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Abstract

In this paper we consider a Möbius gyrogroup on a real Hilbert space (of �nite or in�nite
dimension) and we obtain its factorization by gyro-subgroups and subgroups. It is shown that
there is a duality relation between the quotient spaces and the orbits obtained. As an example we
will present the factorization of the Möbius gyrogroup of the unit ball in Rn linked to the proper
Lorentz group Spin+(1, n).
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1 Introduction

Gyrogroups are group-like structures that �rst arose in the study of Einstein's velocity addition in
the special theory of relativity [21, 22]. They have been studied intensively by A. Ungar since 1998.
The �rst known gyrogroup is the relativistic gyrogroup (B3,⊕E) [21], consisting of the unit ball B3 of
Euclidean 3-space, endowed with Einstein's velocity addition ⊕E . Einstein's addition of relativistically
admissible velocities is a binary operation in B3, where the vacuum speed of light is normalized to
c = 1. Counter-intuitively, the Einstein velocity addition is neither commutative nor associative. The
group structure that has been lost in the transition from the group (R3,+) to the groupoid (B3,⊕E)
is replaced by a loop structure using a peculiar rotation called Thomas precession. The gyrogroup
notion follows by abstraction in which the abstract Thomas precession, called Thomas gyration, plays
a central role. Gyrogroups are classi�ed in gyrocommutative and non-gyrocommutative gyrogroups.
Gyrogroups, both gyrocommutative and non-gyrocommutative, �nite or in�nite, abound in the theory
of groups, loops, quasigroups, and Lie groups. Gyrocommutative gyrogroups have strong relations with
the theory of homogeneous spaces [15, 22]. The relationship between gyrogroups and other structures
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in geometry and in non-associative algebras like K-loops, Bruck loops and Bol loops has been pointed
out by many authors [15, 19, 22].

Every gyrogroup is a twisted subgroup of some speci�ed group and some twisted subgroups are
gyrogroups [6]. The gyrosemidirect product of a gyrogroup and any one of its gyroautomorphisms
groups gives a group [23]. Moreover, the existence of a gyrocommutative gyrogroup in a group is
linked to the existence of an involutory automorphism of the group that decomposes it [6, 7].

The factorization of gyrogroups is not a trivial question due to the presence of gyrations. This
makes di�cult to obtain, in general, a partition of the gyrogroup. In [6] it was proved that if (G,⊕)
is a gyrogroup then it has a normal subgroup N such that G/N is a gyrocommutative gyrogroup
(Theorem 4.11).

The best way to introduce the gyrogroup notion is via the proper Lorentz group in Rn. It is a group
of pairs parameterized by a velocity in the ball Bc = {x ∈ Rn : ||x|| ≤ c} and an orientation parameter,
i.e. L = {(v,A) : v ∈ Bc , A ∈ SO(n)}, with group operation given by the gyrosemidirect product

(u,A)×gyr (v,D) = (u⊕E Av, gyr[u,Av]AD),

where ⊕E is the Einstein velocity addition [22] and SO(n) is the special orthogonal group in Rn. Both
Einstein's addition ⊕E of relativistically admissible velocities and Möbius addition ⊕M on the ball are
important in modern physics and they are gyro-isomorphic to each other [23].

In this paper we are mainly interested in Möbius gyrogroups on a real Hilbert space. Möbius
addition in the ball of a Hilbert space H was introduced by Ungar [23] as a generalization of the Möbius
addition on the unit disc of the complex plane. We will introduce a Cli�ord algebra structure on the
Hilbert space H and we will take advantage of the new algebraic structure to obtain factorizations of
the gyrogroup of the unit ball of H. For some references about Möbius transformations see e.g. [1, 2, 3].

The paper is organized as follows. In Section 2 we will introduce the structure of gyrogroups and
some important results concerning the factorization of gyrogroups in general. In Section 3 we de�ne the
Cli�ord algebra structure over an arbitrary �nite or in�nite dimensional quadratic space. We discuss
the Spin groups in �nite and in�nite dimensional cases. In Section 4 we de�ne the Möbius addition
on the s-ball of a Hilbert space H. Using the Cli�ord algebra structure we will describe gyrations
in a geometrical way. Considering a Lorentzian form on the Hilbert space H ⊕ R we will establish
a one to one correspondence between the proper Lorentz group in Minkowski space and the set of
Möbius transformations acting on the unit ball of H. Section 5 contains the main results of this paper,
concerning the factorization of the gyrogroup of the unit ball of H by the gyro-subgroups (Dω,⊕) and
the subgroups (Lω,⊕). In Section 6 we establish a duality relation between the orbits of the quotient
spaces obtained and in Section 7 we construct the orbits for the case of the Lorentz group Spin+(1, n).
In [5], one of these homogeneous spaces was used in order to establish a theory of wavelets for the unit
sphere in Rn, via the general construction method of coherent states through square-integrable group
representations over a homogeneous space of the group.

2 Gyrogroups

De�nition 2.1 ([23]) A groupoid (G,⊕) is a gyrogroup if its binary operation satis�es the following
axioms:

(G1) There is at least one element 0 satisfying 0⊕ a = a, for all a ∈ G (left identity);

(G2) For each a ∈ G there is an element ⊖a ∈ G such that ⊖a⊕ a = 0 (left inverse of a);
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(G3) For any a, b, c ∈ G there exists a unique element gyr[a, b]c ∈ G such that the binary operation
satis�es the left gyroassociative law

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c; (2.1)

(G4) The map gyr[a, b] : G → G given by c 7→ gyr[a, b]c is an automorphism of the groupoid (G,⊕),
that is gyr[a, b] ∈ Aut(G,⊕);

(G5) The gyroautomorphism gyr[a, b] possesses the left loop property

gyr[a, b] = gyr[a⊕ b, b]. (2.2)

De�nition 2.2 A gyrogroup (G,⊕) is gyrocommutative if its binary operation satis�es a⊕b = gyr[a, b](b⊕
a), for all a, b ∈ G.

Left and right gyrotranslations are de�ned by τ la(b) = a ⊕ b and τ ra (b) = b ⊕ a, respectively. The
solution of the equations τ la(x) = b and τ ra (x) = b in a gyrogroup are given uniquely by x = ⊖a ⊕ b
and x = b⊖ gyr[b, a]a, respectively, [23].

One of the most important results of this theory is that the gyrosemidirect product of a gyrogroup
(G,⊕) with a gyroautomorphism group H ⊂ Aut(G,⊕) is a group.

Theorem 2.3 ([23]) Let (G,⊕) be a gyrogroup, and let Aut0(G,⊕) be a gyroautomorphism group
of G. Then the gyrosemidirect product G × Aut0(G) is a group, with group operation given by the
gyrosemidirect product

(x,X)(y, Y ) = (x⊕Xy, gyr[x,Xy]XY ). (2.3)

This is a generalization of the external semidirect product of groups (c.f. [12]).
Let G be a group possessing the unique decomposition G = BK in the sense that every element

can be written uniquely as g = bk, where b ∈ B and k ∈ K. This decomposition is said to be a
gyrodecomposition of G if

(i) K is a subgroup of G;
(ii) B is a subset of G such that kBk−1 = B, for all k ∈ K;
(iii) 1 ∈ B and B = B−1.
Let G be a group with a gyrodecomposition G = BK. The gyrodecomposition of g1g2 ∈ G gives

the unique decomposition
g1g2 = (g1 ⊕ g2)k(g1, g2)

where g1⊕ g2 ∈ B and k(g1, g2) ∈ K. Foguel and Ungar [6] proved that (B,⊕) is a left gyrogroup with
gyrations given by

gyr[g1, g2]g = k(g1, g2)g(k(g1, g2))
−1.

De�nition 2.4 A nonempty subset X of a gyrogroup (G,⊕) is a subgroup (of a gyrogroup) if it is a
group under the restriction of ⊕ to X.

De�nition 2.5 A subgroup X of a gyrogroup G is normal in G if
(i) gyr[a, x] = 1 for all x ∈ X and a ∈ G;
(ii) gyr[a, b](X) ⊂ X for all a, b ∈ G;
(iii) a⊕X = X ⊕ a for all a ∈ G.
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The factorization of a gyrogroup by a normal subgroup is well understood in the following propo-
sitions.

Proposition 2.6 ([6]) If X is a normal subgroup of a gyrogroup G, then G/X is a factor gyrogroup.

Proposition 2.7 ([6]) If (G,⊕) is a gyrogroup, then G has a normal subgroup K such that G/K is a
gyrocommutative gyrogroup.

3 Cli�ord algebras

The traditional de�nition of Cli�ord algebra (or geometric algebra) is carried out in the context of
vector spaces with an inner product, or more generally a quadratic form. Cli�ord algebras can be
constructed over �nite or in�nite dimensional quadratic spaces (see e.g. [11, 10, 4, 17]). We assume
that (V,Q) is a quadratic space (of �nite or in�nite dimension) over the �eld of real or complex numbers,
with Q a nondegenerate quadratic form and BQ(v, w) =

1
2(Q(v+w)−Q(v)−Q(w)) the bilinear form

associated to Q. The Cli�ord (or geometric) algebra Cl(V,Q) over the vector space V with quadratic
form Q is an algebra with unit e0 de�ned as the quotient of the tensor algebra T (V ) =

⊕∞
k=0

⊗k V
by the ideal IQ(V ) = {A⊗ (v ⊗ v +Q(v))⊗B : v ∈ V,A,B ∈ T (V )}, i.e. Cl(V,Q) := T (V )/IQ(V ).

There is a canonical injection iQ : V → Cl(V,Q) by which V can be identi�ed to a subspace
of Cl(V,Q). The Z-gradation on the tensor algebra of V induces a Z2-grading on Cl(V,Q), and the
corresponding decomposition will be denoted by Cl(V,Q) = Cl+(V,Q)⊕Cl−(V,Q). On Cl(V,Q) there
is de�ned the principal automorphism α and the principal antiautomorphism β. Both α and β are
involutions on Cl(V,Q). The restriction of α to Cl+(V,Q) is the identity, the restriction of α to
Cl−(V,Q) is minus the identity and the restriction of β to V is the identity. We will denote the
bar-map v 7→ v := β(α(v)) = α(β(v)), v ∈ Cl(V,Q). Note that the involutions α and β commute.

Let E be a subspace of V and let QE be the restriction of Q to E. The injection E → V induces an
injection Cl(E,QE) → Cl(V,Q) by which Cl(E,QE) can be identi�ed to a subalgebra of Cl(V,Q). Let
(ei)i∈I be a basis of V, and suppose I is a totally ordered set. Let S(I) be the set of strictly increasing
�nite sequences of elements of I. For s = (i1, . . . , ik) ∈ S(I), let es be the product ei1 · · · eik in Cl(V,Q).
Then (es)s∈S(I) is a basis for the vector space Cl(V,Q). The identity e0 of Cl(V,Q) corresponds to the
empty sequence.

The product in V, called the geometric product, is inherited from the tensor product in T (V ) and
is de�ned by uv = [u⊗ v], for all u, v ∈ V. This product is bilinear and associative and it satis�es the
identity uv+ vu = −2BQ(u, v). A non-zero vector such that Q(v) ̸= 0 is invertible in Cl(V,Q) and the
inverse is given by v−1 := v

Q(v)2
. As it was shown by de la Harpe [11] there exists a unique linear form

ζ on Cl(V,Q) such that
(i) ζ(e0) = 1;
(ii) ζ(uv) = ζ(vu), for all u, v ∈ Cl(V,Q);
(iii) ζ(α(u)) = ζ(u), for all u ∈ Cl(V,Q).
From these properties and the de�nition of the Cli�ord algebra Cl(V,Q) it is easy to conclude that

ζ(uv) = ζ(u)ζ(v), for any u, v ∈ V. We de�ne a scalar product on Cl(V,Q) by ⟨u, v⟩ := ζ(uv) and a
respective norm |u|2 := ζ(uu), for u, v ∈ Cl(V,Q). At this moment we have not made any assumptions
on the dimension of V.

Now we want to describe the orthogonal group of the space V, its subgroups, and the respective
double covering groups constructed using the Cli�ord algebra structure. In what follows we will omit
the quadratic form Q and we will write only Cl(V ) instead of Cl(V,Q).
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Let dim V = n < ∞ and e1, . . . , en an orthonormal basis of signature (p, q) with p + q = n,
that is, B(ei, ei) = 1, i = 1, . . . p and B(ei, ei) = −1, i = p + 1, . . . p + q. A basis for Cl(V ) is
given by {1, ei1ei2 · · · eik}1≤i1<i2<ik≤n, with 1 the identity element in Cl(V ). The decomposition of
Cl(V ) by α originates the even subalgebra Cl+(V ) = {x ∈ Cl(V ) : α(a) = a}. Let Γ(p, q) de-
note the Cli�ord group, that is, the group of all �nite products of invertible elements: Γ(p, q) ={∏k

i=1 si, si ∈ V, s2i ̸= 0, i = 1, . . . , k, k ∈ N
}
. For s ∈ Γ(p, q) and x ∈ V, the transformation χ(s)x :=

sxα(s)−1 is an orthogonal transformation of V and is a group homomorphism. This automorphism on
V extends to an automorphism on Cl(V ) known as Bogoliubov automorphism [17]. Introducing the
spinorial norm ||x|| := xx, x ∈ Cl(V ) we arrive at the de�nition of the Pin and Spin groups given by
Pin(p, q) = {s ∈ Γ(p, q) : ||s||2 = 1} and Spin(p, q) = {s ∈ Γ(p, q) ∩ Cl+(V ) : ||s||2 = 1}, respectively.
These are double covering groups of the orthogonal group O(V ), and of the special orthogonal group
SO(V ). The connected component of Spin(p, q) denoted by Spin+(p, q) = {s ∈ Spin(p, q) : ||s|| = 1}
corresponds to the proper Lorentz group and it is a double covering group of SO0(V ).

In the in�nite dimensional case there are some di�culties arising in the de�nition of the Pin and
Spin groups since we need some extra topological structure of V (see [11]). In the case of �nite
dimension the set of all orthogonal matrices breaks into two closed manifolds (those of determinant +1
and −1, respectively), which have no point in common. But, in the in�nite dimensional case the sets
of rotations and re�ections of V are not open nor closed in the set of the orthogonal matrices of V with
the in�nite norm [16]. Therefore, the construction of double covering groups in in�nite dimension is a
non trivial problem. A successful approach was obtained by de la Harpe in [11], through the general
theory of Banach-Lie groups.

Let H be an in�nite dimensional real Hilbert space (we can start by considering an in�nite dimen-
sional real pre-Hilbert space and then its completion relatively to its norm [11]). Let Cl(H) denote the
Cli�ord algebra over H and Cl2(H) the algebra of bounded elements in Cl(H). For any A ∈ Cl2(H),
let LA denote the bounded operator on Cl(H) which acts as left multiplication. Similarly for the right
multiplication RA.

Let O(H) be the group of all orthogonal operators on H. If U ∈ O(H), then by the universal
property of Cli�ord algebras, U extends to an automorphism Ũ of Cl(H), known as Bogoliubov auto-
morphism. The following lemma and corollary can be found in [11].

Lemma 3.1 Let U ∈ O(H). Then the following are equivalent

(i) There exists an invertible u ∈ Cl2(H) such that Ũ = LuRu−1 ;
(ii) There exists a unique (up to multiplication by a scalar) invertible

u ∈ Cl2(H) such that Ũ = LuRu−1 , and one has either u ∈ Cl+2 (H)
or u ∈ Cl−2 (H).

Corollary 3.2 Let Spin(H) be the set of all unitary even elements u ∈ Cl+2 (H) such that uHu−1 = H.
Then Spin(H) is a subgroup in the (abstract) group of all invertible elements of Cl2(H).

For u ∈ Spin(H), let ρu : H → H be the orthogonal projector de�ned by ρu(x) = uxu−1. Then the
image of ρu is a normal subgroup of O(H), and its kernel, consisting of e0 and −e0, is isomorphic to
Z2.

The above corollary indicates that Spin(H) must support the covering group of some topological
subgroup of O(H). The construction of this double covering group is realized through the general
theory of Banach-Lie groups via an extension of the Cli�ord algebra Cl2(H) to a C∗-algebra [11, 18].
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4 Möbius addition in the ball

Let H be a real Hilbert space with inner product ⟨·, ·⟩ : H ×H → R and corresponding norm ||x|| =
⟨x, x⟩1/2 , for x ∈ H. For any subset W ⊆ H we will denote by W⊥ the orthogonal complement of W
in H. Let v0 be a distinguished unit vector in H and let W = v⊥0 be the orthogonal complement in H
of v0. Thus, elements of the orthogonal direct sum H = Rv0 ⊕ W will be denoted by v = x0v0 + u,
where x0 = ⟨v, v0⟩ and u = v − x0v0. For any closed subspace E ⊆ H, let B(E) denote the set of all
bounded linear operators on E and O(E) = {A ∈ B(E) : ATA = I} denote the orthogonal group of
E, where AT denotes the dual operator of A de�ned by

⟨
ATx, y

⟩
= ⟨x,Ay⟩ , for any x, y ∈ E. We will

identify O(v⊥0 ) with a particular subgroup of O(H), namely O(v⊥0 ) = {A ∈ O(H) : Av0 = v0}.

De�nition 4.1 [23](Möbius addition in the ball)
Let (H,+, ⟨·, ·⟩) be a real Hilbert space with a binary operation + and a positive de�nite inner product
⟨·, ·⟩ . Let Bs = {a ∈ H : ||a|| < s} be the s-ball of H, for some s ≥ 0. Möbius addition ⊕s in Bs is a
binary operation de�ned by

a⊕s b =
(1 + 2

s2
⟨a, b⟩+ 1

s2
||b||2)a+ (1− 1

s2
||a||2)b

1 + 2
s2

⟨a, b⟩+ 1
s4
||a||2||b||2

. (4.1)

In the limit of large s (s → +∞), the ball Bs expands to the whole of its space H, and Möbius
addition reduces to vector addition in H.

Möbius gyrations gyr[a, b] : Bs → Bs are automorphisms of the Möbius gyrogroup (Bs,⊕s) since
gyr[a, b](c⊕ d) = gyr[a, b]c⊕ gyr[a, b]d. Solving the left gyroassociative law (2.1) we obtain

gyr[a, b]c = ⊖s(a⊕s b)⊕s (a⊕s (b⊕s c)). (4.2)

Gyrations preserve the inner product in the Hilbert space H, i.e.

⟨gyr[a, b]c, gyr[a, b]d⟩ = ⟨c, d⟩ ,

for all a, b, c, d ∈ Bs (see [23]).
Next we introduce a Cli�ord algebra Cl(H) over H. The Möbius addition (4.1) on the unit ball B1

can be written as a Möbius transformation of type

a⊕1 b = (a+ b)(1− ab)−1 := φa(b), a, b ∈ B1. (4.3)

Indeed, as aba = (12(ab+ ba)+ 1
2(ab− ba))a = (−⟨a, b⟩+ 1

2(ab− ba))a = −⟨a, b⟩ a+ 1
2aba+

1
2 ||a||

2b
we have that aba = −2 ⟨a, b⟩ a+ ||a||2b and thus it follows

φa(b) =
(a+ b)(1− ba)

|1− ab|2
=

(1 + ||b||2 + 2 ⟨a, b⟩)a+ (1− ||a||2)b
1 + 2 ⟨a, b⟩+ ||a||2||b||2

. (4.4)

As pointed out by Friedman [8], introducing the mappings Φ : B1 → Bs, Φ(a) = 2sa
1+||a||2 and

Φ−1 : Bs → B1, Φ
−1(b) = sb

1+

√
1− ||b||2

s2

we can describe the Möbius addition (4.1) on Bs by

a⊕s b = Φ(Φ−1(b)⊕1 Φ
−1(a)), a, b ∈ Bs. (4.5)
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Therefore, from now on we restrict ourselves to the unit ball B1 and we denote S = {a ∈ H : ||a|| =
1} the unit sphere in H. The left gyroassociative law in B1 is given by

a⊕1 (b⊕1 c) = (a⊕1 b)⊕1 (qcq), with q =
1− ab

|1− ab|
, for all a, b, c ∈ B1. (4.6)

In this compact form gyrations (4.2) are described by

gyr[a, b]c =
1− ab

|1− ab|
c
1− ab

|1− ab|
, (4.7)

for all a, b, c ∈ B1. It is easy to see that gyr ∈ Aut(B1) since
1−ab
|1−ab| =

a
|a|

a−1−b
|a−1−b| is an element of the

group Spin(H).
In the case of Möbius gyrogroups associativity happens in some special situations.

Lemma 4.2 If a, b, c ∈ B1 such that a//b or (a ⊥ c and b ⊥ c) then the operation ⊕1 is associative,
i.e.

a⊕1 (b⊕1 c) = (a⊕1 b)⊕1 c.

Proof: We have to solve the equation qcq = c. Computing the left hand side we have:

qcq =
1− ab

|1− ab|
c
1− ab

|1− ba|
=

c− abc− cba+ abcba

1 + 2 ⟨a, b⟩+ ||a||2||b||2
. (4.8)

As

abc = −2 ⟨a, b⟩ c− bac

= −2 ⟨a, b⟩ c− (−2 ⟨a, c⟩ b− bca)

= −2 ⟨a, b⟩ c− (−2 ⟨a, c⟩ b− (−2 ⟨b, c⟩ a− cba))

= −2 ⟨a, b⟩ c+ 2 ⟨a, c⟩ b− 2 ⟨b, c⟩ a− cba

and

abcba = a(−2 ⟨b, c⟩ b+ ||b||2c)a
= −2 ⟨b, c⟩ (−2 ⟨a, b⟩ a+ ||a||2b) + ||b||2(−2 ⟨a, c⟩ a+ ||a||2c)
= 4 ⟨a, b⟩ ⟨b, c⟩ a− 2 ⟨b, c⟩ ||a||2b− 2 ⟨a, c⟩ ||b||2a+ ||a||2||b||2c

we �nd that

qcq =
(1 + 2 ⟨a, b⟩+ ||a||2||b||2)c− 2(⟨a, c⟩+ ⟨b, c⟩ ||a||2)b

1 + 2 ⟨a, b⟩+ ||a||2||b||2
+

2(⟨b, c⟩ (1 + 2 ⟨a, b⟩)− ⟨a, c⟩ ||b||2)a
1 + 2 ⟨a, b⟩+ ||a||2||b||2

. (4.9)

Thus, qcq = c if and only if

(⟨a, c⟩+ ⟨b, c⟩ ||a||2)b = (⟨b, c⟩ (1 + 2 ⟨a, b⟩)− ⟨a, c⟩ ||b||2)a .
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The last equality can only be satis�ed when a//b, i.e. a = t1ω and b = t2ω for some −1 < t1, t2 < 1
and ω ∈ S or when c ⊥ a and c ⊥ b.

The gyrogroup (B1,⊕1) is gyrocommutative since it satis�es the relation

b⊕1 a = q(a⊕1 b)q, with q =
1− ab

|1− ab|
. (4.10)

It is easy to see that b⊕1 a = a⊕1 b if and only if ab = ba, i.e. if the vectors a and b are colinear.
By de�nition Spin(H) is an automorphism group that contains all the gyrations (4.7). From

Theorem 2.3, we obtain that Spin(H)× B1 is a group for the gyrosemidirect product given by

(s1, a)× (s2, b) = (s1s2q, b⊕1 (s2as2)), with q =
1− s2as2b

|1− s2as2b|
. (4.11)

This is a generalization of the external semidirect product of groups (see [12]). We need to establish
some properties between Möbius transformations and the group Spin(H).

Lemma 4.3 For s ∈ Spin(H) and a, b ∈ B1 we have

(i) φa(sbs) = sφsas(b)s; (4.12)

(ii) sφa(b)s = φsas(sbs). (4.13)

Corollary 4.4 For s ∈ Spin(H) and a, b ∈ B1 we have

(i) (sas)⊕1 b = s(a⊕1 (sbs))s; (4.14)

(ii) s(a⊕1 b)s = (sas)⊕1 (sbs). (4.15)

The relation s(a ⊕1 b)s = (sas) ⊕1 (sbs) de�nes a homomorphism of Spin(H) onto the gyrogroup
(B1,⊕1). The left and right cancelation laws are given by

(−b)⊕1 (b⊕1 a) = a; (4.16)

(a⊕1 b)⊕1 (q(−b)q) = a, (4.17)

for all a, b ∈ B1, and q = 1−ab
|1−ab| .

Let v1, v2 ∈ H be two unitary and orthogonal vectors. A rotation over an angle θ in the plane de�ned

by the vectors v1 and v2 can be de�ned using the rotor given by s = e
θ
2
v1v2 := cos

(
θ
2

)
+ v1v2 sin

(
θ
2

)
.

It is easy to see that for s ∈ Spin(H) and for v = x1v1 + x2v2 in the v1v2-plane we have

svs = (x1 cos θ − x2 sin θ)v1 + (x1 sin θ + x2 cos θ)v2.

Now let (ei)i∈I be an orthonormal basis of H. Thus, every element v ∈ H can be written as
v =

∑
i∈I xiei with xi = ⟨v, ei⟩ , i ∈ I. By the orthogonal projection of a vector onto a subspace we

have the following lemma.

Lemma 4.5 The Hilbert space H admits the decomposition H = span{e1, e2}⊕⊥V, with V = (span{e1, e2})⊥,
that is, for each 0 ̸= v ∈ H, there exist r > 0, θ1 ∈ [0, 2π[, θ2 ∈ [0, π[, and v3 ∈ V such that
v = r cos θ1e1 + r sin θ1 cos θ2e2 + r sin θ1 sin θ2v3.
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Corollary 4.6 Each 0 ̸= v ∈ H can be written as s∗s1re1s1 s∗, with r = ||v||, s1 = e
θ1
2
e1e2 and

s∗ = e
θ2
2
e2v3 , for some θ1 ∈ [0, 2π[, and θ2 ∈ [0, π[.

Proof: Applying �rst the rotor s1 to the vector re1 we obtain:

s1re1s1 = r cos θ1e1 + r sin θ1e2.

Finally, applying the rotor s∗ to the vector s1re1s1 we obtain:

s∗s1re1s1s∗ = r cos θ1e1 + r sin θ1 cos θ2e2 + r sin θ1 sin θ2v3. (4.18)

It is easy to see that the rotor s∗ leaves invariant the vector e1 and therefore s∗ ∈ Spin(e⊥1 ). Thus, the
decomposition (4.18) is a polar decomposition of the group
Spin(H), i.e. Spin(H) = Spin(2) Spin(e⊥1 ). We remark that this decomposition can be obtained for an
arbitrary direction. For the sake of simplicity we choose the direction e1. This result together with
(4.12) allow us to obtain a polar decomposition of the Möbius transformation φa(b).

Lemma 4.7 For a = s∗s1rens1 s∗ ∈ B1 it follows

φa(b) = s∗s1φre1(s∗ s1bs1s∗)s1 s∗. (4.19)

These Möbius transformations are associated to Lorentz boosts on the Minkowski space constructed
from the Hilbert space H. We will make such correspondence in order to identify φre1 with Lorentz
boosts in the e1-direction. For more details see for example [14]. We consider the vector space direct
sum H ⊕ R and we de�ne a Lorentzian form ⟨·, ·⟩L on H ⊕ R by

⟨u1, u2⟩L := ⟨x, y⟩H − ts, where u1 = (x, t) and u2 = (y, s).

The second component is usually called the time component. The time-reversal operator J is given by

J : H ⊕ R → H ⊕ R, J(x, t) = (x,−t).

A bounded linear mapping A : H ⊕ R → H ⊕ R is said to be a pseudo-orthogonal transformation
if it is bijective and ⟨Au1, Au2⟩L = ⟨u1, u2⟩L , for all u1, u2 ∈ H ⊕ R. We note that A−1 preserves the
Lorentzian form and by the Banach Open Mapping Theorem A−1 is also continuous.

The set of all pseudo-orthogonal transformations forms a group with respect to composition, de-
noted by O(H, 1), and it is sometimes called the general Lorentz group. The topology in O(H, 1) (and
its subgroups) is the relative topology arising from the usual operator norm computed from the Hilbert
space H ⊕ R.

The set K0 := {u ∈ H ⊕ R : ⟨u, u⟩L = 0} is a (non-convex) cone in H ⊕ R with vertex at
(0, 0) and is called the light cone. It divides H ⊕ R into three open connected regions, the external
region where ⟨u, u⟩L > 0, and two internal regions where ⟨(x, t), (x, t)⟩L < 0, with t > 0 and where
⟨(x, t), (x, t)⟩L < 0, with t < 0. Any pseudo-orthogonal transformation transforms the external region,
the light-cone, and the internal region (where ⟨u, u⟩L < 0) into themselves. If each of the two open
connected internal regions are carried into themselves, then the pseudo-orthogonal transformation is
called a Lorentz transformation. We call the subgroup of Lorentz transformations the (homogeneous)
Lorentz group, and we will denote it by O+(H, 1).We have O(H, 1) = O+(H, 1)∪JO+(H, 1) and hence
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the Lorentz group is normal of index 2 in O(H, 1). Let O+
0 (H, 1) denote the identity component of

O+(H, 1) called the proper Lorentz group. The action of the proper Lorentz group decomposes H ⊕R
into disjoint orbits (see [9, 14]).

If A ∈ O+(H, 1) �xes the vector (0, 1) then it must leave invariant its orthogonal complement with
respect to ⟨·, ·⟩L , the Hilbert space H. Since the Lorentzian form and the inner product agree on H, A
must be an orthogonal transformation on H. Conversely, any orthogonal transformation on H extends
uniquely to a Lorentz transformation that �xes (0, 1). Thus, we identify the orthogonal group O(H)
of H with the isotropy subgroup of O+(H, 1) for (0, 1). In the �nite-dimensional case, it is a standard
result that O(H) is a maximal compact subgroup of O+(H, 1).

Proposition 4.8 [14] For H �nite dimensional, the Lorentz group consists of two connected compo-
nents, the proper Lorentz subgroup O+

0 (H, 1) = SO+(H, 1) consisting of Lorentz transformations of
determinant 1 and its coset of Lorentz transformation of determinant −1. For H in�nite-dimensional,
the Lorentz group is connected (and hence) equal to the proper Lorentz group.

Next we will introduce a Cli�ord algebra structure on the Minkowski space (H ⊕ R, ⟨·, ·⟩L). Let ϵ
be a unit that spans the time axis such that ϵ2 = +1 and it anticommutes with all the elements of the
basis of the Hilbert space, regarded as elements of Cl(H). A pure boost (or hyperbolic rotation) in the
direction ω ∈ S is de�ned by

sω = cosh
(α
2

)
+ ϵω sinh

(α
2

)
and it acts on space-time vectors X = x + tϵ, with x ∈ H, t ∈ R via the transformation X 7→ Y =
sωXsω.

Proposition 4.9 The action of the boost sω on x ∈ S yields the point

ξ =
x+ ((coshα− 1) ⟨ω, x⟩ − sinhα)ω

coshα− sinhα ⟨ω, x⟩
. (4.20)

Proof: We extend the point x ∈ H to the Minkowski space H ⊕ R by considering the point
X = x+ ϵ in the intersection of the Null Cone with the hyperplane T = 1. Since ϵω = −ϵω, ϵx = −xϵ
and ϵ2 = +1, we obtain

sωXsω =
(
cosh

α

2
+ ϵω sinh

α

2

)
(x+ ϵ)

(
cosh

α

2
− ϵω sinh

α

2

)
= cosh2

(α
2

)
x+ cosh

(α
2

)
sinh

(α
2

)
(xω + ωx)ϵ+

(
cosh2

α

2
+ sinh2

α

2

)
ϵ

−2 sinh
(α
2

)
cosh

(α
2

)
ω − sinh2

(α
2

)
ωxω.

As ωxω = (−⟨ω, x⟩+ 1
2(ωx−xω))ω = −⟨ω, x⟩ω+ 1

2ωxω+
1
2 |ω|

2x we obtain that ωxω = −2 ⟨ω, x⟩ω+x.
Moreover, xω + ωx = −2 ⟨ω, x⟩ . Therefore,

Y = sωXsω = x+
(
2 sinh2

(α
2

)
⟨ω, x⟩ − sinhα

)
ω + (coshα− sinhα ⟨ω, x⟩)ϵ

= x+ ((coshα− 1) ⟨ω, x⟩ − sinhα)ω + (coshα− sinhα ⟨ω, x⟩)ϵ.

By homogeneity, i.e. by restricting this point to the hyperplane T = 1 we obtain the desired result:

ξ =
x+ ((coshα− 1) ⟨ω, x⟩ − sinhα)ω

coshα− sinhα ⟨ω, x⟩
.
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There is an isomorphism between the subgroup of Lorentz boosts on a �xed direction ω ∈ S and
the subgroup of Möbius transformations φtω.

Proposition 4.10 [3] Let ω ∈ S and a = tω, with −1 < t < 1. Then transformations (4.4) and (4.20)
are related by

coshα =
1 + t2

1− t2
and sinhα =

2t

1− t2
(4.21)

α = ln

(
1 + t

1− t

)
and t =

eα − 1

eα + 1
= tanh

(α
2

)
. (4.22)

We will consider the subgroup Spin(1, 1) as the subgroup of Lorentz boosts on the e1-direction.
The elements of Spin(H) that �x e1 are the elements of Spin(e⊥1 ). Thus, the centralizer C of

A = Spin(1, 1), in Spin(H), i.e., C = {s ∈ Spin(H) : sφte1(x)s = φte1(sxs)} corresponds to the
subgroup Spin(e⊥1 ). Therefore, the decomposition (4.19) is not unique. The polar decomposition of the
Möbius transformation φa induces the Cartan decomposition of the group (Spin(n)×B1,×).

A gyrogroup contains in general di�erent types of substructures like subgroups or gyro-subgroups.
In the case of a Möbius gyrogroup, the substructures of gyro-subgroups and subgroups are of foremost
importance.

De�nition 4.11 Let (G,⊕) be a gyrogroup and K a non-empty subset of G. K is a gyro-subgroup of
(G,⊕) if it is a gyrogroup for the operation induced from G and gyr[a, b] ∈ Aut(K) for all a, b ∈ K.

For a �xed ω ∈ S, we consider the subsets Lω = {x ∈ B1 : x = tω, −1 < t < 1} and Dω = {x ∈
B1 : ⟨x, ω⟩ = 0}. Clearly, Dω = (Lω)

⊥ and B1 is the direct sum of Lω and Dω, i.e. B1 = Lω ⊕Dω.

Proposition 4.12 The sets Dω and Lω endowed with the operation ⊕1 are gyro-subgroups of (B1,⊕1).
Moreover, (Lω,⊕1) is a subgroup.

Proof: Let a and b be two arbitrary points of Dω. Then ⟨a, ω⟩ = 0 and ⟨b, ω⟩ = 0. By (4.4)
we have that ⟨a⊕1 b, ω⟩ = 0. In an analogous way, it is easy to conclude that ⟨b⊕1 a, ω⟩ = 0. Thus,
a⊕1 b ∈ Dω and b⊕1 a ∈ Dω. The identity element 0 belongs to Dω and for each a ∈ Dω the inverse
element −a belongs to Dω. Finally, by (4.9) it follows that gyr[a, b]c = qcq ∈ Dω, for all a, b, c ∈ Dω.
Thus, (Dω,⊕1) is a gyro-subgroup of (B1,⊕1).

For the case of Lω, let c and d be two arbitrary points of Lω. Then c = t1ω and d = t2ω, for some
t1, t2 ∈]− 1, 1[. As

c⊕1 d = (c+ d)(1− dc)−1 =
t1 + t2
1 + t1t2

ω = d⊕1 c

and −1 < t1+t2
1+t1t2

< 1, we obtain that c⊕1 d ∈ Lω. Moreover, −c ∈ Lω for each c ∈ Lω and gyr[a, b]c =
qcq = c, for all a, b, c ∈ Lω. Thus, (Lω,⊕1) is a subgroup of (B1,⊕1).

We remark that the subgroups (Lω,⊕1) are not normal in B1, according to the De�nition 2.5.
Thus, the factorizations presented below do not follow the general theory.
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5 Factorizations of the gyrogoup of the unit ball

At a �rst look it is readily seen that the equivalence relation used in the factorization of a group by a
subgroup cannot be applied for the factorization of a gyrogroup by a gyro-subgroup since the operation
⊕1 is neither commutative nor associative. Thus, one possible approach would be to construct �rst a
convenient partition of B1. The following theorem is the basis of our construction. It gives us a unique
decomposition for each point c ∈ B1 with respect to the operation ⊕1.

Theorem 5.1 For each c ∈ B1 there exist unique b, u ∈ Lω and a, v ∈ Dω such that c = a ⊕1 b and
c = u⊕1 v.

Proof: First we prove the existence of the decomposition c = a ⊕1 b. Let c ∈ B1 be arbitrary.
Since B1 = Lω ⊕Dω there exist unique c1 ∈ Lω and c2 ∈ Dω such that c = c1 + c2. Let c1 = t1ω and
c2 = λ1ω

∗ with ω∗ ∈ S such that ⟨ω∗, ω⟩ = 0 and t1, λ1 ∈]− 1, 1[. If c1 = 0 then it su�ces to consider
b = 0 and a = c2; otherwise, we consider b = t2ω ∈ Lω and a = λ2ω

∗ ∈ Dω such that

c = a⊕1 b =
(1 + ||b||2)a+ (1− ||a||2)b

1 + ||a||2||b||2

that is,

c1 + c2 = t1ω + λ1ω
∗ =

(1− λ2
2)t2

1 + (t2λ2)2
ω +

(1 + t22)λ2

1 + (t2λ2)2
ω∗. (5.1)

We have to �nd t2 and λ2 satisfying (5.1). The system of equations (5.1) has a unique solution given
by

t2 =
t21 + λ2

1 − 1 +
√

((1 + λ1)2 + t21)((1− λ1)2 + t21)

2t1
and λ2 =

λ1

1 + t1t2
. (5.2)

As ||c||2 = c21 + c22 = λ2
1 + t21 < 1 we have that λ1 = r sin θ and t1 = r cos θ, for some r ∈ [0, 1[ and

θ ∈ [0, 2π[. From this it is easy to see that λ2, t2 ∈]− 1, 1[ and thus the existence is proved.
To prove the uniqueness of the decomposition we suppose that there exist a, d ∈ Dω and b, f ∈ Lω

such that c = a ⊕1 b = d ⊕1 f. Then b = (−a) ⊕1 (d ⊕1 f), by (4.16). As a ⊥ f and d ⊥ f we have
b = ((−a)⊕1 d)⊕1 f, by Lemma 4.2. Since by hypothesis b, f ∈ Lω then (−a)⊕1 d must be an element
of Lω. This is true if and only if (−a)⊕1 d = 0. This implies a = d and consequently b = 0⊕1 f = f,
as we wish to prove.

To prove the decomposition c = u⊕1 v we have again two cases: if c2 = 0 then we consider v = 0
and u = c1, otherwise we consider u = t3ω ∈ Lω and v = λ3ω

∗ ∈ Dω such that

c = u⊕1 v =
(1 + ||v||2)u+ (1− ||u||2)v

1 + ||u||2||v||2

that is,

c1 + c2 = t1ω + λ1ω
∗ =

(1 + λ2
3)t3

1 + (t3λ3)2
ω +

(1− t23)λ3

1 + (t3λ3)2
ω∗. (5.3)

In this case we have to �nd t3 and λ3 satisfying (5.3). The system of equations (5.3) has an unique
solution given by

t3 =
t21 + λ2

1 − 1 +
√

((1 + t1)2 + λ2
1)((1− t1)2 + λ2

1)

2λ1
and λ3 =

t1
1 + λ1t3

. (5.4)

The proof of the uniqueness of this decomposition is analogous to the previous one.
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5.1 Factorizations of type I

The factorization of the gyrogroup (B1,⊕1) by a given gyro-subgroup (Dω,⊕1) will be called a factor-
ization of type I. We will construct left and right cosets arising from convenient partitions of B1. For
each b ∈ Lω left and right equivalence classes will be denoted by Sl

b and Sr
b , respectively.

Proposition 5.2 The family {Sl
b : b ∈ Lω}, where Sl

b = {b ⊕1 a : a ∈ Dω}, is a disjoint partition of
B1.

Proof: We �rst prove that this family is indeed disjoint. Let b = t1ω ∈ Lω and c = t2ω ∈ Lω

with t1 ̸= t2 and assume that Sl
b∩Sl

c ̸= ∅. Then there exists f ∈ B1 such that f = b⊕1 a and f = c⊕1 d
for some a, d ∈ Dω. By (4.16) and (4.6) we have

a = (−b)⊕1 (c⊕ d) = ((−b)⊕1 c)⊕1 (qdq), with q =
1 + bc

|1 + bc|
.

As q = 1+bc
|1+bc| =

1−t1t2
|1−t1t2| = 1, then a = ((−b)⊕1 c)⊕1 d. Since a, d ∈ Dω then (−b)⊕1 c ∈ Dω. Therefore,

(−b) ⊕1 c = 0, i.e. b = c. But this contradicts our assumption. Thus, Sl
b ∩ Sl

c = ∅, for b ̸= c. Finally,
by Theorem 5.1 we have that ∪b∈LωS

l
b = B1.

This partition induces a left equivalence relation ∼l on B1 :

∀ c, d ∈ B1, c ∼l d ⇔ ∃ b ∈ Lω, ∃ a, f ∈ Dω : c = b⊕1 a and d = b⊕1 f, (5.5)

which is equivalent to

∀ c, d ∈ B1, c ∼l d ⇔ ∃ b ∈ Lω, ∃ a, f ∈ Dω : c⊕1 (q1(−a)q1) = d⊕1 (q2(−f)q2), (5.6)

with q1 =
1−ab
|1−ab| and q2 =

1−fb
|1−fb| .

By Proposition 5.2 we obtain the following isomorphism:

B1/(Dω,∼l) ∼= Lω.

We wish to give a characterization of the surfaces Sl
b, with b ∈ Lω.

Proposition 5.3 For each b = tω ∈ Lω, S
l
b is the intersection of B1 with the sphere orthogonal to S,

with center in the point C = 1+t2

2t ω and radius τ = 1−t2

2|t| .

Proof: Let b = tω ∈ Lω, c = λω∗ ∈ Dω and

Pλ := b⊕1 c =
t(1 + λ2)

1 + λ2t2
ω +

λ(1− t2)

1 + λ2t2
ω∗.

Let Cb = {b⊕1 c : −1 < λ < 1} be an arc inside B1 in the ωω∗-plane. As each a ∈ Dω can be described
as a = s∗cs∗ with s∗ ∈ Spin(ω⊥) we have by (4.14) that

b⊕1 (s∗cs∗) = s∗((s∗bs∗)⊕1 c)s∗ = s∗(b⊕1 c)s∗.

Thus, Sl
b = {b ⊕1 a : a ∈ Dω} is obtained by the action of the group Spin(ω⊥) on the arc Cb. For all

λ ∈]− 1, 1[, we have that ||Pλ−C||2 = τ2, with C = 1+t2

2t ω and τ = 1−t2

2|t| . Thus, S
l
b belongs to a sphere
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centered at C and radius τ. Moreover, as t tends to zero the radius of this sphere tends to in�nity thus
proving that Sl

0 coincides with Dω.
Each Sl

b is orthogonal to S because ||C||2 = 1 + τ2. We recall that two spheres, S1 and S2, with
centers m1 and m2 and radii τ1 and τ2, respectively, intersect orthogonally if and only if ⟨m1− y,m2−
y⟩ = 0, for all y ∈ S1 ∩ S2, or equivalently, if ||m1 −m2||2 = τ21 + τ22 .

Since (B1,⊕1) is a gyrocommutative gyrogroup we can consider right coset spaces arising from
the decomposition of B1 by the gyro-subgroups Dω. Analogously as for the left action we obtain the
following results for the right action.

Proposition 5.4 The family {Sr
b : b ∈ Lω}, where Sr

b = {a ⊕1 b : a ∈ Dω}, is a disjoint partition of
B1.

From Proposition 5.4 we obtain the isomorphism B1/(Dω,∼r) ∼= Lω. In the next proposition we
characterize the equivalence classes Sr

b , with b ∈ Lω.

Proposition 5.5 For each b = tω ∈ Lω, S
r
b is the intersection of B1 with the sphere centered in

Cr = t2−1
2t ω and radius τ = 1+t2

2|t| .

Let us remark that in Proposition 5.5 the spheres Sr
b are not orthogonal to S because they do not

satisfy the relation ||Cr||2 = 1 + τ2.

5.2 Factorizations of type II

The factorization of the gyrogroup (B1,⊕1) by a given gyro-subgroup (Lω,⊕1) will be called a factor-
ization of type II. We will construct left and right cosets arising from convenient partitions of B1. Left
and right equivalence classes will be denoted by T l

b and T r
b , respectively, for each a ∈ Dω. Some proofs

will be omitted.

Proposition 5.6 The family T l = {T l
a : a ∈ Dω}, with T l

a = {a ⊕1 b : b ∈ Lω} is a disjoint partition
of B1.

This partition induces the following equivalence relation on B1 :

∀ c, d ∈ B1, c ∼l d ⇔ ∃ a ∈ Dω, ∃ b, f ∈ Lω : c = a⊕1 b and d = a⊕1 f. (5.7)

Corollary 5.7 The isomorphism B1/(Lω,∼l) ∼= Dω holds.

Proposition 5.8 For an arbitrary a = λω∗ ∈ Dω, the curve T l
a is obtained from the intersection

between B1 and the circumference of radius τ = 1−λ2

2|λ| and center in the point C l
0 =

1+λ2

2λ ω∗.

Proof: Let a = λω∗ ∈ Dω, b = tω ∈ Lω, with −1 < λ, t < 1, and

Pt := a⊕1 b =
λ(1 + t2)

1 + λ2t2
ω∗ +

t(1− λ2)

1 + λ2t2
ω.

Let T l
a = {a ⊕1 b : b ∈ Lω} be a curve inside the unit ball in the ωω∗-plane. For all t ∈] − 1, 1[, we

have ||Pt −C l
0||2 = τ2. Thus, the curve T l

a lies on the circumference with center in C l
0 and radius τ, in
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the ωω∗-plane. When λ tends to zero, the radius of this circumference tends to in�nity, thus proving
that the curve T l

0 coincides with Lω.
Now we will consider the right coset space B1/(Lω,∼r).
The family T r = {T r

a : a ∈ Dω}, where T r
a = {b ⊕ a : b ∈ Lω}, is again a partition of B1 and it

induces the following equivalence relation on B1

∀c, d ∈ B1, c ∼r d ⇔ ∃ a ∈ Dω, ∃ b, f ∈ Lω : c = b⊕1 a and d = f ⊕1 a. (5.8)

Proposition 5.9 For an arbitrary a = λω∗ ∈ Dω, T
r
a is the intersection of B1 with the circumference

of center in the point Cr
0 = λ2−1

2λ ω∗, with radius τ = 1+λ2

2|λ| , in the ωω∗-plane. Moreover, we have that
each T r

a is orthogonal to S.

The proof is analogous to the proof of Proposition 5.8. To see that each curve T r
a is orthogonal to

S it su�ces to verify that the relation ||Cr
0 ||2 = 1 + τ2 holds. We will summarize in Table 1 the left

and right orbits constructed by factorizations of types I and II.

Quotient
spaces

Orbits
v = λ3ω

∗, u = t3ω, a = λ2ω
∗, b = t2ω, ⟨ω, ω∗⟩ = 0 .

B1/(Dω,∼l)
Sl
b = {s∗(u⊕1 v)s∗ : v ∈ Dω, s∗ ∈ Spin(ω⊥)}

=
{

(1−t23)λ3

1+(t3λ3)2
s∗ω

∗s∗ +
(1+λ2

3)t3
1+(t3λ3)2

ω : −1 < λ3 < 1, s∗ ∈ Spin(ω⊥)
}

B1/(Dω,∼r)
Sr
b = {s∗(a⊕1 b)s∗ : a ∈ Dω, s∗ ∈ Spin(ω⊥)}

=
{

(1+t22)λ2

1+(t2λ2)2
s∗ω

∗s∗ +
(1−λ2

2)t2
1+(t2λ2)2

ω : −1 < λ2 < 1, s∗ ∈ Spin(ω⊥)
}

B1/(Lω,∼l) T l
a = {a⊕1 b : b ∈ Lω} =

{
(1+t22)λ2

1+(t2λ2)2
ω∗ +

(1−λ2
2)t2

1+(t2λ2)2
ω : −1 < t2 < 1

}
B1/(Lω,∼r) T r

v = {u⊕1 v : u ∈ Lω} =
{

(1−t23)λ3

1+(t3λ3)2
ω∗ +

(1+λ2
3)t3

1+(t3λ3)2
ω : −1 < t3 < 1

}

Table 1: Orbits of factorizations of types I and II

6 Duality relations

For each factorization obtained previously we can de�ne a �ber bundle structure, global and local
sections. For instance, for the quotient space X1 = B1/(Dω,∼l) we can de�ne the projection mapping
π : B1 → X1, π(a) = [a], where [a] is the equivalence class of a ∈ B1 on X1, which coincides with Sl

b,
for some b ∈ Lω. The 4−tuple (B1, X1, π, S

l
b) is a �ber bundle. By the bijection B1/(Dω,∼l) ∼= Lω

we can de�ne a second projection π̃ : B1 → Lω, π̃(a) = b, with [a] = Sl
b, for some b ∈ Lω. Thus, the

�bers generated by π and π̃ coincide. A (global) section on X1 is a mapping σ : X1 → B1 such that
π(σ(x)) = x, for all x ∈ X1. In general, bundles may not have globally de�ned sections and, therefore,
we may only de�ne local sections. In our case, we can de�ne both type of sections. For the quotient
space B1/(Dω,∼l) we consider Lω as the fundamental section σ0. From Proposition 5.2 an entire class
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of sections σ : B1/(Dω,∼l) → B1 can be obtained from Lω by considering

σ(tω) = tω ⊕ f(t)ω∗ =
t(1 + f(t)2)

1 + (tf(t))2
ω +

f(t)(1− t2)

1 + (tf(t))2
ω∗ (6.1)

where f :]− 1, 1[→]− 1, 1[ is the generating function of the section. Depending on the properties of f
we can obtain sections that are Borel maps and also smooth sections. If f ∈ Ck(]− 1, 1[), k ∈ N, then
the section generates a Ck-curve inside the unit ball. For instance, for f(t) = λ, for some λ ∈]− 1, 1[

we obtain the section σλ(tω) = tω ⊕ f(t)ω∗ = t(1+λ2)
1+(tλ)2

ω + λ(1−t2)
1+(tλ)2

ω∗ which belongs to the set of orbits

of B1/(Lω,∼r).
There is an interesting duality relation between the orbits of the quotient spaces of Table 1.

Theorem 6.1 The following duality relations hold:

1. The orbits of B1/(Lω,∼r) are global sections for the quotient spaces
B1/(Dω,∼r) and B1/(Dω,∼l), and vice versa.

2. The orbits of B1/(Lω,∼l) are global sections for the quotient space
B1/(Dω,∼r) and vice versa.

3. The orbits of B1/(Lω,∼l) are local sections for the quotient space
B1/(Dω,∼l) and vice versa.

Proof: To prove the theorem we have to �nd the intersection points between orbits of di�erent
quotient spaces. First we will prove the statement 1. The intersection point of two arbitrary orbits T r

u

and Sr
b is obtained for

λ2 =
(1 + t22)(1− λ2

3)−
√

((1 + λ2
3)(1 + t22) + 4t2λ3)((1 + t22)(1 + λ2

3)− 4t2λ3)

2λ3(t22 − 1)

and

t3 =
λ2t2(1− λ2

3)

λ2(λ2
3 − t22) + λ3(1− t22)

.

This can be interpreted in the following way: for each t2 �xed and λ3 ∈] − 1, 1[ we obtain that λ2

lies on the interval ] − 1, 1[, which means that the orbit Sr
b intersects the set of orbits A = {T r

u :
u = λ3ω

∗,−1 < λ3 < 1}. Since the orbits of B1/(Dω,∼r) are invariant under the action of Spin(ω⊥)
and the orbits (B1/(Lω,∼r))\A are obtained from the action of Spin(ω⊥) on the orbits of the set A,
we conclude that the orbits of B1/(Dω,∼r) are global sections for the quotient space B1/(Lω,∼r).
Analogously, for each λ3 �xed t3 runs the interval ] − 1, 1[ which allows us to conclude the converse,
i.e. the orbits of B1/(Lω,∼r) are global sections for the quotient space B1/(Dω,∼r).

The second part of statement 1 and statement 2 are proved in the same way. In both cases the
intersection point of two arbitrary orbits is easily obtained from Table 1.

Finally we prove the statement 3. The intersection of two arbitrary orbits T l
a and Sl

b is given by

t2 =
(1 + t23)(1− λ2

2)−
√

(λ2
2(t3 − 1)2 − (1 + t3)2)(λ2

2(1 + t3)2 − (1− t3)2)

2t3(1 + λ2
2)

and

λ3 =
t2λ2(1 + t23)

t2(λ2
2 − t23) + t3(1 + λ2

2)
.
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As for each λ2 �xed and t3 ∈]−1, 1[, the parameter t2 only runs a proper subset of the interval ]−1, 1[
we conclude that the orbits of B1/(Lω,∼l) are local sections for the quotient space B1/(Dω,∼l). The
converse statement is also true.

7 The proper Lorentz group Spin+(1, n)

The full Lorentz group G = SO(1, n) consists of linear homogeneous transformations of the (n +
1)−dimensional space under which the quadratic form |x|2 = |x|2 − x20, x = (x0, x), x = (x1, . . . , xn)
is invariant. Here we identify x0 as the time component and the x = (x1, . . . , xn) as the spatial
component. The group of all Lorentz transformations preserving both orientation and the direction of
time is called the proper orthochronous Lorentz group and it is denoted by SO0(1, n). It is generated
by spatial rotations of the maximal compact subgroup K = SO(n) and hyperbolic rotations of the
subgroup A = SO(1, 1), according to the Cartan decomposition KAK of SO0(1, n) (see [20, 24]).

The group SO0(1, n) is connected and locally compact. The coset space X = SO0(1, n)/K is the
Lobachevsky space of n dimensions. It can be realized in various manners, e.g. by the upper sheet of
the hyperboloidH+ = {x = (x0, x) : x

2
0−|x|2 = 1, x0 > 0} or by the unit ball Bn = {x ∈ Rn : |x| < 1}.

The double covering group of SO0(1, n) is the group Spin+(1, n). In Cli�ord Analysis it can be
described by Vahlen matrices (see [3, 13]). These matrices can be decomposed into the maximal
compact subgroup Spin(n) and the set of Möbius transformations of the form φa(x) = (x − a)(1 +
ax)−1, a ∈ Bn, which map the closed unit ball Bn onto itself.

The unit ball in Rn endowed with the operation ⊕1 becomes a gyrogroup. The gyrosemidirect
product between (Bn,⊕1) and Spin(n) is the group of pairs (s, a) where a ∈ Bn and s ∈ Spin(n), with
operation × given by the gyrosemidirect product

(s1, a)× (s2, b) = (s1s2q, b⊕1 (s2as2)), with q =
1− s2as2b

|1− s2as2b|
. (7.1)

The group Spin+(1, n) admits a Cartan or KAK decomposition, where K = Spin(n) and A =
Spin(1, 1) is the subgroup of Lorentz boosts in a �xed direction. We choose the direction en =
(0, . . . , 0, 1).

Lemma 7.1 Each a ∈ B1 can be written as a = srens, where r = |a| ∈ [0, 1[ and s = s1 · · · sn−1 ∈
Spin(n− 1) with

si = cos
θi
2
+ ei+1ei sin

θi
2
, i = 1, . . . , n− 1, (7.2)

where 0 ≤ θ1 < 2π, 0 ≤ θi < π, i = 2, . . . , n− 1.

This follows from the description of a ∈ B1 in spherical coordinates using the rotors (7.2). These
rotors describe rotations in coordinate planes. For s = cos

(
θ
2

)
+ eiej sin

(
θ
2

)
, i ̸= j we have

sxs = (cos θ xi − sin θ xj)ei + (cos θ xj + sin θ xi)ej +
∑
k ̸=i,j

xkek ,

which represents a rotation of angle θ in the ei+1ei−plane. In general, we have sisj ̸= sjsi, i ̸= j. It is
easy to see that s∗ = s1 . . . sn−2 ∈ Spin(n− 1) leaves the xn-axis invariant.

For each ω ∈ Sn−1 we consider the hyperplane Hω = {x ∈ Rn : ⟨ω, x⟩ = 0}, the hyperdisc
Dω = Hω ∩Bn and the segment Lω = {x ∈ Bn : x = tω, −1 < t < 1}. The particular group (Len ,⊕1)
is isomorphic to the Spin(1, 1) group.
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We end this paper showing the orbits of the quotient spaces obtained from the factorizations of
the Möbius gyrogroup of the unit ball Bn, considering the direction en. We will present a projection
of the orbits on the en−1en-plane in Table 2.

Factorizations Orbits

Type I

Surfaces Sl
b

Surfaces Sr
b

Type II

Curves T l
a Curves T r

a

Table 2: Orbits of factorizations of types I and II for Bn.

The quotient space Bn/(Den ,∼l) was used in [5] for the construction of continuous wavelet trans-
forms on the unit sphere Sn−1. It encodes some important information regarding the action of Möbius
transformations on the unit sphere.

In our opinion the quotient spaces constructed in this paper play an important role in the compre-
hension of the action of Möbius transformations.
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