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Diluted magnetic semiconductor Cu2FeSnS4 nanocrystals with a novel zincblende structure have been successfully synthesized by
a hot-injection approach. Cu+, Fe2+, and Sn4+ ions occupy the same position in the zincblende unit cell, and their occupancy
possibilities are 1/2, 1/4, and 1/4, respectively. The nanocrystals were characterized by means of X-ray diffraction (XRD),
transmission electron microscopy (TEM), selected area electron diffraction (SAED), energy-dispersive spectroscopy (EDS), and
UV-vis-NIR absorption spectroscopy. The nanocrystals have an average size of 7.5 nm and a band gap of 1.1 eV and show a weak
ferromagnetic behavior at low temperature.

1. Introduction

During the past three decades, transition metal ion-doped
diluted magnetic semiconductors (DMSs) have attracted
great interest because of their outstanding the optical,
electronic, and magnetic properties [1–5]. Fe2+, Ni2+, Mn2+,
and Co2+ are commonly used as intentional impurities and
incorporated in group II-VI and III-V semiconductors; ZnO,
ZnS, ZnSe, CdS, CdSe, and GaN are the frequently used host
materials [6–8]. However, the magnetic ion concentration in
these doped DMS nanocrystals is generally less than 2 mol%
[9–13]. It is well known that the magnetic properties of
DMSs are strongly dependent on the magnetic ion concen-
tration. Nonetheless, a high magnetic ion concentration is
detrimental to the magnetic properties for binary DMSs due
to the strong antiferromagnetic (AFM) interactions between
nearest-neighbor-doping ions [14].

The quaternary Cu2FeSnS4 with a high magnetic ion
concentration is being considered as an ideal material for
avoiding large AFM exchange interactions [14]. However,
Cu2FeSnS4 usually crystallizes in a stannite structure (space
group I-42 m, no. 121), and Cu+, Fe2+, and Sn4+ cations have
a fixed position in the stannite unit cell [15]. In the previously
reports, quaternary Cu2FeSnS4 magnetic semiconductor

with a stannite structure exhibited an antiferromagnetic
behavior with a Néel temperature (TN ) of 6∼8 K [15–17].
To the best of our knowledge, there are no reports on
the synthesis of Cu2FeSnS4 nanocrystals with a zincblende
structure in the literature. In this paper, we adopted a
hot-injection approach to synthesize quaternary Cu2FeSnS4

nanocrystals with a metastable zincblende structure. In
zincblende structure, all of cations have a random dis-
tribution instead of ordered distribution, which may lead
peculiar magnetic properties by controlling both metal dis-
tribution and metal-metal distance. The magnetic properties
of zincblende Cu2FeSnS4 nanocrystals were investigated by a
superconducting quantum interference device (SQUID).

2. Experimental

2.1. Chemicals. CuCl2·2H2O, FeCl3·6H2O, SnCl4·5H2O,
sulfur powder (99.999%), thiourea, and oleylamine (OM,
80% ∼ 90%) were purchased from Aladdin Inc. All chemi-
cals were used as received.

2.2. Preparation of Sulfur Precursors. 1.0 M S/OM solution
was prepared by dissolving 0.64 g (20 mmol) of sulfur
powder in 20.0 mL of OM at 120◦C.
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2.3. Synthesis of Zincblende Cu2FeSnS4 Nanocrystals. In
a typical synthesis, 17.0 mg (0.1 mmol) of CuCl2·2H2O,
17.0 mg (0.05 mmol) of SnCl4·5H2O, 13.5 mg (0.05 mmol)
of FeCl3·6H2O, and 5.0 mL of OM were added to a 50 mL
three-neck flask, and the reaction mixture was heated to
120◦C. The inside of the flask was degassed by a vacuum
pump for 10 min, and argon gas was charged. This pro-
cedure was repeated three times. Then the temperature
was increased to 270◦C, and 0.5 mL of S/OM solution was
injected into the flask. After 30 min, the crude solution was
cooled to 60◦C and then precipitated with 30 mL of ethanol.
Finally, the nanocrystals were dispensed in toluene.

2.4. Characterization. X-ray diffraction (XRD) patterns were
recorded by a Bruker D8 FOUCS X-ray diffractometer
using Cu Kα radiation, and the accelerating voltage and
current were 40 kV and 40 mA, respectively. UV-vis-NIR
absorption spectrum was measured by Shimadzu UV-3600.
Transmission electron microscopy (TEM) and selected area
electron diffraction (SAED) images were taken on a FEI
Tecnai G2 F20 with an accelerating voltage of 200 kV. Energy
disperse X-ray spectroscopy (EDS) spectrum was obtained
by using a scanning electron microscope (Hitachi S-4800)
equipped with a Bruker AXS XFlash detector 4010. The
magnetization of Cu2FeSnS4 nanocrystals was obtained by
SQUID (MPMS-XL-7, Quantum Design, Ltd.) between 2
and 100 K using zero-field-cooled (ZFC) and field-cooling
(FC) procedures in an applied field of 50 Oe.

3. Results and Discussion

In contrast to the tetragonal stannite structure, the space
symmetry of zincblende structure significantly decreases by
the random arrangement of Cu+, Fe2+, and Sn4+ cations in
the cubic zincblende unit cell of Cu2FeSnS4. As shown in
the inset of Figure 1, the zincblende unit cell of Cu2FeSnS4

is completely the same as that of ZnS (space group F-
43 m, no. 216). Note that only Zn2+ position is replaced
by 1/2 Cu+, 1/4 Fe2+, and 1/4 Sn4+. Figure 1 shows the
XRD pattern for as-synthesized Cu2FeSnS4 nanocrystals.
Obviously, our XRD pattern did not match those reported in
the literature [15–17] and the standard JCPDS card database
(stannite structure, JCPDS no. 44-1476). We therefore sim-
ulated the diffraction pattern for zincblende Cu2FeSnS4 and
compared it with the experimental pattern. The simulated
and experimental patterns match very well, signifying that
these nanocrystals possess a zincblende structure with a space
group F-43 m and unit cell parameter a = 5.429 Å. In
addition, the zincblende structure of Cu2FeSnS4 nanocrystals
can be further confirmed by SAED image Figure 2(b). It
should be noted that the lattice parameters of zincblende
Cu2FeSnS4 nanocrystals measured from SAED images are
very close to those calculated from the XRD patterns.

Low-resolution TEM image of zincblende Cu2FeSnS4

nanocrystals is shown in Figure 2(c). The Cu2FeSnS4

nanocrystals are nearly spherical in shape and have the
average diameter of 7.5 nm. In addition, the nanocrystals
exhibit a very narrow size distribution and have a standard
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Figure 1: The simulated (red line) and experimental (black
line) XRD patterns of Cu2FeSnS4 nanocrystals with a zincblende
structure; the inset is the unit cell of zincblende Cu2FeSnS4.
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Figure 2: TEM (a and c) and SAED (b) images of Cu2FeSnS4

nanocrystals.

deviation of 7.4%. The high-resolution TEM image clearly
revealed the continuous lattice fringes, and the calculated d
spacing corresponding to (111) plane is 3.138 Å, which is in
good agreement with that value determined by XRD pattern
(3.136 Å) or SAED image (3.140 Å).

Figure 3(a) displays UV-vis-NIR absorption spectrum of
as-synthesized Cu2FeSnS4 nanocrystals. We calculated the
optical band gap (Eg) by extrapolating the linear portion of
the absorption spectrum to hν axis, and the calculated optical
band gaps for Cu2FeSnS4 nanocrystals are around 1.1 eV. As
demonstrated in Figure 3(b), the chemical composition of
the nanocrystals is Cu2FeSnS4.The molar ratio of Cu/Fe/Sn/S
is close to 2 : 1 : 1 : 4, which is well consistent with stoichio-
metric composition of Cu2FeSnS4.

The magnetic properties of Cu2FeSnS4 nanocrystals were
characterized by a SQUID magnetometer. As shown in
Figure 4(a), a clear separation between the ZFC and FC
curves is observed at low temperature region which indicates
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Figure 3: UV-vis-NIR absorption (a) and EDS (b) spectra of Cu2FeSnS4 nanocrystals.
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Figure 4: (a) Temperature dependence of the magnetization for Cu2FeSnS4 nanocrystals. (b) The field dependence of the magnetization for
Cu2FeSnS4 nanocrystals at 2 k and 300 k; inset: the magnification of the hysteresis loop at 2 K.

the absence of a magnetic ordering transition. The plot of
χ(−1)−T (blue line in Figure 4(a)) indicates classical Curie-
Weiss behavior of this sample at high temperature region.
The magnetic susceptibility, χ(T), at the high-temperature
limit can be represented by the Curie-Weiss law, χ(T) =
C/(T − Θ), where C is the Curie constant, T is the
temperature in Kelvin, and Θ is the Curie temperature. The
isothermal magnetization curves of Cu2FeSnS4 nanocrystals
at 2 k and 300 k in magnetic fields up to ±50 kOe are shown
in Figure 4(b). The “s” shape hysteresis loop at 2 K is shown
in the inset of Figure 4(b), with a coercive force of 56 Oe and
relatively large residual magnetization. It can be concluded
that these Cu2FeSnS4 nanocrystals exhibit ferromagnetic

behavior at this temperature. The hysteresis loop obtained
at 300 K does not show hysteresis behavior and is weakly
field dependent and linear, indicating that the nanocrystals
become a paramagnetic material at 300 K. Note that the
stannite Cu2FeSnS4 usually exhibited an antiferromagnetic
behavior in the literatures [15–17]. It is well known that
the unit cell parameter is 2.91 Å in iron which shows
ferromagnetic behavior. In the stannite Cu2FeSnS4, the
interaction Fe-Fe could be super-exchange interaction with
the aid of nonmagnetic ions due to the large nearest distance
of Fe-Fe (5.45 Å). However, the nearest distance of Fe-Fe is
only 3.86 Å in the zincblende Cu2FeSnS4 nanocrystals, and
the electron clouds overlap of Fe-Fe is more larger than that
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Figure 5: The X-ray photoelectron spectroscopy (XPS) spectra of as-synthesized Cu2FeSnS4 nanocrystals; (a) Cu2p; (b) Fe2p; (c) Sn3d; (d)
S2p.

of stannite Cu2FeSnS4, enabling the exchange interaction at
low temperature. As a result, Cu2FeSnS4 nanocrystals with a
zincblende structure exhibit a ferromagnetic behavior.

In addition, X-ray photoelectron spectroscopy (XPS) was
applied to determine the chemical composition and valence
states of Cu2FeSnS4 nanocrystals. In Figure 5(a), the Cu
2p core splits into 2p3/2 (931.6 eV) and 2p1/2 (951.6 eV)
peaks, which are characteristic of Cu+. Two peaks of Fe2p
and Sn3d, located at 716.0 eV and 725.7 eV, 486.4 eV and
494.7 eV, suggesting that the valence states of Fe and Sn ions
in the nanocrystals are +2 and +4, respectively.

4. Conclusion

In summary, dilute magnetic semiconductor Cu2FeSnS4

nanocrystals with a novel zincblende structure have been
successfully synthesized. The optical and magnetic properties
were characterized, and the nanocrystals have a band gap of
1.1 eV and exhibited a ferromagnetic behavior at low tem-
perature. The ferromagnetic properties may be attributed to

the novel zincblende structure; that is, Cu+, Fe2+, and Sn4+

ions occupy the same site in the unit cell and have a random
distribution. Moreover, these dispersible and low-cost DMS
nanocrystals have a high potential for thin film solar cells,
spintronics, magnetic switching, magnetic recording, and Li-
ion batteries.
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