorter than or nearly equal to that 

Fig. 6. Memory vs. execution time. 

Fig. 7. Analysis overview of the traffic sign detector models. 

of lightweight models, such as SSD Mobilenet, SSD Inception V2, 

and Faster R-CNN Inception V2. 

Memory consumption is also a critical factor. It helps to make 

decisions, such as whether a certain model can be trained on a 

single GPU or whether it is necessary to use a cluster of these 

computation units, and to decide whether a determined neural 

network architecture can be deployed in mobile and embedded de- 

vices. Fig. 6 plots total memory usage against the running time of 

the models studied. A high linear correlation exists between exe- 

cution time and larger and more powerful feature extractors that 

require much more memory. Again, the models based on resid- 

ual networks occupy the top positions in terms of memory usage, 

while SSD Mobilenet and SSD Inception V2 models are the cheap- 

est in that they require 94.70 MB and 284.51 MB, respectively. 

Finally, a radar chart is plotted in Fig. 7 whose spokes repre- 

sent the five measured factors as described above: mAP, execu- 

tion time, FLOPs, parameters, and memory usage. The minimum 

value of each measure was considered as the best, except for mAP, 

where the maximum value was taken as the best. Moreover, for 

each factor, all values were converted to the range [0,10]. It should 

be borne in mind that mAP, running time, and memory consump- 

tion constitute the most critical factors. Consequently, we observe 

that the best overall models are R-FCN Resnet 101 and Faster 

R-CNN Inception V2. 

4.3. Traffic sign detections in real-world scenarios 

In Figs. 8 –10 , a side-by-side comparison is presented of the traf- 

fic signs detected in images from the GTSDB dataset using the 

eight detectors evaluated in this paper. The visualised detections 

have a score value greater than a threshold of 0.5. Three common 

scenarios are represented in these figures: Firstly, a road scene that 

contains small, medium-sized, and large traffic signs of different 
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Fig. 8. Example detections from 8 different models in a road scene with small, medium-sized and large traffic signs of multiple categories. All detections are correct in 

examples a and d . In b, c, e and f , the smallest traffic sign is not recognised. Finally, in g and h , two traffic signs are not localised. 
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Fig. 9. Example detections from 8 different models in a road scene with small traffic signs of the same type grouped on both sides of the road. All detections are correct in 

examples a, b, c and d . In e , there are two false positives. Two traffic signs remain undetected in f . Finally, in g and h three traffic signs are not recognised. 
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Fig. 10. Example detections from 8 different models in a road scene with large traffic signs of various categories grouped on both sides of the road. Only in g is there an 

undetected traffic sign. 
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categories ( Fig. 8 ); Secondly, an image where small grouped traffic 

signs located on both sides of the road can be visualised ( Fig. 9 ); 

Thirdly, a scene where multiple large traffic signs of various cate- 

gories are grouped and localised on both sides of the road ( Fig. 10 ). 

We observe that all of the detectors perform well on large traffic 

signs. However, YOLO V2 and SSD models are weak at detecting 

small traffic signs, especially when these signs appear in groups. 

Additionally, detection scores are generally lower than those of the 

remaining detectors. Furthermore, YOLO V2 has certain limitations. 

It imposes strong spatial constraints on bounding box predictions 

since each grid cell can only have one class. This restricts the set of 

possible predictions in the case where there are many nearby ob- 

jects, which is the case represented in Fig. 9 , where multiple small 

traffic signs appear in groups as mentioned above. Other models, 

such as R-FCN Resnet 101, and Faster R-CNN Inception V2, also 

present difficulties in detecting signs in this image because they 

have some false positives localised very near to the real true posi- 

tives. It is remarkable that only Faster R-CNN Inception Resnet V2 

and Faster R-CNN Resnet 101 models are able to detect every traf- 

fic sign included in the scene shown in Fig. 8 . With scores near 

to 100%, they even manage to detect a prohibitory traffic sign (the 

smallest sign) on the left-hand size of the image, which was not 

annotated in the ground truth. 

5. Conclusions and future work 

In this paper, a experimental comparison of eight traffic sign 

detectors based on deep neural networks is presented. We analyse 

the main aspects of these detectors, such as accuracy, speed, mem- 

ory consumption, number of floating point operations, and number 

of learnable parameters within the CNN. All of the models stud- 

ied in this work were pre-trained on the Microsoft COCO dataset 

and fine-tuned afterwards with the GTSDB dataset in order to de- 

tect and classify traffic sign superclasses based on their shapes and 

colours: mandatory, prohibitory, and danger. 

Accuracy results are evaluated following the mAP quantitative 

measure from PASCAL VOC 2010. We found that Faster R-CNN In- 

ception Resnet V2 obtains the best mAP (95.77%), while R-FCN 

Resnet 101 holds the best trade-off between accuracy (95.15%) and 

execution time (85.45 ms per image). Special mentions are de- 

served by YOLO V2 and SSD Mobilenet. The former achieves com- 

petitive accuracy results (78.83%) and is the second-fastest detector 

with running times of 21.48 ms per image on average. The latter is 

the fastest model of all of the detectors and also the least demand- 

ing in terms of memory consumption. These key factors make SSD 

Mobilenet an optimal choice for deployment in mobile and embed- 

ded devices. Nevertheless, we observed that SSD models remain 

very weak at detecting small traffic signs despite the fact that it 

is critical for any TSDS to perform well at detecting signs in ad- 

vance so that correct decisions can be made as soon as possible. 

In general, all of the models present good results at detecting large 

traffic signs (mAP above 75%). It is also very interesting that only 

the YOLO V2 and SSD models achieve more than 30 FPS using a 

NVIDIA Titan Xp, which makes them feasible for real-time traffic 

sign detection. Another conclusion is that the application of trans- 

fer learning to pre-trained models leads to results close to those 

obtained with the state-of-the-art methods in a specific domain, 

such as traffic sign detection, where the best results are achieved 

using a CNN with dilated convolutions on 5 different image scales 

[23] . 

It should be borne in mind that the evaluation of the detec- 

tors was performed on isolated traffic scene images recorded on 

various types of roads. Hence, the images are not continuous in 

time and, consequently, tracking systems could not be used. Such 

tracking systems could improve the performance of the detectors 

if the source of the images were made up of consecutive frames 

extracted from a video. 

In future work, we plan to research other neural network archi- 

tectures that have been proven to work well detecting or classify- 

ing general-purpose objects, such as DenseNet [45] , and to adapt 

them to the traffic sign recognition domain. Moreover, advanced 

embedded platforms, such as NVIDIA Jetson TX2 6 and NVIDIA 

Drive Px, 7 have recently been released: the detectors presented in 

this paper should be evaluated using these new platforms in or- 

der to reveal valuable insights that help practitioners choose and 

deploy an appropriate traffic sign detector in the real world. 
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CAPÍTULO 5

CONCLUSIONES Y TRABAJO FUTURO

Learn from yesterday, live for today, hope for tomorrow. The important thing is

not to stop questioning. - Albert Einstein

5.1. Conclusiones

Esta tesis se centra en el problema de desarrollar un sistema de reconocimiento

de señales de tráfico sobre imágenes 2D robusto y en tiempo real, lo cual presenta

dificultades en términos de precisión y tiempo de ejecución. Por ejemplo, la apli-

cación de estos sistemas en vehículos autónomos debe cumplir requisitos estrictos

para que la toma de decisiones sea la correcta dado un contexto determinado. Un

sistema de reconocimiento de señales de tráfico está compuesto por dos etapas: de-

tección y clasificación. La primera se centra en localizar en imágenes de escenarios

de carreteras las señales mientras que la segunda ejecuta una clasificación fina para
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identificar qué tipo de señal es.

En el contexto de detección de señales, en este trabajo se investigan ocho mo-

delos de redes neuronales profundas para conocer sus propiedades, entre las que

se encuentran la precisión, la velocidad de ejecución, el consumo de memoria, el

número de operaciones de punto flotante, el número de parámetros del modelo, y

por último, cómo se comportan dichas redes con distintos tamaños de imágenes de

entrada. Además, se aplica el concepto de transferencia de aprendizaje entre redes

neuronales. La evaluación final muestra que que Faster R-CNN Inception Resnet V2

alcanza el mejor porcentaje de precisión, mientras que R-FCN Resnet 101 obtiene

el mejor equilibrio entre precisión y velocidad de ejecución. Por otro lado, el modelo

más rápido es SSD Mobilenet al mismo tiempo que es el que menor consumo de

memoria tiene, por lo que es la solución ideal para ser desplegada en dispositivos

móviles o embebidos, siempre y cuando la precisión no sea el factor más importante,

debido a que no tiene un buen rendimiento detectando señales de tráfico pequeñas.

Por último destacar que únicamente los modelos YOLO V2 y aquellos basados en la

arquitectura SSD se pudieron ejecutar a más de 30 FPS usando una GPU NVIDIA

Titan Xp, lo cual los hace factibles para la detección de señales de tráfico en tiempo

real.

Con respecto a la clasificación de señales de tráfico, proponemos una red neuronal

profunda que contiene capas convolucionales y redes de transformardores espaciales.

Las redes de transformadores espaciales permiten realizar operaciones de transfor-

maciones afines sobre las imágenes y los mapas de características, de modo que la

red aprende a centrarse exclusivamente en la señal de tráfico, eliminado el fondo,

realizando rotaciones, traslaciones, etc. La inclusión de estos elementos en una red

convolucional permitió que el modelo superase a todos los métodos publicados an-

teriormente en la literatura, estableciendo un nuevo récord de precisión del 99.71%

en el German Traffic Sign Recognition Benchmark (1) (Figura 5.1). Hasta la fecha

de redacción de esta tesis doctoral, los resultados alcanzados por nuestro método

no han sido superados. Además, nuestra propuesta no necesitaba aplicar técnicas de

(1)http://benchmark.ini.rub.de/?section=gtsrb&subsection=results

http://benchmark.ini.rub.de/?section=gtsrb&subsection=results


Figura 5.1: Resultados German Traffic Sign Recognition Benchmark.

aumentación de datos manual que se habían realizado en trabajos previos, y reque-

ría un menor uso de memoria debido a que el número de parámetros de la red era

inferior a otras soluciones.

5.2. Trabajo futuro

Respecto a la detección de señales de tráfico, el trabajo futuro debe enfocarse

en investigar nuevas arquitecturas de redes neuronales descritas en la literatura que

han funcionado con excelentes resultados detectando objetos generales, adaptándo-

las al dominio de las señales de tráfico. Además, varias plataformas avanzadas de

procesamiento embebido como NVIDIA Jetson TX2 o NVIDIA Drive Px han sido

lanzadas al mercado y los detectores propuestos en esta tesis deberían ser evaluados

en tales plataformas para obtener información valiosa que ayude a profesionales e

investigadores a elegir y desplegar detectores de señales de tráfico para solventar

problemas del mundo real.

Por otro lado, en el contexto de la clasificación fina de señales de tráfico, deben

estudiarse arquitecturas de redes neuronales que presenten resultados competentes

ante señales de distintos países que tengan pictogramas similares, evitando de este

modo la necesidad de recolectar conjuntos de imágenes de cada uno de los países

donde se desee aplicar el clasificador. Dichos clasificadores deben hacer frente tam-



bién a imágenes creadas con redes generativas antagónicas (Generative Adversarial

Networks), las cuales pueden causar efectos negativos en la seguridad vial, poniendo

en peligro tanto a conductores como peatones.
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