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This paper constructs a series of modules from modular Lie superalgebras 𝑊(0 | 𝑛), 𝑆(0 | 𝑛), and 𝐾(𝑛) over a field of prime
characteristic𝑝 ̸= 2. Cartan subalgebras,maximal vectors of thesemodular Lie superalgebras, can be solved.With certain properties
of the positive root vectors, we obtain that the sufficient conditions of thesemodules are irreducible 𝐿-modules, where 𝐿 = 𝑊(0 | 𝑛),
𝑆(0 | 𝑛), and 𝐾(𝑛).

1. Introduction

Giving a broad overview of the present situation, the rep-
resentation theories of Lie algebras and Lie superalgebras
over a field of characteristic 0 have been a remarkable
evolution. Kac (see [1]) worked on classification of infi-
nite dimensional simple linearly compact Lie superalgebras.
Shchepochkina (see [2]) studied the five exceptional simple
Lie superalgebras of vector fields and their fourteen regrad-
ings. More detailed description of one of the five simple
exceptional Lie superalgebras of vector fields was given
(see [3]). The complete proof of the recognition theorem
for graded Lie algebras in prime characteristic was given
(see [4]). Strade (see [5]) studied simple Lie algebras over
fields of positive characteristic and obtained some important
results. The classification of finite dimensional modular Lie
superalgebras with indecomposable Cartanmatrix was given,
and the prolongations of the simple finite dimensional Lie
algebras and Lie superalgebraswithCartanmatrix are studied
over algebraically closed fields of characteristic 𝑝 > 2
(see [6, 7]).

Su (see [8–12]) got a new class of nongraded simple Lie
algebras. It was proved that an irreducible quasifinite module
was a module of the intermediate series. He also got some
important results about the representation of classical Lie
superalgebras. Zhang (see [13, 14]) worked on the graded
module of𝑊, 𝑆,𝐻 over fields of characteristic 0.

There are also a great deal of representative results of Lie
algebras over fields of prime characteristic (see [15–18]). For a
restricted Cartan-type Lie algebra, restricted simple modules
have been determined in the sense that their isomorphism
classes have been parametrized. And their dimensions have
been computed. Shen (see [19–21]) constructed the graded
modules for the Witt, special, and Hamiltonian Lie algebras.
Shen determined those simple modules with fundamental
dominant weights, except the contact algebra. Holmes (see
[15]) solved the remaining problem about the contact algebra.
He showed that the simple restricted modules were induced
from the restricted universal enveloping algebra for the
homogeneous component of degree zero extended trivially
to positive components. Hu (see [22]) investigated the graded
modules for the graded contact Cartan algebras 𝐾(𝑚, 𝑛) and
𝐾(𝑛). Shu (see [23]) worked on the generalized restricted
representations of graded Lie algebras of Cartan type.

However, there are few results about the representations
of Lie superalgebras over a field of prime characteristic
𝑝 ̸= 2, called modular Lie superalgebras. Liu (see [24])
established the dimension formula of induced modules and
obtained some properties of induced modules. In this paper,
we construct modules from Lie superalgebras 𝑊(0 | 𝑛),
𝑆(0 | 𝑛), and 𝐾(𝑛), induced from homogeneous components
of their restricted universal enveloping superalgebras. We
intend to show that the generator 1 ⊗ 𝑚 of these constructed
modules belongs to their nonzero submodules.
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2. Preliminaries

In this paper, F always denotes an algebraically closed field of
prime characteristic 𝑝 ̸= 2.

Recall the definition of the restricted Lie superalgebras
(see [6]) and the restricted universal enveloping superalgebra
(see [25]).

Let 𝐿 be a Lie algebra of characteristic 𝑝 ̸= 2. Then, for
every 𝑥 ∈ 𝐿, the operator 𝑎𝑑𝑝

𝑥
is a derivation of 𝐿. If it is

an inner derivation for every 𝑥 ∈ 𝐿, that is, if 𝑎𝑑𝑝
𝑥
= 𝑎𝑑𝑥[𝑝]

for some element denoted 𝑥
[𝑝], then the corresponding map

[𝑝] : 𝑥 → 𝑥
[𝑝] is called a 𝑝-structure on 𝐿, and the Lie

algebra 𝐿 endowed with a 𝑝-structure is called a restricted
Lie algebra. If 𝐿 has no center, then 𝐿 can have not more than
one𝑝-structure.The Lie algebra gl(𝑛) possesses a𝑝-structure,
unique up to the contribution of the center; this𝑝-structure is
used in the next definition. The notion of a 𝑝-representation
is naturally defined as a linear map 𝜌 : 𝐿 → gl(𝑉) such
that 𝜌(𝑥[𝑝]) = 𝜌(𝑥)

[𝑝]; in this case 𝑉 is said to be a 𝑝-
module. Passing to superalgebras, we see that, for any odd
𝐷 ∈ Der(𝐴), we have

𝐷
2𝑛
([𝑎, 𝑏]) = ∑(

𝑛

𝑙
) [𝐷

2𝑙
(𝑎) , 𝐷

2𝑛−2𝑙
(𝑏)] (1)

for any 𝑎, 𝑏 ∈ 𝐴. So if char 𝑝 ̸= 2, then 𝐷
2𝑝 is always an

even derivation for any odd 𝐷 ∈ Der(𝐴). Now, let 𝐿 be a Lie
superalgebra of characteristic 𝑝 ̸= 2. Then, for every 𝑥 ∈ 𝐿0,
the operator 𝑎𝑑𝑝

𝑥
is a derivation of 𝐿; that is, 𝐿0-action on 𝐿1

is a 𝑝-representation. For every 𝑥 ∈ 𝐿1, the operator 𝑎𝑑
2𝑝
𝑥

=

𝑎𝑑
𝑝

𝑥2
is a derivation of 𝐿. So if, for every 𝑥 ∈ 𝐿0, there is 𝑥

[𝑝]
∈

𝐿0 such that 𝑎𝑑𝑝
𝑥
= 𝑎𝑑𝑥[𝑝] for any 𝑥 ∈ 𝐿0, then we can define

𝑥
[2𝑝]

:= (𝑥
2
)
[𝑝] for any 𝑥 ∈ 𝐿1. We demand that, for any 𝑥 ∈

𝐿0, we have 𝑎𝑑
𝑝

𝑥
= 𝑎𝑑𝑥[𝑝] as operators on the whole 𝐿; that is,

𝐿1 is a restricted 𝐿0-module. Then, the pair of maps

[𝑝] : 𝐿0 → 𝐿0 (𝑥 →𝑥
[𝑝]
) ,

[2𝑝] : 𝐿1 → 𝐿0 (𝑥 →𝑥
[2𝑝]

)

(2)

is called a 𝑝 | 2𝑝-structure or just 𝑝-structure on 𝐿, and
the Lie superalgebra 𝐿 endowed with a 𝑝-structure is called a
restricted Lie superalgebra.

Apair (𝑢(𝐿), 𝑖) consisting of an associative F-superalgebra
with unity and a restricted homomorphism 𝑖 : 𝐿 → 𝑢(𝐿)

−

is called a restricted universal enveloping superalgebra if
given any associative F-superalgebra 𝐴 with unity and any
restricted homomorphism𝑓 : 𝐿 → 𝐴

−; there exists a unique
homomorphism𝑓 : 𝑢(𝐿) → 𝐴 of associative F-superalgebra
such that 𝑓 ∘ 𝑖 = 𝑓. The category of 𝑢(𝐿)-modules and that of
restricted 𝐿-modules are equivalent. According to the PBW
theorem, then the following statement holds: let (𝐿, [𝑝]) be a
restricted Lie superalgebra. If (𝑢(𝐿), 𝑖) is a restricted universal
enveloping superalgebra and (𝑙𝑗)𝑗∈𝐽0

∪ (𝑓𝑗)𝑗∈𝐽1
is an ordered

basis of 𝐿 over F , where 𝑙𝑗 ∈ 𝐿0, 𝑓𝑗 ∈ 𝐿1, then the elements
𝑖(𝑙𝑗1

)
𝑠1 𝑖(𝑙𝑗2

)
𝑠2 ⋅ ⋅ ⋅ 𝑖(𝑙𝑗𝑛

)
𝑠𝑛 𝑖(𝑓𝑖1

)𝑖(𝑓𝑖2
) ⋅ ⋅ ⋅ 𝑖(𝑓𝑖𝑚

), 𝑗1 < ⋅ ⋅ ⋅ < 𝑗𝑛, 0 ≤

𝑠𝑘 ≤ 𝑝 − 1, 1 ≤ 𝑘 ≤ 𝑛, and 𝑖1 < ⋅ ⋅ ⋅ < 𝑖𝑚, consist of a basis of

𝑢(𝐿) over F . Sometimes, with no confusion, we will identify
𝐿 with its image 𝑖(𝐿) in 𝑢(𝐿).

Definition 1. Let 𝐿 be aZ-graded Lie superalgebra over a field
of characteristic 𝑝. Suppose that𝐻 is a Cartan subalgebra of
𝐿0, where 𝐿0 is the set of the 0th homogenous elements ofZ-
graded Lie superalgebra 𝐿. For 𝜆 ∈ 𝐻

∗ and a 𝑢(𝐿0)-module
𝑉, we set 𝑉𝜆 := {V ∈ 𝑉 | ℎ ⋅ V = 𝜆(ℎ)V, ∀ℎ ∈ 𝐻}. If 𝑉𝜆 ̸= 0,
then 𝜆 is called a weight and a nonzero vector V in𝑉𝜆 is called
a weight vector (of weight 𝜆). A nonzero V ∈ 𝑉𝜆 is called a
maximal vector (of weight 𝜆), provided 𝑥 ⋅ V = 0, where 𝑥 is
any positive root vector of 𝐿0.

Let 𝐿 = Σ𝑖∈Z𝐿 𝑖 be a Z-graded Lie superalgebra over
F . Set 𝑁+

:= ∑𝑖>0 𝐿 𝑖, where 𝐿 𝑖 denotes the homogeneous
component of degree 𝑖 in the Z-graded Lie superalgebra 𝐿.
Then,𝑁+

⊲ 𝑁
+
+𝐿0 := 𝐿

+ and𝐿+/𝑁+
≅ 𝐿0. In particular, any

𝐿0-module becomes a 𝐿+-module by letting 𝑁+ act trivially.
Define 𝑀𝐿(𝑆) := 𝑢(𝐿)⊗𝑢(𝐿+)𝑆, where 𝑢(𝐿) and 𝑢(𝐿

+
) denote

the restricted universal enveloping superalgebras of 𝐿 and 𝐿+,
respectively, and 𝑆 is a simple 𝑢(𝐿0)-module. According to
the classical theory, for each weight 𝜆, there exists a simple
𝑢(𝐿0)-module 𝑆(𝜆) which is generated by a maximal vector
of weight 𝜆.

In the following, 𝐿 denotes one of three classes of Cartan-
type Lie superalgebras 𝑊(0 | 𝑛), 𝑆(0 | 𝑛), or 𝐾(𝑛). Each
of these classes will be described in detail in the following
paper.

Remark 2. In this paper, if 𝐴 is a subset of some linear space,
then ⟨𝐴⟩ denotes the subspace spanned by the set 𝐴 over F .

3. Simple Modules of the Lie Superalgebra
𝑊(0 | 𝑛)

We begin by describing the Lie superalgebra 𝑊(0 | 𝑛),
drawing most of notations and standard results from [26].

Let Λ(𝑛) be an exterior algebra over F in 𝑛 variables
𝑥1, . . . , 𝑥𝑛. Fix 𝑛 ∈ N, and then Λ(𝑛) becomes Z2-graded if
we set deg 𝑥𝑖 = 1, 𝑖 = 1, . . . , 𝑛. Then, Λ(𝑛) is an associative
superalgebra. The multiplication satisfies the rule 𝑥𝑖𝑥𝑗 =

−𝑥𝑗𝑥𝑖, in particular, 𝑥𝑖𝑥𝑖 = 0. For 𝑘 = 1, . . . , 𝑛, put 𝐵𝑘 :=

{(𝑖1, . . . , 𝑖𝑘) | 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑛}. Let 𝐵(𝑛) = ⋃
𝑛

𝑖=0 𝐵𝑘,
where 𝐵0 = 0. If 𝑢 = (𝑖1, 𝑖2, . . . , 𝑖𝑟) ∈ 𝐵𝑟, where 1 ≤ 𝑖1 < 𝑖2 <

⋅ ⋅ ⋅ < 𝑖𝑟 ≤ 𝑛, then we set 𝑥𝑢 = 𝑥𝑖1
𝑥𝑖2

⋅ ⋅ ⋅ 𝑥𝑖𝑟
. Put 𝑥0 = 1. Note

that Λ(𝑛) is Z-graded by Λ(𝑛)𝑟 := ⟨{𝑥
𝑢
| 𝑢 ∈ 𝐵𝑟}⟩, where

𝑟 = 0, 1, . . . , 𝑛.
For each 1 ≤ 𝑖 ≤ 𝑛, let 𝐷𝑖 denote the derivation of Λ(𝑛)

uniquely determined by the property𝐷𝑖(𝑥𝑗) = (𝜕/𝜕𝑥𝑖)(𝑥𝑗) =

𝛿𝑖𝑗 (=Kronecker delta). Let 𝜀𝑘, 1 ≤ 𝑘 ≤ 𝑛, be the 𝑛 tuple with
𝑗th component 𝛿𝑗𝑘 (=Kronecker delta), and then𝑊 = 𝑊(0 |

𝑛) := {∑
𝑛

𝑖=1 𝑎𝑖𝐷𝑖 | 𝑎𝑖 ∈ Λ(𝑛)} is a Lie superalgebra, which has a
F-basis {𝑥𝑢𝐷𝑖 | 𝑢 ∈ 𝐵(𝑛)}. The bracket product in𝑊 satisfies

[𝑥
𝑢
𝐷𝑖, 𝑥

V
𝐷𝑗] = 𝑥

𝑢
𝐷𝑖 (𝑥

V
)𝐷𝑗

− (−1)deg(𝑥
𝑢
𝐷𝑖)deg(𝑥V𝐷𝑗) 𝑥V𝐷𝑗 (𝑥

𝑢
)𝐷𝑖,

(3)
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where 𝑥𝑢𝐷𝑖, 𝑥
V
𝐷𝑗 are Z2-homogeneous elements of the Lie

superalgebra𝑊, and deg(𝑥𝑢𝐷𝑖) = deg(𝑥𝑢) + 1, deg(𝑥V𝐷𝑗) =

deg(𝑥V) + 1. Note that deg(𝐷𝑖) = 1 ∈ Z2. 𝑊 inherits a
Z-gradation from Λ(𝑛) by means of 𝑊𝑘 = Σ𝑗Λ(𝑛)𝑘+1𝐷𝑗.
Consequently,𝑊 = ∑

𝑛−1
𝑖=−1 𝑊𝑖.

Lemma 3. Let𝐻 = ∑
𝑛

𝑖=1 F𝑥𝑖𝐷𝑖 be a Cartan subalgebra of𝑊0.
Then, positive root vectors of𝑊0 are {𝑥𝑖𝐷𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

Proof. Introduce a homomorphism 𝜑 : 𝑊0 → gl𝑛(F), where
gl𝑛(F) is the general linear Lie algebra that sends 𝑥𝑖𝐷𝑗 to
𝐸𝑖𝑗 (=𝑛 × 𝑛-matrix with 1 in the (𝑖, 𝑗)-position and zeros
elsewhere). Obviously, 𝜑 is an isomorphism of Lie algebras.
We know that the Cartan subalgebra 𝐻1 of gl𝑛(F) is ⟨{𝐸𝑖𝑖 |

𝑖 = 1, . . . , 𝑛}⟩. Define linear function Λ 𝑗 on the vector space
⟨{𝐸11, . . . , 𝐸𝑛𝑛}⟩, such that Λ 𝑗(𝐸𝑖𝑖) = 𝛿𝑗𝑖. Then, the positive
roots of gl𝑛(F) are {Λ 𝑖−Λ 𝑗}𝑖<𝑗. Correspondingly, the positive
root vectors are 𝐸𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. By the isomorphism
𝑊0 ≅ gl𝑛(F) via 𝑥𝑖𝐷𝑗 → 𝐸𝑖𝑗, we may therefore obtain that the
Cartan subalgebra𝐻 of𝑊0 is ⟨{𝑥𝑖𝐷𝑖 | 𝑖 = 1, . . . , 𝑛}⟩. And the
positive root vectors are {𝑥𝑖𝐷𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

According to Definition 1 and Lemma 3, the following
statement holds: if 𝐻 is a Cartan subalgebra, 𝑉 is a 𝑢(𝑊0)-
module, and 𝜆 ∈ 𝐻

∗, then 𝑉𝜆 = {V ∈ 𝑉 | 𝑥𝑖𝐷𝑖 ⋅ V =

𝜆(𝑥𝑖𝐷𝑖)V, 1 ≤ 𝑖 ≤ 𝑛}. Write 𝜆𝑖 := 𝜆(𝑥𝑖𝐷𝑖). A nonzero V ∈ 𝑉𝜆

is a maximal vector (of weight 𝜆), provided 𝑥𝑖𝐷𝑗 ⋅ V = 0,
∀1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Theorem 4. If there exist 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝑗 < 𝑖 such that
𝜆𝑖 ̸= 1 and 𝜆𝑗 ̸= 0, then𝑀𝑊(𝑆(𝜆)) is simple.

Proof. Let 𝑀
 be a nonzero submodule of 𝑀𝑊(𝑆(𝜆)) =

𝑢(𝑊)⊗𝑢(𝑊+)𝑆(𝜆). Now choose 0 ̸= V ∈ 𝑀
. By virtue

of 𝑢(𝑊
+
) ⋅ 𝑆(𝜆) = 𝑢(𝑊0) ⋅ 𝑆(𝜆), we obtain 𝑢(𝑊) ⋅

𝑆(𝜆) = (𝑢(𝑊0) + 𝑢(𝑊−1)) ⋅ 𝑆(𝜆) ⊆ 𝑢(𝑊−1) ⋅ 𝑆(𝜆).
Hence, 𝑀𝑊(𝑆(𝜆)) = 𝑢(𝑊)⊗𝑢(𝑊+)𝑆(𝜆) = (𝑢(𝑊−1) +

𝑢(𝑊0))⊗𝑢(𝑊+)𝑆(𝜆) ⊆ 𝑢(𝑊−1)⊗𝑢(𝑊+)𝑆(𝜆); namely,𝑀𝑊(𝑆(𝜆)) =

𝑢(𝑊−1)⊗𝑢(𝑊+)𝑆(𝜆). Therefore, we can describe the element
form of V; that is,

V = Σ𝛽∈𝐴𝑐 (𝛽) 𝑖 (𝐷1)
𝛽1
⋅ ⋅ ⋅ 𝑖 (𝐷𝑛)

𝛽𝑛
⊗ 𝑠𝛽, (4)

where 𝐴 := {𝛽 = (𝛽1, . . . , 𝛽𝑛) | 𝛽𝑖 = 0 or 1, 𝑖 = 1, . . . , 𝑛} ⊂

𝑍
𝑛, 𝑐(𝛽) ∈ F . Formula (3) shows that [𝐷𝑘, 𝐷𝑗] = 0. Then, we

obtain the equality in 𝑢(𝑊):

𝑖 (𝐷𝑘) 𝑖 (𝐷𝑗) = − 𝑖 (𝐷𝑗) 𝑖 (𝐷𝑘) ; (5)

in particular,

𝑖 (𝐷𝑗)
2
= 0. (6)

In the following, we simply write 𝑖(𝐷𝑗) = 𝐷𝑗. Define an order
of𝐴 satisfying that 𝛽 = (𝛽1, . . . , 𝛽𝑛) < 𝛽


= (𝛽



1, . . . , 𝛽


𝑛
) if and

only if there exists 𝑘 ∈ {1, 2, . . . , 𝑛} such that 𝛽𝑖 = 𝛽


𝑖
∀𝑖 > 𝑘

and 𝛽𝑘 < 𝛽


𝑘
. We set 𝐵 := {𝛽 ∈ 𝐴 | 𝑐(𝛽) ̸= 0}, where 𝑐(𝛽)

comes from the right side of equality (4). According to the
order 𝐴, we choose the least element 𝜂 = (𝜂1, . . . , 𝜂𝑛) ∈ 𝐵.

Obviously, 𝑐(𝜂) ̸= 0. Put 𝑦 := ∏
𝑛

𝑗=1𝐷
1−𝜂𝑗
𝑗

. By (5) and (6), we
obtain

𝑦V =
𝑛

∏

𝑗=1
𝐷

1−𝜂𝑗
𝑗

[Σ𝛽∈𝐴𝑐 (𝛽)𝐷
𝛽1
1 ⋅ ⋅ ⋅ 𝐷

𝛽𝑛
𝑛
⊗ 𝑠𝛽]

= 𝛼𝑐 (𝜂)

𝑛

∏

𝑗=1
𝐷𝑗 ⊗ 𝑠𝜂 ∈ 𝑀


,

(7)

where 𝛼 = 1 or −1. Consequently,∏𝑛

𝑗=1𝐷𝑗 ⊗ 𝑠𝜂 ∈ 𝑀
.

We will show that ∏𝑛

𝑗=1𝐷𝑗 ⊗ 𝑆(𝜆) is a 𝑢(𝑊0)-module. By
virtue of (3), we obtain [𝑥𝑘𝐷𝑙, 𝐷𝑖] = −𝛿𝑖𝑘𝐷𝑙.Thus, we have

(𝑥𝑘𝐷𝑙)𝐷𝑖 = 𝐷𝑖 (𝑥𝑘𝐷𝑙) − 𝛿𝑖𝑘𝐷𝑙, (8)

in 𝑢(𝑊). We note that the elements 𝑥𝑘𝐷𝑙, ∀1 ≤ 𝑘, 𝑙 ≤ 𝑛, are F-
basis of𝑊0. Using (8), a straightforward computation shows
that

𝑥𝑘𝐷𝑙 ⋅

𝑛

∏

𝑗=1
𝐷𝑗 ⊗ 𝑆 (𝜆)

=

𝑘−1
∏

𝑗=1
𝐷𝑗 (−𝐷𝑙 +𝐷𝑘 (𝑥𝑘𝐷𝑙))𝐷𝑘+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑆 (𝜆)

= [

[

−

𝑘−1
∏

𝑗=1
𝐷𝑗𝐷𝑙

𝑛

∏

𝑗=𝑘+1
𝐷𝑗 +

𝑛

∏

𝑗=1
𝐷𝑗 (𝑥𝑘𝐷𝑙)

]

]

⊗ 𝑆 (𝜆)

⊆

𝑛

∏

𝑗=1
𝐷𝑗 ⊗ 𝑆 (𝜆) .

(9)

Since 𝑆(𝜆) is a simple 𝑢(𝑊0)-module, we can get that
∏

𝑛

𝑗=1𝐷𝑗⊗𝑆(𝜆) is a simple 𝑢(𝑊0)-module. Since∏𝑛

𝑗=1𝐷𝑗⊗𝑠𝜂 ∈

𝑀

∩ ∏

𝑛

𝑗=1𝐷𝑗 ⊗ 𝑆(𝜆), we can conclude that 𝑀
∩ ∏

𝑛

𝑗=1𝐷𝑗 ⊗

𝑆(𝜆) is nontrivial. ∏𝑛

𝑗=1𝐷𝑗 ⊗ 𝑆(𝜆) must be contained in 𝑀
.

Thereby, there exists a maximal vector 𝑚 of weight 𝜆 such
that∏𝑛

𝑗=1𝐷𝑗 ⊗ 𝑚 ∈ 𝑀
.

Noting that 𝑖 ̸= 1, this yields (𝑥1𝑥𝑖𝐷𝑖)∏
𝑛

𝑗=1𝐷𝑗 ⊗ 𝑚 ∈ 𝑀
.

According to (3), we have [𝑥1𝑥𝑖𝐷𝑖, 𝐷𝑗] = 𝛿1𝑗𝑥𝑖𝐷𝑖 − 𝛿𝑖𝑗𝑥1𝐷𝑖.
Then,

(𝑥1𝑥𝑖𝐷𝑖)𝐷𝑗 = −𝐷𝑗 (𝑥1𝑥𝑖𝐷𝑖) + 𝛿1𝑗𝑥𝑖𝐷𝑖 − 𝛿𝑖𝑗𝑥1𝐷𝑖 (10)

holds in 𝑢(𝑊). By (10), we have

(𝑥1𝑥𝑖𝐷𝑖)

𝑛

∏

𝑗=1
𝐷𝑗 ⊗𝑚

= [−𝐷1 (𝑥1𝑥𝑖𝐷𝑖) + 𝑥𝑖𝐷𝑖]𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= (−1)𝑖−1 𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖−1 (𝑥1𝑥𝑖𝐷𝑖)𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

+𝐷2 ⋅ ⋅ ⋅ 𝐷𝑖−1 (𝑥𝑖𝐷𝑖)𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= (−1)𝑛𝐷1 ⋅ ⋅ ⋅ 𝐷𝑛 (𝑥1𝑥𝑖𝐷𝑖) ⊗𝑚

+ (−1)𝑖𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 (𝑥1𝐷𝑖) ⊗𝑚

+𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 (𝑥𝑖𝐷𝑖) ⊗𝑚−𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚,

(11)
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where 𝐷𝑖 means that 𝐷𝑖 is deleted. Since 𝑆(𝜆) is a 𝑢(𝑊0)-
module and 𝑚 is a maximal vector of weight 𝜆, the first two
terms vanish. Formula (11) implies that (𝑥1𝑥𝑖𝐷𝑖)∏

𝑛

𝑗=1𝐷𝑗⊗𝑚 =

(𝜆𝑖−1)𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛⊗𝑚. Since𝜆𝑖 ̸= 1,we have𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛⊗𝑚 ∈ 𝑀

.

If 𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 multiplied on the left by the elements
𝑥2𝑥𝑖𝐷𝑖, 𝑥3𝑥𝑖𝐷𝑖, . . . , 𝑥𝑖−1𝑥𝑖𝐷𝑖, successively, then it yields
𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀

. By the hypothesis of the theorem, there
exists 1 ≤ 𝑗 < 𝑖 ≤ 𝑛 such that 𝜆𝑗 ̸= 0, and we thus have

(𝑥𝑖𝑥𝑗𝐷𝑗)𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= [−𝐷𝑖 (𝑥𝑖𝑥𝑗𝐷𝑗) + 𝑥𝑗𝐷𝑗]𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚.

(12)

Observe that the first term vanishes by the Z-graded degree
of 𝑥𝑖𝑥𝑗𝐷𝑗 which is 1, furthermore 𝑥𝑖𝑥𝑗𝐷𝑗 ⋅ 𝑚 = 0, and the
second term is equal to 𝜆𝑗𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚. Since 𝜆𝑗 ̸= 0, we
have 𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀

. If we multiply 𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚

by the elements 𝑥𝑖+1𝑥𝑗𝐷𝑗, . . . , 𝑥𝑛𝑥𝑗𝐷𝑗, consecutively, then we
see that 1 ⊗ 𝑚 ∈ 𝑀

. Since 𝑢(𝑊0)-module 𝑀𝑊(𝑆(𝜆)) is
generated by 1⊗𝑚, 1⊗𝑚 ∈ 𝑀

 indicates that𝑀𝑊(𝑆(𝜆)) = 𝑀
.

Hence,𝑀𝑊(𝑆(𝜆)) is simple.

4. Simple Modules of the Lie Superalgebra
𝑆(0 | 𝑛)

In the above section, we give the definition of the exterior
algebra Λ(𝑛). We begin by describing 𝑆 = 𝑆(𝑛) := ⟨{𝐷𝑖𝑗(𝑎) |

𝑎 ∈ Λ(𝑛), 𝑖, 𝑗 = 1, . . . , 𝑛}⟩, where

𝐷𝑖𝑗 (𝑎) = 𝐷𝑖 (𝑎)𝐷𝑗 +𝐷𝑗 (𝑎)𝐷𝑖. (13)

Putting 𝑆𝑖 = 𝑊𝑖 ∩ 𝑆, we have𝑊−1 = 𝑆−1.

Lemma 5. Let 𝐻 = ∑
𝑛−1
𝑖=1 𝐹𝐷𝑖+1,𝑖(𝑥𝑖+1𝑥𝑖) be a Cartan

subalgebra of 𝑆0. Then positive root vectors of 𝑆0 are {𝑥𝑖𝐷𝑗 |

1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

Proof. Recall the isomorphism 𝑊0 ≅ gl𝑛(F) via 𝑥𝑖𝐷𝑗 →

𝐸𝑖𝑗, described above. It induces the isomorphism 𝜓 : 𝑆0 ≅

sl(𝑛, F), 𝐷𝑖𝑗(𝑥𝑘𝑥𝑙) → 𝛿𝑖𝑘𝐸𝑙𝑗 − 𝛿𝑖𝑙𝐸𝑘𝑗 + 𝛿𝑗𝑘𝐸𝑙𝑖 − 𝛿𝑗𝑙𝐸𝑘𝑖, where
sl(𝑛, F) is the special linear Lie algebra.

By calculation, we obtain that the Cartan subalgebra 𝐻1
of sl(𝑛, F) is equal to ⟨{𝐸𝑖𝑖 − 𝐸𝑖+1,𝑖+1 | 𝑖 = 1, . . . , 𝑛 − 1}⟩. We
define linear functionΛ 𝑗 on the vector space ⟨{𝐸11, . . . , 𝐸𝑛𝑛}⟩
as before in Lemma 3. Then, the positive roots of sl(𝑛, F) are
{Λ 𝑖 − Λ 𝑗}𝑖<𝑗. Correspondingly, the positive root vectors of
sl(𝑛, F) are 𝐸𝑖𝑗, 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The isomorphism 𝜓 sends
−(1/2)𝐷𝑗𝑗(𝑥𝑖𝑥𝑗) = 𝑥𝑖𝐷𝑗 to 𝐸𝑖𝑗 and 𝐷𝑖+1,𝑖(𝑥𝑖+1𝑥𝑖) = 𝑥𝑖𝐷𝑖 −

𝑥𝑖+1𝐷𝑖+1 to 𝐸𝑖,𝑖 − 𝐸𝑖+1,𝑖+1, respectively. Therefore, the Cartan
subalgebra of 𝑆0 is ⟨{𝑥𝑖𝐷𝑖 − 𝑥𝑖+1𝐷𝑖+1 | 𝑖 = 1, . . . , 𝑛 − 1}⟩. The
positive root vectors are {𝑥𝑖𝐷𝑗 | 1 ≤ 𝑖 < 𝑗 ≤ 𝑛}.

In terms of Definition 1 and Lemma 5, the following facts
hold: if 𝐻 is a Cartan subalgebra of 𝑆0, 𝑉 is a 𝑢(𝑆0)-module
and 𝜆 ∈ 𝐻

∗. Then, 𝑉𝜆 = {V ∈ 𝑉 | 𝐷𝑖+1,𝑖(𝑥𝑖+1𝑥𝑖) ⋅ V = 𝜆𝑖V, 1 ≤

𝑖 ≤ 𝑛 − 1}. A nonzero V ∈ 𝑉𝜆 is a maximal vector (of weight
𝜆), provided 𝑥𝑖𝐷𝑗 ⋅ V = 0, whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Theorem 6. If there exist 𝑖, 𝑗, such that |𝑗 − 𝑖| > 1 and 𝜆𝑖 ̸=

0, 𝜆𝑗 ̸= 0, then𝑀𝑆(𝑆(𝜆)) is simple.

Proof. Let𝑀 be a nonzero submodule of𝑀𝑆(𝑆(𝜆)). Choose
0 ̸= V contained in𝑀. It owns the same form as in𝑊; that is,
V = Σ𝛽∈𝐴𝑐(𝛽)𝑖(𝐷1)

𝛽1 ⋅ ⋅ ⋅ 𝑖(𝐷𝑛)
𝛽𝑛 ⊗ 𝑠𝛽, where 𝛽 = (𝛽1, . . . , 𝛽𝑛)

and 𝑐(𝛽) ∈ F . The same discussion described above about the
Lie superalgebra𝑊 applies to the Lie superalgebra 𝑆. We can
get a maximal vector𝑚 such that∏𝑛

𝑗=1𝐷𝑗 ⊗ 𝑚 ∈ 𝑀
.

Using (3) and (13), we see that

[𝐷𝑘, 𝐷𝑖𝑗 (𝑎)] = −𝐷𝑖𝑗 (𝐷𝑘 (𝑎)) . (14)

Thus, 𝐷𝑖𝑗(𝑎)𝐷𝑘 = (−1)𝑑(𝑎)[𝐷𝑘𝐷𝑖𝑗(𝑎) + 𝐷𝑖𝑗(𝐷𝑘(𝑎))] in 𝑢(𝑆). If
𝑖 ̸= 1, we have

𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖𝑥𝑖+1) ⋅
𝑛

∏

𝑗=1
𝐷𝑗 ⊗𝑚

= −𝐷1 ⋅ 𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖𝑥𝑖+1) ⋅ 𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

−𝐷𝑖,𝑖+1 (𝑥𝑖𝑥𝑖+1) ⋅ 𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= (−1)𝑖−1 𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖−1𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖𝑥𝑖+1)𝐷i ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

−𝐷2 ⋅ ⋅ ⋅ 𝐷𝑖−1𝐷𝑖,𝑖+1 (𝑥𝑖𝑥𝑖+1)𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= (−1)𝑖𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖𝑥𝑖+1)𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

+ (−1)𝑖+1 𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖−1𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖+1)𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛

⊗𝑚−𝐷2 ⋅ ⋅ ⋅ 𝐷𝑖𝐷𝑖,𝑖+1 (𝑥𝑖𝑥𝑖+1)𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

−𝐷2 ⋅ ⋅ ⋅ 𝐷𝑖−1𝐷𝑖,𝑖+1 (𝑥𝑖+1)𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= (−1)𝑖+1 𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖+1𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖𝑥𝑖+1)𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛

⊗𝑚+ (−1)𝑖+1 𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖)𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛

⊗𝑚+ (−1)𝑖+2 𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖−1𝐷𝑖,𝑖+1 (𝑥1)𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛

⊗𝑚−𝐷2 ⋅ ⋅ ⋅ 𝐷𝑖+1𝐷𝑖,𝑖+1 (𝑥𝑖𝑥𝑖+1)𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

+ (−1)𝑖+1 𝐷1 ⋅ ⋅ ⋅ 𝐷𝑖𝐷𝑖+1𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖+1)𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛

⊗𝑚+𝐷2 ⋅ ⋅ ⋅ 𝐷𝑖𝐷𝑖,𝑖+1 (𝑥𝑖)𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

−𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚.

(15)

Since the Z-graded degree of 𝑥1𝑥𝑖𝑥𝑖+1is 1, it implies that the
first term vanishes. By the definition of a maximal vector 𝑚,
it implies that the second and the forth terms vanish. It yields

𝐷𝑖,𝑖+1 (𝑥1𝑥𝑖𝑥𝑖+1) ⋅
𝑛

∏

𝑖=1
𝐷𝑖 ⊗𝑚

= −𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛𝐷𝑖,𝑖+1 (𝑥𝑖𝑥𝑖+1) ⊗𝑚

= 𝜆𝑖𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚.

(16)

Since 𝜆𝑖 ̸= 0, we have𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀
.

Multiply 𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 by 𝐷𝑖,𝑖+1(𝑥2𝑥𝑖𝑥𝑖+1), . . . ,
𝐷𝑖,𝑖+1(𝑥𝑖−1𝑥𝑖𝑥𝑖+1), in turn. By the same calculation as
above, it yields𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀

, where 1 < 𝑖 < 𝑛.
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If 𝑗 < 𝑖 − 1, then we have

𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗𝑥𝑗+1)𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= (−1)𝑛−𝑖+1 𝐷𝑖𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗𝑥𝑗+1) ⊗𝑚

−𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛𝐷𝑗,𝑗+1 (𝑥𝑗𝑥𝑗+1) ⊗𝑚.

(17)

It also can be found that the first term vanishes and the second
term can conclude𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚 ∈ 𝑀

 by the hypothesis of
the Theorem 𝜆𝑗 ̸= 0. Multiplying 𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 on the left
by𝐷𝑗,𝑗+1(𝑥𝑖+1𝑥𝑗𝑥𝑗+1), . . . , 𝐷𝑗,𝑗+1(𝑥𝑛𝑥𝑗𝑥𝑗+1), then 1 ⊗ 𝑚 ∈ 𝑀



holds. If 𝑗 > 𝑖 + 1, then we have

𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗𝑥𝑗+1)𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚 = (−1)𝑗−𝑖

⋅ 𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑗−1𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗𝑥𝑗+1)𝐷𝑗 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

−𝐷𝑗,𝑗+1 (𝑥𝑗𝑥𝑗+1)𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚 = (−1)𝑗−𝑖+1

⋅ 𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑗𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗𝑥𝑗+1)𝐷𝑗+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚+ (−1)𝑗−𝑖

⋅ 𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑗−1𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗+1)𝐷𝑗+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

−𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑗−1𝐷𝑗𝐷𝑗,𝑗+1 (𝑥𝑗𝑥𝑗+1)𝐷𝑗+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

−𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑗−1𝐷𝑗,𝑗+1 (𝑥𝑗+1)𝐷𝑗+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗𝑚

= (−1)𝑛−𝑖+1 𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑛𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗𝑥𝑗+1)

⊗𝑚 (−1)𝑗−𝑖+2 𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑗+1 ⋅ ⋅ ⋅ 𝐷𝑛𝐷𝑗,𝑗+1 (𝑥𝑖𝑥𝑗)

⋅ (−1)𝑗−𝑖+1 𝐷𝑖 ⋅ ⋅ ⋅ 𝐷𝑗 ⋅ ⋅ ⋅ 𝐷𝑛 (𝑥𝑖𝐷𝑗) ⊗𝑚

−𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛𝐷𝑗,𝑗+1 (𝑥𝑗𝑥𝑗+1) ⊗𝑚 = 𝜆𝑗𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛

⊗𝑚.

(18)

Obviously, we can obtain𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀
.

Moreover, 𝐷𝑗,𝑗+1(𝑥𝑖+1𝑥𝑗𝑥𝑗+1)𝐷𝑖+1 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚, for 𝑗 ̸=

𝑖 + 1, implies that 𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀
. And so

on, multiply 𝐷𝑖+2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀
 on the left by

𝐷𝑖,𝑖+1(𝑥𝑖+2𝑥𝑖𝑥𝑖+1), . . . , 𝐷𝑖,𝑖+1(𝑥𝑛𝑥𝑖𝑥𝑖+1), consecutively. Finally,
it yields 1 ⊗ 𝑚 ∈ 𝑀

.
If 𝑖 = 1, we have 𝐷𝑗,𝑗+1(𝑥1𝑥𝑗𝑥𝑗+1) ⋅ ∏

𝑛

𝑖=1𝐷𝑖 ⊗ 𝑚 =

𝜆𝑗𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀
; furthermore, 𝐷2 ⋅ ⋅ ⋅ 𝐷𝑛 ⊗ 𝑚 ∈ 𝑀

.
Imitating the process of calculation, we have 1 ⊗𝑚 ∈ 𝑀

. We
get the conclusion.

5. Simple Modules of the Lie Superalgebra
𝐾(𝑛)

Given a linear mapping𝐷𝑘 : Λ(𝑛) → 𝑊(𝑛) satisfies

𝐷𝑘 (𝑎) =

𝑛−1
∑

𝑖=1
𝑎𝑖𝐷𝑖 + 𝑎𝑛𝑥𝑛𝐷𝑛, (19)

where 𝑎 ∈ Λ(𝑛)𝛼, 𝑎𝑖 = (−1)𝛼(𝑥𝑖𝑥𝑛𝐷𝑛(𝑎) + 𝐷𝑖(𝑎)), and 𝑎𝑛 =

2𝑎−∑𝑛−1
𝑖=1 𝑥𝑖𝐷𝑖(𝑎).We can obtain that𝐷𝑘 : Λ(𝑛) → 𝐷𝑘(Λ(𝑛))

is an isomorphism of linear spaces. By computation, we know
that [𝐷𝑘(𝑎), 𝐷𝑘(𝑏)] = 𝐷𝑘(⟨𝑎, 𝑏⟩), where ⟨𝑎, 𝑏⟩ = 𝐷𝑘(𝑎)(𝑏) −

(−1)𝛼𝛽2𝑏𝑥𝑛𝐷𝑛(𝑎), 𝑎 ∈ Λ(𝑛)𝛼, 𝑏 ∈ Λ(𝑛)𝛽, 𝛼, and 𝛽 ∈ Z2. We
define a bracket product in Λ(𝑛) by means of

[𝑎, 𝑏] = (2𝑎 −
𝑛−1
∑

𝑖=1
𝑥𝑖𝐷𝑖 (𝑎))𝑥𝑛𝐷𝑛 (𝑏)

− (−1)𝛼𝛽(2𝑏 −
𝑛−1
∑

𝑖=1
𝑥𝑖𝐷𝑖 (𝑏)) 𝑥𝑛𝐷𝑛 (𝑎)

+

𝑛−1
∑

𝑖=1
(−1)𝛼𝐷𝑖 (𝑎)𝐷𝑖 (𝑏) ,

(20)

where 𝑎 ∈ Λ(𝑛)𝛼, 𝑏 ∈ Λ(𝑛)𝛽, 𝛼, and 𝛽 ∈ Z2. Pertaining to
this bracket product, Λ(𝑛) becomes a Lie superalgebra which
is denoted by 𝐾(𝑛) (see [27]).

Then, 𝐾(𝑛) = ∑𝑗≥−2 𝐾𝑗 is a Z-graded Lie superalgebra,
where𝐾𝑗 := ⟨{𝑥

𝑢
| 𝑗 = |𝑢| + 𝛿(𝑢, 𝑛) − 2}⟩, and

𝛿 (𝑢, 𝑛) :=
{

{

{

0, 𝑛 ∉ 𝑢,

1, 𝑛 ∈ 𝑢.

(21)

Put

𝑗
V
=
{

{

{

𝑗 + 𝑞, 1 ≤ 𝑗 ≤ 𝑞,

𝑗 − 𝑞, 𝑞 + 1 ≤ 𝑗 ≤ 2𝑞.
(22)

Write𝐾 := 𝐾(𝑛).

Lemma 7. 𝐾(𝑛) is a restricted Lie superalgebra.

Proof. Since𝐷𝑘 is an isomorphism of Λ(𝑛) → 𝐷𝑘(Λ(𝑛)), we
can regard 𝐾(𝑛) = {𝐷𝑘(𝑎) | 𝑎 ∈ Λ(𝑛)}. Obviously, 𝐾(𝑛) is
a subalgebra of 𝑊(0 | 𝑛). For any 𝑎 ∈ Λ(𝑛)0, then 𝐷𝑘(𝑎) ∈

𝐾0 ⊆ 𝑊0. Then, the Z-graded degree of 𝑎 is an even number.
If |𝑥𝑢| = 2, namely, 𝑥𝑢 = 𝑥𝑘𝑥𝑙, 𝑘 ̸= 𝑙 ̸= 𝑛, or 𝑥𝑢 = 𝑥𝑘𝑥𝑛, 𝑘 ̸= 𝑛.
By direct calculation, (𝐷𝑘(𝑥𝑘𝑥𝑙))

𝑝
= 𝑐𝐷𝑘(𝑥𝑘𝑥𝑙), where 𝑐 = 1

or −1. (𝐷𝑘(𝑥𝑘𝑥𝑛))
𝑝
= 0. If |𝑥𝑢| = 2𝑡, 𝑡 ∈ {2, 3, . . .}, we have

(𝐷𝑘(𝑥
𝑢
))
𝑝
= 0. In a word, (𝐷𝑘(𝑎))

𝑝
∈ 𝐾0, where 𝑎 ∈ Λ(𝑛)0.

Since𝐾(𝑛) is a subalgebra of𝑊(𝑛) and𝑊(𝑛) is a restricted Lie
superalgebra, we can obtain that 𝐾(𝑛) is a superalgebra.

First we consider the case where 𝑛 = 2𝑞 + 1 is an odd
number.

Lemma 8. Let 𝐻 = ⟨{𝜇𝑥𝑗𝑥𝑗V , 𝑥𝑛 | 𝜇 ∈ F , 𝑗 = 1, . . . , 𝑞}⟩ be
a Cartan subalgebra of 𝐾0. Then, positive root vectors of 𝐾0
are {(1/2)𝑥𝑗𝑥𝑖 + (𝜇/2)𝑥𝑗V𝑥𝑖 + (𝜇/2)𝑥𝑖V𝑥𝑗 + (1/2)𝑥𝑗V𝑥𝑖V , 𝑥𝑗𝑥𝑖 +
𝜇𝑥𝑖V𝑥𝑗 + 𝑥𝑖𝑥𝑗V + 𝑥𝑖V𝑥𝑗V | 1 ≤ 𝑖 < 𝑗 ≤ 𝑞}, where V𝜇2 = −1.

Proof. Suppose that 𝜑 : 𝐾0 → L = {𝐴 ∈ 𝑀𝑛−1(F) | 𝐴
𝑡
+ 𝐴 =

0} ⊕ F , given by

𝑥𝑖𝑥𝑗 → 𝐸𝑗𝑖 −𝐸𝑖𝑗, (𝑖 ̸= 𝑗, 𝑖, 𝑗 ̸= 𝑛) ,

𝑥𝑛 → 1 ∈ F ,
(23)
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is a mapping of vector spaces. It can be verified that 𝜑 is an
isomorphism. Let𝑃 = [

𝐼𝑞 (1/2)𝐼𝑞
−𝜇𝐼𝑞 (𝜇/2)𝐼𝑞 ], where 𝜇

2
= −1. Let𝑀 :=

𝑃
𝑡
𝑃 = [

0 𝐼𝑞

𝐼𝑞 0 ]. Set L(𝑃) = {𝑃
−1
𝐴𝑃 | 𝐴 ∈ L}. Then, 𝐴 ∈

L(𝑃) ⇔ 𝑀𝐴 + 𝐴
𝑡
𝑀 = 0; namely, 𝐴 ∈ o(𝑞), the orthogonal

algebra. We can conclude𝐾0 ≅ L ⊕ F ≅ o(𝑞) ⊕ F .
By calculation, we obtain that the Cartan subalgebra 𝐻1

of o(𝑞) is𝐻1 = ⟨{𝐸𝑗𝑗 − 𝐸𝑗V𝑗V | 𝑗 = 1, . . . , 𝑞}⟩.
We will define linear function Λ 𝑗 the same as before.

Then, the positive roots of o(𝑞) are {Λ 𝑖 − Λ 𝑗}1≤𝑖<𝑗≤𝑞 and
{Λ 𝑖 + Λ 𝑗}1≤𝑖<𝑗≤𝑞. Correspondingly, the positive root vectors
are 𝐸𝑖𝑗 − 𝐸𝑗V𝑖V , 𝐸𝑖𝑗V − 𝐸𝑗𝑖V , 1 ≤ 𝑖 < 𝑗 ≤ 𝑞, respectively. By the
isomorphism, we get the positive root vectors of L:

𝑃 (𝐸𝑖𝑗 −𝐸𝑗V𝑖V) 𝑃
−1

=
1
2
(𝐸𝑖𝑗 −𝐸𝑗𝑖) +

𝜇

2
(𝐸𝑖𝑗V −𝐸𝑗V𝑖)

+
𝜇

2
(𝐸𝑗𝑖V −𝐸𝑖V𝑗)

+
1
2
(𝐸𝑖V𝑗V −𝐸𝑗V𝑖V) ,

𝑃 (𝐸𝑖𝑗V −𝐸𝑗𝑖V) 𝑃
−1

= (𝐸𝑖𝑗 −𝐸𝑗𝑖) + 𝜇 (𝐸𝑗𝑖V −𝐸𝑖V𝑗)

+ 𝜇 (𝐸𝑗V𝑖 −𝐸𝑖𝑗V)

+ (𝐸𝑗V𝑖V −𝐸𝑖V𝑗V) ,

(24)

where 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. So we can obtain that positive root
vectors of 𝐾0 are

1
2
𝑥𝑗𝑥𝑖 +

𝜇

2
𝑥𝑗V𝑥𝑖 +

𝜇

2
𝑥𝑖V𝑥𝑗 +

1
2
𝑥𝑗V𝑥𝑖V ,

𝑥𝑗𝑥𝑖 +𝜇𝑥𝑖V𝑥𝑗 +𝑥𝑖𝑥𝑗V +𝑥𝑖V𝑥𝑗V ,

(25)

for 1 ≤ 𝑖 < 𝑗 ≤ 𝑞.TheCartan subalgebra of𝐾0 is ⟨{𝜇𝑥𝑖V𝑥𝑖, 𝑥𝑛 |
1 ≤ 𝑖 ≤ 𝑞}⟩.

In view of Definition 1 and Lemma 8, the following fact
holds: suppose𝐻 is a Cartan subalgebra of 𝐾0, 𝑉 is a 𝑢(𝐾0)-
module, and 𝜆 ∈ 𝐻

∗. Then, 𝑉𝜆 = {𝑤 ∈ 𝑉 | (𝑥𝑗𝑥𝑗V) ⋅ 𝑤 =

𝜆𝑗𝑤, 𝑥𝑛 ⋅ 𝑤 = 𝜆𝑛𝑤, 𝑗 = 1, . . . , 𝑞}. A nonzero 𝑤 ∈ 𝑉𝜆 is a
maximal vector (of weight 𝜆), provided (𝑥𝑖 − 𝜇𝑥𝑖V)𝑥𝑗 ⋅ 𝑤 = 0,
whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑞.

Theorem 9. If 𝜆𝑛 ̸= 0, then𝑀𝐾(𝑆(𝜆)) is simple.

Proof. Let 𝑀 be a nonzero submodule of 𝑀𝐾(𝑆(𝜆)). Take
𝑤 ∈ 𝑀

 and 𝑤 ̸= 0. We note

𝑤 = Σ𝛽∈𝐴𝑐 (𝛽) 𝑖 (𝑥1)
𝛽1
⋅ ⋅ ⋅ 𝑖 (𝑥𝑛−1)

𝛽𝑛−1
𝑖 (1)𝛽0 ⊗ 𝑠𝛽, (26)

where𝛽 = (𝛽1, . . . , 𝛽𝑛−1, 𝛽0), 𝑐(𝛽) ∈ F , and𝐴 := {𝑎 = Σ𝑘𝑎𝑘𝜀𝑘 |

𝑎𝑘 = 0, or 1 for 0 ≤ 𝑘 ≤ 𝑛 − 1, 0 ≤ 𝑎𝑛 ≤ 𝑝 − 1} ⊂ Z𝑛. Write
𝑖(𝑥𝑗) = 𝑥𝑗, 𝑖(1) = 𝑥0 in 𝑢(𝐾).

By formula (20), we have [𝑥𝑖, 𝑥𝑗] = 0, for 𝑖 ̸= 𝑗 and 𝑖, 𝑗 ̸= 𝑛.
Obviously, [𝑥𝑖, 𝑥𝑖] = −1, for 𝑖 ̸= 𝑛. And [1, 𝑥𝑖] = 0, for 𝑖 ̸= 𝑛.
Thus,

𝑥𝑖𝑥𝑗 = −𝑥𝑗𝑥𝑖, (27)

in 𝑢(𝐾), where 𝑖 ̸= 𝑗 and 𝑖, 𝑗 ̸= 𝑛. In particular,

2𝑥2
𝑖
= −𝑥0, (28)

where 𝑖 ̸= 𝑛. And

𝑥0𝑥𝑖 = 𝑥𝑖𝑥0, (29)

where 𝑖 ̸= 𝑛.
Put 𝛼0 = min{𝑡0 | 𝑤 = Σ𝛽∈𝐴𝑐(𝛽)𝑥

𝑡1
1 ⋅ ⋅ ⋅ 𝑥

𝑡𝑛−1
𝑛−1𝑥

𝑡0
0 ⊗

𝑠𝛽, 𝑐(𝛽) ̸= 0}. By (28), we can get 𝑥
𝑝−1−𝛼0
0 ⋅ 𝑤 =

Σ𝛽∈𝐴𝑐(𝛽

)𝑥

𝑡1
1 ⋅ ⋅ ⋅ 𝑥

𝑡𝑛−1
𝑛−1𝑥

𝑝−1
0 ⊗ 𝑠𝛽 ∈ 𝑀

, where
𝛽


= (𝑡1, . . . , 𝑡𝑛−1, 𝛼0). Put 𝛼1 = min{𝑡1 |

Σ𝛽∈𝐴𝑐(𝛽

)𝑥

𝑡1
1 ⋅ ⋅ ⋅ 𝑥

𝑡𝑛−1
𝑛−1𝑥

𝑝−1
0 ⊗ 𝑠𝛽 , 𝑐(𝛽


) ̸= 0}.

Multiplying Σ𝛽∈𝐴𝑐(𝛽

)𝑥

𝑡1
1 ⋅ ⋅ ⋅ 𝑥

𝑡𝑛−1
𝑛−1𝑥

𝑝−1
0 ⊗ 𝑠𝛽 by

𝑥
1−𝛼1
1 and then by (27) and (29), we can obtain

Σ𝛽∈𝐴𝑐(𝛽

)𝑥1 ⋅ ⋅ ⋅ 𝑥

𝑡𝑛−1
𝑛−1𝑥

𝑝−1
0 ⊗ 𝑠𝛽 ∈ 𝑀

, where
𝛽


= (𝛼1, 𝑡2, . . . , 𝑡𝑛−1, 𝛼0). And so on, we can conclude
that there exists 𝜂 such that 𝑐(𝜂)𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑠𝜂 ∈ 𝑀

,
where 𝜂 = (𝛼1, 𝛼2, . . . , 𝛼𝑛−1, 𝛼0), 𝑐(𝜂) ̸= 0. Imitating the
discussion as 𝑊, there exists a maximal vector 𝑚 such that
𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑚 ∈ 𝑀

. By (20), we get

[𝑥𝑖, 𝑥
𝑢
𝑥𝑛] = 𝑥𝑖𝑥

𝑢
𝑥𝑛, (30)

where 𝑥𝑖 does not appear in 𝑥
𝑢 and 𝑥𝑖 ̸= 𝑥𝑛. Also we have

[𝑥𝑖, 𝑥
𝑢
𝑥𝑛] = 𝑥

𝑢−𝜀𝑖𝑥𝑛, (31)

where 𝑥𝑖 occurs in 𝑥
𝑢. We will prove 𝑥2𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑚 ∈

𝑀
 in two steps.
First, by (30) and (31), we have

(𝑥1𝑥𝑛) 𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥
𝑝−1
0 ⊗𝑚

= [𝑥1 (𝑥1𝑥𝑛) − 𝑥𝑛] 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥
𝑝−1
0 ⊗𝑚

= 𝑥1𝑥2 (𝑥1𝑥𝑛) 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥
𝑝−1
0 ⊗𝑚

+𝑥1 (𝑥1𝑥2𝑥𝑛) 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥
𝑝−1
0 ⊗𝑚

+𝑥2𝑥𝑛𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥
𝑝−1
0 ⊗𝑚

− (𝑥2𝑥𝑛) 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥
𝑝−1
0 ⊗𝑚.

(32)

Observing these terms, it remains the third nonzero term.
With [1, 𝑥𝑢𝑥𝑛] = 2𝑥𝑢𝑥𝑛, where 𝑥𝑛 does not appear in 𝑥

𝑢, then

𝑥0 (𝑥
𝑢
𝑥𝑛) − (𝑥

𝑢
𝑥𝑛) 𝑥0 = 2𝑥𝑢𝑥𝑛, (33)

in 𝑢(𝐾). Hence, by (30), (31), and (33), then (32) can be
adjusted to

𝑥2𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥𝑛𝑥
𝑝−1
0 ⊗𝑚 ∈ 𝑀


. (34)

Secondly, for [1, 𝑥𝑛] = 2𝑥𝑛, then 𝑥𝑛𝑥0 = (𝑥0 − 2)𝑥𝑛 in
𝑢(𝐾). Using the induction hypothesis, we get

𝑥𝑛𝑥
𝑝−1
0 = (𝑥0 − 2)𝑝−1 𝑥𝑛. (35)
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Hence, we get

𝑥2𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥𝑛𝑥
𝑝−1
0 ⊗𝑚

= 𝑥2𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1 (𝑥0 − 2)𝑝−1 𝑥𝑛 ⊗𝑚

= 𝑥2𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1 (𝑥0 − 2)𝑝−1 ⊗𝜆𝑛𝑚 ∈ 𝑀

.

(36)

Since 𝜆𝑛 ̸= 0, we have 𝑥2𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1(𝑥0 − 2)𝑝−1 ⊗ 𝑚 ∈ 𝑀
.

Multiplying 𝑥2𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1(𝑥0 − 2)𝑝−1 ⊗ 𝑚 on the left by 𝑥𝑝−10 ,
thus we find that 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑚 ∈ 𝑀

.
Imitate the way above on 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑚. First,

multiply 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥
𝑝−1
0 ⊗ 𝑚 on the left with 𝑥2𝑥𝑛. By

computation, we can obtain that 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛𝑥
𝑝−1
0 ⊗ 𝑚 ∈ 𝑀

.
Repeating the second step, we can get 𝑥3 ⋅ ⋅ ⋅ 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑚 ∈

𝑀
.
Repeating the process above, we can get 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑚 ∈

𝑀
. Multiplying 𝑥𝑛−1𝑥

𝑝−1
0 ⊗ 𝑚 on the left by 𝑥𝑛−1𝑥𝑛, we then

have

(𝑥𝑛−1𝑥𝑛) 𝑥𝑛−1𝑥
𝑝−1
0 ⊗𝑚

= [𝑥𝑛−1 (𝑥𝑛−1𝑥𝑛) 𝑥
𝑝−1
0 +𝑥𝑛𝑥

𝑝−1
0 ] ⊗𝑚

= 𝑥𝑛𝑥
𝑝−1
0 ⊗𝑚 = (𝑥0 − 2)𝑝−1 𝑥𝑛 ⊗𝑚 ∈ 𝑀


.

(37)

For 𝜆𝑛 ̸= 0, we know that (𝑥0 − 2)𝑝−1 ⊗ 𝑚 ∈ 𝑀
. Following

𝑥
𝑝−1
0 (𝑥0−2)

𝑝−1
⊗𝑚 ∈ 𝑀

, it implies that 𝑥𝑝−10 ⊗𝑚 ∈ 𝑀
.Thus,

𝑥𝑛𝑥
𝑝−1
0 ⊗𝑚 = (𝑥0 − 2)𝑝−1 𝑥𝑛 ⊗𝑚 ∈ 𝑀


. (38)

Moving and expanding these terms of (38), then we have the
following identity:

(−2)𝑝−1 𝜆𝑛 ⊗𝑚 = 𝑥𝑛𝑥
𝑝−1
0 ⊗𝑚

− (𝑥
𝑝−1
0 + ⋅ ⋅ ⋅ + (−𝑝) 𝑥0 (−2)

𝑝−2
)

⊗𝑚.

(39)

Multiplying

(−2)𝑝−1 𝜆𝑛 ⊗𝑚 = 𝑥𝑛𝑥
𝑝−1
0 ⊗𝑚

− (𝑥
𝑝−1
0 + ⋅ ⋅ ⋅ + (−𝑝) 𝑥0 (−2)

𝑝−2
)

⊗𝑚

(40)

on the left by 𝑥𝑝−20 , we obtain that 𝑥𝑝−20 ⊗ 𝑚 ∈ 𝑀
. Using the

induction hypothesis, finally, we can get the desired formula;
namely, 1 ⊗ 𝑚 ∈ 𝑀

. Therefore,𝑀𝐾(𝑆(𝜆)) is simple.

If 𝑛 = 2𝑞 + 2 is an even number, then we let 𝑃1 =

[ 𝑃 1 ]. Imitating the proof of Lemma 7 andTheorem 9, we can
obtain the following theorem.

Theorem 10. If 𝜆𝑛 ̸= 0, then𝑀𝐾(𝑆(𝜆)) is simple.
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