Simple Modules for Modular Lie Superalgebras $W(0 \mid n)$, $S(0 \mid n)$, and $K(n)$

Zhu Wei, ${ }^{1}$ Qingcheng Zhang, ${ }^{1}$ Yongzheng Zhang, ${ }^{1}$ and Chunyue Wang ${ }^{2}$
${ }^{1}$ School of Mathematics and Statistics, Northeast Normal University, Changchun 130024, China
${ }^{2}$ School of Applied Sciences, Jilin Teachers Institute of Engineering and Technology, Changchun 130052, China

Correspondence should be addressed to Qingcheng Zhang; zhangqc569@nenu.edu.cn
Received 13 April 2015; Revised 28 June 2015; Accepted 30 June 2015
Academic Editor: Andrei D. Mironov
Copyright © 2015 Zhu Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper constructs a series of modules from modular Lie superalgebras $W(0 \mid n), S(0 \mid n)$, and $K(n)$ over a field of prime characteristic $p \neq 2$. Cartan subalgebras, maximal vectors of these modular Lie superalgebras, can be solved. With certain properties of the positive root vectors, we obtain that the sufficient conditions of these modules are irreducible L-modules, where $L=W(0 \mid n)$, $S(0 \mid n)$, and $K(n)$.

1. Introduction

Giving a broad overview of the present situation, the representation theories of Lie algebras and Lie superalgebras over a field of characteristic 0 have been a remarkable evolution. Kac (see [1]) worked on classification of infinite dimensional simple linearly compact Lie superalgebras. Shchepochkina (see [2]) studied the five exceptional simple Lie superalgebras of vector fields and their fourteen regradings. More detailed description of one of the five simple exceptional Lie superalgebras of vector fields was given (see [3]). The complete proof of the recognition theorem for graded Lie algebras in prime characteristic was given (see [4]). Strade (see [5]) studied simple Lie algebras over fields of positive characteristic and obtained some important results. The classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix was given, and the prolongations of the simple finite dimensional Lie algebras and Lie superalgebras with Cartan matrix are studied over algebraically closed fields of characteristic $p>2$ (see [6, 7]).

Su (see [8-12]) got a new class of nongraded simple Lie algebras. It was proved that an irreducible quasifinite module was a module of the intermediate series. He also got some important results about the representation of classical Lie superalgebras. Zhang (see $[13,14]$) worked on the graded module of W, S, H over fields of characteristic 0 .

There are also a great deal of representative results of Lie algebras over fields of prime characteristic (see [15-18]). For a restricted Cartan-type Lie algebra, restricted simple modules have been determined in the sense that their isomorphism classes have been parametrized. And their dimensions have been computed. Shen (see [19-21]) constructed the graded modules for the Witt, special, and Hamiltonian Lie algebras. Shen determined those simple modules with fundamental dominant weights, except the contact algebra. Holmes (see [15]) solved the remaining problem about the contact algebra. He showed that the simple restricted modules were induced from the restricted universal enveloping algebra for the homogeneous component of degree zero extended trivially to positive components. Hu (see [22]) investigated the graded modules for the graded contact Cartan algebras $K(m, n)$ and $K(n)$. Shu (see [23]) worked on the generalized restricted representations of graded Lie algebras of Cartan type.

However, there are few results about the representations of Lie superalgebras over a field of prime characteristic $p \neq 2$, called modular Lie superalgebras. Liu (see [24]) established the dimension formula of induced modules and obtained some properties of induced modules. In this paper, we construct modules from Lie superalgebras $W\left(\begin{array}{ll}0 & n\end{array}\right)$, $S(0 \mid n)$, and $K(n)$, induced from homogeneous components of their restricted universal enveloping superalgebras. We intend to show that the generator $1 \otimes m$ of these constructed modules belongs to their nonzero submodules.

2. Preliminaries

In this paper, \mathbb{F} always denotes an algebraically closed field of prime characteristic $p \neq 2$.

Recall the definition of the restricted Lie superalgebras (see [6]) and the restricted universal enveloping superalgebra (see [25]).

Let L be a Lie algebra of characteristic $p \neq 2$. Then, for every $x \in L$, the operator $a d_{x}^{p}$ is a derivation of L. If it is an inner derivation for every $x \in L$, that is, if $a d_{x}^{p}=a d_{x^{[p]}}$ for some element denoted $x^{[p]}$, then the corresponding map $[p]: x \rightarrow x^{[p]}$ is called a p-structure on L, and the Lie algebra L endowed with a p-structure is called a restricted Lie algebra. If L has no center, then L can have not more than one p-structure. The Lie algebra $\mathrm{gl}(n)$ possesses a p-structure, unique up to the contribution of the center; this p-structure is used in the next definition. The notion of a p-representation is naturally defined as a linear map $\rho: L \rightarrow \operatorname{gl}(V)$ such that $\rho\left(x^{[p]}\right)=\rho(x)^{[p]}$; in this case V is said to be a p module. Passing to superalgebras, we see that, for any odd $D \in \operatorname{Der}(A)$, we have

$$
\begin{equation*}
D^{2 n}([a, b])=\sum\binom{n}{l}\left[D^{2 l}(a), D^{2 n-2 l}(b)\right] \tag{1}
\end{equation*}
$$

for any $a, b \in A$. So if char $p \neq 2$, then $D^{2 p}$ is always an even derivation for any odd $D \in \operatorname{Der}(A)$. Now, let L be a Lie superalgebra of characteristic $p \neq 2$. Then, for every $x \in L_{\overline{0}}$, the operator $a d_{x}^{p}$ is a derivation of L; that is, $L_{\overline{0}}$-action on $L_{\overline{1}}$ is a p-representation. For every $x \in L_{\overline{1}}$, the operator $a d_{x}^{2 p}=$ $a d_{x^{2}}^{p}$ is a derivation of L. So if, for every $x \in L_{\overline{0}}$, there is $x^{[p]} \in$ $L_{\overline{0}}$ such that $a d_{x}^{p}=a d_{x^{[p]}}$ for any $x \in L_{\overline{0}}$, then we can define $x^{[2 p]}:=\left(x^{2}\right)^{[p]}$ for any $x \in L_{\overline{1}}$. We demand that, for any $x \in$ $L_{\overline{0}}$, we have $a d_{x}^{p}=a d_{x^{[p]}}$ as operators on the whole L; that is, $L_{\overline{1}}$ is a restricted $L_{\overline{0}}$-module. Then, the pair of maps

$$
\begin{array}{r}
{[p]: L_{\overline{0}} \longrightarrow L_{\overline{0}}\left(x \longmapsto x^{[p]}\right),} \\
{[2 p]: L_{\overline{1}} \longrightarrow L_{\overline{0}}\left(x \longmapsto x^{[2 p]}\right)} \tag{2}
\end{array}
$$

is called a $p \mid 2 p$-structure or just p-structure on L, and the Lie superalgebra L endowed with a p-structure is called a restricted Lie superalgebra.

A pair $(u(L), i)$ consisting of an associative \mathbb{F}-superalgebra with unity and a restricted homomorphism $i: L \rightarrow u(L)^{-}$ is called a restricted universal enveloping superalgebra if given any associative \mathbb{F}-superalgebra A with unity and any restricted homomorphism $f: L \rightarrow A^{-}$; there exists a unique homomorphism $\bar{f}: u(L) \rightarrow A$ of associative \mathbb{F}-superalgebra such that $\bar{f} \circ i=f$. The category of $u(L)$-modules and that of restricted L-modules are equivalent. According to the PBW theorem, then the following statement holds: let $(L,[p])$ be a restricted Lie superalgebra. If $(u(L), i)$ is a restricted universal enveloping superalgebra and $\left(l_{j}\right)_{j \in J_{0}} \cup\left(f_{j}\right)_{j \in J_{1}}$ is an ordered basis of L over \mathbb{F}, where $l_{j} \in L_{\overline{0}}, f_{j} \in L_{\overline{1}}$, then the elements $i\left(l_{j_{1}}\right)^{s_{1}} i\left(l_{j_{2}}\right)^{s_{2}} \cdots i\left(l_{j_{n}}\right)^{s_{n}} i\left(f_{i_{1}}\right) i\left(f_{i_{2}}\right) \cdots i\left(f_{i_{m}}\right), j_{1}<\cdots<j_{n}, 0 \leq$ $s_{k} \leq p-1,1 \leq k \leq n$, and $i_{1}<\cdots<i_{m}$, consist of a basis of
$u(L)$ over \mathbb{F}. Sometimes, with no confusion, we will identify L with its image $i(L)$ in $u(L)$.

Definition 1. Let L be a \mathbb{Z}-graded Lie superalgebra over a field of characteristic p. Suppose that H is a Cartan subalgebra of L_{0}, where L_{0} is the set of the 0 th homogenous elements of \mathbb{Z} graded Lie superalgebra L. For $\lambda \in H^{*}$ and a $u\left(L_{0}\right)$-module V, we set $V_{\lambda}:=\{v \in V \mid h \cdot v=\lambda(h) v, \forall h \in H\}$. If $V_{\lambda} \neq 0$, then λ is called a weight and a nonzero vector v in V_{λ} is called a weight vector (of weight λ). A nonzero $v \in V_{\lambda}$ is called a maximal vector (of weight λ), provided $x \cdot v=0$, where x is any positive root vector of L_{0}.

Let $L=\Sigma_{i \in \mathbb{Z}} L_{i}$ be a \mathbb{Z}-graded Lie superalgebra over \mathbb{F}. Set $N^{+}:=\sum_{i>0} L_{i}$, where L_{i} denotes the homogeneous component of degree i in the \mathbb{Z}-graded Lie superalgebra L. Then, $N^{+} \triangleleft N^{+}+L_{0}:=L^{+}$and $L^{+} / N^{+} \cong L_{0}$. In particular, any L_{0}-module becomes a L^{+}-module by letting N^{+}act trivially. Define $M_{L}(S):=u(L) \otimes_{u\left(L^{+}\right)} S$, where $u(L)$ and $u\left(L^{+}\right)$denote the restricted universal enveloping superalgebras of L and L^{+}, respectively, and S is a simple $u\left(L_{0}\right)$-module. According to the classical theory, for each weight λ, there exists a simple $u\left(L_{0}\right)$-module $S(\lambda)$ which is generated by a maximal vector of weight λ.

In the following, L denotes one of three classes of Cartantype Lie superalgebras $W(0 \mid n), S(0 \mid n)$, or $K(n)$. Each of these classes will be described in detail in the following paper.

Remark 2. In this paper, if A is a subset of some linear space, then $\langle A\rangle$ denotes the subspace spanned by the set A over \mathbb{F}.

3. Simple Modules of the Lie Superalgebra $W(0 \mid n)$

We begin by describing the Lie superalgebra $W\binom{0}{\mid n}$, drawing most of notations and standard results from [26].

Let $\Lambda(n)$ be an exterior algebra over \mathbb{F} in n variables x_{1}, \ldots, x_{n}. Fix $n \in \mathbb{N}$, and then $\Lambda(n)$ becomes \mathbb{Z}_{2}-graded if we set $\operatorname{deg} x_{i}=\overline{1}, i=1, \ldots, n$. Then, $\Lambda(n)$ is an associative superalgebra. The multiplication satisfies the rule $x_{i} x_{j}=$ $-x_{j} x_{i}$, in particular, $x_{i} x_{i}=0$. For $k=1, \ldots, n$, put $B_{k}:=$ $\left\{\left(i_{1}, \ldots, i_{k}\right) \mid 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}$. Let $B(n)=\bigcup_{i=0}^{n} B_{k}$, where $B_{0}=\emptyset$. If $u=\left(i_{1}, i_{2}, \ldots, i_{r}\right) \in B_{r}$, where $1 \leq i_{1}<i_{2}<$ $\cdots<i_{r} \leq n$, then we set $x^{u}=x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$. Put $x^{\emptyset}=1$. Note that $\Lambda(n)$ is \mathbb{Z}-graded by $\Lambda(n)_{r}:=\left\langle\left\{x^{u} \mid u \in B_{r}\right\}\right\rangle$, where $r=0,1, \ldots, n$.

For each $1 \leq i \leq n$, let D_{i} denote the derivation of $\Lambda(n)$ uniquely determined by the property $D_{i}\left(x_{j}\right)=\left(\partial / \partial x_{i}\right)\left(x_{j}\right)=$ $\delta_{i j}$ (=Kronecker delta). Let $\varepsilon_{k}, 1 \leq k \leq n$, be the n tuple with j th component $\delta_{j k}$ (=Kronecker delta), and then $W=W(0 \mid$ $n):=\left\{\sum_{i=1}^{n} a_{i} D_{i} \mid a_{i} \in \Lambda(n)\right\}$ is a Lie superalgebra, which has a \mathbb{F}-basis $\left\{x^{u} D_{i} \mid u \in B(n)\right\}$. The bracket product in W satisfies

$$
\begin{align*}
{\left[x^{u} D_{i}, x^{v} D_{j}\right]=} & x^{u} D_{i}\left(x^{v}\right) D_{j} \tag{3}\\
& -(-1)^{\operatorname{deg}\left(x^{u} D_{i}\right) \operatorname{deg}\left(x^{v} D_{j}\right)} x^{v} D_{j}\left(x^{u}\right) D_{i},
\end{align*}
$$

where $x^{u} D_{i}, x^{v} D_{j}$ are \mathbb{Z}_{2}-homogeneous elements of the Lie superalgebra W, and $\operatorname{deg}\left(x^{u} D_{i}\right)=\operatorname{deg}\left(x^{u}\right)+1, \operatorname{deg}\left(x^{v} D_{j}\right)=$ $\operatorname{deg}\left(x^{v}\right)+1$. Note that $\operatorname{deg}\left(D_{i}\right)=\overline{1} \in \mathbb{Z}_{2} . W$ inherits a \mathbb{Z}-gradation from $\Lambda(n)$ by means of $W_{k}=\Sigma_{j} \Lambda(n)_{k+1} D_{j}$. Consequently, $W=\sum_{i=-1}^{n-1} W_{i}$.

Lemma 3. Let $H=\sum_{i=1}^{n} \mathbb{F} x_{i} D_{i}$ be a Cartan subalgebra of W_{0}. Then, positive root vectors of W_{0} are $\left\{x_{i} D_{j} \mid 1 \leq i<j \leq n\right\}$.

Proof. Introduce a homomorphism $\varphi: W_{0} \rightarrow \mathrm{gl}_{n}(\mathbb{F})$, where $\operatorname{gl}_{n}(\mathbb{F})$ is the general linear Lie algebra that sends $x_{i} D_{j}$ to $E_{i j}(=n \times n$-matrix with 1 in the (i, j)-position and zeros elsewhere). Obviously, φ is an isomorphism of Lie algebras. We know that the Cartan subalgebra H_{1} of $\mathrm{gl}_{n}(\mathbb{F})$ is $\left\langle\left\{E_{i i} \mid\right.\right.$ $i=1, \ldots, n\}\rangle$. Define linear function Λ_{j} on the vector space $\left\langle\left\{E_{11}, \ldots, E_{n n}\right\}\right\rangle$, such that $\Lambda_{j}\left(E_{i i}\right)=\delta_{j i}$. Then, the positive roots of $\mathrm{gl}_{n}(\mathbb{F})$ are $\left\{\Lambda_{i}-\Lambda_{j}\right\}_{i<j}$. Correspondingly, the positive root vectors are $E_{i j}, 1 \leq i<j \leq n$. By the isomorphism $W_{0} \cong \mathrm{gl}_{n}(\mathbb{F})$ via $x_{i} D_{j} \mapsto E_{i j}$, we may therefore obtain that the Cartan subalgebra H of W_{0} is $\left\langle\left\{x_{i} D_{i} \mid i=1, \ldots, n\right\}\right\rangle$. And the positive root vectors are $\left\{x_{i} D_{j} \mid 1 \leq i<j \leq n\right\}$.

According to Definition 1 and Lemma 3, the following statement holds: if H is a Cartan subalgebra, V is a $u\left(W_{0}\right)$ module, and $\lambda \in H^{*}$, then $V_{\lambda}=\left\{v \in V \mid x_{i} D_{i} \cdot v=\right.$ $\left.\lambda\left(x_{i} D_{i}\right) v, 1 \leq i \leq n\right\}$. Write $\lambda_{i}:=\lambda\left(x_{i} D_{i}\right)$. A nonzero $v \in V_{\lambda}$ is a maximal vector (of weight λ), provided $x_{i} D_{j} \cdot v=0$, $\forall 1 \leq i<j \leq n$.

Theorem 4. If there exist $i, j \in\{1, \ldots, n\}$ and $j<i$ such that $\lambda_{i} \neq 1$ and $\lambda_{j} \neq 0$, then $M_{W}(S(\lambda))$ is simple.

Proof. Let M^{\prime} be a nonzero submodule of $M_{W}(S(\lambda))=$ $u(W) \otimes_{u\left(W^{+}\right)} S(\lambda)$. Now choose $0 \neq v \in M^{\prime}$. By virtue of $u\left(W^{+}\right) \cdot S(\lambda)=u\left(W_{0}\right) \cdot S(\lambda)$, we obtain $u(W)$. $S(\lambda)=\left(u\left(W_{0}\right)+u\left(W_{-1}\right)\right) \cdot S(\lambda) \subseteq u\left(W_{-1}\right) \cdot S(\lambda)$. Hence, $M_{W}(S(\lambda))=u(W) \otimes_{u\left(W^{+}\right)} S(\lambda)=\left(u\left(W_{-1}\right)+\right.$ $\left.u\left(W_{0}\right)\right) \otimes_{u\left(W^{+}\right)} S(\lambda) \subseteq u\left(W_{-1}\right) \otimes_{u\left(W^{+}\right)} S(\lambda)$; namely, $M_{W}(S(\lambda))=$ $u\left(W_{-1}\right) \otimes_{u\left(W^{+}\right)} S(\lambda)$. Therefore, we can describe the element form of v; that is,

$$
\begin{equation*}
v=\Sigma_{\beta \in A} c(\beta) i\left(D_{1}\right)^{\beta_{1}} \cdots i\left(D_{n}\right)^{\beta_{n}} \otimes s_{\beta}, \tag{4}
\end{equation*}
$$

where $A:=\left\{\beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \mid \beta_{i}=0\right.$ or $\left.1, i=1, \ldots, n\right\} \subset$ $Z^{n}, c(\beta) \in \mathbb{F}$. Formula (3) shows that $\left[D_{k}, D_{j}\right]=0$. Then, we obtain the equality in $u(W)$:

$$
\begin{equation*}
i\left(D_{k}\right) i\left(D_{j}\right)=-i\left(D_{j}\right) i\left(D_{k}\right) \tag{5}
\end{equation*}
$$

in particular,

$$
\begin{equation*}
i\left(D_{j}\right)^{2}=0 \tag{6}
\end{equation*}
$$

In the following, we simply write $i\left(D_{j}\right)=D_{j}$. Define an order of A satisfying that $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)<\beta^{\prime}=\left(\beta_{1}^{\prime}, \ldots, \beta_{n}^{\prime}\right)$ if and only if there exists $k \in\{1,2, \ldots, n\}$ such that $\beta_{i}=\beta_{i}^{\prime} \forall i>k$ and $\beta_{k}<\beta_{k}^{\prime}$. We set $B:=\{\beta \in A \mid c(\beta) \neq 0\}$, where $c(\beta)$ comes from the right side of equality (4). According to the order A, we choose the least element $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in B$.

Obviously, $c(\eta) \neq 0$. Put $y:=\prod_{j=1}^{n} D_{j}^{1-\eta_{j}}$. By (5) and (6), we obtain

$$
\begin{align*}
y v & =\prod_{j=1}^{n} D_{j}^{1-\eta_{j}}\left[\Sigma_{\beta \in A} c(\beta) D_{1}^{\beta_{1}} \cdots D_{n}^{\beta_{n}} \otimes s_{\beta}\right] \\
& =\alpha c(\eta) \prod_{j=1}^{n} D_{j} \otimes s_{\eta} \in M^{\prime}, \tag{7}
\end{align*}
$$

where $\alpha=1$ or -1 . Consequently, $\prod_{j=1}^{n} D_{j} \otimes s_{\eta} \in M^{\prime}$.
We will show that $\prod_{j=1}^{n} D_{j} \otimes S(\lambda)$ is a $u\left(W_{0}\right)$-module. By virtue of (3), we obtain $\left[x_{k} D_{l}, D_{i}\right]=-\delta_{i k} D_{l}$. Thus, we have

$$
\begin{equation*}
\left(x_{k} D_{l}\right) D_{i}=D_{i}\left(x_{k} D_{l}\right)-\delta_{i k} D_{l} \tag{8}
\end{equation*}
$$

in $u(W)$. We note that the elements $x_{k} D_{l}, \forall 1 \leq k, l \leq n$, are \mathbb{F} basis of W_{0}. Using (8), a straightforward computation shows that

$$
\begin{align*}
& x_{k} D_{l} \cdot \prod_{j=1}^{n} D_{j} \otimes S(\lambda) \\
& \quad=\prod_{j=1}^{k-1} D_{j}\left(-D_{l}+D_{k}\left(x_{k} D_{l}\right)\right) D_{k+1} \cdots D_{n} \otimes S(\lambda) \\
& \quad=\left[-\prod_{j=1}^{k-1} D_{j} D_{l} \prod_{j=k+1}^{n} D_{j}+\prod_{j=1}^{n} D_{j}\left(x_{k} D_{l}\right)\right] \otimes S(\lambda) \tag{9}\\
& \quad \subseteq \prod_{j=1}^{n} D_{j} \otimes S(\lambda) .
\end{align*}
$$

Since $S(\lambda)$ is a simple $u\left(W_{0}\right)$-module, we can get that $\prod_{j=1}^{n} D_{j} \otimes S(\lambda)$ is a simple $u\left(W_{0}\right)$-module. Since $\prod_{j=1}^{n} D_{j} \otimes s_{\eta} \in$ $M^{\prime} \cap \prod_{j=1}^{n} D_{j} \otimes S(\lambda)$, we can conclude that $M^{\prime} \cap \prod_{j=1}^{n} D_{j} \otimes$ $S(\lambda)$ is nontrivial. $\prod_{j=1}^{n} D_{j} \otimes S(\lambda)$ must be contained in M^{\prime}. Thereby, there exists a maximal vector m of weight λ such that $\prod_{j=1}^{n} D_{j} \otimes m \in M^{\prime}$.

Noting that $i \neq 1$, this yields $\left(x_{1} x_{i} D_{i}\right) \prod_{j=1}^{n} D_{j} \otimes m \in M^{\prime}$. According to (3), we have $\left[x_{1} x_{i} D_{i}, D_{j}\right]=\delta_{1 j} x_{i} D_{i}-\delta_{i j} x_{1} D_{i}$. Then,

$$
\begin{equation*}
\left(x_{1} x_{i} D_{i}\right) D_{j}=-D_{j}\left(x_{1} x_{i} D_{i}\right)+\delta_{1 j} x_{i} D_{i}-\delta_{i j} x_{1} D_{i} \tag{10}
\end{equation*}
$$

holds in $u(W)$. By (10), we have

$$
\begin{align*}
&\left(x_{1} x_{i} D_{i}\right) \prod_{j=1}^{n} D_{j} \otimes m \\
&= {\left[-D_{1}\left(x_{1} x_{i} D_{i}\right)+x_{i} D_{i}\right] D_{2} \cdots D_{n} \otimes m } \\
&=(-1)^{i-1} D_{1} \cdots D_{i-1}\left(x_{1} x_{i} D_{i}\right) D_{i} \cdots D_{n} \otimes m \\
&+D_{2} \cdots D_{i-1}\left(x_{i} D_{i}\right) D_{i} \cdots D_{n} \otimes m \tag{11}\\
&=(-1)^{n} D_{1} \cdots D_{n}\left(x_{1} x_{i} D_{i}\right) \otimes m \\
&+(-1)^{i} D_{1} \cdots \widehat{D_{i}} \cdots D_{n}\left(x_{1} D_{i}\right) \otimes m \\
&+D_{2} \cdots D_{n}\left(x_{i} D_{i}\right) \otimes m-D_{2} \cdots D_{n} \otimes m
\end{align*}
$$

where $\widehat{D_{i}}$ means that D_{i} is deleted. Since $S(\lambda)$ is a $u\left(W_{0}\right)$ module and m is a maximal vector of weight λ, the first two terms vanish. Formula (11) implies that $\left(x_{1} x_{i} D_{i}\right) \prod_{j=1}^{n} D_{j} \otimes m=$ $\left(\lambda_{i}-1\right) D_{2} \cdots D_{n} \otimes m$. Since $\lambda_{i} \neq 1$, we have $D_{2} \cdots D_{n} \otimes m \in M^{\prime}$.

If $D_{2} \cdots D_{n} \otimes m$ multiplied on the left by the elements $x_{2} x_{i} D_{i}, x_{3} x_{i} D_{i}, \ldots, x_{i-1} x_{i} D_{i}$, successively, then it yields $D_{i} \cdots D_{n} \otimes m \in M^{\prime}$. By the hypothesis of the theorem, there exists $1 \leq j<i \leq n$ such that $\lambda_{j} \neq 0$, and we thus have

$$
\begin{align*}
& \left(x_{i} x_{j} D_{j}\right) D_{i} \cdots D_{n} \otimes m \\
& \quad=\left[-D_{i}\left(x_{i} x_{j} D_{j}\right)+x_{j} D_{j}\right] D_{i+1} \cdots D_{n} \otimes m \tag{12}
\end{align*}
$$

Observe that the first term vanishes by the \mathbb{Z}-graded degree of $x_{i} x_{j} D_{j}$ which is 1 , furthermore $x_{i} x_{j} D_{j} \cdot m=0$, and the second term is equal to $\lambda_{j} D_{i+1} \cdots D_{n} \otimes m$. Since $\lambda_{j} \neq 0$, we have $D_{i+1} \cdots D_{n} \otimes m \in M^{\prime}$. If we multiply $D_{i+1} \cdots D_{n} \otimes m$ by the elements $x_{i+1} x_{j} D_{j}, \ldots, x_{n} x_{j} D_{j}$, consecutively, then we see that $1 \otimes m \in M^{\prime}$. Since $u\left(W_{0}\right)$-module $M_{W}(S(\lambda))$ is generated by $1 \otimes m, 1 \otimes m \in M^{\prime}$ indicates that $M_{W}(S(\lambda))=M^{\prime}$. Hence, $M_{W}(S(\lambda))$ is simple.

4. Simple Modules of the Lie Superalgebra $S(0 \mid n)$

In the above section, we give the definition of the exterior algebra $\Lambda(n)$. We begin by describing $S=S(n):=\left\langle\left\{D_{i j}(a) \mid\right.\right.$ $a \in \Lambda(n), i, j=1, \ldots, n\}\rangle$, where

$$
\begin{equation*}
D_{i j}(a)=D_{i}(a) D_{j}+D_{j}(a) D_{i} . \tag{13}
\end{equation*}
$$

Putting $S_{i}=W_{i} \cap S$, we have $W_{-1}=S_{-1}$.
Lemma 5. Let $H=\sum_{i=1}^{n-1} F D_{i+1, i}\left(x_{i+1} x_{i}\right)$ be a Cartan subalgebra of S_{0}. Then positive root vectors of S_{0} are $\left\{x_{i} D_{j} \mid\right.$ $1 \leq i<j \leq n\}$.

Proof. Recall the isomorphism $W_{0} \cong \operatorname{gl}_{n}(\mathbb{F})$ via $x_{i} D_{j} \mapsto$ $E_{i j}$, described above. It induces the isomorphism $\psi: S_{0} \cong$ $\operatorname{sl}(n, \mathbb{F}), D_{i j}\left(x_{k} x_{l}\right) \mapsto \delta_{i k} E_{l j}-\delta_{i l} E_{k j}+\delta_{j k} E_{l i}-\delta_{j l} E_{k i}$, where $\operatorname{sl}(n, \mathbb{F})$ is the special linear Lie algebra.

By calculation, we obtain that the Cartan subalgebra H_{1} of $\operatorname{sl}(n, \mathbb{F})$ is equal to $\left\langle\left\{E_{i i}-E_{i+1, i+1} \mid i=1, \ldots, n-1\right\}\right\rangle$. We define linear function Λ_{j} on the vector space $\left\langle\left\{E_{11}, \ldots, E_{n n}\right\}\right\rangle$ as before in Lemma 3. Then, the positive roots of $\operatorname{sl}(n, \mathbb{F})$ are $\left\{\Lambda_{i}-\Lambda_{j}\right\}_{i<j}$. Correspondingly, the positive root vectors of $\operatorname{sl}(n, \mathbb{F})$ are $E_{i j}, 1 \leq i<j \leq n$. The isomorphism ψ sends $-(1 / 2) D_{j j}\left(x_{i} x_{j}\right)=x_{i} D_{j}$ to $E_{i j}$ and $D_{i+1, i}\left(x_{i+1} x_{i}\right)=x_{i} D_{i}-$ $x_{i+1} D_{i+1}$ to $E_{i, i}-E_{i+1, i+1}$, respectively. Therefore, the Cartan subalgebra of S_{0} is $\left\langle\left\{x_{i} D_{i}-x_{i+1} D_{i+1} \mid i=1, \ldots, n-1\right\}\right\rangle$. The positive root vectors are $\left\{x_{i} D_{j} \mid 1 \leq i<j \leq n\right\}$.

In terms of Definition 1 and Lemma 5, the following facts hold: if H is a Cartan subalgebra of S_{0}, V is a $u\left(S_{0}\right)$-module and $\lambda \in H^{*}$. Then, $V_{\lambda}=\left\{v \in V \mid D_{i+1, i}\left(x_{i+1} x_{i}\right) \cdot v=\lambda_{i} v, 1 \leq\right.$ $i \leq n-1\}$. A nonzero $v \in V_{\lambda}$ is a maximal vector (of weight λ), provided $x_{i} D_{j} \cdot v=0$, whenever $1 \leq i<j \leq n$.

Theorem 6. If there exist i, j, such that $|j-i|>1$ and $\lambda_{i} \neq$ $0, \lambda_{j} \neq 0$, then $M_{S}(S(\lambda))$ is simple.

Proof. Let M^{\prime} be a nonzero submodule of $M_{S}(S(\lambda))$. Choose $0 \neq v$ contained in M^{\prime}. It owns the same form as in W; that is, $v=\Sigma_{\beta \in A} c(\beta) i\left(D_{1}\right)^{\beta_{1}} \cdots i\left(D_{n}\right)^{\beta_{n}} \otimes s_{\beta}$, where $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ and $c(\beta) \in \mathbb{F}$. The same discussion described above about the Lie superalgebra W applies to the Lie superalgebra S. We can get a maximal vector m such that $\prod_{j=1}^{n} D_{j} \otimes m \in M^{\prime}$.

Using (3) and (13), we see that

$$
\begin{equation*}
\left[D_{k}, D_{i j}(a)\right]=-D_{i j}\left(D_{k}(a)\right) . \tag{14}
\end{equation*}
$$

Thus, $D_{i j}(a) D_{k}=(-1)^{d(a)}\left[D_{k} D_{i j}(a)+D_{i j}\left(D_{k}(a)\right)\right]$ in $u(S)$. If $i \neq 1$, we have

$$
\begin{align*}
D_{i, i+1} & \left(x_{1} x_{i} x_{i+1}\right) \cdot \prod_{j=1}^{n} D_{j} \otimes m \\
= & -D_{1} \cdot D_{i, i+1}\left(x_{1} x_{i} x_{i+1}\right) \cdot D_{2} \cdots D_{n} \otimes m \\
& -D_{i, i+1}\left(x_{i} x_{i+1}\right) \cdot D_{2} \cdots D_{n} \otimes m \\
= & (-1)^{i-1} D_{1} \cdots D_{i-1} D_{i, i+1}\left(x_{1} x_{i} x_{i+1}\right) D_{i} \cdots D_{n} \otimes m \\
& -D_{2} \cdots D_{i-1} D_{i, i+1}\left(x_{i} x_{i+1}\right) D_{i} \cdots D_{n} \otimes m \\
= & (-1)^{i} D_{1} \cdots D_{i} D_{i, i+1}\left(x_{1} x_{i} x_{i+1}\right) D_{i+1} \cdots D_{n} \otimes m \\
& +(-1)^{i+1} D_{1} \cdots D_{i-1} D_{i, i+1}\left(x_{1} x_{i+1}\right) D_{i+1} \cdots D_{n} \\
& \otimes m-D_{2} \cdots D_{i} D_{i, i+1}\left(x_{i} x_{i+1}\right) D_{i+1} \cdots D_{n} \otimes m \tag{15}\\
& -D_{2} \cdots D_{i-1} D_{i, i+1}\left(x_{i+1}\right) D_{i+1} \cdots D_{n} \otimes m \\
= & (-1)^{i+1} D_{1} \cdots D_{i+1} D_{i, i+1}\left(x_{1} x_{i} x_{i+1}\right) D_{i+2} \cdots D_{n} \\
& \otimes m+(-1)^{i+1} D_{1} \cdots D_{i} D_{i, i+1}\left(x_{1} x_{i}\right) D_{i+2} \cdots D_{n} \\
& \otimes m+(-1)^{i+2} D_{1} \cdots D_{i-1} D_{i, i+1}\left(x_{1}\right) D_{i+2} \cdots D_{n} \\
& \otimes m-D_{2} \cdots D_{i+1} D_{i, i+1}\left(x_{i} x_{i+1}\right) D_{i+2} \cdots D_{n} \otimes m \\
& +(-1)^{i+1} D_{1} \cdots \widehat{D}_{i} D_{i+1} D_{i, i+1}\left(x_{1} x_{i+1}\right) D_{i+2} \cdots D_{n} \\
& \otimes m+D_{2} \cdots D_{i} D_{i, i+1}\left(x_{i}\right) D_{i+2} \cdots D_{n} \otimes m \\
& -D_{2} \cdots D_{n} \otimes m .
\end{align*}
$$

Since the \mathbb{Z}-graded degree of $x_{1} x_{i} x_{i+1}$ is 1 , it implies that the first term vanishes. By the definition of a maximal vector m, it implies that the second and the forth terms vanish. It yields

$$
\begin{align*}
& D_{i, i+1}\left(x_{1} x_{i} x_{i+1}\right) \cdot \prod_{i=1}^{n} D_{i} \otimes m \\
& \quad=-D_{2} \cdots D_{n} D_{i, i+1}\left(x_{i} x_{i+1}\right) \otimes m \tag{16}\\
& \quad=\lambda_{i} D_{2} \cdots D_{n} \otimes m
\end{align*}
$$

Since $\lambda_{i} \neq 0$, we have $D_{2} \cdots D_{n} \otimes m \in M^{\prime}$.
Multiply $D_{2} \cdots D_{n} \otimes m$ by $D_{i, i+1}\left(x_{2} x_{i} x_{i+1}\right), \ldots$, $D_{i, i+1}\left(x_{i-1} x_{i} x_{i+1}\right)$, in turn. By the same calculation as above, it yields $D_{i} \cdots D_{n} \otimes m \in M^{\prime}$, where $1<i<n$.

If $j<i-1$, then we have

$$
\begin{align*}
& D_{j, j+1}\left(x_{i} x_{j} x_{j+1}\right) D_{i} \cdots D_{n} \otimes m \\
& =(-1)^{n-i+1} D_{i} D_{i+1} \cdots D_{n} D_{j, j+1}\left(x_{i} x_{j} x_{j+1}\right) \otimes m \tag{17}\\
& \quad-D_{i+1} \cdots D_{n} D_{j, j+1}\left(x_{j} x_{j+1}\right) \otimes m
\end{align*}
$$

It also can be found that the first term vanishes and the second term can conclude $D_{i+1} \cdots D_{n} \otimes m \in M^{\prime}$ by the hypothesis of the Theorem $\lambda_{j} \neq 0$. Multiplying $D_{i+1} \cdots D_{n} \otimes m$ on the left by $D_{j, j+1}\left(x_{i+1} x_{j} x_{j+1}\right), \ldots, D_{j, j+1}\left(x_{n} x_{j} x_{j+1}\right)$, then $1 \otimes m \in M^{\prime}$ holds. If $j>i+1$, then we have

$$
\begin{align*}
& D_{j, j+1}\left(x_{i} x_{j} x_{j+1}\right) D_{i} \cdots D_{n} \otimes m=(-1)^{j-i} \\
& \quad \cdot D_{i} \cdots D_{j-1} D_{j, j+1}\left(x_{i} x_{j} x_{j+1}\right) D_{j} \cdots D_{n} \otimes m \\
& \quad-D_{j, j+1}\left(x_{j} x_{j+1}\right) D_{i+1} \cdots D_{n} \otimes m=(-1)^{j-i+1} \\
& \quad \cdot D_{i} \cdots D_{j} D_{j, j+1}\left(x_{i} x_{j} x_{j+1}\right) D_{j+1} \cdots D_{n} \otimes m+(-1)^{j-i} \\
& \quad \cdot D_{i} \cdots D_{j-1} D_{j, j+1}\left(x_{i} x_{j+1}\right) D_{j+1} \cdots D_{n} \otimes m \\
& \quad-D_{i+1} \cdots D_{j-1} D_{j} D_{j, j+1}\left(x_{j} x_{j+1}\right) D_{j+1} \cdots D_{n} \otimes m \\
& \quad-D_{i+1} \cdots D_{j-1} D_{j, j+1}\left(x_{j+1}\right) D_{j+1} \cdots D_{n} \otimes m \tag{18}\\
& \quad=(-1)^{n-i+1} D_{i} \cdots D_{n} D_{j, j+1}\left(x_{i} x_{j} x_{j+1}\right) \\
& \quad \otimes m(-1)^{j-i+2} D_{i} \cdots \widehat{D_{j+1}} \cdots D_{n} D_{j, j+1}\left(x_{i} x_{j}\right) \\
& \quad \cdot(-1)^{j-i+1} D_{i} \cdots \widehat{D_{j}} \cdots D_{n}\left(x_{i} D_{j}\right) \otimes m \\
& \quad-D_{i+1} \cdots D_{n} D_{j, j+1}\left(x_{j} x_{j+1}\right) \otimes m=\lambda_{j} D_{i+1} \cdots D_{n}
\end{align*}
$$

$\otimes m$.
Obviously, we can obtain $D_{i+1} \cdots D_{n} \otimes m \in M^{\prime}$.
Moreover, $D_{j, j+1}\left(x_{i+1} x_{j} x_{j+1}\right) D_{i+1} \cdots D_{n} \otimes m$, for $j \neq$ $i+1$, implies that $D_{i+2} \cdots D_{n} \otimes m \in M^{\prime}$. And so on, multiply $D_{i+2} \cdots D_{n} \otimes m \in M^{\prime}$ on the left by $D_{i, i+1}\left(x_{i+2} x_{i} x_{i+1}\right), \ldots, D_{i, i+1}\left(x_{n} x_{i} x_{i+1}\right)$, consecutively. Finally, it yields $1 \otimes m \in M^{\prime}$.

If $i=1$, we have $D_{j, j+1}\left(x_{1} x_{j} x_{j+1}\right) \cdot \prod_{i=1}^{n} D_{i} \otimes m=$ $\lambda_{j} D_{2} \cdots D_{n} \otimes m \in M^{\prime}$; furthermore, $D_{2} \cdots D_{n} \otimes m \in M^{\prime}$. Imitating the process of calculation, we have $1 \otimes m \in M^{\prime}$. We get the conclusion.

5. Simple Modules of the Lie Superalgebra $K(n)$

Given a linear mapping $\widetilde{D_{k}}: \Lambda(n) \rightarrow W(n)$ satisfies

$$
\begin{equation*}
\widetilde{D_{k}}(a)=\sum_{i=1}^{n-1} a_{i} D_{i}+a_{n} x_{n} D_{n} \tag{19}
\end{equation*}
$$

where $a \in \Lambda(n)_{\alpha}, a_{i}=(-1)^{\alpha}\left(x_{i} x_{n} D_{n}(a)+D_{i}(a)\right)$, and $a_{n}=$ $2 a-\sum_{i=1}^{n-1} x_{i} D_{i}(a)$. We can obtain that $\widetilde{D_{k}}: \Lambda(n) \rightarrow \widetilde{D_{k}}(\Lambda(n))$
is an isomorphism of linear spaces. By computation, we know that $\left[\widetilde{D_{k}}(a), \widetilde{D_{k}}(b)\right]=\widetilde{D_{k}}(\langle a, b\rangle)$, where $\langle a, b\rangle=\widetilde{D_{k}}(a)(b)-$ $(-1)^{\alpha \beta} 2 b x_{n} D_{n}(a), a \in \Lambda(n)_{\alpha}, b \in \Lambda(n)_{\beta}, \alpha$, and $\beta \in \mathbb{Z}_{2}$. We define a bracket product in $\Lambda(n)$ by means of

$$
\begin{align*}
{[a, b]=} & \left(2 a-\sum_{i=1}^{n-1} x_{i} D_{i}(a)\right) x_{n} D_{n}(b) \\
& -(-1)^{\alpha \beta}\left(2 b-\sum_{i=1}^{n-1} x_{i} D_{i}(b)\right) x_{n} D_{n}(a) \tag{20}\\
& +\sum_{i=1}^{n-1}(-1)^{\alpha} D_{i}(a) D_{i}(b),
\end{align*}
$$

where $a \in \Lambda(n)_{\alpha}, b \in \Lambda(n)_{\beta}, \alpha$, and $\beta \in \mathbb{Z}_{2}$. Pertaining to this bracket product, $\Lambda(n)$ becomes a Lie superalgebra which is denoted by $K(n)$ (see [27]).

Then, $K(n)=\sum_{j \geq-2} K_{j}$ is a \mathbb{Z}-graded Lie superalgebra, where $K_{j}:=\left\langle\left\{x^{u}|j=|u|+\delta(u, n)-2\}\right\rangle\right.$, and

$$
\delta(u, n):= \begin{cases}0, & n \notin u \tag{21}\\ 1, & n \in u\end{cases}
$$

Put

$$
j^{v}= \begin{cases}j+q, & 1 \leq j \leq q \tag{22}\\ j-q, & q+1 \leq j \leq 2 q\end{cases}
$$

Write $K:=K(n)$.
Lemma 7. $K(n)$ is a restricted Lie superalgebra.
Proof. Since $\widetilde{D_{k}}$ is an isomorphism of $\Lambda(n) \rightarrow \widetilde{D_{k}}(\Lambda(n))$, we can regard $K(n)=\left\{\widetilde{D_{k}}(a) \mid a \in \Lambda(n)\right\}$. Obviously, $K(n)$ is a subalgebra of $W(0 \mid n)$. For any $a \in \Lambda(n)_{\overline{0}}$, then $\widetilde{D_{k}}(a) \in$ $K_{\overline{0}} \subseteq W_{\overline{0}}$. Then, the \mathbb{Z}-graded degree of a is an even number. If $\left|x^{u}\right|=2$, namely, $x^{u}=x_{k} x_{l}, k \neq l \neq n$, or $x^{u}=x_{k} x_{n}, k \neq n$. By direct calculation, $\left(\widetilde{D_{k}}\left(x_{k} x_{l}\right)\right)^{p}=c \widetilde{D_{k}}\left(x_{k} x_{l}\right)$, where $c=1$ or -1 . $\left(\widetilde{D_{k}}\left(x_{k} x_{n}\right)\right)^{p}=0$. If $\left|x^{u}\right|=2 t, t \in\{2,3, \ldots\}$, we have $\left(\widetilde{D_{k}}\left(x^{u}\right)\right)^{p}=0$. In a word, $\left(\widetilde{D_{k}}(a)\right)^{p} \in K_{\overline{0}}$, where $a \in \Lambda(n)_{\overline{0}}$. Since $K(n)$ is a subalgebra of $W(n)$ and $W(n)$ is a restricted Lie superalgebra, we can obtain that $K(n)$ is a superalgebra.

First we consider the case where $n=2 q+1$ is an odd number.

Lemma 8. Let $H=\left\langle\left\{\mu x_{j} x_{j^{v}}, x_{n} \mid \mu \in \mathbb{F}, j=1, \ldots, q\right\}\right\rangle$ be a Cartan subalgebra of K_{0}. Then, positive root vectors of K_{0} are $\left\{(1 / 2) x_{j} x_{i}+(\mu / 2) x_{j^{v}} x_{i}+(\mu / 2) x_{i^{v}} x_{j}+(1 / 2) x_{j^{v}} x_{i^{v}}, x_{j} x_{i}+\right.$ $\left.\mu x_{i^{v}} x_{j}+x_{i} x_{j^{v}}+x_{i^{v}} x_{j^{v}} \mid 1 \leq i<j \leq q\right\}$, where $v \mu^{2}=-1$.

Proof. Suppose that $\varphi: K_{0} \rightarrow \mathbf{L}=\left\{A \in M_{n-1}(\mathbb{F}) \mid A^{t}+A=\right.$ $0\} \oplus \mathbb{F}$, given by

$$
\begin{align*}
x_{i} x_{j} & \longmapsto E_{j i}-E_{i j}, \quad(i \neq j, i, j \neq n), \tag{23}\\
x_{n} & \longmapsto 1 \in \mathbb{F}
\end{align*}
$$

is a mapping of vector spaces. It can be verified that φ is an isomorphism. Let $P=\left[\begin{array}{cc}I_{q} & (1 / 2) I_{q} \\ -\mu I_{q} & (\mu / 2) I_{q}\end{array}\right]$, where $\mu^{2}=-1$. Let $M:=$ $P^{t} P=\left[\begin{array}{cc}0 & I_{q} \\ I_{q} & 0\end{array}\right]$. Set $\mathbf{L}(P)=\left\{P^{-1} A P \mid A \in \mathbf{L}\right\}$. Then, $A \in$ $\mathbf{L}(P) \Leftrightarrow M A+A^{t} M=0$; namely, $A \in \mathbf{o}(q)$, the orthogonal algebra. We can conclude $K_{0} \cong \mathbf{L} \oplus \mathbb{F} \cong \mathbf{o}(q) \oplus \mathbb{F}$.

By calculation, we obtain that the Cartan subalgebra H_{1} of $\mathbf{o}(q)$ is $H_{1}=\left\langle\left\{E_{j j}-E_{j^{v} j^{v}} \mid j=1, \ldots, q\right\}\right\rangle$.

We will define linear function Λ_{j} the same as before. Then, the positive roots of $\mathbf{o}(q)$ are $\left\{\Lambda_{i}-\Lambda_{j}\right\}_{1 \leq i<j \leq q}$ and $\left\{\Lambda_{i}+\Lambda_{j}\right\}_{1 \leq i<j \leq q}$. Correspondingly, the positive root vectors are $E_{i j}-E_{j^{v} i^{v}}, E_{i j^{\nu}}-E_{j i^{v}}, 1 \leq i<j \leq q$, respectively. By the isomorphism, we get the positive root vectors of L :

$$
\begin{align*}
P\left(E_{i j}-E_{j^{v} i^{v}}\right) P^{-1}= & \frac{1}{2}\left(E_{i j}-E_{j i}\right)+\frac{\mu}{2}\left(E_{i j^{v}}-E_{j^{v} i}\right) \\
& +\frac{\mu}{2}\left(E_{j i^{v}}-E_{i^{v} j}\right) \\
& +\frac{1}{2}\left(E_{i^{v} j^{v}}-E_{j^{v} i^{v}}\right), \tag{24}\\
P\left(E_{i j^{v}}-E_{j i^{v}}\right) P^{-1}= & \left(E_{i j}-E_{j i}\right)+\mu\left(E_{j i^{v}}-E_{i^{v} j}\right) \\
& +\mu\left(E_{j^{v} i}-E_{i j^{v}}\right) \\
& +\left(E_{j^{v} i^{v}}-E_{i^{v} j^{v}}\right)
\end{align*}
$$

where $1 \leq i<j \leq n$. So we can obtain that positive root vectors of K_{0} are

$$
\begin{gather*}
\frac{1}{2} x_{j} x_{i}+\frac{\mu}{2} x_{j^{v}} x_{i}+\frac{\mu}{2} x_{i^{v}} x_{j}+\frac{1}{2} x_{j^{v}} x_{i^{v}} \tag{25}\\
x_{j} x_{i}+\mu x_{i^{v}} x_{j}+x_{i} x_{j^{v}}+x_{i^{v}} x_{j^{v}}
\end{gather*}
$$

for $1 \leq i<j \leq q$. The Cartan subalgebra of K_{0} is $\left\langle\left\{\mu x_{i^{\prime}} x_{i}, x_{n} \mid\right.\right.$ $1 \leq i \leq q\}\rangle$.

In view of Definition 1 and Lemma 8, the following fact holds: suppose H is a Cartan subalgebra of K_{0}, V is a $u\left(K_{0}\right)$ module, and $\lambda \in H^{*}$. Then, $V_{\lambda}=\left\{w \in V \mid\left(x_{j} x_{j^{v}}\right) \cdot w=\right.$ $\left.\lambda_{j} w, x_{n} \cdot w=\lambda_{n} w, j=1, \ldots, q\right\}$. A nonzero $w \in V_{\lambda}$ is a maximal vector (of weight λ), provided $\left(x_{i}-\mu x_{i^{v}}\right) x_{j} \cdot w=0$, whenever $1 \leq i<j \leq q$.

Theorem 9. If $\lambda_{n} \neq 0$, then $M_{K}(S(\lambda))$ is simple.
Proof. Let M^{\prime} be a nonzero submodule of $M_{K}(S(\lambda))$. Take $w \in M^{\prime}$ and $w \neq 0$. We note

$$
\begin{equation*}
w=\Sigma_{\beta \in A} c(\beta) i\left(x_{1}\right)^{\beta_{1}} \cdots i\left(x_{n-1}\right)^{\beta_{n-1}} i(1)^{\beta_{0}} \otimes s_{\beta} \tag{26}
\end{equation*}
$$

where $\beta=\left(\beta_{1}, \ldots, \beta_{n-1}, \beta_{0}\right), c(\beta) \in \mathbb{F}$, and $A:=\left\{a=\Sigma_{k} a_{k} \varepsilon_{k} \mid\right.$ $a_{k}=0$, or 1 for $\left.0 \leq k \leq n-1,0 \leq a_{n} \leq p-1\right\} \subset \mathbb{Z}^{n}$. Write $i\left(x_{j}\right)=x_{j}, i(1)=x_{0}$ in $u(K)$.

By formula (20), we have $\left[x_{i}, x_{j}\right]=0$, for $i \neq j$ and $i, j \neq n$. Obviously, $\left[x_{i}, x_{i}\right]=-1$, for $i \neq n$. And $\left[1, x_{i}\right]=0$, for $i \neq n$. Thus,

$$
\begin{equation*}
x_{i} x_{j}=-x_{j} x_{i}, \tag{27}
\end{equation*}
$$

in $u(K)$, where $i \neq j$ and $i, j \neq n$. In particular,

$$
\begin{equation*}
2 x_{i}^{2}=-x_{0} \tag{28}
\end{equation*}
$$

where $i \neq n$. And

$$
\begin{equation*}
x_{0} x_{i}=x_{i} x_{0} \tag{29}
\end{equation*}
$$

where $i \neq n$.
Put $\alpha_{0}=\min \left\{t_{0} \quad \mid w=\Sigma_{\beta \in A} c(\beta) x_{1}^{t_{1}} \cdots x_{n-1}^{t_{n-1}} x_{0}^{t_{0}} \otimes\right.$ $\left.s_{\beta}, c(\beta) \neq 0\right\}$. By (28), we can get $x_{0}^{p-1-\alpha_{0}} \cdot w=$ $\sum_{\beta^{\prime} \in A} c\left(\beta^{\prime}\right) x_{1}^{t_{1}} \cdots x_{n-1}^{t_{n-1}} x_{0}^{p-1} \quad \otimes s_{\beta^{\prime}} \quad \in \quad M^{\prime}$, where $\beta^{\prime}=\left(t_{1}, \ldots, t_{n-1}, \alpha_{0}\right)$. Put $\alpha_{1}=\min \left\{t_{1} \mid\right.$ $\left.\Sigma_{\beta^{\prime} \in A} c\left(\beta^{\prime}\right) x_{1}^{t_{1}} \cdots x_{n-1}^{t_{n-1}} x_{0}^{p-1} \otimes s_{\beta^{\prime}}, c\left(\beta^{\prime}\right) \neq 0\right\}$.

Multiplying $\quad \Sigma_{\beta^{\prime} \in A} c\left(\beta^{\prime}\right) x_{1}^{t_{1}} \cdots x_{n-1}^{t_{n-1}} x_{0}^{p-1} \quad \otimes \quad s_{\beta^{\prime}} \quad$ by $x_{1}^{1-\alpha_{1}}$ and then by (27) and (29), we can obtain $\sum_{\beta^{\prime \prime} \in A} c\left(\beta^{\prime \prime}\right) x_{1} \cdots x_{n-1}^{t_{n-1}} x_{0}^{p-1} \quad \otimes s_{\beta^{\prime \prime}} \quad \in \quad M^{\prime}$, where $\beta^{\prime \prime}=\left(\alpha_{1}, t_{2}, \ldots, t_{n-1}, \alpha_{0}\right)$. And so on, we can conclude that there exists η such that $c(\eta) x_{1} x_{2} \cdots x_{n-1} x_{0}^{p-1} \otimes s_{\eta} \in M^{\prime}$, where $\eta=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}, \alpha_{0}\right), c(\eta) \neq 0$. Imitating the discussion as W, there exists a maximal vector m such that $x_{1} x_{2} \cdots x_{n-1} x_{0}^{p-1} \otimes m \in M^{\prime}$. By (20), we get

$$
\begin{equation*}
\left[x_{i}, x^{u} x_{n}\right]=x_{i} x^{u} x_{n} \tag{30}
\end{equation*}
$$

where x_{i} does not appear in x^{u} and $x_{i} \neq x_{n}$. Also we have

$$
\begin{equation*}
\left[x_{i}, x^{u} x_{n}\right]=x^{u-\varepsilon_{i}} x_{n} \tag{31}
\end{equation*}
$$

where x_{i} occurs in x^{u}. We will prove $x_{2} x_{3} \cdots x_{n-1} x_{0}^{p-1} \otimes m \in$ M^{\prime} in two steps.

First, by (30) and (31), we have

$$
\begin{align*}
& \left(x_{1} x_{n}\right) x_{1} x_{2} \cdots x_{n-1} x_{0}^{p-1} \otimes m \\
& \quad=\left[x_{1}\left(x_{1} x_{n}\right)-x_{n}\right] x_{2} \cdots x_{n-1} x_{0}^{p-1} \otimes m \\
& = \tag{32}\\
& \quad x_{1} x_{2}\left(x_{1} x_{n}\right) x_{3} \cdots x_{n-1} x_{0}^{p-1} \otimes m \\
& \quad+x_{1}\left(x_{1} x_{2} x_{n}\right) x_{3} \cdots x_{n-1} x_{0}^{p-1} \otimes m \\
& \quad+x_{2} x_{n} x_{3} \cdots x_{n-1} x_{0}^{p-1} \otimes m \\
& \quad-\left(x_{2} x_{n}\right) x_{3} \cdots x_{n-1} x_{0}^{p-1} \otimes m
\end{align*}
$$

Observing these terms, it remains the third nonzero term. With $\left[1, x^{u} x_{n}\right]=2 x^{u} x_{n}$, where x_{n} does not appear in x^{u}, then

$$
\begin{equation*}
x_{0}\left(x^{u} x_{n}\right)-\left(x^{u} x_{n}\right) x_{0}=2 x^{u} x_{n}, \tag{33}
\end{equation*}
$$

in $u(K)$. Hence, by (30), (31), and (33), then (32) can be adjusted to

$$
\begin{equation*}
x_{2} x_{3} \cdots x_{n-1} x_{n} x_{0}^{p-1} \otimes m \in M^{\prime} \tag{34}
\end{equation*}
$$

Secondly, for $\left[1, x_{n}\right]=2 x_{n}$, then $x_{n} x_{0}=\left(x_{0}-2\right) x_{n}$ in $u(K)$. Using the induction hypothesis, we get

$$
\begin{equation*}
x_{n} x_{0}^{p-1}=\left(x_{0}-2\right)^{p-1} x_{n} \tag{35}
\end{equation*}
$$

Hence, we get

$$
\begin{align*}
& x_{2} x_{3} \cdots x_{n-1} x_{n} x_{0}^{p-1} \otimes m \\
& \quad=x_{2} x_{3} \cdots x_{n-1}\left(x_{0}-2\right)^{p-1} x_{n} \otimes m \tag{36}\\
& \quad=x_{2} x_{3} \cdots x_{n-1}\left(x_{0}-2\right)^{p-1} \otimes \lambda_{n} m \in M^{\prime}
\end{align*}
$$

Since $\lambda_{n} \neq 0$, we have $x_{2} x_{3} \cdots x_{n-1}\left(x_{0}-2\right)^{p-1} \otimes m \in M^{\prime}$. Multiplying $x_{2} x_{3} \cdots x_{n-1}\left(x_{0}-2\right)^{p-1} \otimes m$ on the left by x_{0}^{p-1}, thus we find that $x_{2} \cdots x_{n-1} x_{0}^{p-1} \otimes m \in M^{\prime}$.

Imitate the way above on $x_{2} \cdots x_{n-1} x_{0}^{p-1} \otimes m$. First, multiply $x_{2} \cdots x_{n-1} x_{0}^{p-1} \otimes m$ on the left with $x_{2} x_{n}$. By computation, we can obtain that $x_{3} \cdots x_{n} x_{0}^{p-1} \otimes m \in M^{\prime}$. Repeating the second step, we can get $x_{3} \cdots x_{n-1} x_{0}^{p-1} \otimes m \in$ M^{\prime}.

Repeating the process above, we can get $x_{n-1} x_{0}^{p-1} \otimes m \in$ M^{\prime}. Multiplying $x_{n-1} x_{0}^{p-1} \otimes m$ on the left by $x_{n-1} x_{n}$, we then have

$$
\begin{align*}
& \left(x_{n-1} x_{n}\right) x_{n-1} x_{0}^{p-1} \otimes m \\
& \quad=\left[x_{n-1}\left(x_{n-1} x_{n}\right) x_{0}^{p-1}+x_{n} x_{0}^{p-1}\right] \otimes m \tag{37}\\
& \quad=x_{n} x_{0}^{p-1} \otimes m=\left(x_{0}-2\right)^{p-1} x_{n} \otimes m \in M^{\prime}
\end{align*}
$$

For $\lambda_{n} \neq 0$, we know that $\left(x_{0}-2\right)^{p-1} \otimes m \in M^{\prime}$. Following $x_{0}^{p-1}\left(x_{0}-2\right)^{p-1} \otimes m \in M^{\prime}$, it implies that $x_{0}^{p-1} \otimes m \in M^{\prime}$. Thus,

$$
\begin{equation*}
x_{n} x_{0}^{p-1} \otimes m=\left(x_{0}-2\right)^{p-1} x_{n} \otimes m \in M^{\prime} \tag{38}
\end{equation*}
$$

Moving and expanding these terms of (38), then we have the following identity:

$$
\begin{align*}
(-2)^{p-1} \lambda_{n} \otimes m= & x_{n} x_{0}^{p-1} \otimes m \\
& -\left(x_{0}^{p-1}+\cdots+(-p) x_{0}(-2)^{p-2}\right) \tag{39}
\end{align*}
$$

$\otimes m$.
Multiplying

$$
\begin{align*}
(-2)^{p-1} \lambda_{n} \otimes m= & x_{n} x_{0}^{p-1} \otimes m \\
& -\left(x_{0}^{p-1}+\cdots+(-p) x_{0}(-2)^{p-2}\right) \tag{40}
\end{align*}
$$

$\otimes m$
on the left by x_{0}^{p-2}, we obtain that $x_{0}^{p-2} \otimes m \in M^{\prime}$. Using the induction hypothesis, finally, we can get the desired formula; namely, $1 \otimes m \in M^{\prime}$. Therefore, $M_{K}(S(\lambda))$ is simple.

If $n=2 q+2$ is an even number, then we let $P_{1}=$ $\left[\begin{array}{cc}P & \\ & 1\end{array}\right]$. Imitating the proof of Lemma 7 and Theorem 9, we can obtain the following theorem.

Theorem 10. If $\lambda_{n} \neq 0$, then $M_{K}(S(\lambda))$ is simple.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities of China (Grant no. 14QNJJ003), SRFHLJED (Grant no. 12521157), NSFC (Grant no. 10871057), and NSFJL (Grant no. 20130101068JC).

References

[1] V. G. Kac, "Classification of infinite-dimensional simple linearly compact Lie superalgebras," Advances in Mathematics, vol. 139, no. 1, pp. 1-55, 1998.
[2] I. Shchepochkina, "The five exceptional simple Lie superalgebras of vector fields and their fourteen regradings," Representation Theory, vol. 3, pp. 373-415, 1999.
[3] I. Shchepochkina and G. Post, "Explicit bracket in an exceptional simple Lie superalgebra," International Journal of Algebra and Computation, vol. 8, no. 4, pp. 479-495, 1998.
[4] G. Benkart, T. Gregory, and A. Premet, The Recognition Theorem for Graded Lie Algebras in Prime Characteristic, American Mathematical Society, 2009.
[5] H. Strade, Simple Lie Algebras over Fields of Positive Characteristic. I-III, De Gruyter Expositions in Mathematics, Walter de Gruyter, Berlin, Germany, 2004.
[6] S. Bouarroudj, P. Grozman, and D. Leites, "Classification of finite dimensional modular lie superalgebras with indecomposable Cartan matrix," Symmetry, Integrability and Geometry: Methods and Applications, vol. 5, article 060, 63 pages, 2009.
[7] S. Buarrudzh, P. Y. Grozman, and D. A. Leites, "New simple modular Lie superalgebras as generalized prolongs," Functional Analysis and Its Applications, vol. 42, no. 3, pp. 161-168, 2008.
[8] Y. C. Su, "Composition factors of Kac modules for the general linear Lie superalgebras," Mathematische Zeitschrift, vol. 252, no. 4, pp. 731-754, 2006.
[9] Y. C. Su and L. S. Zhu, "Representations of the derivation algebra of the localization of the quantum plane at $q=-1$," Communications in Algebra, vol. 33, pp. 4375-4382, 2005.
[10] Y. C. Su, "Classification of quasifinite modules over Lie algebras of matrix differential operators on the circle," Proceedings of the American Mathematical Society, vol. 133, no. 7, pp. 1949-1957, 2005.
[11] Y. C. Su and J. H. Zhou, "A class of nongraded simple Lie algebras," Communications in Algebra, vol. 32, no. 6, pp. 23652376, 2004.
[12] Y. Su and J. Zhou, "Some representations of nongraded Lie algebras of generalized Witt type," Journal of Algebra, vol. 246, no. 2, pp. 721-738, 2001.
[13] Y. Z. Zhang, "Z-Graded module of Lie superalgebra H(n) of Cartan type," Chinese Science Bulletin, vol. 41, pp. 813-817, 1996.
[14] Y. Z. Zhang, "Z-Graded module of Lie superalgebra W (n) and S(n) of Cartan type," Chinese Science Bulletin, vol. 41, pp. 589592, 1996.
[15] R. R. Holmes, "Simple restricted modules for the restricted contact Lie algebras," Proceedings of the American Mathematical Society, vol. 116, no. 2, pp. 329-337, 1992.
[16] R. R. Holmes, "Cartan invariants for the restricted toral rank two contact Lie algebra," Indagationes Mathematicae, vol. 5, no. 3, pp. 291-305, 1994.
[17] R. R. Holmes, "Dimensions of the simple restricted modules for the restricted contact Lie algebra," Journal of Algebra, vol. 170, no. 2, pp. 504-525, 1994.
[18] R. R. Holmes, "Simple restricted modules for the restricted Hamiltonian algebra," Journal of Algebra, vol. 199, no. 1, pp. 229261, 1998.
[19] G. Y. Shen, "Graded modules of graede Lie algebras of Cartan type(I) -mixed product of modules," Scientia Sinica (Series A), vol. 29, pp. 570-581, 1986.
[20] G. Y. Shen, "Graded modules of graded Lie algebras of Cartan type(II)-positive and negative graded modules," Scientia Sinica.-Series A: Mathematical, Physical, Astronomical \&; Technical Sciences, vol. 29, no. 10, pp. 1009-1019, 1986.
[21] G. Y. Shen, "Graded modules of graded Lie algebras of Cartan type(III)—irreducible modules," Chinese Annals of Mathematics Series B, vol. 9, no. 4, pp. 404-417, 1988.
[22] N. H. Hu, "The graded modules for the graded contact Cartan algebras," Communications in Algebra, vol. 22, no. 11, pp. 44754497, 1994.
[23] B. Shu, "The generalized restricted representations of graded Lie algebras of Cartan type," Journal of Algebra, vol. 194, no. 1, pp. 157-177, 1997.
[24] W. D. Liu, "Induced modules of restricted Lie superalgebras," Northeastern Mathematical Journal, vol. 21, pp. 54-60, 2005.
[25] Y. Wang and Y. Z. Zhang, "The property of a p-mapping on a restricted Lie superalgebra," Journal of Northeast Normal University, vol. 32, pp. 106-110, 2000 (Chinese).
[26] Y. Z. Zhang, "Finite-dimensional Lie superalgebras of Cartan type over fields of prime characteristic," Chinese Science Bulletin, vol. 42, no. 9, pp. 720-724, 1997.
[27] B. Xin, Lie superalgebra $K(n)$ [Dissertation for the Master's Degree], Northeast Normal University, Changchun, China, 2003.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

