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We give some new formulae for product of two Genocchi polynomials including Euler polynomials and Bernoulli polynomials.
Moreover, we derive some applications for Genocchi polynomials to study a matrix formulation.

1. Introduction

The history of Genocchi numbers can be traced back to
Italian mathematician Angelo Genocchi (1817–1889). From
Genocchi to the present time, Genocchi numbers have
been extensively studied in many different context in such
branches ofMathematics as, for instance, elementary number
theory, complex analytic number theory, homotopy theory
(stable homotopy groups of spheres), differential topology
(differential structures on spheres), theory of modular forms
(Eisenstein series), 𝑝-adic analytic number theory (𝑝-adic
𝐿-functions), and quantum physics (quantum groups). The
works ofGenocchi numbers and their combinatorial relations
have receivedmuch attention [1–11]. For showing the value of
this type of numbers and polynomials, we list some of their
applications.

In the complex plane, theGenocchi numbers, named after
Angelo Genocchi, are a sequence of integers that are defined
by the exponential generating function:

2𝑡

𝑒𝑡 + 1
= 𝑒
𝐺𝑡

=

∞

∑

𝑛=0

𝐺
𝑛

𝑡
𝑛

𝑛!
, (|𝑡| < 𝜋) , (1)

with the usual convention about replacing 𝐺
𝑛 by 𝐺

𝑛
, is used.

When we multiply with 𝑒
𝑥𝑡 in the left-hand side of (1), then

we have
∞

∑

𝑛=0

𝐺
𝑛

(𝑥)
𝑡
𝑛

𝑛!
=

2𝑡

𝑒𝑡 + 1
𝑒
𝑥𝑡

, (|𝑡| < 𝜋) , (2)

where𝐺
𝑛
(𝑥) are calledGenocchi polynomials. It follows from

(2) that 𝐺
1

= 1, 𝐺
2

= −1, 𝐺
3

= 0, 𝐺
4

= 1, 𝐺
5

= 0, 𝐺
6

= −3,
𝐺
7

= 0, 𝐺
8

= 17, . . ., and 𝐺
2𝑛+1

= 0 for 𝑛 ∈ N (for details, see
[7–9]).

Differentiating both sides of (1), with respect to 𝑥, then
we have the following:

𝑑

𝑑𝑥
𝐺
𝑛

(𝑥) = 𝑛𝐺
𝑛−1

(𝑥) , deg𝐺
𝑛+1

(𝑥) = 𝑛. (3)

On account of (1) and (3), we can easily derive the
following:

∫

𝑎

𝑏

𝐺
𝑛

(𝑥) 𝑑𝑥 =
𝐺
𝑛+1

(𝑎) − 𝐺
𝑛+1

(𝑏)

𝑛 + 1
. (4)

By (1), we get

𝐺
𝑛

(𝑥) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝐺
𝑘
𝑥
𝑛−𝑘

. (5)
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Thanks to (4) and (5), we acquire the following equation
(6):

∫

1

0

𝐺
𝑛

(𝑥) 𝑑𝑥 = −2
𝐺
𝑛+1

𝑛 + 1
. (6)

It is not difficult to see that

𝑒
𝑡𝑥

=
1

2𝑡
(

2𝑡

𝑒𝑡 + 1
𝑒
(1+𝑥)𝑡

+
2𝑡

𝑒𝑡 + 1
𝑒
𝑥𝑡

)

=
1

2𝑡
∑

𝑛=0

(𝐺
𝑛

(𝑥 + 1) + 𝐺
𝑛

(𝑥))
𝑡
𝑛

𝑛!
.

(7)

By expression of (7), then we have

2𝑥
𝑛

=
𝐺
𝑛+1

(𝑥 + 1) + 𝐺
𝑛+1

(𝑥)

𝑛 + 1
(8)

(see [1–25]).
Let P

𝑛
= {𝑝(𝑥) ∈ Q[𝑥] | deg𝑝(𝑥) ≤ 𝑛} be the (𝑛 + 1)-

dimensional vector space over Q. Probably, {1, 𝑥, 𝑥
2
, . . . , 𝑥

𝑛
}

is the most natural basis for P
𝑛
. From this, we note that

{𝐺
1
(𝑥), 𝐺

2
(𝑥), . . . , 𝐺

𝑛+1
(𝑥)} is also good basis for spaceP

𝑛
.

In [14], Kim et al. introduced the following integrals:

𝐼
𝑚,𝑛

= ∫

1

0

𝐵
𝑚

(𝑥) 𝑥
𝑛
𝑑𝑥, 𝐽

𝑚,𝑛
= ∫

1

0

𝐸
𝑚

(𝑥) 𝑥
𝑛
𝑑𝑥, (9)

where 𝐵
𝑚

(𝑥) and 𝐸
𝑛
(𝑥) are called Bernoulli polynomials and

Euler polynomials, respectively. Also, they are defined by the
following generating series:

𝑒
𝐵(𝑥)𝑡

=

∞

∑

𝑛=0

𝐵
𝑛

(𝑥)
𝑡
𝑛

𝑛!
=

𝑡

𝑒𝑡 − 1
𝑒
𝑥𝑡

, |𝑡| < 2𝜋,

𝑒
𝐸(𝑥)𝑡

=

∞

∑

𝑛=0

𝐸
𝑛

(𝑥)
𝑡
𝑛

𝑛!
=

2

𝑒𝑡 + 1
𝑒
𝑥𝑡

, |𝑡| < 𝜋,

(10)

with 𝐵
𝑛
(𝑥) := 𝐵

𝑛
(𝑥) and 𝐸

𝑛
(𝑥) := 𝐸

𝑛
(𝑥), symbolically. By

(10), then we have

𝑡

𝑒𝑡 − 1
=

∞

∑

𝑛=0

𝐵
𝑛

𝑡
𝑛

𝑛!
,

2

𝑒𝑡 + 𝑒−𝑡
=

∞

∑

𝑛=0

𝐸
𝑛

𝑡
𝑛

𝑛!
.

(11)

Here𝐵
𝑛

:= 𝐵
𝑛
(0) and𝐸

𝑛
:= 2
𝑛
𝐸
𝑛
(1/2) are calledBernoulli

numbers and Euler numbers, respectively. Additionally, the
Bernoulli and Euler numbers and polynomials have the
following identities:

𝐵
𝑛

(𝑥) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝐵
𝑘
𝑥
𝑛−𝑘

, 𝐸
𝑛

(𝑥) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝐸
𝑘

(0) 𝑥
𝑛−𝑘

(12)

(for details, see [6, 11, 13–15, 17, 19]). By (11), we have
the following recurrence relations of Euler and Bernoulli
numbers, as follows:

𝐵
0

= 1, 𝐵
𝑛

(1) − 𝐵
𝑛

= 𝛿
1,𝑛

,

𝐸
0

= 1, (𝐸 + 1)
𝑛

+ (𝐸 − 1)
𝑛

= 2𝛿
0,𝑛

,

(13)

where 𝛿
𝑛,𝑚

is the Kronecker’s symbol defined by

𝛿
𝑛,𝑚

= {
1, if 𝑛 = 𝑚

0, if 𝑛 ̸= 𝑚.
(14)

In the complex plane, we can write the following:
∞

∑

𝑛=0

𝐺
𝑛

(𝑖𝑡)
𝑛

𝑛!
= 𝑖𝑡

2

𝑒𝑖𝑡 + 1
= 𝑖𝑡

∞

∑

𝑛=0

𝐸
𝑛

(0)
(𝑖𝑡)
𝑛

𝑛!
. (15)

By (15), we have
∞

∑

𝑛=0

(
𝐺
𝑛+1

𝑛 + 1
)

(𝑖𝑡)
𝑛

𝑛!
=

∞

∑

𝑛=0

𝐸
𝑛

(0)
(𝑖𝑡)
𝑛

𝑛!
, (16)

by comparing coefficients on the both sides of the above
equality, then we have

𝐺
𝑛+1

𝑛 + 1
= 𝐸
𝑛

(0) , (17)

(see [6]).
Via (17), our results in the present paper can be extended

to Euler polynomials at the special value 0.
Recent works includingmultiplication formulas for prod-

ucts of Bernoulli and Euler polynomials [17], the product
of two Eulerian polynomials [18], sums of products of
generalized Bernoulli polynomials [20], explicit formulas
for computing Euler polynomials in terms of the second
kind Stirling numbers [21], explicit formulas for computing
Bernoulli numbers of the second kind and Stirling numbers
of the first kind [22], some identities and an explicit formula
for Bernoulli and Stirling numbers [23], some identities for
the product of two Bernoulli and Euler polynomials [13],
some formulae for the product of two Bernoulli and Euler
polynomials [14], Bernoulli basis and the product of several
Bernoulli polynomials [15], some formulae of products of the
Apostol-Bernoulli and Apostol-Euler Polynomials [24], and
the modified 𝑞-Euler numbers of higher order with weight
[25] have been extensively investigated.

By the samemotivation of the above knowledge, we write
this paper. We give some interesting properties which are
derived from the basis of Genocchi. From our methods, we
obtain not only new but also interesting identities including
Bernoulli and Euler polynomials. Also, by using (17), we
derive our results in terms of Euler polynomials.

2. On the Genocchi Numbers and Polynomials

In this section, we introduce the following integral equation:
for 𝑚, 𝑛 ≥ 1,

𝑇
𝑚,𝑛

= ∫

1

0

𝐺
𝑚

(𝑥) 𝑥
𝑛
𝑑𝑥. (18)

By (18), becomes

𝑇
𝑚,𝑛

= −
𝐺
𝑚+1

𝑚 + 1
−

𝑛

𝑚 + 1
∫

1

0

𝐺
𝑚+1

(𝑥) 𝑥
𝑛−1

𝑑𝑥. (19)

Thus, we have the following recurrence formulas:

𝑇
𝑚,𝑛

= −
𝐺
𝑚+1

𝑚 + 1
−

𝑛

𝑚 + 1
𝑇
𝑚+1,𝑛−1

, (20)
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by continuing with the above recurrence relation; then we
derive that

𝑇
𝑚,𝑛

= −
𝐺
𝑚+1

𝑚 + 1
+ (−1)

2 𝑛

(𝑚 + 1) (𝑚 + 2)
𝐺
𝑚+2

+ (−1)
2 𝑛 (𝑛 − 1)

(𝑚 + 1) (𝑚 + 2)
𝑇
𝑚+2,𝑛−2

.

(21)

Now also, we develop the following for sequel of this
paper:

𝑇
𝑚,𝑛

=
1

𝑛 + 1

𝑛

∑

𝑗=1

(−1)
𝑗
(
𝑛+1

𝑗 )

(𝑚+𝑗
𝑚

)
𝐺
𝑚+𝑗

+ 2
(−1)
𝑛+1

𝐺
𝑛+𝑚+1

(𝑛 + 𝑚 + 1) ( 𝑛+𝑚
𝑚

)
.

(22)

Let us now introduce the polynomial

𝑝 (𝑥) =

𝑛

∑

𝑙=0

𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

, with 𝑛 ∈ N. (23)

Taking 𝑘th derivative of the above equality, then we have

𝑝
(𝑘)

(𝑥) = (𝑛 + 1) 𝑛 (𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − 𝑘 + 2)

𝑛

∑

𝑙=𝑘

𝐺
𝑙−𝑘

(𝑥) 𝑥
𝑛−𝑙

=
(𝑛 + 1)!

(𝑛 − 𝑘 + 1)!

𝑛

∑

𝑙=𝑘

𝐺
𝑙−𝑘

(𝑥) 𝑥
𝑛−𝑙

(𝑘 = 0, 1, 2, . . . , 𝑛) .

(24)

Theorem 1. The following equality holds true:
𝑛

∑

𝑙=0

𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

=

𝑛−1

∑

𝑘=1

(

𝑛−𝑘

∑

𝑗=1

(−1)
𝑗

(
𝑛−𝑘+1

𝑗
)

(𝑛 − 𝑘 + 1) (
𝑘+𝑗

𝑘
)

𝐺
𝑘+𝑗

+2
(−1)
𝑛−𝑘+1

𝐺
𝑛+1

(𝑛 + 1) (
𝑛

𝑘
)

− 2
𝐺
𝑘+1

𝑘 + 1
)

+

𝑛

∑

𝑘=1

(
( 𝑛+2
𝑘

)

𝑛 + 2

𝑛−1

∑

𝑙=𝑘−1

(2 − 𝐺
𝑙−𝑘+1

− 𝐺
𝑛−𝑘+1

))

× 𝐵
𝑘

(𝑥) .

(25)

Proof. On account of the properties of the Genocchi basis for
the space of polynomials of degree less than or equal to 𝑛with
coefficients inQ, then 𝑝(𝑥) can be written as follows:

𝑝 (𝑥) =

𝑛

∑

𝑘=0

𝑎
𝑘
𝐵
𝑘

(𝑥) = 𝑎
0

+

𝑛

∑

𝑘=1

𝑎
𝑘
𝐵
𝑘

(𝑥) . (26)

Therefore, by (26), we obtain

𝑎
0

= ∫

1

0

𝑝 (𝑥) 𝑑𝑥 =

𝑛

∑

𝑘=1

∫

1

0

𝐺
𝑘

(𝑥) 𝑥
𝑛−𝑘

𝑑𝑥

=

𝑛

∑

𝑘=1

𝑇
𝑘,𝑛−𝑘

=

𝑛−1

∑

𝑘=1

𝑇
𝑘,𝑛−𝑘

+ 𝑇
𝑘,0

=

𝑛−1

∑

𝑘=1

1

𝑛 − 𝑘 + 1

𝑛−𝑘

∑

𝑗=1

(−1)
𝑗
(
𝑛−𝑘+1

𝑗
)

(
𝑘+𝑗

𝑘
)

𝐺
𝑘+𝑗

+ 2
(−1)
𝑛−𝑘+1

𝐺
𝑛+1

(𝑛 + 1) (
𝑛

𝑘
)

− 2
𝐺
𝑘+1

𝑘 + 1
.

(27)

From expression of (24), we get

𝑎
𝑘

=
1

𝑘!
(𝑝
(𝑘−1)

(1) − 𝑝
(𝑘−1)

(0))

=
(𝑛 + 1)!

𝑘! (𝑛 − 𝑘 + 2)!
(

𝑛

∑

𝑙=𝑘−1

𝐺
𝑙−𝑘+1

(1) − 0
𝑛−𝑙

𝐺
𝑛−𝑘+1

)

=
( 𝑛+2
𝑘

)

𝑛 + 2

𝑛−1

∑

𝑙=𝑘−1

(2 − 𝐺
𝑙−𝑘+1

− 𝐺
𝑛−𝑘+1

) .

(28)

Substituting (27) and (28) into (26), we arrive at the
desired result.

By using (17) and Theorem 1, we get the following corol-
lary, which has been stated in terms of Euler polynomials.

Corollary 2. For any 𝑛 ∈ N, then we have
𝑛

∑

𝑙=0

𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

=

𝑛−1

∑

𝑘=1

(

𝑛−𝑘

∑

𝑗=1

(−1)
𝑗

(𝑘 + 𝑗) (
𝑛−𝑘+1

𝑗
)

(𝑛 − 𝑘 + 1) (
𝑘+𝑗

𝑗
)

𝐸
𝑘+𝑗−1

(0)

+2
(−1)
𝑛−𝑘+1

𝐸
𝑛

(0)

(
𝑛

𝑘
)

− 2𝐸
𝑘

(0))

+

𝑛

∑

𝑘=1

(
( 𝑛+2
𝑘

)

𝑛 + 2

𝑛−1

∑

𝑙=𝑘−1

(2 − (𝑙 − 𝑘 + 1) 𝐸
𝑙−𝑘

(0)

− (𝑛 − 𝑘 + 1) 𝐸
𝑛−𝑘

(0))) 𝐵
𝑘

(𝑥) .

(29)

Theorem 3. The following nice identity
𝑛

∑

𝑙=0

𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

=

𝑛

∑

𝑘=0

((𝑛 + 1) (
𝑛

𝑘
) −

( 𝑛+1
𝑘

)

2

𝑛−1

∑

𝑙=𝑘

(𝐺
𝑙−𝑘

− 𝐺
𝑛−𝑘

)) 𝐸
𝑘

(𝑥)

(30)

is true.

Proof. Let us now consider the polynomial 𝑝(𝑥) in terms of
Euler polynomials as follows:

𝑝 (𝑥) =

𝑛

∑

𝑘=0

𝑏
𝑘
𝐸
𝑘

(𝑥) . (31)



4 International Journal of Mathematics and Mathematical Sciences

In [14], Kim et al. gave the coefficients 𝑏
𝑘
by utilizing

from the definition of Bernoulli polynomials. Now also, we
give the coefficients 𝑏

𝑘
by using the definition of Genocchi

polynomials, as follows:

𝑏
𝑘

=
1

2𝑘!
(𝑝
(𝑘)

(1) + 𝑝
(𝑘)

(0))

=
(𝑛 + 1)!

2𝑘! (𝑛 − 𝑘 + 1)!

𝑛

∑

𝑙=𝑘

(𝐺
𝑙−𝑘

(1) + 0
𝑛−𝑙

𝐺
𝑙−𝑘

)

= (𝑛 + 1) (
𝑛

𝑘
) −

( 𝑛+1
𝑘

)

2

𝑛−1

∑

𝑙=𝑘

(𝐺
𝑙−𝑘

− 𝐺
𝑛−𝑘

) .

(32)

After the above applications, we complete the proof of the
theorem.

By employing (17) andTheorem 3, we have the following
corollary, which is the sum of products of two Euler polyno-
mials.

Corollary 4. For each 𝑛 ∈ N, one has
𝑛

∑

𝑙=0

𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

=

𝑛

∑

𝑘=0

( (𝑛 + 1) (
𝑛

𝑘
)

−
( 𝑛+1
𝑘

)

2

𝑛−1

∑

𝑙=𝑘

((𝑙 − 𝑘) 𝐸
𝑙−𝑘−1

(0)

− (𝑛 − 𝑘) 𝐸
𝑛−𝑘−1

(0))) 𝐸
𝑘

(𝑥) .

(33)

We now discover the following theorem, which will be an
interesting and worthwhile theorem for studying in analytic
numbers theory.

Theorem 5. The following equality holds:
𝑛

∑

𝑙=0

1

𝑙! (𝑛 − 𝑙)!
𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

=

𝑛

∑

𝑙=1

2
𝑙−2

𝑙!

𝑛

∑

𝑗=𝑙−1

(2 − 𝐺
𝑙−𝑗+1

) 𝐺
𝑙
(𝑥)

(𝑗 − 𝑙 + 1)! (𝑛 − 𝑗)!

+
2
𝑙−2

𝑙! (𝑛 − 𝑙 + 1)!
𝐺
𝑛−𝑙+1

𝐺
𝑙
(𝑥) .

(34)

Proof. It is proved by using the following polynomial 𝑝(𝑥):

𝑝 (𝑥) =

𝑛

∑

𝑙=0

1

𝑙! (𝑛 − 𝑙)!
𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

=

𝑛

∑

𝑙=0

𝑎
𝑙
𝐺
𝑙
(𝑥) . (35)

It is not difficult to indicate the following:

𝑝
(𝑘)

(𝑥) = 2
𝑘

𝑛

∑

𝑙=𝑘

1

(𝑙 − 𝑘)! (𝑛 − 𝑙)!
𝐺
𝑙−𝑘

(𝑥) 𝑥
𝑛−𝑙

. (36)

Then, we see that, for 𝑘 = 1, 2, . . . , 𝑛,

𝑎
𝑙
=

1

2𝑙!
(𝑝
(𝑙−1)

(1) + 𝑝
(𝑙−1)

(0))

=
2
𝑙−2

𝑙!

𝑛

∑

𝑗=𝑙−1

1

(𝑗 − 𝑙 + 1)! (𝑛 − 𝑗)!
(𝐺
𝑗−𝑙+1

(1) + 0
𝑛−𝑗

𝐺
𝑗−𝑙+1

)

=
2
𝑙−2

𝑙!

𝑛

∑

𝑗=𝑙−1

(2 − 𝐺
𝑙−𝑗+1

)

(𝑗 − 𝑙 + 1)! (𝑛 − 𝑗)!
+

2
𝑙−2

𝑙! (𝑛 − 𝑙 + 1)!
𝐺
𝑛−𝑙+1

.

(37)

By (35) and (37), we arrive at the desired result.

Theorem 6. The following identity
𝑛

∑

𝑙=0

1

𝑙! (𝑛 − 𝑙)!
𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

= −2
𝐺
𝑛+1

𝑛 + 1
+

𝑛−1

∑

𝑙=1

𝑛−𝑙

∑

𝑗=1

(−1)
𝑗

𝑙! (𝑛 − 𝑙 + 1)!

(
𝑛−𝑙+1

𝑗
)

(
𝑙+𝑗

𝑙
)

𝐺
𝑙+𝑗

+ 2
(−1)
𝑛−𝑙+1

𝐺
𝑛+1

(𝑛 + 1) (
𝑛

𝑙
)

+

𝑛

∑

𝑘=1

(
2
𝑘−1

𝑘!

𝑛

∑

𝑙=𝑘−1

(2 − 𝐺
𝑙−𝑘+1

)

(𝑙 − 𝑘 + 1)! (𝑛 − 𝑙)!

−
2
𝑘−1

𝑘! (𝑛 − 𝑘 + 1)!
𝐺
𝑛−𝑘+1

) 𝐵
𝑘

(𝑥)

(38)

is true.

Proof. Now also, let us take the polynomial in terms of
Bernoulli polynomials as

𝑝 (𝑥) =

𝑛

∑

𝑘=0

𝑎
𝑘
𝐵
𝑘

(𝑥) . (39)

By using the above identity, we develop as follows:

𝑎
0

= ∫

1

0

𝑝 (𝑥) 𝑑𝑥

=

𝑛

∑

𝑙=0

1

𝑙! (𝑛 − 𝑙)!
∫

1

0

𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

𝑑𝑥

=

𝑛

∑

𝑙=0

1

𝑙! (𝑛 − 𝑙)!
𝑇
𝑙,𝑛−𝑙

= 𝑇
𝑛,0

+

𝑛−1

∑

𝑙=1

1

𝑙! (𝑛 − 𝑙)!
𝑇
𝑙,𝑛−𝑙

= −2
𝐺
𝑛+1

𝑛 + 1
+

𝑛−1

∑

𝑙=1

𝑛−𝑙

∑

𝑗=1

(−1)
𝑗

𝑙! (𝑛 − 𝑙 + 1)!

(
𝑛−𝑙+1

𝑗
)

(
𝑙+𝑗

𝑙
)

𝐺
𝑙+𝑗

+ 2
(−1)
𝑛−𝑙+1

𝐺
𝑛+1

(𝑛 + 1) (
𝑛

𝑙
)

.

(40)
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By (36), we compute 𝑎
𝑘
coefficients, as follows:

𝑎
𝑘

=
1

𝑘!
(𝑝
(𝑘−1)

(1) − 𝑝
(𝑘−1)

(0))

=
2
𝑘−1

𝑘!

𝑛

∑

𝑙=𝑘−1

1

(𝑙 − 𝑘 + 1)! (𝑛 − 𝑙)!
(𝐺
𝑙−𝑘+1

(1) − 0
𝑛−𝑙

𝐺
𝑙−𝑘+1

)

=
2
𝑘−1

𝑘!

𝑛

∑

𝑙=𝑘−1

(2 − 𝐺
𝑙−𝑘+1

)

(𝑙 − 𝑘 + 1)! (𝑛 − 𝑙)!
−

2
𝑘−1

𝑘! (𝑛 − 𝑘 + 1)!
𝐺
𝑛−𝑘+1

.

(41)

When we substituted (40) and (41) into (39), the proof of
theorem will be completed.

By using (17) and Theorem 6, we procure the following
corollary.

Corollary 7. For any 𝑛 ∈ N, one has

𝑛

∑

𝑙=0

1

𝑙! (𝑛 − 𝑙)!
𝐺
𝑙
(𝑥) 𝑥
𝑛−𝑙

= −2𝐸
𝑛

+

𝑛−1

∑

𝑙=1

𝑛−𝑙

∑

𝑗=1

(−1)
𝑗

𝑙! (𝑛 − 𝑙 + 1)!

(𝑙 + 𝑗) (
𝑛−𝑙+1

𝑗
)

(
𝑙+𝑗

𝑙
)

𝐸
𝑙+𝑗−1

(0)

+ 2
(−1)
𝑛−𝑙+1

𝐸
𝑛

(0)

(
𝑛

𝑙
)

+

𝑛

∑

𝑘=1

(
2
𝑘−1

𝑘!

𝑛

∑

𝑙=𝑘−1

((2/ (𝑙 − 𝑘 + 1)) − 𝐸
𝑙−𝑘

(0))

(𝑙 − 𝑘)! (𝑛 − 𝑙)!

−
2
𝑘−1

𝑘! (𝑛 − 𝑘)!
𝐸
𝑛−𝑘

(0)) 𝐵
𝑘

(𝑥) .

(42)

In [6], it is well known that

𝐺
𝑛

(𝑥 + 𝑦) =

𝑛

∑

𝑘=0

(
𝑛

𝑘
) 𝐺
𝑘

(𝑥) 𝑦
𝑛−𝑘

. (43)

For 𝑥 = 𝑦 in (43), we have the following:

1

𝑛!
𝐺
𝑛

(2𝑥) =

𝑛

∑

𝑘=0

1

𝑘! (𝑛 − 𝑘)!
𝐺
𝑘

(𝑥) 𝑥
𝑛−𝑘

. (44)

By comparing the equations of (38) and (44), then we
readily derive the following corollary.

Corollary 8. Consider that

1

𝑛!
𝐺
𝑛

(2𝑥) = 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡-ℎ𝑎𝑛𝑑-𝑠𝑖𝑑𝑒 𝑜𝑓 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑇ℎ𝑒𝑜𝑟𝑒𝑚 6.

(45)

Theorem 9. The following equality

𝑛−1

∑

𝑘=1

1

𝑘 (𝑛 − 𝑘)
𝐺
𝑘

(𝑥) 𝑥
𝑛−𝑘

=

𝑛

∑

𝑘=0

(
(
𝑛

𝑘
)

2 (𝑛 − 𝑘 + 1)
(𝐻
𝑛−1

− 𝐻
𝑛−𝑘

)

−
(
𝑛

𝑘
)

2𝑛

𝑛−1

∑

𝑙=𝑘

(2 − 𝐺
𝑙−𝑘+1

)

(𝑛 − 𝑙) (𝑙 − 𝑘 + 1)
) 𝐺
𝑘

(𝑥)

(46)

holds true.

Proof. To prove this theorem, we introduce the following
polynomial 𝑝(𝑥):

𝑝 (𝑥) =

𝑛−1

∑

𝑘=1

1

𝑘 (𝑛 − 𝑘)
𝐺
𝑘

(𝑥) 𝑥
𝑛−𝑘

. (47)

Then, we derive 𝑘th derivative of 𝑝(𝑥) that is given by

𝑝
(𝑘)

(𝑥) = 𝐶
𝑘

(𝑥
𝑛−𝑘

+ 𝐺
𝑛−𝑘

(𝑥)) + (𝑛 − 1) (𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 − 𝑘)

×

𝑛−1

∑

𝑙=𝑘+1

𝐺
𝑙−𝑘

(𝑥) 𝑥
𝑛−𝑙

(𝑛 − 𝑙) (𝑙 − 𝑘)
,

(48)

where

𝐶
𝑘

=
∑
𝑘

𝑗=1
(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 − 𝑗 + 1) (𝑛 − 𝑗 − 1) ⋅ ⋅ ⋅ (𝑛 − 𝑘)

𝑛 − 𝑘

(𝑘 = 1, 2, . . . , 𝑛 − 1) , 𝐶
0

= 0.

(49)

We want to note that

𝑝
(𝑛)

(𝑥) = (𝑝
(𝑛−1)

(𝑥))


= 𝐶
𝑛−1

(𝑥 + 𝐺
1

(𝑥))

= 𝐶
𝑛−1

= (𝑛 − 1)!𝐻
𝑛−1

,

(50)

where 𝐻
𝑛−1

are called Harmonic numbers, which are defined
by

𝐻
𝑛−1

=

𝑛−1

∑

𝑗=1

1

𝑗
. (51)

With the properties of Genocchi basis for the space of
polynomials of degree less than or equal to 𝑛with coefficients
inQ, 𝑝(𝑥) is introduced by

𝑝 (𝑥) =

𝑛

∑

𝑘=0

𝑎
𝑘
𝐺
𝑘

(𝑥) . (52)



6 International Journal of Mathematics and Mathematical Sciences

By expression of (52), we obtain that

𝑎
𝑘

=
1

2𝑘!
(𝑝
(𝑘−1)

(1) + 𝑝
(𝑘−1)

(0))

=
𝐶
𝑘−1

2𝑘!
(1 + 2𝛿

1,𝑛−𝑘+1
)

+
(𝑛 − 1)!

2𝑘! (𝑛 − 𝑘)!

𝑛−1

∑

𝑙=𝑘

(𝐺
𝑙−𝑘+1

(1) + 0
𝑛−𝑙

𝐺
𝑙−𝑘+1

)

(𝑛 − 𝑙) (𝑙 − 𝑘 + 1)

=
𝐶
𝑘−1

2𝑘!
−

(
𝑛

𝑘
)

2𝑛

𝑛−1

∑

𝑙=𝑘

(2 − 𝐺
𝑙−𝑘+1

)

(𝑛 − 𝑙) (𝑙 − 𝑘 + 1)
.

(53)

As a result,

𝑎
𝑛

=
1

2𝑛!
(𝑝
(𝑛)

(1) + 𝑝
(𝑛)

(0)) =
𝐶
𝑛−1

𝑛!
=

𝐻
𝑛−1

𝑛
. (54)

In [14], it is well known that

𝐶
𝑘−1

𝑘!
=

(
𝑛

𝑘
)

(𝑛 − 𝑘 + 1)
(𝐻
𝑛−1

− 𝐻
𝑛−𝑘

) . (55)

By (48), (52), and (55), we arrive at the desired result.

From (17) andTheorem 9, we acquire the following.

Corollary 10. The following identity holds:

𝑛−1

∑

𝑘=1

1

𝑘 (𝑛 − 𝑘)
𝐺
𝑘

(𝑥) 𝑥
𝑛−𝑘

=

𝑛

∑

𝑘=1

(
(
𝑛

𝑘
)

2 (𝑛 − 𝑘 + 1)
(𝐻
𝑛−1

− 𝐻
𝑛−𝑘

)

−
(
𝑛

𝑘
)

2𝑛

𝑛−1

∑

𝑙=𝑘

((2/ (𝑙 − 𝑘 + 1)) − 𝐸
𝑙−𝑘

(0))

(𝑛 − 𝑙)
)

× 𝑘𝐸
𝑘−1

(𝑥) .

(56)

3. Further Remarks

Let P
𝑛

= {∑
𝑗=0

𝑎
𝑗
𝑥
𝑗

| 𝑎
𝑗

∈ Q} be the space of polynomials
of a degree less than or equal to 𝑛. In this final section, we
will give the matrix formulation of Genocchi polynomials.
Let us now consider the polynomial 𝑝(𝑥) ∈ P

𝑛
as a linear

combination of Genocchi basis polynomials with

𝑝 (𝑥) = 𝐶
1
𝐺
1

(𝑥) + 𝐶
2
𝐺
2

(𝑥) + ⋅ ⋅ ⋅ + 𝐶
𝑛+1

𝐺
𝑛+1

(𝑥) . (57)

We can write the above as a product of two variables:

𝑝 (𝑥) = (𝐺
1

(𝑥) 𝐺
2

(𝑥) ⋅ ⋅ ⋅ 𝐺
𝑛+1

(𝑥)) (

𝐶
1

𝐶
2

...
𝐶
𝑛+1

) . (58)

From expression of (58), we consider the following
equation:

𝑝 (𝑥) = (1 𝑥 𝑥
2

⋅ ⋅ ⋅ 𝑥
𝑛
) (

𝑔
1,1

𝑔
1,2

⋅ ⋅ ⋅ 𝑔
1,𝑛+1

0 𝑔
2,2

⋅ ⋅ ⋅ 𝑔
2,𝑛+1

0 0 ⋅ ⋅ ⋅ 𝑔
3,𝑛+1

...
... d

...
0 0 0 𝑔

𝑛+1,𝑛+1

)

× (

𝐶
1

𝐶
2

𝐶
3

...
𝐶
𝑛+1

) ,

(59)

where 𝑔
𝑖,𝑗
are the coefficients of the power basis that are used

to determine the respective Genocchi polynomials. We now
list a few Genocchi polynomials as follows:

𝐺
1

(𝑥) = 1, 𝐺
2

(𝑥) = 2𝑥 − 1,

𝐺
3

(𝑥) = 3𝑥
2

− 3𝑥, 𝐺
4

(𝑥) = 4𝑥
3

− 6𝑥
2

− 1, . . . .

(60)

In the quadratic case (𝑛 = 2), the matrix representation is

𝑝 (𝑥) = (1 𝑥 𝑥
2
) (

1 −1 0

0 2 −3

0 0 3

) (

𝐶
1

𝐶
2

𝐶
3

) . (61)

In the cubic case (𝑛 = 3), the matrix representation is

𝑝 (𝑥) = (1 𝑥 𝑥
2

𝑥
3
) (

1 −1 0 −1

0 2 −3 0

0 0 3 −6

0 0 0 4

) . (62)

Remark 11. Throughout this paper, many considerations for
Genocchi polynomials seem to be useful to study in a matrix
formulation.
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