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Abstract

Background: Proteins do not act in isolation; they frequently act together in protein complexes to carry out
concerted cellular functions. The evolution of complexes is poorly understood, especially in organisms other than
yeast, where little experimental data has been available.

Results: We generated accurate, high coverage datasets of protein complexes for E. coli and yeast in order to
study differences in the evolution of complexes between these two species. We show that substantial differences
exist in how complexes have evolved between these organisms. A previously proposed model of complex
evolution identified complexes with cores of interacting homologues. We support findings of the relative
importance of this mode of evolution in yeast, but find that it is much less common in E. coli. Additionally it is
shown that those homologues which do cluster in complexes are involved in eukaryote-specific functions.
Furthermore we identify correlated pairs of non-homologous domains which occur in multiple protein complexes.
These were identified in both yeast and E. coli and we present evidence that these too may represent complex
cores in yeast but not those of E. coli.

Conclusions: Our results suggest that there are differences in the way protein complexes have evolved in E. coli
and yeast. Whereas some yeast complexes have evolved by recruiting paralogues, this is not apparent in E. coli.
Furthermore, such complexes are involved in eukaryotic-specific functions. This implies that the increase in gene
family sizes seen in eukaryotes in part reflects multiple family members being used within complexes. However, in
general, in both E. coli and yeast, homologous domains are used in different complexes.

Background
Most proteins in cells carry out their function as subu-
nits of protein complexes [1]. These aggregations range
in size from 2 to >70 chains sometimes complexed with
other types of molecules such as RNA and DNA. Small
complexes often comprise multiple copies of the same
protein but large complexes such as the ribosome tend
to contain many different proteins. Complexes can be
stable as in the case of the proteasome or transient as in
the case of a kinase interacting with its substrate. The
role of these high order structures is to coordinate com-
plex processes which require the colocation of separate
functional elements.
Dezso et al. [2] have shown that yeast protein com-

plexes contain an essential, invariant core with irreplace-
able biochemical function. The phenotype resulting

from deletion of core proteins reflects the role of the
complex as a whole. Furthermore recent work has sug-
gested that complexes consist of cores, modules and
attachments [3,4]. Gavin et al. [3] repeatedly purified
hundreds of yeast complexes using Tandem Affinity
Purification (TAP) and clustered the components based
on their frequency of occurrence. Complex members
were then classified into three groups: cores, attach-
ments and modules. Core proteins were those which
almost always appeared in a particular complex, attach-
ments those which were less frequently observed. Mod-
ules were defined as groups of attachment proteins
which always occurred together, often in different com-
plexes. Functionally this suggests that attachment pro-
teins are modifiers which are expressed at certain times
to change aspects of complex function. A classic exam-
ple of this is the variety of sigma factors available to
bacterial RNA polymerase which alter its specificity for
different promoter sequences [5].
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It is currently unclear how well protein complexes are
conserved between species. For a particular complex in
one species, many species are deficient in some of the
subunits [6]. Additionally there is a very low overlap in
Protein-Protein Interactions (PPIs) detected between
species [7] suggesting that PPIs may change rapidly dur-
ing evolution [8], however this may also be due to a
lack of experimental evidence. Recent work using com-
bined PPI datasets suggests that pairs of complex mem-
bers are well conserved between yeast and human [9].
Van Dam & Snel argue that PPIs between species rarely
change within protein complexes but that complexes
evolve through gain and loss of subunits. There is evi-
dence that the Last Universal Common Ancestor
(LUCA) contained protein complexes related to those of
extant organisms [10].
The evolutionary conservation of some complexes has

been examined in detail. Comparisons of the eukaryotic
SWI/SNF and RSC chromatin remodelling complexes
have shown that they consist of an evolutionarily con-
served core of subunits [11]. Across eukaryotes there
are variations in accessory subunits involved in these
complexes. Some subunits, present in multiple species,
may be necessary for organismal viability in one case
but not another. Two contrasting modes of complex
evolution are shown by the eukaryotic and prokaryotic
NADH:Ubiquinone oxidoreductase, also termed com-
plex I. While the early prokaryotic complex is thought
to have formed from the combination of small pre-exist-
ing complexes [12], it appears that the eukaryotic com-
plex tripled in size by step-wise recruitment of
individual new subunits [13].
Many small complexes observed in structural data

are homodimers and this arrangement confers several
advantages. Firstly, homodimers can evolve stable
interactions more parsimoniously than heterodimers
[14]. Secondly, producing larger complexes from a sin-
gle component rather than multiple components allows
for greater genetic efficiency, requiring only a single
gene and regulatory mechanism. It has been proposed
that some homomeric complexes have diverged by
duplication of the gene encoding the self-interacting
protein [15]. The duplication of such a gene allows for
divergence of one partner resulting in functional diver-
sification and asymmetrical gain and/or loss of interac-
tions in the complex. It has been shown that
paralogues in the same complex perform different
roles [16]. The F1 ATP synthase and the RecA recom-
binase homohexamer are examples of complexes which
appear to have evolved in this manner, probably from
the same homomeric ancestor [17]. There is evidence
for between one tenth and a third of complexes in
yeast having evolved in this way depending on the
dataset considered [15].

There has been much discussion about whether dupli-
cates deriving from Whole Genome Duplication (WGD)
adopt different fates than those deriving from individual
duplication events. Wapinski et al [18] showed that
WGD rarely leads to paralogous modules. However,
duplication of complexes has been shown to be impor-
tant in yeast [19]. These are thought to have similar
general function but novel specificities. They rarely
duplicate in their entirety, but more commonly in a par-
tial, stepwise fashion [16,18].
Datasets of protein complexes fall into four categories.

Those arguably most accurate are the relatively small
curated datasets provided for yeast by the MIPS [20]
resource and for E. coli by EcoCyc [21]. Complexes
derived from structural data (e.g. Protein Quaternary
Structure database [22]) are also thought to be very
accurate, although again relatively low in coverage and
also biased towards stable interactions. Tandem Affinity
Purification linked to Mass Spectrometry (TAP-MS) is a
high-throughput experimental approach for identifying
protein complexes. Large-scale datasets have been pro-
duced for yeast [3,23] and E. coli [24,25]. Such datasets
cover a greater proportion of interactomes than curated
or structural data. These TAP datasets have been used
to generate datasets of protein complexes using compu-
tational methods [3,23]. The fourth source of complex
data comprises a range of approaches for computation-
ally inferring complexes from protein-protein interaction
data. Resources such as IntAct [26], MINT [27] and
BIND [28] provide datasets of protein-protein interac-
tions in a range of species, derived from various low and
high-throughput experiments including TAP-MS. It has
been shown that protein complexes can be accurately
inferred from experimental data [29]. Genetic interac-
tion data [30] and predicted interactions such as those
found in the STRING database [31] have also been used
[32].
The in silico study of protein complexes has largely

focussed on yeast where there are more data than for
other organisms. Many of these studies have used struc-
tural and/or TAP-MS complexes [e.g. [15,33]]. Several
authors [29,33,34] have also explored complexes derived
from Protein-Protein Interaction Networks (PINs) using
clustering methods. This results in larger datasets of
complexes, with greater coverage of genomes than are
available from other sources. This is achievable because
PINs have highly connected regions which have been
shown to correlate with complexes [35]. Several differ-
ent clustering methods have been applied to the task of
identifying complexes in PINs. Markov CLustering algo-
rithm [MCL; [36]] uses flow simulation in graphs to
detect clusters and was used by Pereira-Leal et al. [34]
and Krogan et al. [23]. Pereira-Leal et al. showed that
the clusters were functionally coherent in terms of
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regulatory and metabolic annotation, cellular localisation
data and known complexes. MCODE [35] uses local
neighbourhood density to define clusters. Both Netcarto
[37] and Restricted Neighbourhood Search Clustering
(RNSC) [38] use a cost function and Monte Carlo meth-
ods to obtain a division of the graph. Netcarto was used
by Tamames et al. [33] to explore the relationship
between reduction in genome size and network modu-
larity. Super-Paramagnetic Clustering (SPC) [39] has
also been applied to this problem. An analysis of several
of these methods by Brohee & van Helden [29] showed
that MCL was the best overall method for determining
known yeast complexes from PPI datasets.
The evolution of protein complexes is still poorly

understood and differences between species have been
difficult to study on a global scale. In order to probe the
differences in complex evolution between species we
created protein complex datasets for a prokaryote and a
eukaryote: the gram-negative bacterium Escherichia coli
and the single-celled eukaryote Saccharomyces cerevi-
siae. For these species we derived combined PPI datasets
using experimentally determined interactions from the
Intact [26] and MINT [27] resources. MCL was used to
derive protein complexes which we show to be accurate
representations of known complexes, although coverage
was noticeably lower for E. coli than for yeast.
We used the datasets clustered by MCL to examine

the distribution of homologues amongst protein com-
plexes showing that they tend to be randomly distribu-
ted in both species. Non-randomly distributed
homologues tended to be involved in eukaryote-specific
complexes such as the spliceosome and proteasome. We
show that complex evolution in E. coli differs from yeast
with a smaller proportion of complexes containing cores
of homologous protein pairs. Furthermore we show that
both E. coli and yeast have complexes which share
duplicate, non-homologous protein pairs. There is evi-
dence that these pairs may also form cores of yeast
complexes, but not those of E. coli.

Results & Discussion
Determination and functional characterisation of protein
complexes in E. coli and yeast
Prediction of protein complexes by clustering Protein
Interaction Networks
In order to study the evolution of protein complexes we
wanted to use accurate datasets with high genome cov-
erage. We used an approach similar to that employed by
Brohee & van Helden [29], Pereira-Leal et al. [34] and
Lubovac et al. [40]. Protein-Protein Interactions (PPIs)
for a particular species e.g. yeast, were combined into a
Protein Interaction Network (PIN) and clustered using
the MCL algorithm (see methods). The MCL algorithm
has been shown to be the best amongst several

approaches available for clustering PINs into complexes
[29]. The MCL clustering algorithm requires a para-
meter to control the granularity of clusters known as
the inflation parameter, I. We optimised this parameter
on the yeast PIN by determining accuracy against the
MIPS dataset of known yeast complexes as was done by
Brohee & van Helden [29], using the same measure of
accuracy (see methods).
Two sources of PPI data were considered in generat-

ing complexes: MINT [27] and IntAct [26]. TAP-MS
data, a component of both MINT and IntAct, identifies
a complex between one ‘bait’ protein and several ‘prey’
and it is necessary to apply one of two models to gener-
ate pairwise interactions which are required for the clus-
tering step. The spoke model specifies an interaction
between the bait and each of the prey, whereas the
matrix model additionally specifies interactions between
each pair of prey proteins. Therefore the matrix model
supposes that the proteins interacting with the bait pro-
tein all interact with each other. TAP-MS data from
MINT had already been converted to pairwise interac-
tions using the matrix model however TAP-MS data
from IntAct was still in the one-to-many form. Figure
1a shows that, where a choice of models could be
applied, the spoke model gave higher accuracy in identi-
fying known yeast complexes from MIPS [20]. This sug-
gests that the spoke model may be most appropriate for
clustering TAP-MS data into complexes. The spoke
model was subsequently applied to all TAP-MS data
from IntAct. A dataset (MINT+IntAct) was then created
by taking the union of pairwise interactions in the
MINT and IntAct datasets. This resulted in six sets of
pairwise interactions: MINT, IntAct and MINT+IntAct
each for yeast and E. coli.
Where possible each interaction was then weighted

using the semantic similarity of the biological process
GO terms of the corresponding proteins (see methods).
This is a measure of the functional similarity of two
proteins in terms of their role in the cell. Figure 1b
shows that, for yeast, the combined MINT+IntAct data-
set with weighted edges resulted in the most accurate
complexes compared to other datasets with unweighted
edges. We refer to this approach as MCL-GO and data-
sets derived from it as MCL-GO datasets.
Figure 1c shows that the optimal clustering parameter

for reproducing yeast MIPS complexes was I = 2.2, simi-
lar to the value of 1.8 found to be optimal by Brohee &
van Helden [29] on a different dataset. The accuracy
achieved, 0.68, is comparable to that achieved in recent
studies [23,41].
Figure 1c also shows the accuracy of E. coli MCL-GO

complexes in reproducing the known E. coli complexes
from EcoCyc. The optimal value of I was also 2.2.
Although there is a slight increase in performance at
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higher inflation parameter values the separation from
random is much greater at I = 2.2. We have observed
an accuracy for E. coli complexes which is noticeably
lower than yeast, although still very much above ran-
dom. This might be caused by lower coverage of the E.
coli genome with PPIs. We therefore go on to test our
key hypotheses using several pre-existing datasets.
The MCL-GO clusters for each species were filtered

to remove clusters containing only one protein. This
resulted in 574 E. coli complexes containing a total of
2210 distinct protein sequences and 855 yeast com-
plexes containing a total of 4740 distinct protein
sequences. These complex datasets thus covered
roughly 56%, and 85% of E. coli and yeast genomes
respectively based on genome sizes of 3952 and 5586
genes (genome sizes were taken from Integr8 [42]).
Figure 1d shows the size distribution of complexes.
Although the distributions are very similar between
both species, yeast complexes were on average larger
than E. coli complexes.

Functional classification of predicted protein complexes
To determine whether the MCL-GO complex datasets
made biological sense we analysed their functions.
Although we have used functional terms (Gene Ontol-
ogy) to generate the complexes, we felt it was impor-
tant to determine whether they represented tight
functional units. We have done this using FunCat
terms rather than GO to try to reduce circularity, how-
ever we accept that there may be some bias. In any
case we believe it is interesting to examine the func-
tional distribution of complexes in our datasets. Figure
2 shows the percentage of proteins which are anno-
tated with the most common FunCat term in their
complex. For both E. coli and yeast around half of
complexes were completely covered by only one term.
The majority of proteins (>50%) could be described by
a single functional term in ~75% of E. coli and yeast
complexes. These results suggest that the MCL-GO
complexes tend to be functionally coherent, with the
majority of proteins in the majority of complexes

Figure 1 Generation of MCL-GO complex datasets. (a) For IntAct data, rendering TAP-MS data using the spoke model rather than the matrix
model gave improved performance. (b) Combining IntAct and MINT datasets and weighting interactions with GOSS scores gives greater
accuracy over either resource alone and without weighting. (c) Accuracy of MCL-GO complexes (using MINT+IntAct and edge weighting) in
capturing MIPS yeast complexes and EcoCyc E. coli complexes. ‘Random’ lines show mean accuracy achieved over 10000 sets of randomised
clusters. Error bars show one standard deviation either side of the mean. (d) Size distribution of E. coli and yeast MCL-GO complexes.
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performing the same general function. Furthermore it
suggests that in both species, complexes can be rea-
sonably well annotated using the most frequent term
applied to its constituent proteins.
We annotated each complex using its most common

FunCat term. Figure 3 shows the proportion of com-
plexes in each species that are involved in different pro-
cesses. E. coli had a larger proportion of complexes
devoted to metabolism and energy than yeast whereas
yeast had a greater proportion of complexes involved in
the cell cycle, transcription and cellular transport. Cell
cycle and transcriptional processes are more complex in
eukaryotes due to DNA packaging in chromosomes and
intricate regulation respectively. Thus the MCL-GO
complexes for E. coli and yeast appear to reflect the
known biology of these species.
We also compared the distribution of functions for E.

coli and yeast MCL-GO complexes to the curated Eco-
Cyc and MIPS complexes. The figures are presented in
additional file 1. They reveal that there may be certain
functional biases in the smaller, curated datasets reflect-
ing biases in the cellular processes best studied in E. coli
and yeast.

Distribution of protein domain superfamilies amongst
protein complexes
There has been much debate about the fate of dupli-
cated genes. It has been proposed that newly duplicated
gene products initially retain common interactions
which subsequently diverge [43]. There have been con-
flicting reports however regarding the extent to which
paralogues within species tend to have common interac-
tions and how fast they might lose these during evolu-
tion [43,44]. We wanted to determine how homologues
are distributed in protein complexes and how this might
relate to complex evolution. To define homologues we
used CATH domain superfamilies which are based on
structural data and capture distant evolutionary
relationships.
Figure 4 shows, for E. coli and yeast MCL-GO com-

plexes, the number of superfamily members against the
number of different complexes in which each superfamily
is found. There was a strong positive correlation between
superfamily size and the number of complexes in which
that superfamily was found. For E. coli r2 is 0.99 and for
yeast 0.97. This suggests that duplicate domains do not
tend to conserve their functional context.

Figure 2 Coverage of complexes by single functional terms. This figure shows the percentage of proteins in yeast MCL-GO complexes
which could be annotated with the most common term in each complex. Complexes were classified using FunCat terms. Complexes with <2
annotated proteins were excluded.
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Figure 3 Principal function of MCL-GO complexes in each species. Complexes were classified using FunCat terms. Complexes with <2
annotated proteins were excluded.

Figure 4 Distribution of CATH superfamilies in MCL-GO complexes. This figure shows the number of CATH superfamily members versus
number of complexes containing members of that superfamily for E. coli and yeast MCL-GO complexes.
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Are there superfamilies which do not follow this trend
and tend to conserve their complex membership? For
each superfamily we determined how many times two
proteins, both containing a member of that superfamily,
were found together in a complex. This was compared
to the number of co-complex pairs that would be
expected if the proteins were distributed randomly
amongst complexes (see methods). We found that, for
most superfamilies, their members did not co-occur in
complexes more than would be expected by chance.
98% of E. coli superfamilies and 95% of yeast superfami-
lies were randomly distributed. The exceptional, non-
randomly distributed superfamilies are discussed in the
next section.
We wanted to know whether different members of a

superfamily were involved in similar biological processes
despite their random distribution amongst complexes.
Using biological process Gene Ontology terms we found
that 28% of superfamilies in E. coli and 22% in yeast had
members which were involved in more similar biological
processes than expected by chance (p < 0.01). While
homologous domains tend to become involved in differ-
ent complexes after duplication, 1/5 to 1/3 of superfami-
lies appeared to conserve their functional role to some
extent. However, when we compared the functional
similarity of the proteins with which each superfamily
member was directly interacting, there was much less
conservation (1% of E. coli and 8% of yeast superfamilies
having interactors with conserved function), i.e. if pro-
tein A interacts with proteins B, C and D and protein A
homologue A’ interacts with E, F and G, then B, C and
D are not functionally similar to E, F and G. This sug-
gests that those superfamilies which conserve their func-
tion to some extent tend to diversify into distinct
aspects of similar processes. This has been recognized
previously in the work of Baudot et al. [44]. Here we

find that the trend is stronger in E. coli than in yeast,
although the functional data we have used is less reliable
in E. coli. Further details of this analysis are presented in
additional file 1.

Functional analysis of non-randomly distributed
superfamilies
A small number of superfamilies were found to be non-
randomly distributed amongst MCL-GO complexes in
the previous analysis; Table 1 shows details of these
superfamilies. What is the functional significance of
multiple homologues within a complex?
In E. coli there was only one non-randomly distributed

superfamily identified, the NAD(P)-binding Rossmann-
like Domain superfamily. This is a very large, universal
(present in all three superkingdoms) domain superfamily
which provides oxidoreductase activity in a wide variety
of biological processes. Those complexes containing
multiple members of this superfamily tended to be
large, with diverse functional roles. It was therefore
unclear as to the role of multiple members of this
superfamily in individual complexes.
In yeast there were six non-randomly distributed

superfamilies amongst MCL-GO complexes. These fell
into three categories. The first is RNA processing. The
RNA-binding superfamily was found in two complexes
relating to the spliceosome. The spliceosome is a com-
plex which removes introns from pre-mRNA and
requires functions which include binding a variety of
RNAs. Multiple members of the Quinoprotein Amine
Dehydrogenase Domain superfamily were found in com-
plexes rich in annotation relating to the spliceosome in
one case and rRNA processing in the other. The Riboso-
mal Protein superfamily was found in a complex rich in
annotation for rRNA processing. rRNA processing is
known to occur in the nucleolar complex which is

Table 1 Non-randomly distributed superfamilies in E. coli and yeast MCL-GO complexes.

Superfamily Frequency Function Species
distribution

E. coli

NAD(P)-binding Rossmann-like Domain (3.40.50.720) 73 Oxidoreductase activity in a wide variety of
processes

Universal

Yeast

RNA binding (2.30.30.100) 11 RNA binding/splicing Universal

Glutamine Phosphoribosylpyrophosphate, subunit 1, domain
1 (3.60.20.10)

18 Ubiquitin-mediated endopeptidase activity Universal

Quinoprotein amine dehydrogenase (2.130.10.10) 68 Wide range of activities including protein
synthesis

Universal

Protein tyrosine phosphatase superfamily (3.90.190.10) 12 Dephosphorylation in signalling pathways Eukaryotic

Ribosomal Protein (3.30.1370.10) 4 Binding activity in a variety of processes Universal

Ubiquitin-like superfamily (3.10.20.30) 5 TCA cycle Universal

CATH codes are shown in brackets. Frequency values are the number of proteins containing a member of that superfamily in that complex dataset. Functional
descriptions are based on the most common GO terms from proteins containing the superfamily in that particular organism. Superfamilies are considered to
belong to a kingdom when they are found in at least 70% of completed genomes from that kingdom. Universal refers to eukaryotes, eubacteria and archaea.
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involved in the production of ribosomes. However asso-
ciations related to rRNA processing may represent a
bias in some of the experimental data used to generate
the complexes. Some high-throughput complex identifi-
cations in yeast [45,46] contain many complexes erro-
neously enriched in rRNA processing due to various
regions connected by rRNA, rather than protein interac-
tions [47]. Independent evidence supports the relevance
of the spliceosome however [48].
The second category is the proteasome. The Gluta-

mine Phosphoribosylpyrophosphate superfamily is
involved in Ubiquitin-mediated endopeptidase activity
via the proteasome complex and different members of
the superfamily are required for different types of pro-
tease activity [49].
The third category is signal transduction. Multiple

copies of the Protein Tyrosine Phosphatase superfamily
are found in a complex involved in signal transduction
via a MAP kinase pathway controlling pseudohyphal
growth. There was no clear role for the Ubiquitin-Like
superfamily.
It appears that those members of superfamilies which

cluster together tend to be involved in eukaryote-speci-
fic processes. They are however almost exclusively uni-
versal superfamilies (common to prokaryotes, eukaryotes
and archaea), suggesting that these eukaryotic advance-
ments have largely developed from duplication and
divergence of pre-existing superfamilies. Here we have
described the functions of complexes to better under-
stand the importance of co-complex paralogues. In the
spliceosome and proteasome variations on similar func-
tions such as RNA binding and proteolysis are required.
Multiple copies of homologous regulatory proteins may
represent alternative regulatory subunits of signalling/
regulatory complexes e.g. the Myc-Max and Mad-Max
basic-helix-loop-helix transcription factor complexes
noted by Pereira-Leal et al. [15]. In MCL-GO com-
plexes, complex variants with alternative regulatory sub-
units will tend to be found as single complexes. In a
case where protein A interacts with proteins B and C
but never at the same time the clustering procedure
used may result in a complex containing A, B and C.
Mutual exclusivity of different interactions is not cap-
tured in current interaction data and each protein can
only occur in a single complex in the procedure used in
our work.

Co-occurrence of homologous domains in protein
complexes
We have shown that homologous domains tend to be
randomly distributed amongst protein complexes and
that duplicates therefore tend to diversify rather than
remain involved in the same complex. An alternative
analysis by Pereira-Leal et al. [15] has shown that

interacting, homologous pairs might be important for
complex evolution in yeast. They found that 10-30% of
complexes in this species contain homologous protein
pairs. In the model of complex evolution they presented,
the gene encoding a homodimer duplicates and diverges
resulting in a paralogous, heterodimeric protein com-
plex. Rather than examine the distribution of individual
domain or protein families in distinct complexes, they
considered what proportion of complexes contained
homologous pairs. We have used this complex-wise
approach to further explore differences between E. coli
and yeast.
For each predicted E. coli or yeast complex we deter-

mined whether there was at least one pair of proteins
sharing, in the first case, a homologous domain or, in
the second case, their entire multi-domain architecture
(Figure 5). If there is a tendency for homologous pro-
teins to occur together in complexes more than
expected by chance, then these may be involved in the
model of complex evolution described by Pereira-Leal et
al. [15] and above. Using individual domains allows dis-
tant relationships to be identified which might otherwise
be obscured by gain or loss of domains. By comparing
the MCL-GO complexes with randomised complexes we
take into account differences in frequency of homolo-
gous domain pairs between E. coli and yeast. We found
that the proportion of complexes containing homolo-
gues was greater than expected by chance in each spe-
cies (p < 0.01). In E. coli 7.5% of complexes contained
homologues at the domain level; 1.5 times more than
expected by chance. There were 516 pairs of homolo-
gues co-occurring in E. coli complexes and these pairs
were found to interact significantly more often than ran-
dom pairs of proteins from the same complex
(p = 0.001). For yeast the value was much higher and
we observed 18.4% of complexes which contained
homologues, 3.4 times more than expected. 720 pairs of
co-complex homologues were identified in yeast and
these were significantly enriched for interactions
(p = 0.001). Furthermore these pairs were found to be
co-expressed to a greater degree than expected by
chance giving further support to their concerted role in
complexes (p < 0.001; see additional file 1 for details).
The result for yeast was within the bounds of the result
of 10-30% suggested by Pereira-Leal et al. E. coli had a
much smaller proportion of complexes which can have
evolved from interacting paralogues. 43 complexes were
identified in E. coli compared to 157 in yeast.
The trends between species in terms of relative num-

bers of complexes involved and the difference between
expected and observed counts are similar when consid-
ering proteins sharing at least one homologous domain
(domain homologues) or those sharing entire multi-
domain architectures (protein homologues).
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To determine whether the trend for fewer complexes
containing homologues in E. coli was influenced by the
way in which the complexes were generated, the fre-
quency of homologues in the PINs of the two species
were also examined. This showed the same trend, with a
smaller percentage of links between homologues in E.
coli than yeast. This suggests that a lower frequency of
interacting homologues in E. coli is a feature of interac-
tions in general, not just those within complexes. Details
are presented in additional file 1.
We also examined several alternative complex datasets

to determine whether they supported our conclusions
(Figure 6). Four of these datasets (Butland, Arifuzzaman,
Gavin and Krogan) were derived from only TAP-MS
data. These datasets, although lower coverage than our
MCL-GO complex datasets, allow individual proteins to
occur in multiple complexes, which our clustered data-
sets do not. Butland and Arifuzzaman E. coli complexes
showed no significant increase in the number of com-
plexes containing homologous pairs relative to random
complexes. However the Gavin and Krogan Exp-TAP
yeast complexes showed significant proportions of com-
plexes containing homologous pairs. Near the end of

our study two further datasets providing useful compari-
son were published. Hu et al. [50] published a new data-
set of E. coli protein complexes created by clustering
high-confidence PPIs. Pu et al. [51] published a new,
curated complex dataset for yeast more comprehensive
than that from MIPS. Analysis of these additional data-
sets confirms the trend we identified in MCL-GO com-
plexes for yeast. In E. coli, the TAP-MS datasets provide
no evidence for homologous pairs having a significant
role in E. coli complex evolution, however the dataset of
Hu suggests that some homologous pairs may have a
small role as was found using the E. coli MCL-GO
dataset.

Identification of correlated domain superfamily pairs
We have shown that homologous domain pairs are a
less common feature of protein complexes in E. coli
than in yeast, and reaffirmed (after Pereira-Leal et al.
[15]) that homologous domain pairs are not present in
the majority of complexes. We wanted to determine the
relative importance of non-homologous domain pairs
which co-occur in multiple complexes. Such pairs have
been identified previously by Betel et al. [47] in yeast.

Figure 5 Percentage of MCL-GO complexes containing homologous pairs. Homologous pairs are defined here as either homologous
domains shared between two proteins or proteins sharing a common domain architecture. All observed values were significantly larger than
expected (p < 0.01).
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We wanted to determine whether they might represent
an alternative route of complex evolution to that of
paralogous heteromers.
189 pairs of correlated superfamilies were identified in

E. coli MCL-GO complexes, involving 156 superfamilies.
These pairs occurred in 68 separate complexes (~12%).
This is a greater proportion of complexes than that con-
taining paralogous pairs (~8%). In yeast MCL-GO com-
plexes, 183 pairs were identified, involving 186
superfamilies and 83 complexes (~10%). Full details of
the superfamily pairs identified are presented in addi-
tional file 1. We determined whether these superfamily
pairs tended to interact more often than expected by
chance using IntAct and MINT PPI datasets. In E. coli
and yeast there was a significant tendency for interac-
tion (p < 0.001). In both species the pairs were also sig-
nificantly more functionally similar (using biological
process Gene Ontology terms as described in Methods)
than expected by chance (p < 0.001). Furthermore the
pairs tended to have more highly correlated expression
than expected by chance (p < 0.001; see additional file 1
for details). These results suggest that, in both E. coli
and yeast, protein pairs with correlated domains have a
tendency to be more functionally similar than random
pairs of proteins in the same complex.
17% (114) of superfamilies in E. coli and 20% (127) in

yeast were involved in correlated superfamily pairs. 39

of these superfamilies were involved in correlated pairs
in both species, however none of the superfamily pairs
were found to be correlated in both species. This sug-
gests that these pairs may not persist over long evolu-
tionary timescales.

Do homologous and correlated domain pairs correspond
to complex cores?
Having determined that both species have protein com-
plexes with correlated domain pairs, we wanted to
determine the role of these pairs in the complexes. In
particular we were interested to see whether these pairs
might represent cores of complexes. In order to do this
we used the same method as Pereira-Leal et al. [15]who
showed that homologous pairs represent complex cores
of some yeast complexes. This analysis determines
whether an arbitrary set of proteins tend to be older
than other proteins. Specifically we determined the spe-
cies distribution of the orthologues of proteins contain-
ing correlated domains to ascertain whether these
proteins tended to emerge earlier in evolution. Older
proteins are more likely to represent evolutionary con-
served complex cores, whereas more recently evolved
proteins are likely to represent later modifications to
complexes [9,15]. We also looked at the age of interact-
ing, homologous domain pairs to determine whether
those that do occur in E. coli represent complex cores

Figure 6 Percentage of complexes containing homologous pairs for alternative datasets. Asterisks show observed values which were
significantly above random.
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or whether there is further evidence against this mode
of evolution in this species.
Although there is a tendency for orthologues of inter-

acting homologous pairs from E. coli to be present in
more distantly related organisms than other proteins
(Table 2), this trend was not found to be significant
(p = 0.09). This is further evidence that E. coli com-
plexes have not evolved from interacting homologues, at
least not to the extent seen in yeast. The same was true
of proteins containing correlated domains (p = 0.28),
suggesting that they are not associated with evolutionary
cores of complexes.
Interacting, homologous proteins in yeast were found

to be significantly older than proteins in general
(p < 0.01). This supports the result of Pereira-Leal et al.
[15] using more recent datasets. It can also be seen that,
in yeast, proteins containing correlated domains are sig-
nificantly older than proteins in general (p < 0.01). Most
of these proteins were found in all types of eukaryotes,
whereas yeast proteins in general tended to be no older
than the split between metazoa and fungi. This suggests
that both interacting proteins with homologous domains
and entirely non-homologous proteins with correlated
domain pairs are involved in evolutionary cores of yeast
protein complexes.
Table 3 shows that the E. coli Exp-TAP datasets sup-

port the trends identified in the MCL-GO dataset.
Neither proteins with homologous domains nor corre-
lated domain pairs were significantly older than other
proteins in the Arifuzzaman [25] and Butland [24] Exp-
TAP E. coli datasets. The picture is less clear in the
yeast Exp-TAP datasets. Although the Krogan dataset
supports the finding that correlated domains are older

than other proteins, the test for homologous pairs was
not quite significant. In the Gavin Exp-TAP [3] yeast
dataset neither type was significant. These analyses are
detailed in S5. Although positive trends in yeast were
not found in all cases these results provide further evi-
dence for a distinction between the two species.

Conclusions
We have presented an analysis of the distribution of
homologous domains in the protein complexes of E. coli
and yeast. In order to achieve this, protein complex
datasets were generated and shown to accurately repro-
duce known complexes.
We found that homologous protein domains tend to

be randomly distributed amongst complexes and there-
fore tend to occupy distinct functional niches. Those
exceptional superfamilies whose members were found
together more than expected by chance were involved
in signalling/regulation or a limited number of eukar-
yote-specific complexes requiring colocation of similar
functions. It has been shown that homologues are rarely
found together in small molecule metabolic pathways of
E. coli[52] and we have shown that this is also the case
for protein complexes, in both E. coli and yeast.
Pereira-Leal et al. [15] proposed that a proportion of

yeast complexes have evolved from cores of homologous
subunits. These subunits are proposed to originate from
a homodimer, encoded by a single gene which then
duplicated, resulting in a dimer of paralogues. Our results
suggest that this model of complex evolution might be
limited to eukaryotes. We found that in E. coli there were
far fewer complexes which could have evolved in this
way. It is known that there is less gene copy redundancy

Table 2 Relative age (emergence of orthologues) of all proteins, interacting homologues and proteins which contain
correlated domains for E. coli and yeast MCL-GO complexes

All proteins Interacting homologous pairs Non-homologous correlated pairs

E. coli

E. coli K12-specific 19.0% 9.0% 11.6%

Proteobacteria 21.0% 10.4% 12.5%

Proteobacteria Firmicutes 7.8% 9.0% 5.4%

Bacteria 1.4% 3.0% 1.8%

Eukaryota+Bacteria 25.1% 29.9% 37.5%

Bacteria+Archaea 7.3% 10.4% 8.0%

Universal 18.4% 28.4% 23.2%

Yeast

S. cerevisiae-specific 44.8% 13.1% 12.1%

Fungi 11.1% 9.3% 12.1%

Fungi + Metazoa 7.4% 10.4% 7.9%

Eukaryotes 10.3% 23.5% 14.3%

Eukaryotes + Archaea 4.2% 9.7% 10.0%

Eukaryotes + Bacteria 13.2% 18.3% 26.4%

Universal 9.0% 15.7% 17.1%
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in prokaryotes and that their gene families are smaller
[53] resulting from streamlined genomes [54]. We show
that this may extend to fundamental differences in how
complexes have evolved in these organisms. These results
were consistent with our functional analysis which
showed that those homologues which cluster in com-
plexes tend to relate to eukaryotic functions. This process
may therefore have been exploited principally in develop-
ing the more complex processing and regulation required
in the eukaryotic cell.
We then identified pairs of correlated domains which

occur together in multiple complexes as was done pre-
viously by Betel et al. [47]. It was shown that the proteins
containing these domains tended to interact and be more
functionally similar than other pairs of co-complex pro-
teins. In yeast these protein pairs tended to be older than
other pairs of proteins and might therefore represent
complex cores; there was little evidence for this in E. coli
however. Complexes are known to have duplicated in
yeast and these correlated pairs are likely to include parts
of duplicated complexes. There has been a whole genome
duplication in yeast [55], but not in E. coli [56], however
it is not thought that this resulted in duplicate complexes
[18,40], but more likely that complexes have been dupli-
cated in a stepwise fashion [16,19]. If E. coli complexes
have changed relatively little over a large evolutionary
timescale, cores would not be detectably older than other
parts and they could not be distinguished by their age.
This would account for a failure to identify correlated
domains as E. coli complex cores.
There is currently less protein-protein interaction

information available for E. coli than yeast and thus we
can be less certain about our conclusions in this organ-
ism. We have however tested our key conclusions using
several alternative datasets for both species and found
similar results in every case.
In future studies it would be interesting to examine

higher eukaryotes to determine whether these processes
of complex evolution are more common than in yeast.
Drosophila melanogaster was considered for our analy-
sis; however there was insufficient data to produce a
reliable complex dataset.

Methods
Experimental protein-protein interaction datasets used
for generating MCL-GO complexes
Protein-Protein Interaction (PPI) datasets were gener-
ated by taking the union of interactions from the MINT
[27] and IntAct [26] resources, as they existed in
Gene3D v5 [57]. Much of the data from these resources
is from high-throughput experiments such as Two-
Hybrid and Tandem Affinity Purification (TAP) but is
also derived from small-scale pull-down and co-immu-
noprecipitation experiments. Interactions derived from
TAP-MS data are between one ‘bait’ protein and multi-
ple ‘prey’ proteins. Pairwise PPIs can be extracted from
this data using one of two models. The spoke model
defines interactions between the bait protein and each
of the prey. The matrix model however defines pairwise
interactions between the bait and prey proteins and
between each pair of prey proteins. TAP-MS data from
MINT was already in the matrix form, however IntAct
data could be converted into either. The spoke model
was used as it was shown to perform best in replicating
known complexes (Figure 1a). For E. coli (NCBI taxon
id: 562) there were 13941 interactions between 2865
proteins (~72% genome coverage) and for S. cerevisiae
(NCBI taxon id: 4932) 38825 interactions covering 5735
proteins (~100% genome coverage).

Generating MCL-GO complex datasets from PPI datasets
The E. coli and yeast combined PPI datasets described
above were clustered into complex datasets using the
MCL algorithm [36]. It has been shown that enriching
Protein Interaction Networks (PINs) with functional anno-
tation improves detection of functional modules [40].
Complex datasets were generated with and without
weighting of the PINs. Unweighted edges were set to one,
weighted edges were set to one plus the Gene Ontology
Semantic Similarity (GOSS) score. To generate these
GOSS scores, proteins were annotated with GO biological
process terms from Gene3D. The GO terms used were
those described in ‘Annotation of MCL-GO Complexes’.
The terms were compared using the Resnik [58] method
described by Lord et al. [59] to determine their functional
similarity. Each edge in the network was weighted using
the highest GOSS score between any pair of terms
assigned to the relevant nodes. Complex datasets gener-
ated in this way are referred to as MCL-GO datasets.
The inflation parameter, which controls the granular-

ity of the clusters produced, was optimised by compar-
ing predicted complexes (clusters) with curated, gold
standard complexes from MIPS in the case of yeast and
EcoCyc in the case of E. coli. The comparison was per-
formed in the same way as described by Brohee & van
Helden [29], using the same measures of sensitivity,

Table 3 P-values indicating groups of proteins
significantly older than other proteins.

Exp-TAP Dataset Homologous Pairs
(p-value)

Correlated Pairs (p-value)

E. coli (MCL-GO) 0.09482 0.2807

E. coli (Arifuzzaman) 0.881 0.913

E. coli (Butland) 0.818 0.670

Yeast (MCL-GO) 9.55E-05 6.95E-05

Yeast (Gavin) 0.388 0.282

Yeast (Krogan) 0.053 0.006
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Positive Predictive Value (PPV) and accuracy. When cal-
culating sensitivity and PPV, only those clusters which
had at least one member of a known complex were con-
sidered, those without a complex label could not be
used to determine accuracy.
Sensitivity is the weighted average over all complexes of

the proportion of each gold standard complex i captured
by the predicted cluster j, best reflecting that complex.

Sn
NiSncoii

n

Nii
n

= =∑

=∑
1

1

In the above formula Ni is the number of proteins in
complex i and Sncoi

is the complex-wise sensitivity
defined below.

Sn Snco j
m

i ji
= =max ,1

The complex-wise sensitivity is the maximum sensitiv-
ity Sni, j for a particular complex, taking the greatest
value over all predicted clusters.

Sn
Ti j
Ni

i j,
,=

In the above formula Ti, j is the number of members
of complex i in cluster j. Sensitivity is calculated only
considering complexes with more than 1 protein.
Positive Predictive Value (PPV) is a measure of how

pure the predicted clusters are, i.e. for the most com-
mon complex type in each cluster, what percentage of
labelled proteins in the cluster are from this complex?

PPV
TjPPVcl jj

m

T jj
m
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1

1

Here Tj is the number of members of cluster j with
membership of a known complex and PPVcl j is the
cluster-wise PPV described below.

PPV PPVcl j
m

i jj
= =max ,1

The cluster-wise PPV takes the maximum value of
PPVi, j for a particular cluster over all complexes. PPVi, j

is described below.

PPV
Ti j
T j

i j,
,=

Ti, j is the number of members of cluster j in complex
i. The trade-off between sensitivity and PPV was cap-
tured by taking the geometric mean of the sensitivity

and PPV, referred to as the accuracy (Acc).

Acc Sn PPV= ⋅

The accuracy achieved on these datasets was com-
pared to that for randomly generated complexes to
show that our procedure was useful, as was done by
Brohee & van Helden [29]. This was achieved by clus-
tering PPI datasets with MCL, then shuffling proteins
between complexes while preserving complex size and
benchmarking the resulting complexes. For each value
of the MCL inflation parameter, randomisations were
performed 10000 times.

Annotation of MCL-GO complexes
CATH [60] protein domain superfamily annotation
was extracted from Gene3D v5 to allow homologous
relationships between proteins to be identified. 2190
CATH domains were identified from 656 superfamilies
in the 2210 proteins from the E. coli MCL-GO com-
plexes, covering 1579 proteins (71%). The yeast MCL-
GO complexes had 2666 CATH domains from 630
superfamilies over 2070 proteins (44% of protein in
this dataset). Throughout this work, multiple members
of the same superfamily within protein chains were
ignored.
Functional data in the form of Gene Ontology [61]

annotation was also extracted from Gene3D v5. For E.
coli, coverage with GO terms derived from experimental
annotation was very low so Electronically Inferred
Annotation (IEA) was included, only negative results
(ND - No biological Data available) were excluded. This
resulted in 3989 biological process terms over 1803 pro-
teins (82% coverage). For yeast MCL-GO datasets, IEA
terms were ignored. This resulted in 10622 terms over
3926 proteins for yeast (83% coverage).
FunCat [62] functional terms were extracted from

Gene3D v5. Only the most general (level 1) terms
were considered. These were used to annotate MCL-
GO complexes as FunCat provides a suitable set of
high level terms. There were 12257 terms covering
1573 E. coli proteins (71% coverage) and 12385 terms
covering 3432 proteins in yeast (72% coverage).

Pre-existing protein complex datasets
Curated datasets used to validate predicted complexes
Pre-existing complex datasets were used in our analyses.
High-quality, curated datasets of known complexes were
required in order to determine how accurately PPI data-
sets could be clustered into complexes. Such datasets
were available from EcoCyc [21] for E. coli and from
MIPS [20] for yeast. The EcoCyc complexes comprised
232 non-redundant, multi-subunit complexes containing
a total of 586 distinct protein sequences. The MIPS
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complexes comprised 192 non-redundant, multi-subunit
complexes containing a total of 1036 distinct protein
sequences.
Experimental datasets used to assess trends
MCL-GO complexes, derived by clustering PPIs from a
variety of experimental approaches, were used through-
out this work as they had higher coverage of the gen-
omes of each organism than curated datasets or
individual experimental approaches such as TAP. The
clustering approach used however only allowed each
protein to exist in a single complex. In reality some pro-
teins exist in multiple complexes and this discrepancy
could bias our results. Therefore we also examined com-
plexes based only on TAP data, which does allow indivi-
dual proteins to appear in multiple complexes. TAP
experiments identify relationships between one ‘bait’
protein and multiple ‘prey’, directly inferring complexes
without the need for clustering. These are referred to
collectively as Exp-TAP datasets. E. coli Exp-TAP com-
plex datasets were derived from Butland et al. [24] and
Arifuzzaman et al. [25] and downloaded from http://
sunserver.cdfd.org.in:8080/protease/PPI/. Yeast Exp-TAP
complexes derived from Gavin et al. [3] and Krogan et
al. [23]were downloaded from BioGRID [63]. These
Exp-TAP datasets are referred to as Butland, Arifuzza-
man, Gavin and Krogan, respectively.
Experimental datasets were annotated with GO terms

and CATH domains using the same protocols as for the
MCL-GO complexes.

Distribution of protein domain homologues in complexes
In order to examine the distribution of homologues in
complexes, the distribution of each CATH domain
superfamily was compared to that in randomised com-
plexes. Only domain superfamilies with at least 5 mem-
bers in different proteins were considered for this
analysis to give the test sufficient statistical power. Of
656 superfamilies in E. coli, 101 had at least 5 members
(62% of domains); of 630 in yeast 113 had at least 5
members (68% of domains). For each superfamily we
determined the number of distinct pairs of proteins con-
taining that superfamily which were found in the same
complex. This was compared to the number of distinct
pairs which were found together in 10000 randomised
complex datasets. Complexes were randomised by shuf-
fling members between complexes, retaining the com-
plex size distribution. For each superfamily, p-values
were calculated by determining the proportion of these
10000 randomised trials where the observed number of
pairs was exceeded. The False Discovery Rate (FDR)
correction for multiple hypothesis testing was applied
(as described in [64]), using a = 0.01.

Identification of complexes containing homologous pairs
Having asked whether superfamilies have members
which tend to co-occur in complexes, we asked whether
complexes tend to contain co-occurring superfamily
members. In examining the proportion of complexes
which contain homologues we considered both domain
and protein homologues. Two proteins which shared a
common CATH superfamily member were considered
domain homologues. Two proteins which shared their
entire CATH Multi-Domain Architecture (MDA) were
considered protein homologues. A MDA is the series of
domain annotations from N terminus to C terminus,
excluding multiple domain segments, potentially
domain-containing gaps and tandem repeats. We
wanted to determine whether complexes tended to con-
tain pairs of homologues and so the number of com-
plexes which contained at least one pair of homologous
proteins (using either domain or protein homologues)
was counted. To determine whether the number of
observed complexes was significant, the observed count
was compared against the distribution of counts derived
from 10000 randomised complex datasets. P-values were
calculated empirically. Complex datasets were rando-
mised by shuffling complex membership while retaining
the size of complexes. We assume that these, largely
interacting, homologues have resulted from homodimer
duplication, which has been demonstrated by [65] to be
a reasonable assumption.

Identification of correlated domains
We identified pairs of CATH domain superfamilies (i.e.
pairs of non-homologous domains) A and B such that A
occurs in protein p and B occurs in protein q and p and
q are present in the same complex. We then deter-
mined which of these pairs occurred in more complexes
than expected by chance. This procedure was performed
previously by Betel et al. [47]. For each domain pair
occurring in at least two complexes, the frequency of
occurrence was compared against frequencies found in
10000 randomised complex datasets and an empirical p-
value calculated by determining in what proportion of
these datasets the frequency of co-occurrence of the
pairs exceeded that observed in the initial complex
dataset. Those pairs with a p-value > 0.01 were
excluded.
We wanted to determine whether proteins containing

these correlated domain pairs tended to interact directly.
We compared the frequency with which these proteins
were observed to interact in MINT and IntAct data
with the frequencies of interaction of the same number
of randomly chosen co-complex protein pairs. Sets of
random co-complex pairs were created 10000 times to
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derive a p-value. We also wanted to know whether cor-
related pairs represented functional units within com-
plexes. To do this the average GOSS score between
these pairs was compared with the average GOSS score
between the same number of random co-complex pro-
tein pairs. Again this was performed 10000 times to
derive a p-value.

Phylogenetic profiling
We wanted to determine whether correlated domain
pairs might represent protein complex cores. To do this
we assume that proteins in the core of complexes are
older than other proteins, i.e. their orthologues are
found in more distantly related species. We used the
analysis employed by Pereira-Leal et al. [15] to deter-
mine the age of protein orthologues. For any one pro-
tein it was determined in what group of organisms their
orthologous group arose. Bi-directional best hit BLAST
orthologues were determined for each E. coli and yeast
protein amongst 32 species (listed in additional file 1).
Orthologues were defined as bi-directional best hits
between two species with an E-value of ≤0.01. The point
of origin of a particular protein was defined by the age
group in which an orthologue was found. Age groups
were defined using the species tree of Baldauf [66].
The age groups defined for E. coli in this analysis were

‘E. coli specific’, ‘Proteobacteria’, ‘Proteobacteria/Firmi-
cutes’, ‘Bacteria’, ‘Eukaryota+Bacteria’, ‘Bacteria+Archaea’
and ‘Universal’. For yeast we used ‘Saccharomyces cerevi-
siae specific’, ‘Fungi’, ‘Metazoa/Fungi’, ‘Eukaryota’,
‘Eukaryota+Archaea’, ‘Eukaryota+Bacteria’ and ‘Univer-
sal’. The chi-square test was used to determine whether
significant differences existed in the age distribution of
different classes of proteins.

Additional file 1: supplementary methods and results. We analyse
complex functions in MCL-GO and gold standard datasets showing
potential biases in the gold standard datasets. We examine the
functional coherence of superfamilies finding that yeast has more
superfamilies which are involved in a wider range of biological processes,
but are on average less diverse in terms of their catalytic actions or
cellular locations. Furthermore we find that different members of the
same superfamily carry out their functions in different contexts. We
describe methods and detailed results for calculating correlated
expression. We examine the frequencies of observed and expected
interactions between homologues in protein interaction networks. The
details of the phylogenetic profiling work is described.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
79-S1.DOC ]
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