
55

Chapter 4

Building coreboot with
Intel FSP

Empowerment of individuals is a key part of what makes open source
work, since in the end, innovations tend to come from small groups, not
from large, structured efforts.

—Tim O’Reilly

The Introduction of coreboot
Since 1999, developers from around the world, some as individual contributors and
others working on behalf of businesses and corporations, have formed a community
around coreboot, an open source firmware project. coreboot is boot firmware primarily
focused on x86 processors and chipsets, but other processors, like Alpha, PPC, and
ARM-based systems are supported. The coreboot logo is a European Brown Hare,
Figure 4-1.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/186582407?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter 4 ■ Building coreboot with Intel FSP

56

coreboot firmware deals directly with system hardware configuration. As silicon
has become more complicated, with more features and integrated peripherals, firmware
developers have had to rely more and more on the silicon vendors for reference code and
binaries for the latest silicon releases. Many silicon vendors have tried different solutions
to help the developers in the community; for example, AMD’s AGESA (AMD Generic
Encapsulated Software Architecture), and now, Intel FSP (Firmware Support Package).
With the support of silicon vendors, coreboot developers are able to develop and release
current silicon devices and to concentrate on peripheral and platform customization.

We are excited to introduce you to the coreboot project. In this chapter, we will cover
many of the different aspects of coreboot. The first few sections of this chapter lay the
groundwork for working with the coreboot community. We cover the history of coreboot,
coreboot’s open source software development practices—including details on using
Git, and how to build a sample coreboot image. Later in the chapter, we examine the
technical details of coreboot, including the binary image structure, the execution flow,
and the source code organization. The final sections include information about payloads,
debugging, and optimizations for coreboot. Feel free to skip ahead and come back to
these sections if you want.

The Philosophy of coreboot
coreboot is built on the belief that users and vendors deserve an open, fast, customizable,
and purpose-built firmware for silicon and mainboard initialization. coreboot is designed
to do critical hardware initialization before passing control to a payload.

The coreboot philosophy aligns with the Intel FSP philosophy. The coreboot
hardware initialization framework handles the FSP silicon initialization API, configures
system peripherals, and loads the payload.

Since coreboot is focused on hardware initialization, it does not contain any BIOS or
other runtime services. Services, runtime code, and the operating system boot are provided
by a payload. coreboot supports a number of different payloads, for disk boot, network
boot, and legacy BIOS services. coreboot is often used to boot Linux, but depending on the
payload, it can also boot most versions of BSD, Windows, or any other OS. While not part of
coreboot, payloads are integral to a complete coreboot firmware image.

Figure 4-1.  coreboot logo

Chapter 4 ■ Building coreboot with Intel FSP

57

coreboot source code is licensed under the GNU General Public License, version
2 (GPLv2). This is the same license that the Linux kernel is released under. The GPL is a
share-alike license, which means that each developer benefits from the efforts and the
knowledge of the entire community, adding to the success and growth of the project.
There are several restrictions about what you can and cannot do with GPL source code,
which are clearly documented on the GNU web site at http://www.gnu.org/licenses/
licenses.html#GPL. You need to be aware of this and should consult legal experts before
integrating GPL code into your own proprietary code.

Note■■  P ayloads are separate projects and have their own license requirements.

A Brief History
coreboot has a long history, stretching back more than 15 years to when it was known as
LinuxBIOS. While the project has gone through lots of changes over the years, many of
the earliest developers still contribute today.

v1: 1999–2000
The coreboot project originally started as LinuxBIOS in 1999 at Los Alamos National Labs
(LANL) by Ron Minnich. Ron needed to boot a cluster made up of many x86 mainboards
without the hassles that are part of the PC BIOS. The goal was to do minimal hardware
initialization in order to boot Linux as fast as possible. Linux already had the drivers and
support to initialize the majority of devices. Ron and a number of other key contributors
from LANL, Linux NetworX, and other open source firmware projects successfully booted
Linux from flash. From there, they were able to discover other nodes in the cluster, load a
full kernel and user space, and start the clustering software.

v2: 2000–2005
After the initial success of v1, the design was expanded to support more CPU architectures
(x86, Alpha, PPC) and to support developers with increasingly diverse needs. One of the
early design goals was to have as little assembly code as possible. With new and more
complex CPUs and DDR initialization requirements, the developers realized that there
would be too much assembly code in the firmware. The problem with assembly code is
that it is difficult to write and maintain. It also lacks the flexibility and maintainability of a
higher language like C. The reason standard C cannot be used in the initial firmware code
is because the C compiler requires memory to store variables on a stack.

The first supported CPU memory initialization could be done in just a few
instructions of assembly code, but the newer DDR memory controllers required
significantly more configuration and a lot more assembly code. To address this problem,
Eric Biederman wrote a special “precompiler” called ROMCC that turns C code into

http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html

Chapter 4 ■ Building coreboot with Intel FSP

58

stackless assembly code. ROMCC works around the stack issue by turning the C code
into assembly code and using the internal CPU registers to hold all variables. ROMCC is
extremely limited in the number of variable and function calls it can support, due to the
small number of registers that a CPU has available. The ROMCC-generated assembly is
included as an .inc file, and then compiled as part of LinuxBIOS. ROMCC could be used
until the memory was initialized, and then LinuxBIOS used standard C for the majority of
the firmware device configuration code.

As part of the v2 implementation, the LinuxBIOS device tree was introduced. The
device tree is based on the PCI bus hierarchy and outlines the system devices. The
concept is similar to the Linux kernel’s PCI device driver hierarchy and uses some of the
same concepts as the Linux tree and driver initialization.

Many target systems had flash devices that were too small to hold both the hardware
initialization code and the Linux kernel. Image size was not the only issue. The needs of
the users were changing, and additional boot device support was required. Payloads were
created for flexible boot device support. A network boot solution was the obvious choice
for clusters, so the “etherboot” project was modified to run directly from LinuxBIOS as a
payload. Later, a disk-based boot option called FILO was added.

During this period, there were substantial silicon development contributions from
Intel, VIA, SIS, Linux NetworX, SUSE, and AMD.

v2+: 2005–2008
The next advancement was the introduction of Cache as RAM (CAR) in 2005. With
CAR, the CPU cache was used as temporary memory prior to memory controller
initialization. It was a delicate process, but allowed the use of C code after a few
hundred lines of assembly.

Note■■   For more information, see the white paper CAR: Using Cache as RAM in LinuxBIOS
at http://rere.qmqm.pl/~mirq/cache_as_ram_lb_09142006.pdf.

In 2005, Stefan Reinauer, a developer on the project, formed a company named
coresystems GmbH to support LinuxBIOS. Stefan was one of the primary developers
and co-leaders of LinuxBIOS with Ron Minnich. Stefan’s significant contributions
included the first AMD64 port, the original ACPI implementation, the original SMM
implementation, the flashrom utility, and the FILO payload development and maintainer.

In 2005 the Free Software Foundation (FSF) started the Free BIOS campaign to
support LinuxBIOS development. Ward Vandewege, of the FSF, ported LinuxBIOS to the
FSF servers and other mainboards.

During this time, the AMD processors become the silicon of choice due the
availability of good documents and vendor support. This support included the AMD K-8,
Geode, and AMD Family 10 CPUs.

http://rere.qmqm.pl/~mirq/cache_as_ram_lb_09142006.pdf

Chapter 4 ■ Building coreboot with Intel FSP

59

v3: 2006–2008
By 2006, LinuxBIOS had already supported hundreds of mainboards. With so many
boards, there were problems with porting additional silicon and systems. Based on
lessons learned from v2, LinuxBIOS v3 was a fresh start and a place to experiment and
fix major problems. Developers fixed and clarified many driver and bus support issues
in the device tree. New features included the new build configuration with Kconfig and a
firmware image archive called LAR (LinuxBIOS ARchiver). LAR was improved upon and
led to the more refined and flexible concept of CBFS.

v3 had a lot of great technical advancements, but it didn’t support many mainboards
and it was too unstable for commercial developers. For these reasons, it wasn’t the
main development branch; it was essentially an R&D branch, where the best ideas were
backported to v2.

2008 LinuxBIOS Renamed “coreboot”
LinuxBIOS gained popularity and recognition within the open source community. The
name became a bit of a misnomer, since Linux was no longer booted directly from flash,
and other payloads and bootloaders had been substituted in its place. Since the original
idea was about hardware initialization (core init) and booting quickly, it made sense to
rename the project as “coreboot”. At this time, co-leader Stefan Reinauer took over as the
primary leader of the project, as Ron Minnich focused on other projects.

v4: 2009–2012
coreboot turned 10 years old in 2009. Open source projects should be measured in dog
years, and 10 years was a major milestone. In early 2010, coreboot moved from SVN to
Git for source control, and during that transition, the community took the opportunity to
recognize the advancements of the past 10 years and updated to version 4.0.

coreboot continued to add developers and expanded its user base. Many
mainboards were added; one of the largest contributions came from AMD, with the open
source release of AMD Generic Encapsulated Software Architecture (AGESA), which
started in 2004. AGESA reference code needed to be integrated with coreboot, but at the
same time stand alone, as it was code directly from the silicon vendor and the same code
used by the BIOS vendors. The initial support was for the AMD Family 14 silicon, but
soon grew to include Family 15, Family 16, and the accompanying chipsets.

v4+: 2012–2014
In recent years, several other big vendors have become directly involved as contributors
to and supporters of coreboot. The involvement of these vendors has pushed coreboot to
be a viable firmware competitor on x86 processor systems at product launch.

In 2012, Google introduced the first x86-based Chromebook with coreboot
as the firmware and Chrome OS as the operating system. Since then, Google, in
cooperation with multiple computer manufacturers, has released several generations of
Chromebooks—all using coreboot. Google is also porting and upstreaming an ARM port
of coreboot to promote a consistent and common codebase.

Chapter 4 ■ Building coreboot with Intel FSP

60

In early 2013, Intel released coreboot FSP support with cooperation and support
from Sage Electronic Engineering. Sage has been a coreboot contributor and commercial
vendor since 2011, and has developed several coreboot ports with its partners AMD,
Google, and Intel.

The coreboot community is also experiencing many new contributors joining it and
providing new patches and support. There is a new distribution based on coreboot called
libreboot. It is a nonproprietary software distribution for the Thinkpad T60. It is a major
contribution to the coreboot source code and has the support and endorsement of Free
Software developers around the world.

The following are statistics on coreboot (source: http://www.ohloh.net/p/
coreboot, May 23, 2014):

It has had 10,207 commits made by 285 contributors•	

It represents 1,597,818 lines of code•	

It is mostly written in C•	

It has a very well-commented source code•	

It has a well-established, mature codebase•	

It is maintained by a very large development team•	

It is with stable Y-O-Y commits•	

It took an estimated 461 years of combined effort •	
(COCOMO model) to create

It has a codebase of 1,597,818 lines•	

It has an estimated cost of $25,353,695•	

Further Reading
For more information on the history of coreboot, visit the following:

•	 $ git log: All coreboot history is easily accessible

•	 http://review.coreboot.org

•	 http://www.linuxjournal.com/article/4888

•	 http://www.linuxjournal.com/article/7170

•	 http://www.linuxjournal.com/magazine/coreboot-your-
service

•	 http://www.socallinuxexpo.org/scale8x/blog/interview-
ron-minnich-coreboot.html

•	 https://archive.fosdem.org/2007/interview/
ronald+g+minnich

http://www.ohloh.net/p/coreboot
http://www.ohloh.net/p/coreboot
http://review.coreboot.org/
http://www.linuxjournal.com/article/4888
http://www.linuxjournal.com/article/7170
http://www.linuxjournal.com/magazine/coreboot-your-service
http://www.linuxjournal.com/magazine/coreboot-your-service
http://www.socallinuxexpo.org/scale8x/blog/interview-ron-minnich-coreboot.html
http://www.socallinuxexpo.org/scale8x/blog/interview-ron-minnich-coreboot.html
https://archive.fosdem.org/2007/interview/ronald+g+minnich
https://archive.fosdem.org/2007/interview/ronald+g+minnich

Chapter 4 ■ Building coreboot with Intel FSP

61

•	 http://2012.latinoware.org/2012/10/ron-minnich-and-
details-of-coreboot/

•	 http://www.h-online.com/open/features/The-
beginnings-746825.html

Prerequisites for Working with coreboot
coreboot uses a typical open source development process. The source code is developed
by a community made up of individual contributors. It is submitted to the community for
public review prior to being committed to the tree. The code is reviewed for bugs, style,
and other improvements. Anyone (even you) can comment and make suggestions during
the code review. Developers iterate the code and resubmit it for further review until it is
accepted. Once accepted by a senior member, the source is submitted to the coreboot
repository.

The coreboot web site (http://coreboot.org) contains a lot of valuable information
about the project and it is the first place a new developer should go for information.

The coreboot community does the majority of its communication on the mailing list
(http://www.coreboot.org/mailman/listinfo/coreboot) and in IRC (#coreboot on
freenode.net).

All code reviews are done in Gerrit (more about Gerrit in a little bit) at
http://review.coreboot.org.

If you are using Windows, you might also consider running a Linux virtual machine
for coreboot development.

Community Organization
The coreboot community is a flat organization. There is a small leadership group that
is informally organized, with Stefan Reinauer as the current chairman, but anyone
can review or contribute code to the project. The community is led by developers with
commit rights; commit rights are awarded to developers who act in the best interests of
the community. These developers participate in the community regularly by developing
high-quality code, reviewing other developers’ code, and acting as mentors and liaisons
for coreboot.

Git and Gerrit
The coreboot source code is maintained at coreboot.org in a Git repository. Git is a
distributed SCM (Source Control Management) system that is commonly used in
the open source community. We will cover some basic Git commands as part of the
development process, but you will want to explore the power and flexibility of Git for your
own development (see http://git-scm.com and http://git-scm.com/book).

The coreboot source review process uses the Gerrit tool. Gerrit provides a web-based
review of source code with side-by-side differences and user-comment functionality (it
also integrates very well with Git). Each Git commit is identified by a SHA-1 hash unique
to that change and commit message. The hash is a 40-character hexadecimal sequence,

http://2012.latinoware.org/2012/10/ron-minnich-and-details-of-coreboot/
http://2012.latinoware.org/2012/10/ron-minnich-and-details-of-coreboot/
http://www.h-online.com/open/features/The-beginnings-746825.html
http://www.h-online.com/open/features/The-beginnings-746825.html
http://coreboot.org/
http://www.coreboot.org/mailman/listinfo/coreboot
http://review.coreboot.org/
http://git-scm.com/
http://git-scm.com/book

Chapter 4 ■ Building coreboot with Intel FSP

62

recalculated with every update to the code or commit message so that Gerrit can’t use the
hash to track a revision of code already under review. Instead of the commit hash, Gerrit
uses a Change-ID hash in the commit message to track a patch through the source code
review iteration process. The Change-ID in the commit message doesn’t change; and
when source is updated and pushed, Gerrit replaces the old version with the new version
to be reviewed. The coreboot Git setup automatically adds a Change-ID to the commit
message if one doesn’t already exist (see https://code.google.com/p/gerrit/).

Git Commit Messages
Each git commit has an accompanying commit message. This is extremely helpful to the
community; it allows you to see what changed without parsing all the code. Here are a
few guidelines for git commit messages:

The first line of the commit message has a short summary of the •	
change. It should have helpful information about the subsection
and what changed. It should be no more than 75 characters long.

Skip the second line.•	

The third line is the start of a detailed description. There should •	
be enough information provided that other developers can
understand what was going wrong, what changed, and any other
relevant details. The description should be informative and clear
enough that developers don’t need to guess what happened when
they read it five years later. Again, lines should never be longer
than 75 characters.

The next line is empty (no whitespace at all).•	

The Change-Id line to let Gerrit track this logical change (this is •	
generated by the commit hook).

The Signed-off-by line according to the development guidelines. •	
(Use git commit -s to have Git add your Signed-off-by line
automatically. Also see the following “coreboot Sign-off
Procedure” section and coreboot’s development procedures at
http://www.coreboot.org/Development_Guidelines#Sign-
off_Procedure).

The following is an example of a well-formatted commit message from coreboot
(note the additional lines inserted by Gerrit):
 
commit 48a749a89844ba76ff1564d5009e81d4d8e06db8
Author: Marc Jones <marc.jones@se-eng.com>
Date: Tue Oct 29 22:13:38 2013 -0600

 intel/cougar_canyon2: Intel CRB FSP based mainboard
  
 Cougar Canyon 2 is a Ivybridge/PantherPoint reference board.

https://code.google.com/p/gerrit/
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure

Chapter 4 ■ Building coreboot with Intel FSP

63

This implementation uses the Intel FSP (Visit the Intel FSP website for
details on FSP architecture and support).
 The FSP does not support s3 at this time. S3 may be added
 when it is available in the FSP. All other features and IO
 ports are functional. Booted on Ubuntu 12.04 and 13.04,
 Fedora 18 with SeaBIOS payload. Memtest86, FWTS, and
 other tests pass.
  
 Board support page will be updated on acceptance.
  
 Change-Id: I26c0b82d7ac295498376ad4c3517a9d6660d1c01
 Signed-off-by: Marc Jones <marc.jones@se-eng.com>
 Reviewed-on: http://review.coreboot.org/4018
 Tested-by: build bot (Jenkins)
 Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>

coreboot Sign-off Procedure
Before the code can be pushed to coreboot Gerrit for review, the author must follow a
sign-off procedure. This procedure is very similar to the Linux sign-off procedure, and
the sign-off is enforced by Git and Gerrit tools. You must use your real (legal) name in the
Signed-off-by line and in any copyright notices that you add.

By adding your sign-off, you agree to the Developer’s Certificate of Origin 1.1.

Developer’s Certificate of Origin 1.1
By making a contribution to this project, I certify that:

a.	 The contribution was created in whole or in part by me and
I have the right to submit it under the open source license
indicated in the file; or

 
b.	 The contribution is based upon previous work that, to the best

of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part by
me, under the same open source license (unless I am permitted
to submit under a different license), as indicated in the file; or

 
c.	 The contribution was provided directly to me by some other

person who certified (a), (b) or (c) and I have not modified it; and
 

d.	 In the case of each of (a), (b), or (c), I understand and agree
that this project and the contribution are public and that a
record of the contribution (including all personal information
I submit with it, including my sign-off) is maintained
indefinitely and may be redistributed consistent with this
project or the open source license indicated in the file.

 

http://review.coreboot.org/4018

Chapter 4 ■ Building coreboot with Intel FSP

64

Note■■  T he Developer’s Certificate of Origin 1.1[1] is licensed under the terms of the
Creative Commons Attribution-ShareAlike 2.5 License[2].

For more information, see the following web sites:

•	 http://web.archive.org/web/20070306195036/http://osdlab.
org/newsroom/press_releases/2004/2004_05_24_dco.html

•	 HTTP://CREATIVECOMMONS.ORG/LICENSES/BY-SA/2.5/

Adding Your Sign-off
git commit -s will add your sign-off (as set in your git config) to the commit message; for
example:
 
Signed-off-by: Random J Developer <random@developer.example.org> 

Note■■   See http://www.coreboot.org/Development_Guidelines#Sign-off_
Procedure for additional sign-off procedure information.

Working with the coreboot Community
An active and productive community is a major component of a successful open
source project. As part of any community, it is most constructive if people are civil and
considerate of others. This is particularly important in online communities, where
people are coming together from different cultures, backgrounds, and levels of technical
expertise. Be mindful of one’s own place as one among many within the community—in
order to be a productive and worthy-of-respect contributor.

coreboot Do’s
The following should be done in the coreboot community:

DO engage the coreboot community e-mail list and IRC channel.•	

DO review patches and engage in development discussion.•	

DO publish source code for review by the community.•	

DO publish small, logical, and understandable patches.•	

http://web.archive.org/web/20070306195036/http:/osdlab.org/newsroom/press_releases/2004/2004_05_24_dco.html
http://web.archive.org/web/20070306195036/http:/osdlab.org/newsroom/press_releases/2004/2004_05_24_dco.html
http://creativecommons.org/licenses/by-sa/2.5/
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure
http://www.coreboot.org/Development_Guidelines#Sign-off_Procedure

Chapter 4 ■ Building coreboot with Intel FSP

65

coreboot Don’ts
The following should not be done in the coreboot community:

DON’T violate the GPL or other open source licenses.•	

DON’T demand support from the coreboot community.•	

DON’T expect every (your) device to have complete support.•	

DON’T submit code and ignore the reviews (dump and run). •	

Nonsource Binaries in coreboot
Even though nonsource binaries have been part of the x86 ecosystem for many years,
it remains a touchy subject to incorporate binaries into coreboot. coreboot attempts to
use as few proprietary binaries as possible while still providing the base level of support
for coreboot users. Binaries are located on the flash with coreboot, without being linked
to coreboot. Binaries may include PCI Option ROMs, Video BIOS, payloads, or silicon-
specific binaries (like the Intel FSP). Binaries are optional at build time and are not part
of the coreboot repository, although some are stored in a SubModule repository called
3rdparty/. Users may forgo binaries if the feature or capability isn’t required. For users
looking for a completely free source, the libreboot.org distribution has removed all
proprietary binaries.

Intel FSP pairs with coreboot easily. The FSP binary is located at a fixed address
within the coreboot image and is accessed with a coreboot driver interface based on the
FSP requirements described in Chapter 3. The specific details of where the FSP is located
and how the FSP are accessed are covered later in this chapter.

A Hands-on Example: Building coreboot for the
MinnowBoard MAX Mainboard
This chapter is meant to provide hands-on training, so we will dive right in, get the code,
and use it as reference as we guide you through building and modifying coreboot. There
are a few things you will need prior to diving in.

Chapter 4 ■ Building coreboot with Intel FSP

66

Environment
It is expected that you are building coreboot in a Linux environment and that you are
familiar with the standard application and kernel tools. coreboot can be built under most
common shells (bash, csh, zsh). coreboot can also be built on BSD and on Windows with
Cygwin or MinGW, but that is outside the scope of this book. If you are using Windows,
you might also consider running a Linux virtual machine for coreboot development.

Fedora: •	 $ sudo yum groupinstall "Development Tools"
"Development Libraries"

Debian/Ubuntu: •	 $ sudo apt-get install build-essentials

The following tools are required to get started:

GCC/G++•	

make•	

Git•	

ncurses-dev•	

flex and bison•	

Please read the information at http://www.coreboot.org/Build_HOWTO.

Note: Ubuntu dash, the default Ubuntu shell, may have strange failures with the
coreboot sh scripts. While coreboot has addressed these issues in the scripts, you might
want to update to full bash.

 $ sudo dpkg-reconfigure dash

Hardware: MinnowBoard MAX
The MinnowBoard MAX (MinnowMax) is a low-cost, open hardware development
board. It uses the Intel E38xx ‘Bay Trail-I’ SoC. The compact, low-power, and affordable
mainboard is idea for coreboot with FSP development (see http://www.minnowboard
.org/meet-minnowboard-max/ for more information).

MinnowBoard MAX Platform Details
Please note the following information on the MinnowBoard MAX:

SoC: 64-bit Intel E38xx ‘Bay Trail-I’•	

Video: HDMI Intel Integrated Graphics•	

Memory: 1GB or 2GB DDR3•	

IO: MicroSD, SATA2, USB3.0, USB2.0, 10/100/1000 Ethernet•	

Low-speed expansion ports: SPI, I2C, I2S Audio, 2xUART, 8xGPIO•	

High-speed expansion ports: 1xPCIe, 1xSATA, 1xUSB2.0, I2C, •	
GPIO, JTAG

http://www.coreboot.org/Build_HOWTO
http://www.minnowboard.org/meet-minnowboard-max/
http://www.minnowboard.org/meet-minnowboard-max/

Chapter 4 ■ Building coreboot with Intel FSP

67

Note■■  A Bus Pirate or similar device is required to get serial debug information via the
low-speed expansion port.

Development Directory
For our example, we do development in ~/fsp_coreboot/:
 
~/$ mkdir fsp_coreboot
~/$ cd fsp_coreboot
 

You may use any directory that you prefer.

Downloading Intel FSP
The E3800 (Bay Trail) FSP is distributed directly from Intel. You need to download it,
uncompress it, and agree to the license before you can use it with coreboot. There is more
extensive FSP download information in Chapter 3. The FSP download is at
http://intel.com/fsp.
 
Download an Intel Firmware Support Package
 Intel® Atom™ processor E3800 product family (formerly Bay Trail)
 Linux* release version 003 >

Installing Intel FSP
Uncompress the .tgz file to the development folder. Then, install the FSP.
 
~/fsp_coreboot$ tar -xzvf ~/Downloads/BAY_TRAIL_FSP_KIT_GOLD3.tgz
~/fsp_coreboot$./BAY_TRAIL_FSP_KIT.se
 INTEL CORPORATION
 RESTRICTED USE LICENSE AGREEMENT
 INTEL(R) PRODUCTION FIRMWARE SUPPORT PACKAGE
 (Intel Confidential)
 
IMPORTANT - READ BEFORE COPYING, INSTALLING OR USING.
 
...<SNIP>...
 

http://intel.com/fsp

Chapter 4 ■ Building coreboot with Intel FSP

68

Do you accept the license terms (y/n)? y
Extracting into ~/fsp_coreboot/BAY_TRAIL_FSP_KIT
Finished 

Note■■   Be aware that you will need to modify your paths later in the process if you install
the FSP somewhere else.

The FSP package contains a number of important components besides the FSP
binary. It also contains additional supporting software and binaries, including the Video
BIOS and CPU microcode. Again, the FSP package is described in detail in Chapter 3.

Downloading the coreboot Source
The coreboot source download may take a few minutes.
 
~/fsp_coreboot$ git clone http://review.coreboot.org/coreboot
Cloning into 'coreboot'...
remote: Counting objects: 35863, done
remote: Finding sources: 100% (24537/24537)
remote: Total 167717 (delta 11917), reused 163083 (delta 11917)
Receiving objects: 100% (167717/167717), 47.14 MiB | 2.60 MiB/s, done.
Resolving deltas: 100% (121812/121812), done.
Checking connectivity... done
 

This will create a directory called coreboot/ in the directory that the command
was run.
 
~/fsp_coreboot$ cd coreboot/
~/fsp_coreboot/coreboot$ ls
3rdparty documentation Makefile.inc README toolchain.inc
COPYING Makefile payloads src util

coreboot Toolchain
To help alleviate build problems with many different distribution toolchains, coreboot
builds its own small toolchain. The toolchain contains all the tools required to build
coreboot and most payloads. We can use a make target to run the coreboot/utils/
buildgcc/buildgcc script. It builds gcc, libraries, binutils, iasl, and checks for the
required tool dependencies.
 
~/fsp_coreboot/coreboot$ make crossgcc-i386
Welcome to the coreboot cross toolchain builder v1.25 (November 19th, 2014)
 

http://review.coreboot.org/coreboot

Chapter 4 ■ Building coreboot with Intel FSP

69

Target arch is now i386-elf
Will skip GDB ... ok
Downloading tar balls ...
...<SNIP>...
Unpacked and patched ... ok
Building GMP 5.1.2 ... ok
Building MPFR 3.1.2 ... ok
Building MPC 1.0.1 ... ok
Building libelf 0.8.13 ... ok
Building binutils 2.23.2 ... ok
Building GCC 4.8.3 ... ok
Skipping Expat (Python scripting not enabled)
Skipping Python (Python scripting not enabled)
Skipping GDB (GDB support not enabled)
Building IASL 20140114 ... ok
Cleaning up... ok
 

You can now run your i386-elf cross toolchain from the following directory:
~/fsp_coreboot/coreboot/util/crossgcc/xgcc.

You can make crossgcc-arm to build the ARM toolchain, but it isn’t required for FSP-
based mainboards. There is a make crosstools target, which builds additional tools that
are not required to compile coreboot.

coreboot Commit Hooks
Back in the “Git and Gerrit” section of this chapter, we discussed the need for a Change-
ID to be added to each git commit. This is added by the commit-msg hook. coreboot also
has a pre-commit hook that runs lint on the patch. The commit hooks are set up by the
following coreboot make target:
 
~/fsp_coreboot/coreboot$ make gitconfig

Creating a coreboot Development Branch
Create a branch in git to do the development on. For the purposes of this book, we will
use a specific coreboot commit so that the code is consistent with the instructions and
information within. Should you choose, you may use the HEAD code, but HEAD is being
actively developed and it may have some differences. The following command creates the
branch and sets it to the specific commit that works for the instructions in this book:

commit cf52f9761fef3a8e46ff28d6593e0d573ff1d4ac
 
~/fsp_coreboot/coreboot$ git checkout -b fsp_dev cf52f9

Chapter 4 ■ Building coreboot with Intel FSP

70

Figure 4-2.  Screenshot of coreboot menuconfig utility

Building the Mainboard
The next step is to build the correct mainboard and to direct the build to the FSP and
other binaries for inclusion. These settings are shown in Figures 4-2 through 4-5.
 
~/fsp_coreboot/coreboot$ make menuconfig

On the Menuconfig Menu

Chapter 4 ■ Building coreboot with Intel FSP

71

Figure 4-3.  Screenshot of coreboot menuconfig to select Mainboard

 Set Mainboard vendor (Intel)
Set Mainboard model (MinnowMax)
Set the Memory Size
Exit the submenu to return to the top level menu

On the Mainboard Menu

Chapter 4 ■ Building coreboot with Intel FSP

72

 Set Microcode Path: ../BAY_TRAIL_FSP_KIT/Microcode
Enable: Enable built-in legacy Serial Port
5Set the FSP file: ../BAY_TRAIL_FSP_KIT/FSP/BAYTRAIL_FSP_GOLD_003_16-
SEP-2014.fd

Figure 4-4.  Screenshot of coreboot menuconfig in selecting microcode and FSP path

On the Chipset Menu

Chapter 4 ■ Building coreboot with Intel FSP

73

Set the VGA BIOS file, as follows:
 
../BAY_TRAIL_FSP_KIT/Graphics/INTEL_EMGD.VBIOS_GOLD_VERSION_36_2_3_3698/
Vga.dat
 

Once the preceding steps to configure the components of the project are done, select
Exit and Save to preserve the configuration for this project.

Build
The menuconfig target creates a .config file, which coreboot uses to build the correct
options for a given mainboard.

Let’s build the project now:
 
~/fsp_coreboot/coreboot$ make
#
configuration written to .config
#
 HOSTCC nvramtool/cli/nvramtool.o
 HOSTCC nvramtool/cli/opts.o
 HOSTCC nvramtool/cmos_lowlevel.
 
...<SNIP>...
 

Figure 4-5.  Screenshot of coreboot menuconfig to select VGA BIOS file

On the Devices Menu

Chapter 4 ■ Building coreboot with Intel FSP

74

 CBFS coreboot.rom
 PAYLOAD build/seabios/out/bios.bin.elf (compression: LZMA)
 CONFIG .config
 CBFSPRINT coreboot.rom
 
coreboot.rom: 2048 kB, bootblocksize 1024, romsize 2097152, offset 0x0
alignment: 64 bytes
 
Name Offset Type Size
cmos_layout.bin 0x500000 cmos_layout 1352
pci8086,0f31.rom 0x500580 optionrom 65536
fallback/romstage 0x5105c0 stage 30444
fallback/ramstage 0x517d00 stage 65969
fallback/payload 0x527f00 payload 55583
config 0x535880 raw 4321
revision 0x5369c0 raw 693
(empty) 0x536cc0 null 1938200
cpu_microcode_blob.bin 0x710000 microcode 156736
(empty) 0x736480 null 105240
mrc.cache 0x74ffc0 (unknown) 65536
(empty) 0x760000 null 393112
fsp.bin 0x7bffc0 (unknown) 229376
(empty) 0x7f8000 null 31640
 

The build has completed successfully and the ROM image is here:
 
~/fsp_coreboot/coreboot/build/coreboot.rom

Summary of Commands
Here are the commands we have used so far to get a platform project configured and
built:
 
$ mkdir fsp_coreboot
$ cd fsp_coreboot/
$ tar -xzvf ~/Downloads/BAY_TRAIL_FSP_KIT_GOLD3.tgz
$ git clone http://review.coreboot.org/coreboot
$ cd coreboot
$ ls
$ make crossgcc-i386
$ make gitconfig
$ git checkout -b fsp_dev cf52f9
$ make menuconfig
$ make

http://review.coreboot.org/coreboot

Chapter 4 ■ Building coreboot with Intel FSP

75

Flashing the ROM
flashrom is a utility for programming flash chips. It is one of the projects that has spun-
off from the coreboot community. It is designed to program any type of firmware binary
image (not only coreboot) onto a mainboard or other controller cards. It supports
programming many flash devices in the system, including parallel, LPC, FWH, and SPI
devices. It also supports many external programmers, including the commonly used
Dediprog SF100 and BusPirate. It has common interface support for FT2232 and serprog-
based devices. It is built for support on most operating systems.

Please check http://flashrom.org for more information.

Note■■   It is strongly recommended that you have an external programmer for firmware
development. At some point, you will “brick” your system and need to reflash the device.

For this example, we’ll use the Dediprog SF100 to program the mainboard. Please
see the mainboard user guide for additional programming requirements. The system may
need to be powered on, powered off, or have a jumper set before you can program.

Preparing the Flash Programmer
The following are the steps to program System BIOS by using the Dediprog SPI flash
programmer:

1.	 Power-off the board.

2.	 Port for BIOS flash update is J1 (MinnowBoard MAX).

3.	 No jumper settings.

4.	 Config the Dediprog voltage to 1.8V.

5.	 Program the device (W25Q64DW).

Save the entire existing flash image, just in case.
 
~/fsp_coreboot/coreboot$ flashrom -p dediprog -r backup.rom
flashrom v0.9.7-r1764 on Linux 3.11.0-20-generic (x86_64)
flashrom is free software, get the source code at http://www.flashrom.org
 
Calibrating delay loop... OK.

http://flashrom.org/
http://www.flashrom.org/

Chapter 4 ■ Building coreboot with Intel FSP

76

Flashing the ROM Image
The total coreboot ROM image is the same size as the SPI flash device—8MB. coreboot
is not the only code in the SPI flash device and it may only use the BIOS section. For
MinnowMax, the BIOS section is 3MB; the flash descriptor and the TXE binary are the
other 5MB. We will discuss the descriptor and other binaries later in this chapter.

To update the flash with flashrom, we need to do the following:

1.	 Create an XML file with flashrom instructions.

2.	 Flash the device with the correct parameters (the MinnowMax
flash device requires 1.8 volts from the Dediprog).

3.	 Create the XML instructions for flashrom:
 
~/fsp_coreboot/coreboot$ echo 00500000:007fffff cb > 8mb.xml
 

4.	 Write the image you have built to the BIOS region:
 
~/fsp_coreboot/coreboot$ sudo flashrom -p dediprog -l 8mb.xml -i
cb -w build/coreboot.rom
flashrom v0.9.7-r1764 on Linux 3.11.0-20-generic (x86_64)
flashrom is free software, get the source code at http://www.
flashrom.org
 
Calibrating delay loop... OK.  

Warning■■   You cannot program the entire flash with the coreboot image. There are other
binaries located on the flash that are required to boot the system. Overwriting these files is
bad. (You backed up the entire flash image as described earlier, right?)

Remove the Dediprog, replace the programming jumpers, and power up the system.
The system should boot. If not, check out the “Troubleshooting and Debugging” section.

coreboot Internals
Now that you have a booting FSP coreboot MinnowMax, we can dig into the internals of
coreboot. This section discusses what happens in the coreboot image during boot.
We also cover how it is organized, the source tree, and the boot process.

Boot Stages
coreboot is made up of four boot stages. Each stage is a binary within the ROM image.
From power-on, coreboot transitions from one binary stage to the next in the order
shown in Table 4-1.

http://www.flashrom.org/
http://www.flashrom.org/

Chapter 4 ■ Building coreboot with Intel FSP

77

Additional Files
The stage binaries require supporting files. These additional files are part of the coreboot
image and critical for system functionality (see Table 4-2).

Table 4-2.  coreboot Supporting Files

File Name Description

fsp.bin The FSP binary file.

pci8086,0166.rom The video BIOS file; the name associates the binary to the PCI ID
of the graphics device.

cmos_layout.bin A map of the CMOS values used by coreboot. This file may be
used by payloads or other utilities to safely manipulate CMOS.

config The build options in the .config file are saved in the ROM image.
This makes it possible to reproduce the image with the same
options in the future.

mrc.cache For saved memory configuration data. (More on this later.)

Table 4-1.  coreboot Boot Stages

Stage Description

bootblock The reset vector and pre cache-as-RAM setup

romstage Cache-as-RAM setup, early silicon initialization, memory setup

ramstage Normal device setup and mainboard configuration

payload The OS or application bootloader

Note■■  T hese are the file names in CBFS. They may be different than the menuconfig
input path and file name.

CBFS
The coreboot stages and binaries require some organization in order to be found and
loaded. This is accomplished in coreboot within CBFS, which is a scheme for managing
independent binaries within a single firmware ROM image. Though not a true file system,
the style and concepts are similar. CBFS binary headers contain information to help

Chapter 4 ■ Building coreboot with Intel FSP

78

identify the binary by type, such as stage, optionROM, and payload, and indicate if the
binary is compressed. It is important to understand that each file in the CBFS is compiled
separately. These binaries are not linked and each file is located, loaded, uncompressed,
and executed as required.

Note■■  P lease visit http://www.coreboot.org/CBFS.

An Example of CBFS
At the end of the preceding coreboot build, the contents of the coreboot.rom file are
printed out. We can check it again using the cbfstool:
 
~/fsp_coreboot/coreboot$./build/cbfstool ./build/coreboot.rom print
coreboot.rom: 2048 kB, bootblocksize 1024, romsize 2097152, offset 0x0
alignment: 64 bytes
Name Offset Type Size
cmos_layout.bin 0x0 cmos_layout 1132
pci8086,0f31.rom 0x4c0 optionrom 65536
fallback/romstage 0x10500 stage 27029
fallback/ramstage 0x16f00 stage 58969
fallback/payload 0x255c0 payload 59940
config 0x34040 raw 4221
(empty) 0x35100 null 896728
cpu_microcode_blob.bin 0x110000 microcode 52224
(empty) 0x11cc40 null 209752
mrc.cache 0x14ffc0 (unknown) 65536
(empty) 0x160000 null 393112
fsp.bin 0x1bffc0 (unknown) 229376
(empty) 0x1f8000 null 31640
 

There are a couple things to note about the CBFS output.
You can find that all the stages are listed except for the bootblock. The bootblock

stage is a mandatory piece and handled as a special case. It is located in the last 20K of
the ROM space with the reset vector. It contains the location of the master header and the
entry point for the loader firmware. It doesn’t have a CBFS header due to its location at
the end and how it is accessed, via a direct jump from the reset vector.

Note■■  T his may change in the future as ARM and other support are added, and which
have different reset requirements for the reset vector and bootblock.

http://www.coreboot.org/CBFS

Chapter 4 ■ Building coreboot with Intel FSP

79

CBFS can have a directory-like structure; for example, fallback/romstage and
fallback/ramstage. This is useful for grouping files that should be used together or for
a specific boot purpose. In the preceding example, fallback/ is the default boot path
in coreboot. An additional set of binaries could be added for an alternate boot path
that would be selected by the bootblock. The SeaBIOS payload also uses the directory
structure for coreboot options.

Note■■   For more information about SeaBIOS, please visit http://www.coreboot.org/
SeaBIOS#SeaBIOS_and_CBFS.

CBFS Size
The size of the coreboot.rom file is not required to be the size of the flash device. It only
needs to be large enough to fit the required files within CBFS. This leaves room on the
flash device for files that are not part of coreboot. On a FSP-based system, the coreboot.
rom file should be the same size as the BIOS descriptor region indicated by the flash
descriptor. The coreboot.rom must be located at the end of the flash device to execute the
reset vector.

Special Binaries
In addition to Intel FSP and microcode, there are some important binaries located on
the flash device that are not part of coreboot. This was briefly described in the flash and
boot section of this chapter. These files are required for proper system operation, so it is
important that they are not overwritten with coreboot (see Table 4-3).

Table 4-3.  Special Binaries for coreboot

Binary Description

descriptor.bin The Intel Firmware Descriptor describes the content of the flash
device. This includes the locations of the binaries, which areas are
write protected, and bootstrap options.

TXE/ME Trusted Execution Engine(TXE) or Management Engine (ME)
binaries. These binaries are run by the security and management
processor prior to starting the CPU.

GigEthernet Intel integrated Ethernet binary. This is not a PXE option ROM,
but device firmware.

http://www.coreboot.org/SeaBIOS#SeaBIOS_and_CBFS
http://www.coreboot.org/SeaBIOS#SeaBIOS_and_CBFS

Chapter 4 ■ Building coreboot with Intel FSP

80

Note■■  T he descriptor and other binaries can be queried by the coreboot utils/ifdtool.

Boot Flow Using Intel FSP
As mentioned earlier, each stage is called consecutively after the other. In this section, we
will follow the flow from the reset vector to loading a payload.

Reset Vector and Bootblock
On x86 systems, there is a lot of legacy cruft, which makes for some tedious details that
must be dealt with by early boot firmware. To start with, the very first instruction executed
by an x86 CPU is in 16-bit reset mode (sort of like real mode, but with 4GB selectors
loaded as default); the first instruction is fetched and executed by the CPU at memory
location FFFFFFF0, in hexadecimal value, 16 bytes below 4GB of the 32-bit architecture’s
addressing limit. There’s a lot of history behind this design; therefore, we won’t go into
more detail in this book.

coreboot’s reset vector contains a single jump instruction to the 16-bit entry code
of the bootblock. coreboot then transitions immediately to 32-bit flat protected mode.
This switch makes it much easier to use the 32-bit registers and to access the entire 4GB
memory space.

The reset vector and bootblock code is run directly from ROM, doing what is called
“execute in place” (XIP). The first few instructions are written in assembly code. As
discussed in the preceding history section, assembly code is difficult to read and debug,
so coreboot starts using C code within a few hundred instructions. This is accomplished
by using a special compiler/assembler called ROMCC. ROMCC translates C code to a
stackless assembly .inc file that is then compiled and linked by the assembler/linker. It
must be stackless because there is no memory for stack at this point in the boot process,
and normal C compilers assume memory and use the stack to pass variables.

The early C code in bootblock has a few basic functions. If required by the system, it
can do very early silicon setup. For example, routing the Port 80h debug output, enabling
the chipset flash features, or checking a signal to indicate which stage should be loaded
next. The bootblock parses CBFS, locates the romstage, and jumps to its starting point.

romstage
The early part of romstage is very similar to the bootblock. It is execute in place (XIP) code
written in assembly. The only difference is that coreboot is already in 32 bit protected
flat mode. There is no system memory available, so the first step in romstage is to set up
“Cache as RAM” (CAR). This allows coreboot to use the CPU cache as system RAM for a
stack location. The FSP handles the CAR setup and has some very specific requirements to
run. This is fully explained in the Intel FSP chapter, but we will do a quick review.

Chapter 4 ■ Building coreboot with Intel FSP

81

To call the first Intel FSP entry, coreboot contains a stack area that contains a pointer
to the Intel FSP parameter structure and the return address to get back to coreboot when
Intel FSP is finished. The parameter structure contains the microcode address and length,
and start address and length of the ROM area that should be cached. With the stack
pointer prepared, coreboot locates the FSP, verifies that the FSP headers are as expected
for the platform and jumps to the FSP TempRamInit API entry point. The FSP executes,
works its magic, sets up CAR, and returns to coreboot. coreboot sets the stack pointer and
makes the first C-style call to do romstage system setup and memory setup.

Most x86 systems require a significant amount of setup to configure the hardware.
This is even more the case in integrated silicon and System on a Chip (SoC) systems. Most
integrated subsystem devices require additional configuration prior to being accessed in
the normal methods (PCI Configuration Space, Memory Mapped I/O, System I/O, etc.).
Romstage is where the few devices required for memory initialization are configured. It
is also the first change to get additional debug information from the system. With most
Intel FSP based systems, including MinnowMax, the serial port is configured and debug
information can be streamed to the developer.

With a little bit of mainboard specific hardware initialized, coreboot is almost ready
to make the second call into Intel FSP for memory initialization and the initial setup of
the various peripherals. In order to do this, coreboot locates the UPD/VPD structures as
discussed in Chapter 3. After getting the UPD/VPD data, coreboot modifies these based
on mainboard specific configuration data from devicetree.cb. This allows coreboot to
inform Intel FSP which devices should be enabled or disabled and what mode the devices
should be configured in. The FspInit entry sets up the memory and disables CAR before
it returns to the coreboot’s return function. Intel FSP also passes back a Hand-Off Block
(HOB), which contains data Intel FSP and coreboot may use later. coreboot saves the
HOB data location and prepares for ramstage. The romstage code locates the ramstage in
CBFS, copies it to memory and jumps to the entry point.

ramstage
Ramstage is a bare-metal application. The CPU and memory are functional and ramstage is
running from memory with a normal stack and can use heap, global variables, and so forth.
The purpose of ramstage is to configure the I/O devices, additional application processors,
SMM, and to set up tables that may be passed to payloads or operating systems.

The heart of ramstage is a state machine running in the hardwaremain function and
the device tree. The state machine states are defined by the standard stages of PCI device
configuration and enumeration. There are additional states for chip and mainboard
configuration to allow customization of device prior to the normal initialization process.
The state machine also has pre and post hooks at each state, so chipset and mainboards
can be customized as needed. The states and state machine are explained in detail later
in this chapter.

The device tree is the hierarchical structure of the PCI and legacy devices in
the system. The device tree is prepopulated at build time through the entries in the
mainboard’s devicetree.cb file and amended runtime as devices are discovered in the
PCI enumeration process. The device tree structure has function pointers for every
device for each state in the state machine. This allows chipset and onboard devices to
have customer driver functions run during the enumeration process. We will discuss the
specific of the state machine and device tree later in this chapter.

Chapter 4 ■ Building coreboot with Intel FSP

82

There are two calls to the FspNotifyPhase entry point in ramstage,
AfterPCIEnumeration and ReadyToBoot. After all the devices are enumerated, the
coreboot calls FspNotifyPhase(AfterPCIEnumeration). coreboot then sets up SMM,
does legacy table setup, and finally ACPI table setup. The final call to Intel FSP is made,
FspNotifyPhase(ReadyToBoot), where the lock registers are set to protect SMM and other
sensitive registers. Then, ramstage locates the primary payload in CBFS, decompresses it
to memory, and executes it.

Payload
The last part of coreboot is to execute a payload. The payload functions and features are
not defined by coreboot. A payload could be a bare-metal application or it could boot
an operating system. There may be more than one payload in a coreboot image. Some
common payload options are discussed later in the chapter.

coreboot Source
coreboot contains initialization code for several different architectures, many different
silicon devices, and hundreds of mainboards. This can be overwhelming for new
coreboot developers, so we will highlight the areas of focus for coreboot FSP-based
mainboards. Again, we focus on the MinnowMax mainboard.

coreboot Device Tree
Each device supported by coreboot has a corresponding driver. In order to associate the
hardware to the driver, coreboot describes the onboard devices in the coreboot device tree.
The mapping of devices to their custom functions is done in the mainboard devicetree.cb
file. The devicetree.cb is evaluated during the build process by the sconfig tool (coreboot/
util/sconfig), which creates a linked list of devices in the build/mainboard/VENDOR/
BOARD/static.c file. During the boot process, the coreboot scans the devices, adds any
found devices to the device tree, and links the drivers to the devices found. The device tree
is an integral part of the coreboot build and boot process. The device tree code is located in
the coreboot device tree source directory at coreboot/src/device.

The device tree has two root busses, the CPU bus and the PCI bus. The start of
the device tree is called the root complex, which links the top level CPU bus and PCI
bus 0. The CPU bus contains systems local APICs (Advanced Programmable Interrupt
Controllers). PCI bus 0 contains all other system devices, including legacy and IO devices.

Note■■  T he coreboot device tree is not a Flattened Device Tree used by Linux ARM kernels.

Chapter 4 ■ Building coreboot with Intel FSP

83

Chips and Devices
The coreboot device tree has chip and device functions. A chip may be made up of one
or more devices. Some chips require configuration prior to the device configuration. This
is very common on southbridge devices. To accommodate the predevice setup, the chip
functions are called prior to device functions. We will cover this in more detail in the
section covering coreboot hardware state machines.

Device Tree Variables
Each device tree section starts with the variable name (see Table 4-4) and is closed with
the 'end' keyword.

Table 4-4.  coreboot Device Tree Variables

Variable Name Description

chip Path to the chip source. The chip variable comes prior to all devices
in the device tree. The path also corresponds with a chip_operations
structure.

device Defines a device type at the indicated address.

register Is used to pass mainboard customization to generic chip code as
defined in its chip.h. This is different than a Kconfig build option.

Table 4-5.  coreboot Device Types

Device Type Description

domain Sets the PCI bus number. All PCI devices must be within a domain
keyword. Only bus 0 must be set up in a system, leaving all other busses
to be configured using the default configuration.

cpu_cluster Specifies the top-level APIC and the CPU root cluster.

pci Devices with PCI configuration space.

i2c Sets the 7-bit I2C address of a device on an I2C bus. This keyword must
be within a PCI I2C/SMBUS controller device.

pnp Devices in the legacy (ISA) memory and I/O range (e.g., SuperIOs).

ioapic The ID of a chipset’s IO APIC. A default configuration is used if this is
not set in the device tree.

lapic The ID of a CPU’s Local APIC. One lapic is required in the device tree.

Each device type has its own set of function pointers, as listed in Table 4-5.

Chapter 4 ■ Building coreboot with Intel FSP

84

There are additional keywords used in the device tree, which are listed in Table 4-6.

Table 4-6.  coreboot Additional Keywords Used in the Device Tree

Keyword Description

subsystemid Sets the PCI config register subsystem device and vendor IDs. This
may be set at the top level and inherited, or within a specific device.
See inherit.

inherit Sets a value for all the devices after it. Used for subsystem ID.

io Sets an IO register value for a pnp device.

irq Sets an IRQ line for a pnp device.

drq Sets a DRQ line for a pnp device.

ioapic_irq Is used to generate mptable from the devicetree.cb.

on Sets a device state to enabled.

off Sets a device state to disabled (may hide device on some chipsets).

end Closes a block.

A Device Tree Example
The following example is at coreboot/src/mainboard/intel/minoxmax/devicetree.cb.
 
chip soc/intel/fsp_baytrail
ACPI Register Settings
register "fadt_pm_profile" = "PM_UNSPECIFIED"
register "fadt_boot_arch" = "ACPI_FADT_LEGACY_FREE"
 
FSP register settings
register "PcdSataMode" = "SATA_MODE_AHCI"
register "PcdMrcInitSPDAddr1" = "SPD_ADDR_DEFAULT"
register "PcdMrcInitSPDAddr2" = "SPD_ADDR_DEFAULT"
register "PcdMrcInitMmioSize" = "MMIO_SIZE_DEFAULT"
register "PcdeMMCBootMode" = "EMMC_FOLLOWS_DEVICETREE"
register "PcdIgdDvmt50PreAlloc" = "IGD_MEMSIZE_DEFAULT"
register "PcdApertureSize" = "APERTURE_SIZE_DEFAULT"
register "PcdGttSize" = "GTT_SIZE_DEFAULT"
register "PcdLpssSioEnablePciMode" = "LPSS_PCI_MODE_DEFAULT"
register "AzaliaAutoEnable" = "AZALIA_FOLLOWS_DEVICETREE"
register "LpeAcpiModeEnable" = "LPE_ACPI_MODE_DISABLED"
register "IgdRenderStandby" = "IGD_RENDER_STANDBY_ENABLE"
register "EnableMemoryDown" = "MEMORY_DOWN_ENABLE"
register "DRAMSpeed" = "DRAM_SPEED_1066MHZ"

Chapter 4 ■ Building coreboot with Intel FSP

85

register "DRAMType" = "DRAM_TYPE_DDR3L"
register "DIMM0Enable" = "DIMM0_ENABLE"
register "DIMM1Enable" = "DIMM1_DISABLE"
register "DIMMDWidth" = "DIMM_DWIDTH_X16"
register "DIMMDensity" = "DIMM_DENSITY_2G_BIT" # Setting for 1GB
board - modified runtime for 2GB board in romstage.c to DIMM_DENSITY_4G_BIT
register "DIMMBusWidth" = "DIMM_BUS_WIDTH_64BIT"
register "DIMMSides" = "DIMM_SIDES_1RANK"
register "DIMMtCL" = "11"
register "DIMMtRPtRCD" = "11"
register "DIMMtWR" = "12"
register "DIMMtWTR" = "6"
register "DIMMtRRD" = "6"
register "DIMMtRTP" = "6"
register "DIMMtFAW" = "20"
 
device cpu_cluster 0 on
device lapic 0 on end
end

device domain 0 on
device pci 00.0 on end # 8086 0F00 - SoC router -
device pci 02.0 on end # 8086 0F31 - GFX micro HDMI
device pci 03.0 off end # 8086 0F38 - MIPI -
 
device pci 10.0 off end # 8086 0F14 - EMMC Port -
device pci 11.0 off end # 8086 0F15 - SDIO Port -
device pci 12.0 on end # 8086 0F16 - SD Port MicroSD on SD3
device pci 13.0 on end # 8086 0F23 - SATA AHCI Onboard & HSEC
device pci 14.0 on end # 8086 0F35 - USB XHCI - Onboard & HSEC - Enabling
both EHCI and XHCI will default to EHCI if not changed at runtime
device pci 15.0 on end # 8086 0F28 - LP Engine Audio LSEC
device pci 17.0 off end # 8086 0F50 - MMC Port -
device pci 18.0 on end # 8086 0F40 - SIO - DMA -
device pci 18.1 off end # 8086 0F41 - I2C Port 1 (0) -
device pci 18.2 on end # 8086 0F42 - I2C Port 2 (1) - (testpoints)
device pci 18.3 off end # 8086 0F43 - I2C Port 3 (2) -
device pci 18.4 off end # 8086 0F44 - I2C Port 4 (3) -
device pci 18.5 off end # 8086 0F45 - I2C Port 5 (4) -
device pci 18.6 on end # 8086 0F46 - I2C Port 6 (5) LSEC
device pci 18.7 on end # 8086 0F47 - I2C Port 7 (6) HSEC
device pci 1a.0 on end # 8086 0F18 - TXE -
device pci 1b.0 off end # 8086 0F04 - HD Audio -
device pci 1c.0 on end # 8086 0F48 - PCIe Port 1 (0) -
device pci 1c.1 off end # 8086 0F4A - PCIe Port 2 (1) -
device pci 1c.2 on end # 8086 0F4C - PCIe Port 3 (2) Onboard GBE
device pci 1c.3 on end # 8086 0F4E - PCIe Port 4 (3) HSEC

Chapter 4 ■ Building coreboot with Intel FSP

86

device pci 1d.0 on end # 8086 0F34 - USB EHCI - Enabling both EHCI and XHCI
will default to EHCI if not changed at runtime
device pci 1e.0 on end # 8086 0F06 - SIO - DMA -
device pci 1e.1 on end # 8086 0F08 - PWM 1 LSEC
device pci 1e.2 on end # 8086 0F09 - PWM 2 LSEC
device pci 1e.3 on end # 8086 0F0A - HSUART 1 LSEC
device pci 1e.4 on end # 8086 0F0C - HSUART 2 LSEC
device pci 1e.5 on end # 8086 0F0E - SPI LSEC
device pci 1f.0 on end # 8086 0F1C - LPC bridge No connector
device pci 1f.3 on end # 8086 0F12 - SMBus 0 SPC
end
end 

Note■■  T hese are not the only PCI devices in the system, but they are the only
ones that require drivers. Devices may be added to slots and use the standard device
initialization functions.

Chip Operations
The chip operations structure contains pointers to a function to initialize the chip and to
enable a device, as well as a finalize function and a chip name string. The device enable
function is called prior to the device operations (see Table 4-7). This is particularly
important for devices that need to enable PCI devices before the initial scan and
initialization. For example, some chipsets require additional setup for each device to be
visible on the PCI bus.

Table 4-7.  coreboot Chip Functions

Chip Function Description

init Chip initialization function.

enable_dev The function called for each chip in the device tree.

final The final function for each chip in the device tree. The last function
before payload loading.

Chapter 4 ■ Building coreboot with Intel FSP

87

Device Operations
During the coreboot initialization process, each device operations function is run on
the device in the order that it is scanned. Any device operation function pointer can be
set to point to a custom device function. The device operations structure contains the
function pointers listed in Table 4-8.

Set the function pointer to NULL to skip the function for the device; otherwise, the
default device function is used.

coreboot Hardwaremain State Machine
At the heart of the coreboot ramstage is a state machine for enumerating mainboard
devices. coreboot starts device enumeration with the top-level device in the device
tree and begins a bus scan. PCI devices that do not require special setup are added
to the device tree as they are found during the scan, and are set up by the default PCI
configuration functions. PCI devices that require special setup are linked with their
custom drivers in the initial scan. Then, the state machine enumerates each PCI device’s
functions in five stages: read_resource, set_resource, enable_resource, init, and enable
(see the “Device Operations” section). At each state, custom device functions can
be called. The coreboot hardwaremain state machine source is coreboot/src/lib/
hardwaremain.c.

State Machine States
Table 4-9 lists the state machine states used in coreboot.

Table 4- 8. coreboot Device Operations

Device Operation Description

read_resources Read and save the device resources to be arranged and assigned.

set_resources Assigned memory and IO space.

enable_resources Enable memory and IO in the PCI command register.

init Load the PCI device option ROMs.

finalize Perform any final cleanup.

scan_bus Bus or bridge devices scan and enable function.

enable Activate the device (very late function call; not normally used).

disable Deactivate the device, turning it off (very late function call; not
normally used).

ops_pci Sets the devices default operation functions.

Chapter 4 ■ Building coreboot with Intel FSP

88

State Machine Callbacks
Each state has an Entry Callback and an Exit Callback, which may be used by any
coreboot code to hook any state; for example, the Bay Trail FSP mrc.cache is saved during
the table write state, after all devices have been setup.
 
Enter State -> Entry Callback -> Execute State -> Exit Callback ->
Next State 

Note■■  D o not use multiple hooks to the same state callback. The order in which multiple
hooks to the same state’s callback are executed is undetermined.

Mainboard
The coreboot mainboard directory is the primary location that new mainboard
developers will begin working in. It is located in the mainboard vendor directory and
contains the files that make one mainboard unique from another (see Table 4-10).
coreboot is architected to share as much common code as possible. The mainboard files
access the CPU’s, the chipset’s, and the device driver’s common code to do the majority
of the work. Let’s review the contents of the MinnowMax directory and break down the
purposes of these key files.

Table 4-9.  coreboot State Machine States

State Descrtiption

BS_PRE_DEVICE Before any device tree actions take place

BS_DEV_INIT_CHIPS Init all chips in device tree

BS_DEV_ENUMERATE Device tree probing

BS_DEV_RESOURCES Device tree resource allocation and
assignment

BS_DEV_ENABLE Device tree enabling/disabling of devices

BS_DEV_INIT Device tree device initialization

BS_POST_DEVICE All device tree actions performed

BS_OS_RESUME_CHECK Check for OS resume vector

BS_OS_RESUME Resume to OS

BS_WRITE_TABLES Write coreboot tables

BS_PAYLOAD_LOAD Load payload into memory

BS_PAYLOAD_BOOT Boot to payload

Chapter 4 ■ Building coreboot with Intel FSP

89

Table 4-10.  coreboot Mainboard Files

File Name Description

acpi_tables.c Functions that patch the DSDT and other ACPI table runtime.

cmos.layout CMOS entries used by the mainboard.

devicetree.cb Prepopulate mainboard chips and devices used to configure and
enable and disable certain device options.

dsdt.asl The mainboard ACPI ASL file.

fadt.c Generates and checksums the ACPI FADT file.

gpio.c Sets the default configuration for the mainboards GPIOs. GPIO
configuration is fairly complex on Bay Trail and there are a lot of
options to set up.

irqroute.c Required to compile the IRQ macros defined in IRQ.h.

irqroute.h Macros for each device IRQ routing in APIC and PIC modes.

Kconfig Selects the default build options for CPU-, chipset-, and
mainboard-specific options.

mainboard.c The mainboard-specific file called in ramstage.

mainboard_smi.c The mainboard-specific SMI calls.

Makefile.inc Required to build the mainboard directory.

onboard.h Mainboard-specific SMBIOS table settings.

romstage.c The mainboard-specific function for romstage.

thermal.h Critical temperature definitions for ACPI.

acpi/

ec.asl

mainboard.asl

superio.asl

video.asl

Contains mainboard-specific ACPI ASL files that are included by
the chipset ASL files.

The directory is coreboot/src/mainboard/intel/<mainboard>/.
It is easiest to begin working on a new mainboard using the reference design. It will

already have the basic calls to the chipset and other devices.

Chapter 4 ■ Building coreboot with Intel FSP

90

The Chipset Driver
When the coreboot device enumeration finds a new device, it checks for a custom
driver to set up the device. For Bay Trail, the basic setup is handled by the romstage and
ramstage files located in the SoC directory. When Intel FSP access is required, the chipset
code and the Intel FSP driver cooperate to send the correct information for the chipset-
specific Intel FSP.

The Bay Trail FSP source files are at coreboot/src/soc/intel/fsp_baytrail.
Key files are listed in Table 4-11.

Table 4-11.  Key Chipset Files Under coreboot

File Name Description

northcluster.c Memory and PCIe resource allocation

southcluster.c I/O device resource allocation

ramstage.c

romstage/romstage.c FSP early_init() call and return point

chip.h Bay Trail FSP variables, includes UPD options

fsp/chipset_fsp_util.c

Note■■   Bay Trail is an SoC, so it has northcluster and southcluster files within the src/
soc/ directory. A typical chipset pair would have their files in src/northbridge/ and
src/southbridge/ directories.

Chipset FSP UPD Options
The chipset UPD options in Intel FSP are defined in chip.h and set in the mainboard-
specific devicetree.cb. See the section discussing UPD in Chapter 3 for more details on
the options that are passed.

The FSP Driver
The coreboot FSP driver handles standard access functions to Intel FSP. While the
access functions are standardized per the API, each chipset and mainboard may have
custom FSP requirements, capabilities, and options. Chipset-specific options such as
configuring the UPD data are handled by calls from the driver back to the chipset’s FSP
files. The mainboard-specific configuration is set in the devicetree.cb file, and then can

Chapter 4 ■ Building coreboot with Intel FSP

91

be customized further during the romstage callback, as previously mentioned. The FSP
driver is based on the reference code provided in Intel FSP documentation, but resides
in coreboot. The driver runs in both romstage and ramstage. The first FSP API call to
TempRAMInit is part of the normal driver code, but is included in early romstage, cache_
as_ram.inc.

The FSP driver source directory is located at coreboot/src/drivers/fsp.
Table 4-12 lists the coreboot fsp_util functions.

Table 4-12.  coreboot Functions that Interface with Intel FSP

Function Name Description

find_fsp Function to find the FSP in memory.

fsp_early_init FSP memory and early device setup function. Called in
romstage by the chipset driver.

romstage_fsp_rt_buffer_
callback

Callback from fsp_early_init for mainboard-specific RT buffer
customizations (soldered down memory timings, etc.).

FspNotify There are two notify calls in ramstage.

AfterPCIEnumeration during device finalize and

ReadyToBoot during chip finalize.

save_mrc_data Called in romstage after fsp_early_init to save the memory
configuration to CBMEMh.

update_mrc_cache Moves the mrc data from CBMEM to NVRAM in late
ramstage.

Kconfig
coreboot uses the Linux build configuration tool, Kconfig, to select build options. Kconfig
files are in nearly all coreboot source directories. The Kconfig options are used by the
makefiles to include the correct source files. In the preceding coreboot mainboard build
section, you used the Kconfig Text User Interface—menuconfig—to select options for
your example coreboot build. Typically, there are options for the mainboard, chipsets,
debugging, and which payload to include in the coreboot.rom image file. The Kconfig
options are saved as .config file and converted to a config.h for definitions to be used
by the coreboot source code. The file is also saved in the coreboot.rom image, where it
can be extracted and used to build with the same coreboot options.

The Kconfig tool is built by the coreboot make process and is located here:
coreboot/util/kconfig

Chapter 4 ■ Building coreboot with Intel FSP

92

xcompile
The coreboot make process needs to locate a compatible toolchain. This is done by the
xcompile script. On each build, the coreboot makefile checks for the .xcompile file,
which is generated by the utils/xcompile/xcompile script, and if it is not found, the
makefile calls the script to generate it. The xcompile script locates the coreboot toolchain
and copies the path into the .xcompile file. The generated .xcompile file is included in
the make to set variables CC, CFLAGS, CPP, AS, LD, NM, OBJCOPY, OBJDUMP, READELF, STRIP, AR.

Warning■■  T he .xcompile file isn’t built on every make. If the file already exists, the
script will not be re-run. This is a problem if you didn’t have the toolchain built previously
and the .xcompile is empty. Without a “make clean,” the old path to the distribution
toolchain is used.

Payloads
A payload may be any ELF binary. It must be able to execute on bare metal and without
any support services. Payloads are typically separate projects from coreboot and have
their own development community (although there is some obvious overlap with
coreboot developers). As a separate project and binary, payloads may have a different
license than coreboot. The cbfstool supports converting the ELF format to the SELF
format, which can be loaded by coreboot. SeaBIOS is the default payload, but any ELF
may be added in the Payload section of the menuconfig.

See http://www.coreboot.org/Payloads and http://www.coreboot.org/SELF for
more information.

There are several Payloads available for you to choose from.

SeaBIOS

SeaBIOS provides the legacy BIOS services for booting most operating systems. The
coreboot build process makes it easy to use SeaBIOS by downloading and building it if
it is selected. SeaBIOS supports booting from SATA and USB. It also supports loading
Option ROMs and additional payloads. SeaBIOS runtime options, like boot order, are
added to configuration files in CBFS.

SeaBIOS has been tested with Linux, NetBSD, OpenBSD, FreeDOS, and Windows
XP/Vista/7. Classic GRUB, GRUB2, lilo, and isolinux work well with SeaBIOS. Other x86
bootloaders and operating systems will likely also work.

The SeaBIOS development license uses GPLv2+.
See http://www.coreboot.org/SeaBIOS and http://www.seabios.org/SeaBIOS for

more information.

http://www.coreboot.org/Payloads
http://www.coreboot.org/SELF
http://www.coreboot.org/SeaBIOS
http://www.seabios.org/SeaBIOS

Chapter 4 ■ Building coreboot with Intel FSP

93

GRUB 2

You can use GRUB2 as a coreboot payload to boot an operating system from a hard drive,
for instance. You can also boot via an existing GRUB2 MBR on your hard drive by using
SeaBIOS as your coreboot payload.

The GRUB2 development license uses GPLv3. See http://www.coreboot.org/GRUB2
and https://www.gnu.org/software/grub/grub.html for more information.

FILO

FILO is a simple bootloader with filesystem support. It can boot from hard drives and
USB mass storage. It does not require any legacy BIOS callbacks.

The FILO development license uses GPLv2. See http://www.coreboot.org/FILO for
more information.

iPXE

iPXE is a network bootloader and is a fork of GPXE/Etherboot. It provides a direct
replacement for proprietary PXE ROMs. It can be run as a payload or as an OptionROM
by SeaBIOS.

The iPXE development license uses GPL v2+.
See http://www.coreboot.org/IPXE and http://ipxe.org/ for more information.

TianoCore

There is limited porting and support work in the community for TianoCore, a bootloader
providing the UEFI interface.

The TianoCore development license uses BSD.
See http://www.coreboot.org/TianoCore for more information.

Depthcharge

Depthcharge is a payload for the Google Chromebooks.
The Depthcharge development license uses GPLv2 (or later).
See https://chromium.googlesource.com/chromiumos/platform/depthcharge

for more information.

U-Boot

The U-Boot bootloader can be configured as a coreboot payload for Google
Chromebooks.

The U-Boot development license uses GPLv2.
See http://www.denx.de/wiki/U-Boot for more information.

http://www.coreboot.org/GRUB2
https://www.gnu.org/software/grub/grub.html
http://www.coreboot.org/FILO
http://www.coreboot.org/IPXE
http://ipxe.org/
http://www.coreboot.org/TianoCore
https://chromium.googlesource.com/chromiumos/platform/depthcharge
http://www.denx.de/wiki/U-Boot

Chapter 4 ■ Building coreboot with Intel FSP

94

Memtest86+

Aimed at memory failures detection, this memory test is available as a coreboot payload
as well.

See http://www.coreboot.org/Memtest86 and http://memtest.org/ for more
information.

libpayload
Libpayload is a library to assist with developing and building custom payloads. It contains
entry point, build options, and basic libc functions. libpayload is built separately from
the developers’ payload code and it is statically linked. libpayload may be built with a
number of different options configured with a libpayload-specific Kconfig. See the FILO
or TINT payloads for an example.

The libpayload development license uses BSD.
See http://www.coreboot.org/Libpayload for more information.

coreboot Troubleshooting and Debugging
There are lots of complicated parts to modern systems, and silicon initialization
and development and testing don’t always go smoothly. There are a number of
troubleshooting and debugging options when debugging with coreboot.

Postcodes
The earliest debug information available from coreboot is postcodes on port 80h. Many
CRBs have integrated postcode hardware to display this early debug information.
coreboot’s first instruction after the reset vector is an out 01h (POST_RESET_VECTOR_
CORRECT) to port 80h. There are two common failures early in coreboot with FSP:

postcode 00h: The system is on, but no there are no postcodes.•	
This is usually a problem with the flash device. Check that the
flash jumpers are correctly populated.

The other problem is that the flash image descriptor.bin and TXE/ME have been
overwritten. Reflash the backup image and only update the last 2MB of the MinnowMax
flash device with coreboot.

postcode BBh: The system is alternating between BBh and one of •	
the following postcodes:

 
00h - FSP_SUCCESS: Temp RAM was initialized successfully.
02h - FSP_INVALID_PARAMETER: Input parameters are invalid.
03h - FSP_UNSUPPORTED: The FSP calling conditions were not met.
07h - FSP_DEVICE_ERROR: Temp RAM initialization failed
0Eh - �FSP_NOT_FOUND: No valid microcode was found in the

microcode region.
14h - FSP_ALREADY_STARTED: Temp RAM initialization has been invoked
 

http://www.coreboot.org/Memtest86
http://memtest.org/
http://www.coreboot.org/Libpayload

Chapter 4 ■ Building coreboot with Intel FSP

95

The most common failure is 0Eh, no valid microcode was found. Check that you are
using the latest Intel microcode for your silicon version. The Intel FSP package may not
have the latest version and you need to update it.

Serial Debug
Serial debug is the most common method of debug in coreboot. The serial port and
console configuration is one of the earliest functions after CAR (TempRAMInit) is set
up. coreboot can be configured to output different levels of information on the serial
port. A typical development coreboot build defaults to DEBUG level, which outputs a lot
of information for the developer. The level can be turned up to SPEW, which is way too
much information, and it can also be turned down to ERROR or other lower settings to
speed up the boot process by printing less information to the serial port. Intel FSP also
supports serial output for sending debug information.

EHCI USB Debug
If a serial port is not available for normal debug, coreboot may set up the EHCI controller
USB port 0 for debug mode. The EHCI debug port provides a special mode of operation
that requires neither RAM nor a full USB stack. It requires additional hardware, like the
Ajays NET20DC USB Debug Device, and drivers for the device for the target to send the
logging information to. The debug mode is not yet supported by Intel FSP for debug
information.

Summary
The coreboot firmware philosophy is about building up with small, fast, target-
specific needs. The developers have created a framework to build on and do not make
assumptions about the users’ needs. Intel FSP and coreboot together allow system
designers to customize their solutions down to the smallest details. We look forward to
what the next generation of coreboot developers will bring.

	Chapter 4: Building coreboot with Intel FSP
	The Introduction of coreboot
	The Philosophy of coreboot
	A Brief History
	v1: 1999–2000
	v2: 2000–2005
	v2+: 2005–2008
	v3: 2006–2008
	2008 LinuxBIOS Renamed “coreboot”
	v4: 2009–2012
	v4+: 2012–2014
	Further Reading

	Prerequisites for Working with coreboot
	Community Organization
	Git and Gerrit
	Git Commit Messages
	coreboot Sign-off Procedure
	Developer’s Certificate of Origin 1.1
	Adding Your Sign-off

	Working with the coreboot Community
	coreboot Do’s
	coreboot Don’ts
	Nonsource Binaries in coreboot

	A Hands-on Example: Building coreboot for the MinnowBoard MAX Mainboard
	Environment
	Hardware: MinnowBoard MAX
	MinnowBoard MAX Platform Details

	Development Directory
	Downloading Intel FSP
	Installing Intel FSP
	Downloading the coreboot Source
	coreboot Toolchain
	coreboot Commit Hooks
	Creating a coreboot Development Branch
	Building the Mainboard
	On the Menuconfig Menu
	On the Mainboard Menu
	On the Chipset Menu
	On the Devices Menu
	Build
	Summary of Commands

	Flashing the ROM
	Preparing the Flash Programmer
	Flashing the ROM Image

	coreboot Internals
	Boot Stages
	Additional Files
	CBFS
	An Example of CBFS

	CBFS Size
	Special Binaries

	Boot Flow Using Intel FSP
	Reset Vector and Bootblock
	romstage
	ramstage
	Payload

	coreboot Source
	coreboot Device Tree
	Chips and Devices
	Device Tree Variables
	A Device Tree Example
	Chip Operations
	Device Operations

	coreboot Hardwaremain State Machine
	State Machine States
	State Machine Callbacks

	Mainboard
	The Chipset Driver
	Chipset FSP UPD Options
	The FSP Driver
	Kconfig
	xcompile
	Payloads
	SeaBIOS
	GRUB 2
	FILO
	iPXE
	TianoCore
	Depthcharge
	U- Boot
	Memtest86+

	libpayload

	coreboot Troubleshooting and Debugging
	Postcodes
	Serial Debug
	EHCI USB Debug

	Summary

