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Since most spacecraft multiple-impulse trajectory optimization problems are complex multimodal problems with boundary
constraint, finding the global optimal solution based on the traditional differential evolution (DE) algorithms becomes so difficult
due to the deception of many local optima and the probable existence of a bias towards suboptimal solution. In order to overcome
this issue and enhance the global searching ability, an improved DE algorithm with combined mutation strategies and boundary-
handling schemes is proposed. In the first stage, multiple mutation strategies are utilized, and each strategy creates a mutant vector.
In the second stage, multiple boundary-handling schemes are used to simultaneously address the same infeasible trial vector. Two
typical spacecraft multiple-impulse trajectory optimization problems are studied and optimized using the proposed DE method.
The experimental results demonstrate that the proposed DEmethod efficiently overcomes the problem created by the convergence
to a local optimum and obtains the global optimum with a higher reliability and convergence rate compared with some other
popular evolutionary methods.

1. Introduction

The subject of spacecraft trajectory optimization has a long
history [1]. In its early stage, spacecraft trajectory was
primarily optimized using analytical theory and gradient-
based optimization algorithms. Hughes et al. [2] concluded
that these optimization approaches were efficient in some
simple cases but did not work well on more complex ones,
such as spacecraft multiple-impulse trajectory optimization
problems, because most of these cases present complex mul-
timodal peculiarities, which easily converge to the local opti-
mum and make the search of the global optimum difficult.

Since the 1990s, evolutionary algorithms (EAs) have
rapidly emerged. Varieties of EAs have been used for space-
craft multiple-impulse trajectory optimization problems.
These include genetic algorithm (GA), simulated annealing
(SA), differential evolution (DE), and particle swarm
optimization (PSO) [3]. Initial applications of EAs to space
trajectory optimizationmainly employedGAs in conjunction

with gradient-based methods [4–6]. A combination of artifi-
cial neural networks with EAs has also been applied to solar
sail trajectories [7]. Sentinella and Casalino [8] mentioned
that the use of EAs for low-thrust trajectory optimization is
less attractive due to the large number of variables required
to describe low-thrust trajectories with sufficient accuracy,
while EAs are better suited to the optimization of impulse
trajectories which can be described by a limited number of
variables and the number of function evaluations that are
required to obtain the optimal solution is usually acceptable.

In this paper, we focus our research on two typical
multiple-impulse trajectory optimization problemswhich are
called same-circle rendezvous problem and deep space grav-
ity assist maneuvers problem, respectively. Some researchers
have studied these problems based on EAs recently. Luo
et al. [9, 10] applied an improved SA method to optimize
the multiple-impulse rendezvous problem. Pontani et al. [11]
used a PSO method to solve similar cases. Vinkó and Izzo
[12] formulated a model of gravity assist using deep space
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maneuvers and applied several kinds of EAs to optimize
the multiple-impulse gravity assist problem. Vasile et al. [13]
furthered the work of Vinkó and Izzo [12] by applying a
hybrid algorithm with the DE method and monotonic basin
hopping to the original model. Gad and Abdelkhalik [14, 15]
presented a software tool based on their developed hidden
genes GA and dynamic-size multiple population GAmethod
to solve the deep space gravity assist maneuvers problems.
These employed EAs tend to have a stronger searching ability
than traditional approaches but cannot yet converge to the
global optimum when optimizing multimodal spacecraft
multiple-impulse trajectory problems. Therefore, a more
powerful and efficient EA is necessary in order to search the
global optimum when solving these problems.

The DE algorithm, as a simple yet efficient optimizer
with fewer parameters, is currently one of the most widely
used EAs. First proposed by Storn and Price [17, 18], it has
received a substantial amount of attention. Many researchers
have studied DE and proposed numerous notable variants
which have been verified on a series of numerical problems
[16, 19–21]. Thanks to its high efficiency, DE has been applied
to solve optimization problems in many fields, including the
spacecraft trajectory optimization [8, 12, 13, 22–25]. However,
because only one search operator is used inmostmodifiedDE
variants, they may have excellent optimization performance
on unimodal problems but their capability to solve the
multimodal problems is not so outstanding, especially for the
complex multiple-impulse trajectory optimization problem.
Hence, some researchers appliedmultiple search operators in
the algorithm. Tasgetiren et al. [26] developed an ensemble
DE in such a way that each individual was assigned to one
of two distinct mutation strategies or a variable parameter
search. Elsayed et al. [27] proposed an improved differential
evolution algorithm that uses a mix of different mutation
operators to solve the benchmark and some real-world
optimization problems.

Moreover, for the problems with boundary constraint,
the boundary handling also plays an important role in
the evolutionary process except the mutation operation.
Different boundary-handling schemes may have discrepant
peculiarities and significantly affect the optimization per-
formance. Xu and Rahmat-Samii [28] analysed the effect of
different boundary-handling schemes in the PSO method,
and multiple boundary-handling schemes were applied by
Huang and Mohan [29] in order to improve the algorithm’s
robustness. However, little literature has reported the usage
of different boundary-handling schemes on DE’s multiple
search operators.

In our research, in order to further enhance the opti-
mization performance of DE algorithm and then to obtain
global optimal solutions of the spacecraft multiple-impulse
trajectory optimization problems, we studied not only multi-
ple mutation strategies but also multiple boundary-handling
schemes and extended the traditional DE method to a
modified variant with combined mutation strategies and
boundary-handling schemes. By comparing our modified
DE method with some other popular evolutionary methods
in amount of simulations, we found that the global search-
ing ability of DE algorithm could be efficiently improved

Target spacecraft Chaser spacecraft

Figure 1: Same-circle rendezvous.

by simultaneously combining multiple mutation strategies
and boundary-handling schemes when solving spacecraft
multiple-impulse trajectory optimization problems. Further-
more, we successfully obtain the global optima for the
same-circle rendezvous case and deep space gravity assist
maneuvers case using the proposed DE method.

The reminder of the paper is organized as follows.
In Section 2, the model Description of the Optimization
problems is given out. The modification mechanism of the
improved DE method is detailed in Section 3. In Section 4,
the simulation results are presented first and the comparison
and analysis of the employed algorithms followed then.
Finally, conclusions are presented in Section 5.

2. Model Description of
the Optimization Problems

2.1. Same-Circle Rendezvous. The same-circle rendezvous
problem is a multiple-impulse multiple-revolution ren-
dezvous problem. In this, a chaser spacecraft and a target
spacecraft have the same circular orbit. The chaser has an
initial separation angle of 180∘ behind the target, which is
shown in Figure 1. The chaser must rendezvous with the
target at a prescribed time using impulse maneuvers. This
problem, using a transfer time of 2.3 ∗ 𝑇 (𝑇 is the period
of the circular orbit), was first presented by Prussing and
Chiu [30] with a four-impulse optimum solution. Colasurdo
and Pastrone [31] and Prussing [32] further obtained a
better four-impulse optimum solution using the method
based on Lawden’s theory and gradient-based optimization
algorithms. Recently, Luo et al. [10] and Pontani et al. [11]
produced similar results using the global convergence ability
of the evolutionary algorithms, in which a parallel simulated
annealing that utilizes a simplexmethodwas presented in Luo
et al. [10] and a PSOmethod was applied in Pontani et al. [11].

The variables of this problem are

X = [𝑇
1
, 𝑇
2
, 𝑇
3
, 𝑇
4
, Δ𝑉
1
, 𝛼
1
, 𝛽
1
, Δ𝑉
2
, 𝛼
2
, 𝛽
2
]
𝑇

, (1)

in which 𝑇
1
, 𝑇
2
, 𝑇
3
, and 𝑇

4
are the time-applying impulses,

Δ𝑉
1
and Δ𝑉

2
are the characteristic velocities of the first two

impulses, and 𝛼
1
, 𝛽
1
and 𝛼

2
, 𝛽
2
determine the direction of

the first two impulses. The moduli and direction of the last
two impulses, Δ𝑉

3
and Δ𝑉

4
, are determined using Lambert

algorithm.



Mathematical Problems in Engineering 3

Kepler
part Lambert

part

Kepler
part

Lambert
part

ΔV∞

T0

ΔVDSM1

𝜂1(T1 − T0)
(1 − 𝜂1)(T1 − T0)T1

ΔVGA1

𝜂2(T2 − T1)
ΔVDSM2

(1 − 𝜂2)(T2 − T1)
ΔVGA2T2

Figure 2: MGA 1DSM flight process.

An optimization will minimize the propellant cost, which
is equivalent to minimizing the total characteristic velocity.
The objective function is

𝐽 = Δ𝑉
1
+ Δ𝑉
2
+ Δ𝑉
3
+ Δ𝑉
4
. (2)

2.2. Deep Space Gravity Assist Maneuvers. Gravity assist
maneuvers can be divided into two categories, which are
called multiple gravity assist (MGA) maneuvers and multiple
gravity assist using deep space maneuvers (MGA-1DSM).
Their corresponding optimization models have been well
formulated byVinkó and Izzo [12].TheMGAmanoeuver rep-
resents the interplanetary trajectory of a spacecraft equipped
with chemical propulsion that can only thrust during its plan-
etocentric phases. This type of problem is easier to optimize
because it has fewer design variables. The MGA-1DSM refers
to the model in which a spacecraft is able to thrust its engine
once at any time between each trajectory leg. Generally,
for the same gravity assist sequence, using the MGA-1DSM
model is able to design a better trajectory compared with the
MGAmodel. However, there are more variables in theMGA-
1DSM model and the problem becomes much more difficult
considering the large number of local optima.

In the MGA-1DSM model, the trajectory between two
gravity assist maneuvers is divided into two parts, as can be
seen in Figure 2. Kepler algorithm is used to propagate the
first part, and the second part should be solved by Lambert
algorithm. The variables of the MGA-1DSM model are as
follows:
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where 𝑇
0
is the departure time. Here, 𝑉
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Vout = Vpla + ΔVout,

ΔVGA = Vout − Vin,

(4)

where Vpla is the velocity of planet in heliocentric ecliptic
inertial reference frame (HEIRF), Vin and Vout are the
velocities of spacecraft before and after flying by the planet
in HEIRF, and 𝜇pla is the planet gravitational constant.

Optimization also minimizes the total characteristic
velocity:

𝐽 = 𝑉
∞

+ ∑Δ𝑉DSMi + Δ𝑉final, (5)

where𝑉
∞
is the escape velocity from Earth,Δ𝑉DSMi represent

the middle impulses between each two gravity assist times,
and Δ𝑉final is the final impulse used to rendezvous with the
target planet.

3. Differential Evolution
Algorithm with Combined Mutation
Strategies and Boundary-Handling
Schemes (DE_CMSBHS)

3.1. Classic DE Algorithm. The DE algorithm is a simple real
parameter optimization algorithm [33]. It proceeds through
a simple cycle of stages, which include mutation, crossover,
boundary handling, and selection.

3.1.1. Population Initialization. Given a function 𝑓(X) with
𝐷-dimensional variables, the population is initialized with a
size of.The 𝑖th vector of the populationX

𝑖
for each generation

can be expressed as

X
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The search space is constrained by the prescribed mini-
mum and maximum bounds:

Xmin = [𝑥min 1, 𝑥min 2, 𝑥min 3, . . . , 𝑥min𝐷]
𝑇

,

Xmax = [𝑥max 1, 𝑥max 2, 𝑥max 3, . . . , 𝑥max𝐷]
𝑇

.

(7)

The 𝑗th component of the 𝑖th vector in (6) is initialized as
follows:

𝑥
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= 𝑥min 𝑗 + rand
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[0, 1] ⋅ (𝑥max 𝑗 − 𝑥min 𝑗) ,

𝑗 = 1, 2, 3, . . . , 𝐷,

(8)

where rand
𝑖𝑗
[0, 1] is a random number uniformly distributed

between 0 and 1.

3.1.2. Mutation Operation. After initialization, each individ-
ual vector X

𝑖
, called a target vector, employs the mutation

operation in order to create a corresponding mutant vector
V
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]
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mutation strategy. The following mutation strategies are
frequently employed in the classic DE.
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The indices 𝑟1, 𝑟2, 𝑟3, 𝑟4, and 𝑟5 are five different integers,
not equal to 𝑖 randomly selected from [1,𝑁𝑝]. We useXbest to
denote the best individual vector of the current generation,
and 𝐹

𝑖
is the mutation factor of the 𝑖th vector. The mutation

factor is an important parameter in the algorithm. In the
classical DEmethod,𝐹

𝑖
is a fixed value within the range [0, 1].

3.1.3. Crossover Operation. Crossover is applied after the
mutation operation. Crossover gives the new individual
vector U

𝑖
= [𝑢
𝑖1
, 𝑢
𝑖2
, 𝑢
𝑖3
, . . . , 𝑢

𝑖𝐷
]
𝑇, which is called a trial

vector, the genes from both the target vector X
𝑖
, and the

mutant vectorV
𝑖
. Binomial crossover ismore frequently used

in the crossover operation:
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𝑥
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(16)

In (16), 𝑗rand is an integer randomly selected from [1, 𝐷].
This ensures that at least one component inU

𝑖
comes fromV

𝑖
,

which maintains the efficiency of each crossover operation.
Here, CR

𝑖
is the crossover probability of the 𝑖th vector. This

crossover probability is another important parameter in the
algorithm and has a fixed value within the range [0, 1] in the
classical DE method.

3.1.4. Boundary Handling. In most problems, especially real-
world problems, the vector X

𝑖
is restricted by the boundary

constraint. Hence, the trial vector U
𝑖
should be in the range

[Xmin,Xmax]. If𝑢𝑖𝑗 < 𝑥min 𝑗 or𝑢𝑖𝑗 > 𝑥max 𝑗, boundary handling
must be applied in order to address the 𝑗th component’s
presence in the range. The common boundary-handling
scheme recreates a new component, as in (4), to replace the
original one.

3.1.5. Selection. After the previous steps have been completed,
each trial vector must be evaluated. A “greedy” strategy is
applied in the selection operation. This means that as long as
(U
𝑖
) ≤ 𝑓(X

𝑖
), then the vector U

𝑖
enters the next generation.

Otherwise, X
𝑖
is retained in the next generation.

3.2. Combined Mutation Strategies. Mutation is the most
important step in a DE algorithm. Equations (9)–(15) are
some efficient mutation strategies frequently used in various
DE methods. The effectiveness of some other strategies, such
as the triangular mutation strategy proposed by Fan and
Lampinen [34], have also been verified. In general, all muta-
tion strategies can be divided into two classes. One group
emphasizes the global search, similar to the “DE/rand/1,”
“DE/rand/2,” and “DE/current-to-rand/1” strategies. The
other class focuses on the local search. Examples of this
include the “DE/best/1,” “DE/best/2,” and “DE/current-to-
best/1” strategies.

For complex optimization problems, especially multi-
modal problems, using one of these strategies alone cannot
ensure that the algorithm’s global and local searches are
effective and efficient. Qin et al. [20] employed multiple
mutation strategies in the SADEmethod. A strategy is chosen
based on its probability, which is updated according to the
success ratios of the past generations. This approach is self-
adaptive to a certain extent.However, only one of the available
strategies is used in eachmutation operation.These strategies
are not used to their full potential, and choosing a strategy
based on its probability is an unreliable approach. For a given
target vector in a current generation, the strategy with a
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higher success probability may not create a better trial vector
than one with a lower success probability.

In this case, in order to fully utilize the advantages of
multiple mutation strategies, combined mutation strategies
are applied in DE CMSBHS to simultaneously improve the
global and local searches. Testing demonstrates that the
combination of the following four strategies produces a
better performance: “DE/rand/1,” “DE/rand/2,” “DE/current-
to-rand/1,” and “DE/current-to-pbest/1.”The “DE/current-to-
pbest/1” strategy is used in the JADE algorithm, which was
proposed by Zhang and Sanderson [21]. The pbest vector
is randomly chosen from the top p% of individuals in the
population. According to the conclusions in Zhang and
Sanderson [21], the parameter p in the range [5, 20] performs
better. We used p = 20 in the TP SDE algorithm in order to
enhance its global search ability.

The first three global searching strategies can help main-
tain the population’s diversity to some degree; the fourth
local searching strategy can improve the algorithm’s search
speed and accuracy. Even when the fourth strategy converges
to a local optimum, the first three strategies increase the
possibility of escaping the local optimum in order to evolve
to the better solution. Their relationship can be regarded as
complementation. However, if the fourth strategy is replaced
with “DE/best/1” or “DE/current-to-best/1,” the algorithm’s
optimization performance significantly worsens. Because
these two “best” strategies are too greedy, the first three strate-
gies will be overwhelmed by the “best” strategy and become
useless. Once the algorithm converges to the local optimum,
it cannot progress further. Thus, we apply the less greedy
strategy, “DE/current-to-pbest/1.” On one hand, this strategy
can decrease the probability of premature convergence. On
the other hand, the first three strategies will be used more
frequently in the evolution procedure in order to maintain
the population’s diversity.The comparisonsmade in Section 4
demonstrate that the optimization performance of combined
mutation strategies is better than methods that only use a
single strategy.

3.3. Combined Boundary-Handling Schemes. When address-
ing problems with boundary constraints, boundary handling
is an important operation if a trial vectorU

𝑖
exceeds the range.

Because boundary handling essentially repeats the initializa-
tion process in order to replace the infeasible component, the
boundary-handling scheme determines the distribution of
the new trial vectorU

𝑖
in the design space. Different schemes

can significantly affect the final result.
Currently, only one scheme, which is the same as the one

in (8), is used to operate boundary handling in most evo-
lutionary algorithms. Randomly creating a new component
with this scheme does not appear to be sufficiently efficient.

Although an individual with a component that exceeds
the range is not a feasible solution, it is still valuable because
it contains information about the mutation. In order to
fully utilize this information about the current and infeasible
individuals,multiple boundary-handling schemes are applied
in the DE CMSBHS process. Testing demonstrates that the
combination of the following four schemes performs bet-
ter.

Scheme 1 (“whole rand”). Consider

if (𝑢
𝑖𝑗
< 𝑥min 𝑗 or 𝑢

𝑖𝑗
> 𝑥max 𝑗) ,

𝑢
𝑖𝑗
= 𝑥min 𝑗 + rand

𝑖𝑗
[0, 1] ⋅ (𝑥max 𝑗 − 𝑥min 𝑗) .

(17)

Scheme 2 (“current rand”). Consider
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𝑖𝑗
< 𝑥min 𝑗) ,

𝑢
𝑖𝑗
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Scheme 3 (“reflect rand”). Consider
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𝑢
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,
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> 𝑥max 𝑗) ,

𝑢
𝑖𝑗
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󸀠
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𝑢
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− 𝑥max 𝑗 = 𝑥max 𝑗 − 𝑢

󸀠

𝑖𝑗

.

(19)

Scheme 4 (“cut off”). Consider

if (𝑢
𝑖𝑗
< 𝑥min 𝑗) , 𝑢

𝑖𝑗
= 𝑥min 𝑗,

if (𝑢
𝑖𝑗
> 𝑥max 𝑗) , 𝑢

𝑖𝑗
= 𝑥max 𝑗.

(20)

In (17)–(20), 𝑢
𝑖𝑗
is the before-handling component and

𝑢
𝑖𝑗
is the after-handling component. Figure 3 illustrates these

four kinds of boundary-handling schemes. And because the
handling schemes of a component exceeding the minimum
or maximum are similar, the situation of 𝑢

𝑖𝑗
> 𝑥max 𝑗 is

considered as an example in the following illustration.
As is shown in Figure 3, “whole rand” is the retaining

scheme used to ensure the potential selection of any value
within the given range.The “current rand” scheme randomly
creates a new component between the current component
and the maximum, which efficiently utilizes the information
of the current individual. The “reflect rand” scheme first
creates an 𝑢

󸀠

𝑖𝑗

. 𝑢󸀠
𝑖𝑗

, in which the 𝑢
𝑖𝑗
are symmetric with respect

to𝑥max 𝑗.Then anew component is randomly created between
𝑢
󸀠

𝑖𝑗

and 𝑥max 𝑗. This scheme efficiently uses the information of
infeasible individuals. The “cut off” scheme directly replaces
the component with the maximum, which is extremely
efficient if some components of the optimum solution are
on the boundary. The comparisons made in Section 4 also
demonstrate a better optimization performance of combined
boundary-handling schemes than that of methods that use a
single scheme.
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uij uijxij
xijuij uij

xminj xminjxmaxj xmaxj

randij[0, 1] · (xmaxj − xminj)

if (uij < xminj) if (uij > xmaxj)

randij[0, 1] · (xmaxj − xminj)

(a) “Whole rand”

uij uijxij xijuij uij

xminj xminjxmaxj xmaxj

randij[0, 1] · (xij − xminj)
randij[0, 1] · (xmaxj − xij)

(b) “Current rand”

uijuij xijxij uijuij

xminjxminj xmaxjxmaxj

randij[0, 1] · (u󳰀ij − xminj)

uij and u󳰀ij are symmetric
with respect to xminj

randij[0, 1] · (xmaxj − u󳰀ij)

u󳰀iju󳰀ij

uij and u󳰀ij are symmetric
with respect to xmaxj

(c) “Reflect rand”

uijuij xijxij

xminjxminj xmaxjxmaxj

uij = xminj uij = xmaxj

(d) “Cut off”

Figure 3: Illustration of the four kinds of boundary-handling schemes.

3.4. Self-Adaption of Parameters. Theparameters𝐹 andCR in
the classic DE algorithm are usually determined by testing or
experience.They are always fixed values in any evolution pro-
cedure. However, the efficiency and reliability of this situation
seems insufficient. For this reason, many studies on the self-
adaption of parameters exist.The self-adaption of parameters
scheme applied in this paper refers to the one proposed by
Islam et al. [16]. The parameter 𝐹 adapts as follows:

𝐹
𝑖
= Cauchy (𝜇𝐹

𝐺
, 0.1) . (21)

In (21), 𝐹
𝑖
is a random number selected from a Cauchy

distribution with mean and standard deviation 0.1. Here, 𝜇𝐹
𝐺

is updated in every generation in accordance with

𝜇𝐹
𝐺+1

= 𝜔
𝐹
⋅ 𝜇𝐹
𝐺
+ (1 − 𝜔

𝐹
) ⋅mean (𝑆

𝐹
) , (22)

where𝜔
𝐹
is a randomnumber uniformly distributed between

0.8 and 1, 𝑆
𝐹
is the assemblage of all successful mutation

factors at the current generation, andmean(𝑆
𝐹
) represents the
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Boundary handling
with “whole-rand”
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Boundary handling
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Boundary handling
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Boundary handling
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for (i = 0; i < NP; i++)

for (j = 0; j < 4; j++)
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V1 using “DE/rand/1” V2 using “DE/rand/2” using “DE/current-to-rand/1” using “DE/current-to-pbest/1”

Uj ∈ [Xmin,Xmax]?

Create mutant vector V3 Create mutant vector V4

Figure 4: DE CMSBHS algorithm flow.

power mean of all successful mutation factors, which can be
calculated by

mean (𝑆
𝐹
) = ∑

𝑥∈𝑆𝐹

(
𝑥
𝑚

󵄨󵄨󵄨󵄨𝑆𝐹
󵄨󵄨󵄨󵄨

)

1/𝑚

, 𝑚 = 2. (23)

In (23), |𝑆
𝐹
| is the number of successful mutation factors.

The self-adaption scheme used for CR is similar to the one
used for 𝐹. The difference is that CR

𝑖
is a random number

taken from the Gaussian distribution
CR
𝑖
= Gaussian (𝜇CR

𝐺
, 0.1) ,

𝜇CR
𝐺+1

= 𝜔CR ⋅ 𝜇CR
𝐺
+ (1 − 𝜔CR) ⋅mean (𝑆CR) ,

mean (𝑆CR) = ∑

𝑥∈𝑆CR

(
𝑥
𝑛

󵄨󵄨󵄨󵄨𝑆CR
󵄨󵄨󵄨󵄨

)

1/𝑛

, 𝑛 = 1.5.

(24)

The fundamental idea of this self-adaption scheme is that
the parameters of the next generation are guided according

to the parameters of all successful scale factors in the current
generation.The parameter 𝐹 selected from the Cauchy distri-
bution maintains the population’s diversity, and CR, chosen
from the Gaussian distribution, concentrates the value. If
the value for 𝐹 or CR exceeds the range (0, 1], it will be
recreated until the value is within the range. If 𝜇𝐹

𝐺
and 𝜇CR

𝐺

are 0.5 and 0.75, respectively, at the first generation, then
they are adapted according to the situation of the following
generations. The values for 𝜔

𝐹
and 𝜔CR, selected from the

uniform distribution [0.8, 1], maintain updating robustness.
The parameters𝑚 and 𝑛 do not have fixed values. Numerous
experiments show that𝑚 = 2 and 𝑛 = 1.5 are the best choices
for complex multimodal problems.

3.5. Algorithm Flow of DE CMSHBS. Figure 4 presents the
DE CMSHBS algorithm flow. The stop criterion can be
set according to the problem’s need. In general, the algo-
rithm stops when the prescribed fitness evaluation number
approaches or converges to a plateau in which successive
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Table 1: Design boundaries of same-circle rendezvous model.

Variable LB UB Units
𝑇
1

0 0.1 2.3 ∗ 𝑇

𝑇
2

0.1 0.5 2.3 ∗ 𝑇

𝑇
3

0.5 0.9 2.3 ∗ 𝑇

𝑇
4

0.9 1 2.3 ∗ 𝑇

Δ𝑉
1

0 1500 km/s
𝛼
1

−PI PI rad
𝛽
1

−PI PI rad
Δ𝑉
2

0 1500 km/s
𝛼
2

−PI PI rad
𝛽
2

−PI PI rad

iterations no longer produce better results. If attaining the
prescribed fitness evaluation number is the stop criterion,
fewer evolutionary generations are needed because more
fitness evaluation numbers in each generation are contained
in the DE CMSHBS algorithm than those contained in other
algorithms.

4. Simulation and Comparison

4.1. Simulation of Same-Circle Rendezvous Case

4.1.1. Result Presentation. Based on the same-circle ren-
dezvous model that is formulated in Section 2, the circular
orbit is set to 400 km in height, which is the same as the
simulation condition in Luo et al. [10].Theboundaries of each
variable are established in Table 1.

The best solution obtained by the DE CMSBHS method
is X = [0.000000, 0.207320, 0.792680, 1.000000, 392.546673,
0.500000, 0.547843, 235.587940, 0.500000, 0.142865]T with
an objective function value of 1256.27m/s, surpassing the best
solution of Luo et al. [10] using PSASMmethodwith an objec-
tive function value of 𝐽 = 1256.32m/s. Each impulse time
and characteristic velocity optimized by DE CMSBHS and
PSASMmethod are listed in Table 2.The chaser’s rendezvous
trajectory optimized by the DE CMSBHS method is given
out in Figure 5.

Figure 6 illustrated the primer-magnitude time history of
the obtained best solution. Apparently it satisfies Lawden’s
conditions, which is a necessary condition for an optimal
transfer orbit [35]. It indicates that DE CMSBHS has suc-
cessfully obtained the optimum solution of the same-circle
rendezvous problem.

4.1.2. Algorithm Comparison and Analysis. Except for the
DE CMSBHS method, we also tried eight single-combined
DEs in solving the same-circle rendezvous problem to
compare with the PSASM method that is used by Luo
et al. [10], including four kinds of DEs with combined
mutation strategies and four kinds of DEs with combined
boundary-handling schemes. For convenience, the single-
combined DEs are abbreviated as follows. If we use DE CMS
+ “whole rand” and “DE/rand/1” + DE CBHS, for instance,
DE CMS + “whole rand” represents the combination of the
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Figure 5: The trajectory of same-circle rendezvous optimized by
DE CMSBHS.
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Figure 6: Primer-magnitude time history.

combined mutation strategies with the boundary-handling
scheme “whole rand.” “DE/rand/1” + PBHS denotes the
combination of the mutation strategy “DE/rand/1” and the
combined boundary-handling schemes. The population size
NP is uniformly selected to be 100. We carry out 30 inde-
pendent trials for each method and the results are listed in
Table 3.The best solutions of each fitness evaluation numbers
(FEs) are in boldface.

Comparing the results in Table 3, several conclusions can
be drawn.

(1) In general, the results of all the combinedDEmethods
are better than the PSASMmethod [10]. Furthermore,
the DE CMSBHS surpasses all other combined DEs.

(2) When the FEs are set to be 3 × 104 and 5 × 104, the
mean and standard deviation of the DE CMSBHS
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Table 2: Impulse time and characteristic velocity of the best solution.

Algorithm Impulses (𝑡
𝑖

(s), ΔV
𝑖

(m/s))
ΔV (m/s)

𝑖 = 1 𝑖 = 2 𝑖 = 3 𝑖 = 4
PSASM (0, 391.48) (2648.94, 236.51) (10130.13, 235.83) (12772.96, 392.50) 1256.32
DE CMSBHS (0, 392.55) (2648.09, 235.59) (10124.87, 235.59) (12772.96, 392.55) 1256.27

Table 3: Results of same-circle rendezvous model.

Algorithms Mean (Std)
FEs = 3 × 104 FEs = 5 × 104 FEs = 105

PSASM 1428.23 (147.17) 1392.07 (134.85) 1375.98 (114.27)
DE CMS + “whole rand” 1264.43 (11.59) 1260.73 (7.58) 1256.27 (0)
DE CMS + “current rand” 1266.56 (50.38) 1259.49 (6.96) 1262.74 (34.83)
DE CMS + “reflect rand” 1259.75 (6.78) 1258.53 (5.28) 1256.27 (0)
DE CMS + “cut off” 1269.94 (48.65) 1262.35 (33.58) 1262.74 (34.83)
“DE/rand/1” + DE CBHS 1283.48 (68.35) 1276.48 (66.27) 1275.67 (58.21)
“DE/rand/2” + DE CBHS 1278.72 (62.06) 1275.72 (58.48) 1269.20 (48.40)
“DE/current-to-rand/1” + DE CBHS 1269.58 (47.57) 1268.47 (49.41) 1269.20 (48.40)
“DE/current-to-𝑝best/1” + DE CBHS 1261.45 (8.69) 1258.13 (4.15) 1256.27 (0)
DE CMSBHS 1257.99 (2.89) 1256.63 (1.16) 1256.27 (0)

are less than the corresponding values of the com-
bined DEs and PSASM. This indicates that the
DE CMSBHS has a higher optimization speed and is
more stable for this problem.

(3) When FEs = 105, all of the results converge. In
this case, DE CMSBHS, DE CMS + “whole rand,”
DE CMS + “reflect rand,” and “DE/current-to-
pbest/1” + DE CBHS converge to the theoretical
optimum point 1256.27 km/s.

It is worth mentioning that there is a local optimum that
also satisfies Lawden’s conditions. Specifically, the solution
is X = [0.000000, 0.345262, 0.654738, 1.000000, 533.945461,
0.500000, 0.015312, 191.202864, 0.500000, 0.682373]T, and
the objective function value is 1450.30m/s. Our experi-
ment shows that results with larger standard deviations in
Table 3 converge to this local optimum several times during
the 30 trials. However, the DE CMSBHS, which combines
both multiple mutation strategies and boundary-handling
schemes, overcomes this challenge and seldom converges to
this local solution.

4.2. Deep Space Gravity Assist Maneuvers Case

4.2.1. Result Presentation. Based on the MGA-1DSM model
that is formulated in Section 2, we study and optimize
the classic Cassini mission. The flight sequence of Cassini
mission is Earth–Venus–Venus–Earth–Jupiter–Saturn with
22 variables. The boundaries are established in Table 4.

This case has been solved by Vasile et al. [13] and Gad
and Abdelkhalik [14]. The objective function value of their
optimum solution was 8.3889 km/s and 8.3850 km/s, res-
pectively. Solutions optimized by some other researchers are
listed on the ESA’s official website: http://www.esa.int/gsp/
ACT/inf/op/globopt. Currently, the optimum solution on the

Table 4: Design boundaries of Cassini mission.

Variable LB UB Units
𝑇
0

−1000 0 MJD2000
𝑉
∞

3 5 km/s
𝑢 0 1 n/a
V 0 1 n/a
𝑇
1

100 400 day
𝑇
2

100 500 day
𝑇
3

30 300 day
𝑇
4

400 1600 day
𝑇
5

800 2200 day
𝜂
1

0.01 0.9 n/a
𝜂
2

0.01 0.9 n/a
𝜂
3

0.01 0.9 n/a
𝜂
4

0.01 0.9 n/a
𝜂
5

0.01 0.9 n/a
𝑟
𝑝2

1.05 6 𝑅Venus

𝑟
𝑝3

1.05 6 𝑅Venus

𝑟
𝑝4

1.15 6.5 𝑅Earth

𝑟
𝑝5

1.7 291 𝑅Jupiter

𝑖
𝑏2

−pi pi rad
𝑖
𝑏3

−pi pi rad
𝑖
𝑏4

−pi pi rad
𝑖
𝑏5

−pi pi rad

website is X = [−779.046754, 3.259114, 0.525976, 0.380865,
167.378952, 424.028254, 53.289741, 589.766955, 2200.000000,
0.769483, 0.513289, 0.027418, 0.263985, 0.599985, 1.348780,
1.050000, 1.307303, 69.809014, −1.593737, −1.959525,
−1.554988, −1.513462]T with an objective function value
of 𝐽 = 8.3832 km/s.
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Figure 7: The trajectory of Cassini mission optimized by
DE CMSBHS.

Table 5: The best result of each velocity increment from
impulse/gravity assist.

Time (MJD2000) Impulse/gravity assist ΔV (km/s)
−780.150849 Departure impulse 3.275103
−649.698113 1st impulse 0.463213
−611.660883 Gravity assist by Venus 6.275954
−385.531004 2nd impulse 0.397884
−187.662661 Gravity assist by Venus 6.951561
−166.669404 3rd impulse 0.000000
−134.355766 Gravity assist by Earth 5.108686
−99.8160349 4th impulse 0.000000
455.4159571 Gravity assist by Jupiter 4.442469
2410.306944 5th impulse 0.000001
2655.415957 Rendezvous impulse 4.246699

The best solution obtained by DE CMSBHS method is
X = [−780.148378, 3.274998, 0.530680, 0.382069, 168.487299,
423.998725, 53.306666, 589.771686, 2200.000000, 0.774442,
0.533183, 0.391920, 0.057816, 0.888942, 1.360604, 1.050000,
1.306803, 69.812308, −1.594186, −1.959564, −1.554776,
−1.513431]T, which slightly surpasses the current optimum
solution with an objective function value of 𝐽 = 8.3829 km/s.

Table 6: Results of Cassini mission solved by some DE variants [16]
and optimized by DE CMSBHS.

Algorithms Mean (Std)
FEs = 5 × 104 FEs = 105

DE/rand/1 21.9978 (8.2737) 20.4402 (6.6093)
DE/current-to-best/1 21.5929 (7.4938) 19.8935 (6.7393)
SADE 19.8826 (4.9374) 19.0914 (4.3840)
JADE 19.4690 (4.8837) 18.7155 (4.0283)
MDE pBX 14.1815 (3.9485) 11.2812 (3.0182)
DE CMSBHS 12.9645 (4.2571) 10.6425 (3.6447)

Table 7: Results of Cassini mission optimized by the DE CMS,
DE CBHS, and DE CMSBHS.

Algorithms Mean (Std)
FEs = 2 × 105

DE CMS + “whole rand” 12.0145 (5.4773)
DE CMS + “current rand” 11.3647 (2.4780)
DE CMS + “reflect rand” 13.4766 (4.4237)
DE CMS + “cut off” 12.7364 (3.8346)
“DE/rand/1” + DE CBHS 18.2376 (6.3474)
“DE/rand/2” + DE CBHS 17.8534 (6.4369)
“DE/current-to-rand/1” + DE CBHS 17.2675 (5.9437)
“DE/current-to-𝑝best/1” + DE CBHS 15.4394 (5.1473)
DE CMSBHS 8.7099 (1.4116)

Figure 7 presents the optimized trajectory fromdeparture
to rendezvousing with Saturn. Each velocity increment from
impulse or gravity assist is shown in Table 5. From Table 5
we can find that most characteristic velocity is donated by
the initial departure and the final rendezvous. With the help
of gravity assist, few velocity increments of the impulses are
needed in the middle transfer.

4.2.2. Algorithm Comparison and Analysis. Islam et al. [16]
optimized the problem using several DE variants and their
results are listed in Table 6. As a comparison for our results
that optimized by DE CMSBHS method, the population size
𝑁𝑝 was uniformly selected to be 100. Fifty independent
trials were performed. Moreover, a comparison between the
DE CMSBHS, four kinds of DE CMS, and four kinds of
DE CBHS methods are displayed in Table 7.

From Tables 6 and 7, we can make the following observa-
tions.

(1) The comparison shows that the results of the
DE CMSBHS method not only exceed the modified
DE variants but also the DE CMS and DE CBHS
method. It verifies that the DE CMSBHS method has
a stronger global search ability for this problem.

(2) The standard deviation (Std) of the DE CMSBHS
method in Table 6 is less than those of the SADE,
JADE, and two classic DE methods while it is greater
than the MDE pBX method. This suggests that the
optimization stability of the DE CMSBHS method
should be further improved.
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(3) In general, the results of all the DE CMS exceed
those of the DE CBHS method. This can be seen in
Table 7. It could be argued that themutation strategies
combination more efficiently improves the DE algo-
rithm than the boundary-handling schemes combi-
nation method does.

When optimizing real-world problems, we prefer to
obtain an optimum solution. Hence, a further comparison is
carried out and the algorithms do not stop until it converges
to a plateau, in which successive iterations no longer produce
better results.The best results for the compared algorithms in
fifty independent trials are listed in Table 8.

It is apparent that the best solutions optimized by
MDE pBX, DE CMS + “current rand,” and DE CMSBHS
methods surpass the published optimum solution and the
DE CMSBHS’s solution is slightly better than other two
methods. Figure 8 displays the convergence numbers used to
determine the optimum solution of the MDE pBX, DE CMS
+ “current rand,” and DE CMSBHS methods in the 50 trials.
The DE CMSBHS method converges to the optimum solu-
tion in 14 of the trials whereas theMDE pBX and DE CMS +

Table 8: Best results of Cassini mission optimized by the compared
algorithms.

Algorithms Objective function value
DE/rand/1 15.6583
DE/current-to-best/1 11.6284
MDE pBX 8.3830
DE CMS + “whole rand” 9.8373
DE CMS + “current rand” 8.3830
DE CMS + “reflect rand” 9.0926
DE CMS + “cut off” 8.6173
“DE/rand/1” + DE CBHS 12.8243
“DE/rand/2” + DE CBHS 12.1534
“DE/current-to-rand/1” + DE CBHS 11.3536
“DE/current-to-𝑝best/1” + DE CBHS 8.7052
DE CMSBHS 8.3829

“current rand” methods converge only two and three times,
respectively.This indicates that theDE CMSBHSmethod has
a higher global optimization success rate. The convergence
history of the three best results is shown in Figure 9. The
graph lets us see that the DE CMSBHS method converges
faster than other two methods.

In addition, there is a local optimum causing strong inter-
ference. The components are X = [−805.733015, 3.000000,
0.616195, 0.384658, 195.117030, 422.971282, 53.293530,
589.769333, 2200.000000, 0.113728, 0.514959, 0.047143,
0.013736, 0.026443, 1.270316, 1.050000, 1.307191, 69.809127,
−1.616293, −1.959523, −1.554919, −1.513431]T, and the objec-
tive function value is 8.61 km/s. The DE CMS + “cut-
off” method in Table 8 repeatedly converges to this local
optimum. Further analysis of this local optimum demon-
strates that the second component, 𝑉

∞
, was selected to be

the minimum, which was 3 km/s. Because this component
is directly added to the objective function, it seems to be
more sensitive to the fitness value than the other components
do. Also, because the DE CMS + “cut –off” method always
replaces infeasible components with the lower bound (LB)
or upper bound (UB), it clearly increases the possibility of
obtaining this local optimum. The DE CMSBHS method,
which simultaneously uses multiple boundary-handling
schemes, seldom converges to this local optimum. This
indicates that the global search ability of the DE CMSBHS
method is efficiently improved by combining multiple
boundary-handling schemes.

5. Conclusion

In order to improve the optimization performance of DE
algorithms when solving multimodal spacecraft multiple-
impulse trajectory optimization problems, a modified DE
variant called DE CMSBHS which combines four mutation
strategies and four boundary-handling schemes is proposed.
By applying the DE CMSBHS method in the same-circle
rendezvous problem and deep space gravity assist maneuvers
problem, we successfully obtain the global optimum for the
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400 km height same-circle rendezvous case and find an opti-
mal solution for the Cassini mission which is currently the
best solution as far as I know. Furthermore, we compared the
DE CMSBHS method with eight kinds of single-combined
DE methods and some other popular EAs. The simula-
tion results indicate that by simultaneously utilizing mul-
tiple mutation strategies and boundary-handling schemes
DE CMSBHS efficiently avoid the issue of converging to the
local optimum and tend to the global optimum with a higher
optimization speed and success rate.

However, the four mutation strategies and four bound-
ary-handling schemes applied in the DE CMSBHS method
may not produce the most efficient combination for other
problems. Future research will focus on a method for deter-
mining the most efficient combination according to different
problems and will extend the DE CMSBHS to multiobjective
spacecraft trajectory optimization problems.
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“Self-adapting control parameters in differential evolution: a
comparative study on numerical benchmark problems,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 6, pp.
646–657, 2006.

[20] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evo-
lution algorithm with strategy adaptation for global numerical
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 13, no. 2, pp. 398–417, 2009.

[21] J. Zhang and A. C. Sanderson, “JADE: adaptive differential
evolution with optional external archive,” IEEE Transaction on
Evolutionary Computation, vol. 13, no. 5, pp. 945–958, 2009.

[22] F. Simeoni and L. Casalino, “Evolutionary optimization of
interplanetary trajectories: improvements from initial diversi-
fication,” Proceedings of the Institution of Mechanical Engineers,
Part G: Journal of Aerospace Engineering, vol. 225, no. 11, pp.
1277–1288, 2011.

[23] D. Izzo, V. M. Becerra, D. R. Myatt, S. J. Nasuto, and J. M.
Bishop, “Search space pruning and global optimisation of mult-
iple gravity assist spacecraft trajectories,” Journal of Global Opti-
mization, vol. 38, no. 2, pp. 283–296, 2007.

[24] M. Vasile, E. Minisci, and M. Locatelli, “A dynamical system
perspective on evolutionary heuristics applied to space trajec-
tory optimization problems,” in Proceedings of the IEEE



Mathematical Problems in Engineering 13

Congress on Evolutionary Computation (CEC ’09), pp. 2340–
2347, May 2009.

[25] B. Addis, A. Cassioli, M. Locatelli, and F. Schoen, “A global
optimization method for the design of space trajectories,”
Computational Optimization and Applications, vol. 48, no. 3, pp.
635–652, 2011.

[26] M. F. Tasgetiren, P. N. Suganthan, P. Quan-Ke, R. Mallipeddi,
and S. Sarman, “An ensemble of differential evolution algo-
rithms for constrained function optimization,” in Proceedings of
the IEEE Congress on Evolutionary Computation (CEC ’10), pp.
1–8, Barcelona, Spain, July 2010.

[27] S. M. Elsayed, R. A. Sarker, and D. L. Essam, “An improved
self-adaptive differential evolution algorithm for optimization
problems,” IEEE Transactions on Industrial Informatics, vol. 9,
no. 1, pp. 89–99, 2013.

[28] S. Xu and Y. Rahmat-Samii, “Boundary conditions in particle
swarm optimization revisited,” IEEE Transactions on Antennas
and Propagation, vol. 55, no. 3 I, pp. 760–765, 2007.

[29] T. Huang and A. S. Mohan, “A hybrid boundary condition for
robust particle swarm optimization,” IEEE Antennas and Wire-
less Propagation Letters, vol. 4, no. 1, pp. 112–117, 2005.

[30] J. E. Prussing and J.-H. Chiu, “Optimal multiple-impulse time-
fixed rendezvous between circular orbits,” Journal of Guidance,
Control, and Dynamics, vol. 9, no. 1, pp. 17–22, 1986.

[31] G. Colasurdo and D. Pastrone, “Indirect optimization method
for impulsive transfers,” in AIAA/AAS Astrodynamics Confer-
ence, Scottsdale, Ariz, USA, 1994.

[32] J. E. Prussing, “A class of optimal two-impulse rendezvous using
multiple-revolution Lambert solutions,” Journal of the Astro-
nautical Sciences, vol. 48, no. 2-3, pp. 131–148, 2000.

[33] S. Das and P. N. Suganthan, “Differential evolution: a survey of
the state-of-the-art,” IEEE Transaction on Evolutionary Compu-
tation, vol. 15, no. 1, pp. 4–31, 2011.

[34] H.Y. Fan and J. Lampinen, “A trigonometricmutation operation
to differential evolution,” Journal of Global Optimization, vol. 27,
no. 1, pp. 105–129, 2003.

[35] D. F. Lawden,Optimal Trajectories for Space Navigation, Butter-
worths, London, UK, 1963.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


