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Abstract

Protein-protein interactions are critically dependent on just a few ‘hot spot’ residues at the interface. Hot spots make a
dominant contribution to the free energy of binding and they can disrupt the interaction if mutated to alanine. Here, we
present HSPred, a support vector machine(SVM)-based method to predict hot spot residues, given the structure of a
complex. HSPred represents an improvement over a previously described approach (Lise et al, BMC Bioinformatics 2009,
10:365). It achieves higher accuracy by treating separately predictions involving either an arginine or a glutamic acid
residue. These are the amino acid types on which the original model did not perform well. We have therefore developed
two additional SVM classifiers, specifically optimised for these cases. HSPred reaches an overall precision and recall
respectively of 61% and 69%, which roughly corresponds to a 10% improvement. An implementation of the described
method is available as a web server at http://bioinf.cs.ucl.ac.uk/hspred. It is free to non-commercial users.
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Introduction

Alanine scanning mutagenesis is a powerful experimental

methodology for investigating the structural and energetic

characteristics of protein complexes [1]. Individual amino-acids

are systematically mutated to alanine and changes in free energy of

binding (DDG) measured. As alanine amino acids do not have a

side-chain beyond the b-carbon, this procedure in effect tests the

importance of individual side-chain groups for complex formation,

providing a map of the so-called functional epitope. Results from a

number of experiments indicate that only a small subset of contact

residues contribute significantly to the binding free energy. These

residues have been termed ‘hot spots’ and if mutated they can

disrupt the interaction. For the majority of interface residues

instead, the effect of an alanine mutation is minimal [2].

Hot spots are typically defined as those residues for which

DDG§2 kcal=mol. In recent years, several computational

approaches have been developed to identify them at protein-

protein interfaces [3–16]. Accurate predictive models provide a

valuable complement to experimental studies and add to our

understanding of the factors that influence affinity and specificity

in protein-protein interfaces. In addition, they can have important

applications in the field of drug discovery. A number of recent

studies have been successful in developing (drug-like) small

molecules that bind at hot spots and inhibit complex formation

[17]. Reliable hot spots predictions could therefore represent the

first step in rational drug design projects [18].

In a previous work, we presented a machine learning strategy to

identify hot spot residues in protein-protein interfaces, given the

structure of the complex [12]. We considered the basic energetic

terms that contribute to hot spot interactions, i.e. van der Waals

potentials, solvation energy, hydrogen bonds and Coulomb

electrostatics, and treated them as input features of a Support

Vector Machine (SVM) classifier. We found that the method could

predict hot spots with overall good accuracy, comparing

favourably to other available approaches. However, by grouping

mutations according to the amino acid type, we observed that in

some cases the SVM model did not perform too well, for example

on predictions involving arginine or glutamic acid residues.

In this paper, we report the development of HSPred, a hot spot

prediction method that aims to overcome the limitations

highlighted above. For this purpose, we have integrated the

original approach with two additional SVM classifiers, specifically

built for mutations involving Arg and Glu residues. The two

additional models are trained on the same data set as the ‘general’

model but are biased to perform well on Arg and Glu due to a

different choice of input features. Employing a strict cross-

validation scheme, we show that this strategy leads to a significant

improvement over the previous version of the method. We further

validate the results by applying HSPred to an external test case,

which is not part of the original data set.

Results and Discussion

The problem we have investigated is the prediction of hot spot

residues at a protein-protein interface using a machine learning

approach. As input variables, we have considered basic energy

terms (van der Waals, hydrogen bond, electrostatic and desolva-

tion potentials) calculated from the complex structure. We have

distinguished contributions from different structural regions in the

complex, leading to 3 distinct types of interactions: side-chain

inter-molecular, environment inter-molecular and side-chain
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intra-molecular (see Figure 1). To each of them, we have

associated 4 input features, corresponding to the energy terms

above. In total therefore there are 12 input features but some of

them have not been included in our models because scarcely

informative (see Materials and Methods for more details). Support

Vector Machines (SVMs) have then be used to learn from a

training set to classify residues as hot spots DDG§2 kcal=molð Þ or

non hot spots (DDGv2 kcal=mol).

We have built a classifier, SVMX, based on the following 7
features: van der Waals, hydrogen bond and solvation side-chain

inter-molecular energies; van der Waals, hydrogen bond and

solvation environment inter-molecular energies; van der Waals

side-chain intra-molecular energy. A summary of the results is

reported in Table 1 according to various performance measures.

The precision P is the fraction of true hot spots among the set of

residues predicted to be hot spots; the recall R is the fraction of

correctly identified hot spots relative to all those present in the data

set; the F1 score is a weighted average of the precision and recall;

the Matthews Correlation Coefficient (MCC) is a commonly used

measure of the quality of binary classifications (see Methods

section for more details). SVMX is very similar in its design and

performance to the model described in [12]. With respect to the

latter, SVMX does not rely on any electrostatic term but it includes

the van der Waals side-chain intra-molecular energy. We report in

Table 2 the weight of each energy term in the linear scoring

function.

We have analysed the SVMX predictions by grouping mutations

according to the amino acid type. In Figure 2(a) we report the

results for the most frequent amino acids in the database. SVMX

has a good accuracy over most of amino acid types and is not

biased toward some specific amino acid property (e.g. hydrophobic

or charged residues). At the same time, however, it does not

perform so well on mutations involving Arg and Glu. To tackle

this problem, we have developed two additional classifiers,

respectively SVME and SVMR, specifically optimised for these

amino acids. SVME and SVMR have been trained using the whole

data set but differ from SVMX for the choice of input features and

the associated weights (see Table 2).

As can be seen in Figure 2(b), SVME and SVMR achieve

significantly improved results on Glu and Arg predictions. A further

confirmation of the improvement comes from analysing the

correlation coefficients r between the classifiers output scores and

the observed DDG values. For Glu residues, r increases from

r~0:37 for SVMX to r~0:60 for SVME; for Arg, r increases from

r~0:40 for SVMX to r~0:58 for SVMR. This suggests that SVME

and SVMR are indeed more effective than SVMX in describing

mutations involving Glu and Arg residues, respectively, and that the

observed improvement is genuine and not due to over-fitting.

Figure 1. Schematic overview of protein structural regions
which define the different energy contributions. The red filled
area, (a), corresponds to side-chain atoms of the mutated residue; the
red and blue striped regions, (b) and (c) respectively, correspond to
atoms within 10A of the Cb of the mutated residue. We distinguish 3
types of interactions: side-chain inter-molecular between (a) and (c),
environment inter-molecular between (b) and (c), side-chain intra-
molecular between (a) and (b).
doi:10.1371/journal.pone.0016774.g001

Table 1. Summary of results.

Model Precision Recall F1 score MCC

SVMX 0:54+0:02 0:64+0:04 0:59+0:02 0:45+0:02

HSPred 0:61+0:02 0:69+0:04 0:65+0:02 0:54+0:02

Cross-validated estimates of performances for SVMX and HSPred. MCC is the
Matthews correlation coefficient (see Methods section for definition of the
various performance measures).
doi:10.1371/journal.pone.0016774.t001

Table 2. Weight of energy terms in the scoring functions.

Feature (energy term) SVMX SVME SVMR

Side-chain inter-molecular

van der Waals 0:25+0:03 { 0:79+0:04

hydrogen bond 0:16+0:04 0:63+0:04 {

electrostatics { { {

desolvation 0:21+0:03 { {

Environment inter-molecular

van der Waals 0:13+0:02 { {

hydrogen bond 0:18+0:03 0:69+0:03 0:50+0:04

electrostatics { { {

desolvation 0:10+0:01 { {

Side-chain intra-molecular

van der Waals 0:26+0:06 0:60+0:04 0:49+0:04

hydrogen bond { { {

electrostatics { { 0:47+0:06

desolvation { { {

Threshold 0:43+0:05 0:54+0:07 0:32+0:07

We report the absolute value of the weight associated to each feature in the
scoring functions, together with the threshold that defines the decision
boundary. Energy terms which are not included in the scoring function are
denoted with the { symbol.
doi:10.1371/journal.pone.0016774.t002
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We have combined SVMX, SVME and SVMR into a unique

classifier, HSPred. SVME and SVMR act respectively on Glu and

Arg amino acids, SVM9 on all other amino acid types. We report

a summary of the results for HSPred in Table 1. HSPred performs

significantly better than SVMX, reflecting the inclusion of SVMR

and SVME. As can be seen from Figure 2(b), predictions on Arg

and Glu are roughly as accurate as for the other residues. HSPred

therefore successfully overcomes the major limitations of the

previously proposed method [12]. Most notable is the improve-

ment on Glu predictions.

To further validate HSPred, we have applied it to the protein-

protein complex Ras/RalGDS (PDB code: 1LFD). The Ras/

RalGDS complex is not homologous to any of the complexes in

the original data set and it can then be regarded as an independent

external test case. Experimental DDG values are available in [19],

from which we have taken the data corresponding to 16 interface

alanine mutations (7 on Ras and 9 on RalGDS). HSPred correctly

identifies 6 hot spot (true positives) and 8 non hot spot residues

(true negatives). However, 2 residues are wrongly predicted as hot

spots (false positives). The predictions are illustrated in Figure 3.

These results are in line with the cross-validated estimates in

Table 1 and confirm the accuracy of HSPred.

We have implemented HSPred as a fully automatic web server,

available at http://bioinf.cs.ucl.ac.uk/hspred. As input it requires

a PDB formatted file containing the structure of the protein-

protein complex. The user needs to define the interface to analyse

by specifying the chain identifiers for each protein on either side of

the interface. The output consists of two components: (i) a Jmol

applet to visualise and explore the predictions using the protein

structures and (ii) a table listing HSPred scores for each interface

amino acid. The output page for an illustrative example is

reported in Figure 4. The complex tested is Interleukin 4 (IL-4)

bound to its receptor a chain (IL-4Ra) (PDB code: 1IAR). Alanine

mutational data from experiments are available for this complex

[20,21]. Out of 27 interface mutations, HSPred predicts 7 true

positives, 14 true negatives, 4 false positive and 2 false negatives.

These results further validate the predictive accuracy of HSPred.

To conclude, in this paper we have described HSPred, an

accurate and reliable computational method to predict hot spot

residues at protein-protein interfaces, given the structure of a

complex. HSPred is available as a web server and it is free for non-

commercial users. We believe that HSPred predictions will be

useful in guiding biomedical experiments. In particular, we are

currently testing its capacity to identify druggable binding sites at

protein-protein interfaces [22].

Materials and Methods

Data sets
In our study, we have used the same data set as in [12]. It

consists of 20 protein complex structures for which alanine

mutational data are available. Only protein-protein interactions

involving an extended interface are included (we have therefore

ignored protein-peptide complexes). Following previous publica-

tions [23], we define hot spots as those alanine mutations for which

DDG§2 kcal=mol (DDG is the change in binding free energy).

Only mutations occurring at the complex interface are retained. In

total the data set comprises 349 mutations, of which 81 correspond

to hot spots. For cross-validation purposes, we have grouped

homologous complexes and formed 16 non-homologous clusters.

Accordingly, we have implemented a 16-fold cross-validation

strategy. A detailed description of the data set, individual

mutations and clustering criteria can be found in [12].

In addition, we have applied HSPred to the Ras/RalGDS

protein-protein complex (PDB code: 1LFD) for which experimen-

tal DDG values are available [19]. From the original reference, we

Figure 2. Predictions results for different amino acids. Only the most frequent amino acid in the database are reported. In (a) are the results
for SVMX, in (b) for HSPred, which includes SVME and SVMR.
doi:10.1371/journal.pone.0016774.g002
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have taken the data corresponding to 16 interface alanine

mutations. As the Ras/RalGDS complex is not homologous to

any of the complexes in the original data set, it can be regarded as

an independent external test case. A similar data set had been used

previously in [13] for validation purposes.

As a further illustrative example we have applied HSPred to

Interleukin-4 (IL-4) bound to its receptor a chain (IL-4Ra) (PDB

code: 1IAR). Experimental DDG values are available for this

complex too [20,21]. The IL-4/IL-4Ra complex is likely a remote

homologue of the complex between human growth hormone

(hGH) and its binding protein (hGHbp), which is part of our

training set (PDB code: 1A22). IL-4 and hGH share only 8%
sequence identity by optimal structural alignment but belong to

the same homologous superfamily group (H-level) according to the

CATH database [24]. Similarly, the sequence identity between IL-

4Ra and hGHbp is only 14% but structural similarity suggests a

homology relationship. It has however been pointed out that the

IL-4/IL-4Ra complex differs in several important functional and

structural aspects from the hGH/hGHbp complex [20,21,25]. It

could therefore in effect be regarded as an additional independent

test case.

Input features
As input features for the Support Vector Machines we have

used basic energy terms that have been found to be important for

the stability of protein complexes. These are van der Waals

potential, hydrogen bonds, Coulomb electrostatics and desolvation

energy. We distinguish contributions from 3 different structural

regions (schematised in Figure 1):

N Side-chain inter-molecular energies: interaction energies between

side-chain atoms of the mutated residue and atoms in the

partner protein (respectively atoms in the red filled area and

blue striped area in Figure 1).

N Environment inter-molecular energies: interaction energies between

atoms in the two proteins that are within 10A of the Cb of the

mutated residue (respectively atoms in the red striped area and

blue striped area in Figure 1). We do not include the

contribution from the mutated side-chain in this term.

N Side-chain intra-molecular energies: interaction energies between

side-chain atoms of the mutated residue and other atoms in the

same protein (respectively atoms in the red filled area and red

striped area in Figure 1).

In total therefore there are 12 input features (4|3), although

not all of them have been used to build our SVM models (we

discuss our feature selection below). A detailed description of how

energy components are calculated from the PDB structures is

reported in [12].

Support Vector Machines models
We have used the program package SVMlight [26], which is

available at the website http://svmlight.joachims.org/. As in [12],

we have opted for a linear kernel and implemented a nested-loop

cross-validation scheme. The latter consists of two nested cross-

validation loops: an outer one for testing, an inner one for

choosing hyper-parameters. In the inner cycle, the hyper-

parameters are optimised by applying a grid search and the

model performance is assessed by means of the F1 score. The

nested-loop cross-validation scheme allows also to estimate

statistical errors on performance measures (see [12] for details).

Models construction and feature selection. We have

analysed the correlation coefficients r between energy features

and the observed DDG values (see Table 3). We have then built a

‘baseline’ model, SVMX, including only the 7 features for which

r§0:2. These are: van der Waals, hydrogen bond and solvation

side-chain inter-molecular energies, van der Waals, hydrogen bond

and solvation environment inter-molecular energies, and van der

Waals side-chain intra-molecular energy. Note that the values of the

correlation coefficients do not vary sensibly in the 16 different

training sets, implying that this choice of features is robust.

We have analysed the predictions of SVMX by grouping

mutations according to the amino acid type. In particular we have

focused on the most frequent amino acids in our data set, i.e. those

occurring more than 20 times with at least 5 hot spot examples.

The list comprises the following 7 amino acid types: Arg, Asn, Asp,

Glu, Lys, Trp and Tyr. We observe a good performance for all

amino acids except Arg and Glu for which F1v0:5 (see Figure 2).

Figure 3. Ras/RalGDS complex. Mapping of HSPred predictions onto the the complex (PDB code: 1LFD). The monomers have been rotated to
display the interface. Red residues are correctly predicted hot spots (true positives); blue residues are correctly predicted non hot spots (true
negatives); yellow residues are non hot spots erroneously predicts as hot spots (false positives).
doi:10.1371/journal.pone.0016774.g003
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To overcome these limitations, we have built two separate SVM

classifiers, SVMR and SVME, for mutations involving respectively

Arg and Glu.

In theory, one could use the amino acid identity as input feature

or build a model using only, e.g., Glu mutations. In practice, at

present this is not feasible as there are not enough mutational data.

We have reasoned instead that SVME and SVMR should not be

completely different from SVMX, rather they should differ only

marginally from the latter. In this spirit, we have trained several

different but related models. All models are trained using the

whole data set (comprising therefore mutations from all amino

acid types) but each of them corresponds to a different choice of

input features. Within this ensemble of classifiers we have selected

those that best perform on Arg and Glu.

Figure 4. Sample output for the HSPred server. Screenshot of the results page for the IL-4/IL-4Ra complex (PDB code: 1IAR). On top, predictions
are visualised using a Jmol applet. On the left is IL-4 (chain A), on the right IL-4Ra (chain B). Predicted hot spots are in red, non hot spots in white.
Residues not part of the interface are in blue. Below, predictions scores for each interface residues (excluding Pro and Gly amino acids) are reported
(note that only the first few residues are displayed here). Scores greater than zero corresponds to predicted hot spots.
doi:10.1371/journal.pone.0016774.g004
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Our strategy has been to bias the classifiers to perform well on

Arg and Glu by selecting a specific subset of features. This reflects

the observation that some energy features appear to be more

important for some amino acids than for others, i.e. for some amino

acid they correlate better with the observed DDGs. Note that the

hyper-parameters in each of the models in the ensemble are

optimised over all the mutations in the training set. The identity of

the amino acid of interest enters only when selecting the best model

within the ensemble. We find this to be a robust strategy, i.e. it is not

too sensitive to small modifications in the training set.

Given the starting 12 features, there is a huge number of

possible combinations that can be selected and it is clearly not

feasible to test them all. To simplify the problem, we have

considered only combinations with 3 or 4 features, taken from the

7 features used for SVMX. We have further constrained the

selection by excluding pairs of highly correlated features, i.e.

features for which rw0:6, because they would be redundant. For

example, only one term between the van der Waals and solvation

side-chain inter-molecular energies can be included. Similarly only

one term among the 3 environment energies can be chosen. With

these constraints, there are a total of 23 different feature

combinations (6 combinations having 4 features and 17 having 3
features). We have built a classifier for each of them and then

selected the one performing best on, e.g., Glu. In the case of Arg,

the intra-molecular coulomb term appears to be also important

(correlation coefficient with observed DDG r~0:4). We have

therefore tested additional 23 combinations which are obtained by

adding the intra-molecular coulomb term to the set above.

It is important to underline that when assessing the results for

SVME and SVM R by cross-validation, the choice of the best model

(feature combination) is performed within the inner loop of the

nested-loop cross-validation scheme (i.e. using the training set only),

similarly to the choice of hyper-parameters. This ensures that the

optimal feature combination for either Arg or Glu is selected

without ever considering the performance on the test set. It is worth

noting that for both Arg and Glu the feature combination that gives

the best results is consistent in the 16 different training sets. For

example for Glu the optimal feature combination is always

hydrogen bond side-chain inter-molecular, hydrogen bond envi-

ronment and van der Waals side-chain intra-molecular. It is also

worth mentioning that Glu and Arg can be singled out based on the

performance of SVMX in the training sets, therefore complying to

the cross-validation scheme. We have not explicitly stated it above

to keep the discussion as simple as possible.

Measures of prediction performance
We primarily assess the prediction performances of our method

using the F1 score. Let TP, FP, FN refer to the number of true

positives, false positives and false negative respectively. Precision

(P, also called specificity) and recall (R, also called sensitivity) are

defined as

P~
TP

TPzFP
R~

TP

TPzFN
ð1Þ

The F1 score is the harmonic mean of precision and recall

F1~
2PR

PzR
ð2Þ

We also calculate the Matthew’s correlation coefficient (MCC)

given by

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TPzFN)(TPzFP)(TNzFN)(TNzFP)

p ð3Þ

where TN is the number of true negative and TP, FP and FN
are as above.
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Predicting free energy changes using structural ensembles. Nat Methods 6: 3–4.

Table 3. Correlation of energy terms with observed DDG
values.

Feature (energy term) r

Side-chain inter-molecular

van der Waals 0:49

hydrogen bond 0:38

electrostatics 0:01

desolvation 0:45

Environment inter-molecular

van der Waals 0:32

hydrogen bond 0:28

electrostatics 0:04

desolvation 0:32

Side-chain intra-molecular

van der Waals 0:26

hydrogen bond 0:09

electrostatics 0:12

desolvation 0:19

We report the absolute values of the correlation coefficients r between energy
features and the observed DDG (values greater than 0.2 are in bold).
doi:10.1371/journal.pone.0016774.t003

Protein Hot Spot Prediction

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e16774



11. Cho Ki, Kim D, Lee D (2009) A feature-based approach to modeling protein-

protein interaction hot spots. Nucleic Acids Res 37: 2672–2687.
12. Lise S, Archambeau C, Pontil M, Jones DT (2009) Prediction of hot spot

residues at protein-protein interfaces by combining machine learning and

energy-based methods. BMC Bioinformatics 10: 365–365.
13. Kruger DM, Gohlke H (2010) DrugScorePPI webserver: fast and accurate in

silico alanine scanning for scoring protein-protein interactions. Nucleic Acids
Res 38 Suppl: W480–W486.

14. Tuncbag N, Keskin O, Gursoy A (2010) HotPoint: hot spot prediction server for

protein interfaces. Nucleic Acids Res 38 Suppl: W402–W406.
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