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Abstract

Background: Asparagine is a very important nitrogen transport and storage compound in plants due to its high
nitrogen/carbon ratio and stability. Asparagine intracellular concentration depends on a balance between asparagine
biosynthesis and degradation. The main enzymes involved in asparagine metabolism are asparagine synthetase (ASN),
asparaginase (NSE) and serine-glyoxylate aminotransferase (SGAT). The study of the genes encoding for these enzymes
in the model legume Lotus japonicus is of particular interest since it has been proposed that asparagine is the principal
molecule used to transport reduced nitrogen within the plant in most temperate legumes.

Results: A differential expression of genes encoding for several enzymes involved in asparagine metabolism was
detected in L. japonicus. ASN is encoded by three genes, LJASNT was the most highly expressed in mature leaves while
LJASN2 expression was negligible and LjASN3 showed a low expression in this organ, suggesting that LjASNT is the main
gene responsible for asparagine synthesis in mature leaves. In young leaves, [JASN3 was the only ASN gene expressed
although at low levels, while all the three genes encoding for NSE were highly expressed, especially LNSET. In nodules,
LJASN2 and LjNSE2 were the most highly expressed genes, suggesting an important role for these genes in this organ.
Several lines of evidence support the connection between asparagine metabolic genes and photorespiration in L.
Jjaponicus: a) a mutant plant deficient in LjNSET showed a dramatic decrease in the expression of the two genes
encoding for SGAT; b) expression of the genes involved in asparagine metabolism is altered in a photorespiratory
mutant lacking plastidic glutamine synthetase; ¢) a clustering analysis indicated a similar pattern of expression among
several genes involved in photorespiratory and asparagine metabolism, indicating a clear link between LjASNT and
LjSGAT genes and photorespiration.

Conclusions: The results obtained in this paper indicate the existence of a differential expression of asparagine
metabolic genes in L. japonicus and point out the crucial relevance of particular genes in different organs.
Moreover, the data presented establish clear links between asparagine and photorespiratory metabolic genes in
this plant.
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Background

Asparagine is a very important nitrogen transport and
storage compound in plants due to its high nitrogen/car-
bon ratio and stability. In fact, asparagine is the major
nitrogen transport compound in the xylem from the root
to the leaves and in the phloem from the leaves to the
developing seed in a range of plants, particularly in tem-
perate legumes [1]. This is the case of the model legume
Lotus japonicus, where it was shown that asparagine can
account for 86% of the nitrogen flux from root to shoot
when nitrogen is not limiting [2].

Asparagine intracellular concentration depends on a
balance between asparagine biosynthesis and degrad-
ation. The main route for asparagine biosynthesis in
plants is mediated by the enzyme asparagine synthetase
(ASN, EC 6.3.5.4), which catalyzes the ATP-dependent
transfer of the amide group of glutamine to aspartate
yielding asparagine in the presence of magnesium. Most
plant species contain two or more ASN genes mainly
grouped into two phylogenetic clades, named class-I and
class-II [3, 4], whose expression is subjected to meta-
bolic control. Class-I genes are usually negatively regu-
lated by light or sugars whereas class-II genes are not
repressed by light [5, 6]. Besides light and sugars, nitro-
gen source and availability are other factors that regulate
ASN expression [6-8]. This fine regulation allows the
plants to have asparagine available at specific phases of
development, such as nitrogen mobilization in germinat-
ing seeds, ammonium (re)assimilation in leaves and ni-
trogen remobilization from senescent leaves to
developing seeds [3, 9, 10]. The role of a specific aspara-
gine synthetase isoform in primary ammonium assimila-
tion has been also recently investigated [11].

On the other hand, two pathways for asparagine catab-
olism have been established in plants. The main enzyme
for asparagine degradation is asparaginase (NSE, EC
3.5.1.1) that catalyzes the hydrolysis of asparagine to yield
aspartate and ammonia, which is subsequently reassimi-
lated by glutamine synthetase [12—15]. The other aspara-
gine degradation route involves the transamination of
asparagine in the presence of glyoxylate to yield 2-
oxosuccinamate and glycine, catalyzed by asparagine-
glyoxylate aminotransferase [16].

Two subfamilies of asparaginases have been described,
corresponding to biochemical subtypes defined on the
basis of their dependence for K*: K*-dependent and K
"-independent asparaginases [13, 14, 17, 18]. The exact
meaning of the potassium dependence in asparaginases
constitutes an interesting topic of research [14, 19]. Des-
pite of their separate classification, the two groups of
plant asparaginases share significant levels (about 60%)
of sequence identity.

Asparagine aminotransferase appears to be the same
protein as the peroxisomal photorespiratory enzyme
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serine-glyoxylate aminotransferase (SGAT, EC 2.6.1.45),
based on its substrate preference and subcellular
localization [16, 20-24]. The 2-oxosuccinamate pro-
duced by this enzyme is then reduced to hydroxysucci-
namate and subsequently deamidated to yield malate or,
alternatively, to oxalacetate and ammonia, by the en-
zyme omega-amidase [25]. In plants, asparagine trans-
amination catalyzed by SGAT has been proposed to be
involved in photorespiration as an input of external ni-
trogen into the photorespiratory cycle [25-27]. However,
SGAT enzymes have been also shown to use serine or
alanine efficiently as substrate, besides asparagine [16].

In the present paper the pattern of expression of as-
paragine metabolism genes was examined in different
organs and under different conditions (e.g. light and
dark) in L. japonicus plants. In addition, the connection
between asparagine metabolism genes and photorespir-
ation was also analyzed using two different mutants
from this plant. On the one hand, a mutant deficient in
asparaginase, called Ljnsel—4, which accumulates high
levels of asparagine [15]. On the other hand, a photore-
spiratory mutant called Ljgln2-2, deficient in the plasti-
dic isoform of glutamine synthetase (GS2), which is the
enzyme that reassimilates the NHj produced by the
photorespiratory cycle [28, 29]. The expression levels of
different genes involved in asparagine metabolism and in
the photorespiratory pathway were determined by quan-
titative RT-PCR in leaves using WT (wild type) and both
mutant genotypes. A global transcriptomic analysis was
also carried out to further investigate the interconnection
between asparagine metabolism and photorespiratory me-
tabolism genes in this plant. The data presented in this
paper indicate the existence of a differential expression of
asparagine metabolism genes in L. japonicus and point
out the crucial relevance of particular genes in different
organs and/or processes related with asparagine metabol-
ism and the photorespiratory pathway in this plant.

Methods

Plant materials and treatments

L. japonicus (Regel) Larsen cv. Gifu was initially ob-
tained from Prof. Jens Stougaard (University of Aarhus,
Denmark) and then self-propagated at the University of
Seville. Plant seeds were scarified and surface-sterilized,
germinated in Agar/Horned Petri dishes, and transferred
to pots using vermiculite as solid support. Five seedlings
were placed in each pot and grown during 35 days in a
chamber under 16/8 h day/night, 20/18 °C, with a
photosynthetic photon flux density of 250 pumol m 2s™*
and a constant humidity of 70%. Plants were watered
with Hornum nutrient solution [30]. Plants grown in
symbiosis with nitrogen-fixing bacteria were inoculated
with Mesorhizobium loti, as described previously by Gar-
cia-Calderén et al. [31].
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The Ljgln2-2 mutant used in this work was previ-
ously isolated from a photorespiratory mutant screening
[28, 32, 33]. The mutant offspring of two consecutive
backcrosses of Ljgin2-2 into the WT background was
employed. In addition, for other experiments, a mutant in
the LjNSE! gene of L. japonicus was used, called Ljnsel—4,
that was previously isolated by TILLING (Targeted In-
duced Local Lesions IN Genomes) as described by Credali
et al. [15].

RNA extraction and qRT-PCR

Tissues from L. japonicus plants were harvested and im-
mediately frozen in liquid nitrogen, homogenized with a
mortar and pestle, and kept at —80 °C until use. Total RNA
was isolated using the hot borate method [34]. The integ-
rity and concentration of the RNA preparations were
checked using an Experion bioanalyzer (Bio-Rad) with
RNA StdSens chips and a NanoDrop ND-1000 (NanoDrop
Technologies), respectively. RNA extraction was carried
out using three independent biological samples for each
genotype/condition/tissue. A biological replicate consisted
of tissue pooled from five plants grown in the same pot.

For qRT-PCR analysis, total RNA was treated with the
TURBO DNA-free Kit (Ambion). Reverse transcription
was carried out using SuperScript III reverse transcript-
ase (Invitrogen), oligo-dT and RNAsin RNAse inhibitor
(Promega). DNA contamination and RNA integrity were
checked by performing the qRT-PCR reactions with oli-
gonucleotides that amplified an intron in the L. japoni-
cus hypernodulation aberrant root formation (LjHARI)
gene and the 5° and 3’ ends of the L. japonicus
glyceraldehyde-3-phosphate dehydrogenase respectively
(using the oligonucleotide pairs LjGAPDHS5’ and
LjiGAPDH3’). qRT-PCR analysis was performed as de-
scribed by Pérez-Delgado et al. [35] using the Sensi-
FAST™ SYBR® No-ROX Kit (Bioline) and a LightCycler®
480 II thermal cycler (Roche).

Ct values were determined using the LightCycler 480
software version 1.5.0 and the 2" values were standard-
ized by dividing them by geometric mean of the 27
values of four different housekeeping genes: L. japonicus
glycosylphosphatidyl inositol (LjGPI)-anchored protein
(Lj3g3v1933150.1), L. japonicus protein phosphatase 2A
(LjPp2A) (Lj2g3v0742070.1), L. japonicus ubiquitin car-
rier protein 10 (LjUbc10) (Lj1g3v2063210.1) and L. japoni-
cus polyubiquitin 4 (LjUbg) (Lj5g3v2060710.1) that were
selected among the most stably expressed genes in plants
[36], and that were found to be suitable for gene expression
analysis also in L. japonicus [34, 35, 37]. A list of all oligo-
nucleotides used is provided in Additional file 1: Table S1.

Clustering analysis of qRT-PCR data
For hierarchical clustering of qRT-PCR data the tran-
script levels of WT plants under high CO, conditions
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were taken as 1 and the differences between the log, of
relative expression levels of Ljgln2-2 and WT are pre-
sented. Hierarchical clustering of the data was per-
formed using the Multiexperiment Viewer software
version 4.9.0 [38] with optimized gene leaf order and
complete linkage clustering algorithm. The expression
data of some genes of nitrogen and photorespiratory me-
tabolism were taken from Pérez-Delgado et al. [39].

Clustering analysis of microarray data
a). Microarray data collection and preprocessing

The microarray data used in this work were obtained
from the experiments published by: Sinchez et al. [34],
Pérez-Delgado et al. [39], Hogslund et al. [40], Diaz et al.
[41], Sanchez et al. [42], and Betti et al. [43]. These experi-
ments have a total of 84 different conditions (samples)
and 240 hybridizations. CEL files of these experiments are
available in the public microarrays database ArrayExpress
[44]. The code numbers of the experiments are: E-MEXP-
1204, E-TABM-715, E-MEXP-2344, E-MEXP-2690, E-
MEXP-1726, E-MEXP-3710 and E-MEXP-3603. Back-
ground correction and normalization of the raw data sets
were performed using Robust MultiChip Analysis (RMA)
implemented in “affy” R package [45].

b). Clustering analysis

For the clustering analysis the log, of the relative gene
expression levels in all the different transcriptional ex-
periments considered was used. Hierarchical clustering
of transcriptomic data was carried out with Expander
software version 7.1 [46, 47] using the complete linkage
option.

Results
Genes for asparagine metabolism in L. japonicus
Three genes encoding for asparagine synthetase were found
in the L. japonicus genome by searching the available data-
bases [48]: LJASNI (accession number, 1j2g3v2291670.1),
LjASN2 (accession number, Lj0g3v0295349.1) and LjASN3
(accession number, Lj0g3v0361789.1). According to phylo-
genetic analysis LJASNI and LJASN2 belong to class I as-
paragine synthetases while LjASN3 belong to class II
(Additional file 2: Figure S1). The genomic sequences of all
these genes were analyzed. Thirteen, thirteen and fourteen
exons were found in the genes encoding for LjASNI,
LjASN2 and LjASNS3 respectively (Additional file 3: Figure
S2). The size of exons is similar comparing LJASNI and
LjASN2, but different for some particular exons in LJASN3.
In the case of asparaginase, three genes were identified:
LjNSE]I (accession number, Lj5g3v0296030.1), LiNSE2 (ac-
cession number, Lj4g3v1736160.1), and LiNSE3 (accession
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number, Lj0g3v0303539.1) in the L. japonicus genome. Al-
though the size of the genes was different, LjNSEI and
LjNSE2 genes had a similar structure composed of four
exons, while five exons were found in the LjNSE3 gene
(Additional file 3: Figure S2). According to the deduced
amino acid sequence data LjNSEI and LjNSE3 encode
for K*- dependent asparaginases while LjNSE2 en-
codes for a K'- independent asparaginase, based on
the previous analysis carried out for LjNSE1 and
LjNSE2 enzymes [14].

Two genes encoding for serine-glyoxylate aminotrans-
ferase, LjSGATI (accession number, Lj6g3v0937010.1)
and LjSGAT2 (accession number, Lj2g3v3058530.1),
were also found in the L. japonicus genome. The gene
structure and the number of exons were also similar be-
tween these two SGAT genes although both genes
showed a different size.
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Transcriptional analysis of LjASN genes

The levels of expression of the three genes encoding for
ASN were determined by measuring by quantitative RT-
PCR the mRNA levels present in different organs of L.
japonicus plants supplied with external nitrogen
(NH4NO3) or under purely symbiotic conditions. For
comparative purposes, the measurements were carried
out from samples taken either under light or dark condi-
tions (Fig. 1). Under both N nutritions LJASNI was
highly expressed in mature leaves and roots, but its ex-
pression was insignificant in young leaves. The expres-
sion of LjASNI was clearly up-regulated by light (about
2-fold) in mature leaves (Fig. 1A, B). In contrast, LjASN2
gene expression was negligible in leaves (Fig. 1C, D),
while LjASN3 showed very low levels of expression com-
pared to LJASNI in this tissue (Fig. 1E, F). These results
indicate that the expression of the LjASNI gene must be

Transcript (r.u.)

A LjASNI| B O Light
B Dark

6
4
2
. FL -
20

C LjASN2 D
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. | m

‘m B [H .

Mature Young Roots
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(r.u.). Data are the mean + SE of three independent biological replicates

Fig. 1 gRT-PCR analysis of LjASN genes expression in different tissues of L. japonicus. Plants were grown for 6 weeks and irrigated with Hornum
medium containing NH4NOs (a, ¢, e), or inoculated with M. Joti and irrigated with Hornum medium without nitrogen (b, d, f). The samples were
harvested at 4 h after the beginning of the light or dark period for the quantification of transcripts. Transcript levels are reported as relative units

Mature Young Roots Nodules
leaves leaves
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crucially important for the biosynthesis of asparagine in
mature leaves of L. japonicus. In young leaves of this
plant, expression was only detectable for the LjASN3
gene, although its expression levels were quite low com-
pared to the other LjASN genes in the other tissues
examined.

All the three genes encoding for ASN were
expressed in roots, particularly LJASNI and LjASN2,
although they were not generally affected by light
(Fig. 1). This situation contrasts with the expression
levels detected in nodules, where LjASN2 was the
most highly expressed gene. Interestingly, very little
expression of this particular LJASN2 gene was de-
tected in the other organs examined from nodulated
plants compared to nodules (Fig. 1D). These results
indicate an important role of the LJASN2 gene for as-
paragine biosynthesis in nodules.
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Transcriptional analysis of LiNSE and LjSGAT genes

The expression levels of LjNSE genes were also com-
paratively determined in nodulated plants and plants
supplied with external N. LiNSE1 was the most highly
expressed in all the plant tissues analysed with the ex-
ception of nodules (Fig. 2). Interestingly, the expression
of this gene was stimulated by dark (2-fold) in mature
leaves (Fig. 2A, B). The fact that this gene has more than
10-fold higher expression than the other LiNSE genes in
leaves, suggests that LjNSEI is the main gene involved in
asparagine catabolism in this organ. In contrast, the
LjNSE2 transcript was detected in all plant tissues ana-
lyzed (Fig. 2C, D) and it was practically the only NSE
gene expressed in nodules, thus suggesting a crucial role
for this gene in asparagine degradation in this organ
(Fig. 2D). It is worth noting that, the expression of
LjNSE3 was significantly lower than that of LjNSEI in

A LjNSEI

0 .

B O Light

B Dark

C LjNSE2

0.30

Transcript (r.u.)

0.15
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0.0
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leaves leaves

Fig. 2 gRT-PCR analysis of LjNSE genes expression in different tissues of L. japonicus. Plants were grown for 6 weeks and irrigated with Hornum
medium containing NH4NOs (a, ¢, e), or inoculated with M. Joti and irrigated with Hornum medium without nitrogen (b, d, f). The samples were
harvested at 4 h after the beginning of the light or dark period for the quantification of transcripts. Transcript levels are reported as relative units

(r.u.). Data are the mean + SE of three independent biological replicates

Mature Young Roots Nodules
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leaves, roots and nodules (Fig. 2E, F), but a significant
light-dependent expression was observed both in mature
and young leaves (Fig. 2E, F).

With respect to the expression of the genes encoding
for SGAT, LjSGAT2 was the most highly expressed gene
in young and mature leaves. Its level of expression was
25-30 fold higher in comparison with LjSGAT1 (Fig. 3).
However, the LjSGAT2 transcript was undetectable in
roots and nodules (Fig. 3C, D). Interestingly, although
the LjSGAT1 gene showed a much lower expression, this
gene was found to be expressed in all the organs ana-
lysed: leaves, roots and nodules, and it was highly light-
induced in leaves (Fig. 3A, B).

A mutant deficient in NSE1 asparaginase shows a
dramatic diminution of the transcript levels of LjSGAT
genes

The possible changes in expression of asparagine metab-
olism genes were also examined in a TILLING mutant
available, called Ljnsel—4, which was specifically affected
in LjNSE1 asparaginase and accumulated high levels of
asparagine [15]. In the present paper no changes were
detected in the expression levels of asparagine synthe-
tase and asparaginase genes between WT and Ljnsel-4
mutant plants under all the conditions considered. How-
ever, a dramatic reduction of the transcript levels of
LjSGATI and LjSGAT2 was detected in leaves of the
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Ljnsel—4 mutant compared to the WT plants (Fig. 4) in
spite of the fact that no changes in expression levels of
LjSGAT genes were observed in roots and nodules (not
shown). It can be concluded that the deficiency of
LjNSE1 has a very important influence in the expression
of the genes encoding for SGAT. Considering that SGAT
has been previously associated to the N photorespiratory
cycle in other plant species [16, and references therein],
the results obtained could be taken as an indication of
the existence of a close relationship between the expres-
sion of genes for asparagine metabolism and photore-
spiratory genes in L. japonicus.

Changes in the transcription of genes for asparagine
metabolism in a Ljgin2 photorespiratory mutant

The previous results gave rise to the study of the pos-
sible connection between asparagine metabolism and the
photorespiratory process in L. japonicus. For this pur-
pose, the plants were grown under a CO,-enriched
atmosphere (0.7% v/v) where photorespiration is sup-
pressed and transferred to a normal air atmosphere
(about 0.04% CO,) where photorespiration is active. A L.
japonicus photorespiratory mutant, Ljgln2-2, deficient in
the plastidic isoform of glutamine synthetase (GS,) that
was previously isolated and characterized at the molecu-
lar level in our laboratory [28, 32] was also included in
our study to determine the influence of the impairment
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Fig. 3 gRT-PCR analysis of LjSGAT genes expression in different tissues of L. japonicus. Plants were grown for 6 weeks and irrigated with Hornum
medium (@, c), containing NH4NOs or inoculated with M. loti and irrigated with Hornum medium without nitrogen (b, d). The samples were
harvested at 4 h after the beginning of the light or dark period for the quantification of transcripts. Transcript levels are reported as relative units
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LJjASN1 expression levels diminished significantly in the
Ljgln2—-2 mutant after the transfer to normal air (Fig. 5).
On the other hand, LJASN2 showed a slight diminution
in WT plants after the transfer to normal air, recovering
after 10 days under photorespiratory conditions. By con-
trast, the levels of expression of the LJASN2 gene
showed a remarkable increase in Ljg/n2—2 mutant plants
after the transfer to active photorespiratory conditions
(Fig. 5). LJASN3 gene expression diminished both in WT
and Ljgln2-2 plants after the transfer to air, and this
diminution was more marked in the mutant genotype.
Several differences were also detected between WT
and Ljgln2-2 photorespiratory mutant plants in regards
to the expression of asparaginase genes. LiNSEI expres-
sion decreased significantly after 10 days of the transfer
to air in the mutant but not in the WT (Fig. 6). LiNSE2
expression levels decreased strongly both in WT and
Ljgln2—-2 mutant plants. LjNSE3 expression levels grad-
ually decreased in the WT after the transfer to normal

Time (days)

Fig. 5 gRT-PCR analysis of LjJASN genes expression in leaves of WT
and LjgIn2-2 mutant plants. L. japonicus plants grown for 35 days in
high CO, (time zero) were transferred to normal CO, conditions for
the indicated periods of time. Leaves were harvested at the indicated
time points. Transcript levels are reported as relative units (r.u.). Data are
the mean + SE of three independent biological replicates. * indicates
significant differences between WT and Ljgin2-2 mutant plants; a, b
indicate significant differences between CO, and air conditions at the
indicated time points for WT plants; A, B indicate significant differences
between CO, and air conditions at the indicated time points for Ljgin2—

2 plants as determined by Student's test (P < 0.05)
A\

air and were also significantly diminished in the mutant,
but only at day 3 (Fig. 6).

The expression levels of LiSGAT genes were also deter-
mined in both genotypes. No major changes were ob-
served in the expression levels of LjSGAT1I either in WT
or mutant plants. However, the level of expression of the
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: b indicated time points for WT plants; A, B: indicate significant differences
between CO, and air conditions at the indicated time points for Ljgin2—
0.00 2 plants as determined by Student's test (P < 0.05)
0 3 10

Time (days)

Fig. 6 gRT-PCR analysis of LjNSE genes expression in leaves of WT
and Ljgln2-2 mutant plants. L. japonicus plants grown for 35 days in
high CO; (time zero) were transferred to normal CO, conditions for
the indicated periods of time. Leaves were harvested at the indicated
time points. Transcript levels are reported as relative units (r.u). Data are
the mean + SE of three independent biological replicates. * indicates
significant differences between WT and Ljgin2-2 mutant plants; g, b, ¢:
indicate significant differences between CO, and air conditions at the
indicated time points for WT plants; A, B: indicate significant differences
between CO, and air conditions at the indicated time points for Ljgin2-
2 plants as determined by Student’s test (P < 0.05)

LjSGAT?2 gene was 15-fold higher than the expression of
LjSGATI and decreased substantially after 3 days of the
transfer of plants from high CO, to air conditions, par-
ticularly in the mutant plants, followed by some recovery
after 10 days under air atmosphere (Fig. 7).

Noteworthy, the trend of transcriptional regulation ob-
served for LJASNI and LijSGAT2 in the Ljgln2—2 mutant
was found to be quite similar to the one reported in a
previous work for most of the photorespiratory genes
[39]. A sudden drop in transcript levels was observed
upon the transfer from high CO, (suppressed photo-
respiration) to normal air (active photorespiration) at-
mosphere, followed by a recovery in some cases of the
transcript levels. For this reason, a hierarchical clustering
was carried out based on the transcript levels deter-
mined at different times of the transfer to air for the dif-
ferent asparagine metabolism genes that were analyzed
in the present work, together with those of all known
photorespiratory genes and some other nitrogen metab-
olism genes from L. japomnicus. Two main clusters of
genes were obtained: one that contained most genes for
N metabolism (upper cluster in Fig. 8) and another one
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Fig. 8 Hierarchical clustering analysis of quantitative RT-PCR data for
photorespiratory and nitrogen metabolism genes. Transcript levels
were determined at the indicated time periods after the transfer of
WT and Ljgin2-2 mutant plants from CO,-enriched (time zero) to
normal CO, conditions. Relative transcript levels of WT plants under
CO,-enriched atmosphere were taken as 1. Data are presented as
the log2 of the difference of transcript levels between WT and
Ljgin2-2. The genes considered and their corresponding accession
numbers according to the Kazusa database are: asparagine synthetase
(LJASNT, Lj2g3v2291670.1; LJASN2, Lj0g3v0295349.1; LJASN3,
Lj0g3v0361789.1); asparaginase (LjNSET, Lj5g3v0296030.1; LiNSE2,
Lj4g3v1736160.1; LNSE3, Lj0g3v0303539.1); serine hydroxymethyltransferase
(LiSHMT1, Lj2g3v1467880.1); ferredoxin-dependent GOGAT (LjGLUT,
Lj1g3v4154900.1); NADH-GOGAT (LjGLT1, LjSGA_035611.1%; LjGLT2,
LjSGA_037992.1%); serine:glyoxylate aminotransferase (LjSGATT,
Lj6g3v0937010.1; LjSGAT2, Lj2g3v3058530.1); plastidic glutamine
synthetase (LiGLN2, Lj6g3v1887800.1); cytosolic glutamine synthetase
(JGLNT.1, Lj2g3v0658180.1; LGLN1.2, Lj6g3v0410490.1; LIGLN1.3,
Lj0g3v0335159.1; LjGLN1.4, LiSGA_058827.1%; LiGLN1.5, LiSGA_019428.1%);
glutamate dehydrogenase (LjGDH1, Lj1g3v3975110.1; LiGDH?,
Lj4g3v1212370.1; LGDH3, L2g3v1988990.1; LGDH4, Ljog3v0102829.1);
hydroxypyruvate reductase (LjHPR, Lj5g3v2242500.1); glycine decarboxylase
(LIGDC-H1, Lj4g3v0654460.1; LIGDC-P1, chr5.CM0019.20.r2.m*; LIGDC-P2,
chr5.jT34K16.170.2.m*; LiGDC-T, Ljeg3v1849480.1); glycerate kinase
(LiGlyK2, Lj3g3v2247080.1); glycolate oxidase (LiGO2, Lj3g3v1048900.2);
plastidic dicarboxylate transporter (LDiT1, chr5.CM0089.610.r2.d%; LiDIT2.1,
Lj6g3v2204740.1) and phosphoglycolate phosphatase (LjPglP1,
Lj193v2842370.1; LjPgIP2, Lj6g3v1708420.1). The gene accession
numbers are reported according to the version 3.0 of the L. japonicus
genome in the Kazusa database, except in the cases indicated with an
asterisk where the version 2.5 of the genome was used

(lower one in Fig. 8) that contained most photorespira-
tory genes. Very interestingly, LjASN1, LjSGATI and
LjSGAT?2 genes clustered together with the photorespira-
tory genes. On the other hand, LJASN2, LjASN3, LjNSEI,
LjNSE2 and LjNSE3 clustered together with the genes
encoding for other enzymes of nitrogen metabolism (Fig.
8). Therefore we conclude that among all asparagine
metabolism genes analyzed in the present paper, LiASNI
and both LjSGAT1 and LjSGAT2 genes are those most
likely connected with photorespiratory metabolism in L.
japonicus plants.

Transcriptomic analysis of asparagine metabolism genes

The pattern of expression of the different genes involved
in asparagine metabolism were comparatively examined
together with other genes for photorespiratory metabol-
ism and nitrogen metabolism, using for this purpose an
integration of all the transcriptomic data available for L.
japonicus from 84 different physiological conditions
and/or tissues (Additional file 4: Table S2). Figure 9
shows a clustering analysis carried out from all these tran-
scriptomic data. A close link was obtained between
LJjASNI gene expression and the expression of most of the
photorespiratory metabolism related genes. This was also
the case for LiSGATI and LjSGAT2 genes, which were as-
sociated too to LJASNI and other photorespiratory genes.
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Fig. 9 Clustering analysis of transcript levels of asparagine
metabolism genes and photorespiratory and N metabolism genes.
The clustering analysis was carried out with the Expander software
using complete linkage. The mean of the expression level of each
gene in all the samples analyzed was calculated and transformed in
a log, before clustering analysis. In the color panels, each vertical line
represents a single gene, and the color of the line indicates the
expression level (in a log scale) of the gene relative to a specific
sample: high expression in red, low expression in green. The
photorespiratory genes and genes of nitrogen metabolism present
in the clustering image are: asparagine synthetase (LjASNT, LJASN2
and LjASN3); asparaginase (LNSET and LjNSE3); nitrate reductase
(LjNR, Lj0g3v0006719.1); nitrite reductase (LiNiR, Lj4g3v0588830.1);
serine hydroxymethyltransferase (LiSHMT); ferredoxin-dependent
glutamate synthase (LjGLUT); NADH-dependent glutamate synthase
(LjGLTT and LjGLT2); serine:glyoxylate aminotransferase (LjSGATT and
LjSGAT?); plastidic glutamine synthetase (LjGLN2); cytosolic glutamine
synthetase (LjGLN1.1, LiGLNT.2, LjGLN1.3 and LjGLNI1.5) glutamate
dehydrogenase (LjGDH1, LIGDH2, LiIGDH3 and LjGDH4); hydroxypyruvate
reductase (LjHPR); glycine decarboxylase (LiGDC-H1, LiGDC-P1, LjiGDC-P2
and LjGDC-T); glycerate kinase (LjGlyK2); glycolate oxidase (LjGO2);
plastidic dicarboxylate transporter (LiDiT1 and LjDiT2.1) and
phosphoglycolate phosphatase (LjPglPT and LjPglP2). The accession
numbers of the genes mentioned previously (Fig. 8) can be found in
the corresponding figure legend

Therefore, the transcriptomic analysis carried out con-
firms again the results previously shown in this paper that
establish a clear link between LjASNI and LjSGATI and
LiSGAT2 genes with photorespiratory metabolism in L.
japonicus. In contrast, the pattern of expression of the
LJASN2 gene was more closely associated with a com-
pletely different set of genes, mainly encoding for proteins
involved in nitrogen assimilation such as nitrate reductase
(NR), nitrite reductase (NiR), cytosolic glutamine synthe-
tase (GS1) or NADH-dependent glutamate synthase
(NADH-GOGAT). Moreover, it was also shown that the
LjASN2 gene was more highly expressed in roots and nod-
ules than in leaves, as deduced from the corresponding
transcriptomic data available from these organs. Conse-
quently, the results obtained from the analysis of the ex-
pression of the LJASN2 gene from an ample set of
transcriptomic data are in agreement with the previous re-
sults shown in the present paper.

Discussion

The results obtained in the present paper indicate the
existence of a differential expression of various genes in-
volved either in asparagine biosynthesis or degradation
in this plant. Figure 10 summarizes in a schematic form
the main results obtained in regard to the different pat-
tern of expression found for asparagine synthetase,
asparaginase, and SGAT genes in different tissues such
as young or mature leaves, nodules and roots. The re-
sults obtained point out an important difference in the
levels of expression of ASN genes among mature leaves
and young leaves of L. japonicus plants. A much higher
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Fig. 10 Differential expression of the different genes encoding for LjASN, LjNSE and LjSGAT in L. japonicus. The size of the lettering reflects the
relative abundance of the different genes analyzed in the paper. Genes mentioned in this figure are the key genes for the following biochemical
pathways: LjASN, asparagine biosynthesis; LjNSE, asparagine degradation; LjSGAT, photorespiration/transamination

level of expression was obtained for the LiASNI gene in
mature leaves, compared to the young ones. This result
would be consistent with a major role of the mature
leaves as a source tissue for exporting asparagine to the
young growing leaves of the plant, in accordance with
the crucial involvement of asparagine as a N translocator
in L. japonicus [2]. The high levels of LjNSEI asparagi-
nase gene expression in young leaves indicated a high
potential for asparagine utilization in this type of tissue
of the plants. The fact that LiNSEI was the most highly
expressed gene in all the plant tissues analysed, with the
exception of nodules, suggested that the LjNSEI gene
(which encodes a K*-dependent asparaginase) must be the
most crucial gene for asparagine catabolism in leaves. Cre-
dali et al. [15] proved the crucial relevance of LjNSE1 for
plant growth and seed production of L. japonicus.

On the other hand, the fact that the expression of the
LjASN2 gene is restricted to the non-photosynthetic tis-
sues examined, such as roots and nodules, suggests a
crucial involvement of this gene for the particular me-
tabolism of these organs. The very high levels of tran-
scription of the LjASN2 gene found in nodules seem
particularly interesting since asparagine is one of the
amino acids involved in the nitrogen export from the
nodules. Prell and Poole [49] described that the amino
acid cycling process is crucially relevant in symbiosis
suggesting that, in addition to the exchange of carbon
compounds and nitrogen fixed, plants and bacteroids
also exchange amino acids. It is quite likely that the
LjASN2 gene may be crucial for the synthesis of aspara-
gine in nodules, which is subsequently transported to the
plant. In addition, the fact that only one particular aspara-
ginase gene (LiNSE2) was expressed in nodules suggests
an interesting role of this gene in nodule function.

The fact that LjASNI gene expression was shown to
be light stimulated in L. japonicus (Fig. 1) is very inter-
esting since class-I asparagine synthetases are usually
up-regulated in the dark in response to a low carbon:ni-
trogen ratio. However, our results are in agreement with
the previous data obtained by Waterhouse et al. [2] in
the same plant, although in our case quantitative data of
gene expression is provided. The light induction of
LjASNI may be related with the fact that asparagine
constitutes the major N-transport compound to under-
take N-assimilation in L. japonicus, and nitrate reduction
would be maximal in the light. In addition, in the
present paper several lines of evidence establish clear
links between LjASNI and photorespiration in L. japoni-
cus, which could be taken as another possible explan-
ation of the light inducibility of LJASNI gene. In fact,
gene expression analysis (Figs. 8 and 9) indicated that
the transcriptional regulation of LjASNI, together with
those of LiSGATI and LjSGAT2, were very similar to
photorespiratory genes and quite different to other exam-
ined genes. Moreover, a further link between asparagine
metabolism and photorespiration would come from the
dramatic decrease in the expression of both LiSGATI and
LjSGAT2 genes that occurs in the Ljusel—4 asparaginase
deficient mutant from L. japonicus (Fig. 4). This mutant
was shown to have much higher levels of asparagine [15].
Changes in SGAT expression in this asparaginase mutant
could be related to the fact that asparagine plays an im-
portant role on the regulation of N flux in the N-organic
pool [50] and that Modde et al. [51] have recently con-
cluded that SGAT needs to be dynamically adjusted to en-
sure a variable flux through the photorespiratory pathway.

If there is any possible role of LJASN2 in relation to
photorespiration remains intriguing. The pattern of
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expression of LJASN2 gene seems to be completely differ-
ent to those of LJASNI and LijSGAT genes (Figs. 1, 8 and
9), thus not showing a clear link with photorespiration.
Furthermore, the work carried out by Gaufichon et al. [9]
with ASN2 mutants argued that this gene does not con-
tribute to photorespiratory N cycle. However, Fig. 5 shows
that LjJASN2 is increased on the transfer from high-CO,
(suppressed photorespiration) to normal air (active photo-
respiration) conditions in the photorespiratory mutant
Ljgln2-2 lacking plastidic GS. Pérez-Delgado et al. [52]
have shown that there is a strong increase in LJASN2 gene
expression, concomitant with the increase in photore-
spiratory ammonium produced as a result of the lack of
plastidic GS. This increase in LJASN2 gene expression
takes place in parallel with an increase in asparagine levels
in the same tissues that occurs simultaneously with an in-
crease in glutamine due to the induction of cytosolic GS1
in the mutant [52]. It was concluded that this increase in
LjASN2 and asparagine forms part of the different re-
sponses of the plant to detoxify the high levels of photore-
spiratory ammonium produced by the absence of plastidic
GS. A good correlation between ASN2 gene expression
and asparagine content was also found in Arabidopsis.
The asparagine contents in ASN2- overexpressing and
underexpressing plants were increased and decreased, re-
spectively, when they were grown under normal light and
nutrient conditions, suggesting that ASN2 functions as a
regulator of asparagine biosynthesis and metabolism and
that it mediates the effective use of nitrogen under ammo-
nium sufficient conditions [53]. Other types of evidence
have proposed that ASN2 is induced by ammonium treat-
ments and by stress treatments that cause ammonium
accumulation, suggesting a physiological role of ASN2 re-
lated, directly or indirectly, to the reassimilation of the ni-
trogen remobilized under stress conditions [7]. A possible
relationship between the level of ASN2 gene expression
and the level of ammonium loss via the photorespiratory
pathway has been also described [7]. Several authors have
reported the possibility of ammonium dependent synthe-
sis of asparagine in plants [4].

Conclusions

The results obtained in this paper indicate the existence
of a differential expression of asparagine metabolic genes
in L. japonicus and point out the crucial relevance of
particular genes in different organs. Moreover, the data
presented establish clear links between asparagine and
photorespiratory metabolic genes in this plant.
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