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ABSTRACT. We solve a problem posed by Cardinali and Sastry [2] about factoriza-
tion of 2-covers of finite classical generalized quadrangles. To that end, we develop
a general theory of cover factorization for generalized quadrangles, and in particu-
lar we study the isomorphism problem for such covers and associated geometries.
As a byproduct, we obtain new results about semipartial geometries coming from
θ-covers, and consider related problems.
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1. INTRODUCTION

In a recent paper [2], Cardinali and Sastry study various aspects of geometries
related to ovoids of the classical finite generalized quadrangle W(2n). In particular,
starting with the natural embedding W(2n) ↪→ Q(5, 2n), they consider the geometry
A defined by Q(5, 2n) \W(2n), and the geometry E which consists of elliptic ovoids
in W(2n) as points, and rosettes of such ovoids as lines (more formal details can be
found in §2 and §3). There is a natural projection π : A 7→ E. They then ask if any
2-cover γ : A 7→ E factors through π and an automorphism α̃ of A (or Q(5, 2n)):

A E

A

π

γ

eα

This is the starting point of the present paper, and our first main result is an answer
of that question in the concrete case of Cardinali and Sastry — the answer is pos-
itive. Our setting is without finiteness restrictions, and without assuming that the
quadrangles in question are classical. We just impose enough restrictions such that
the geometries A and E exist. (The latter geometry will have as points subtended
ovoids, and as lines rosettes of such ovoids.) More precisely, we have:

Theorem 1.1. Let S be a thick generalized quadrangle, and let S′ ↪→ S be a thick
full subquadrangle which is a geometrical hyperplane of S. Define A and E as above,
and let π : A 7→ E be the natural projection. Then every cover γ : A 7→ E factorizes as
γ = π ◦ α̃, with α̃ an automorphism of A, if and only if every automorphism of E is
induced by an automorphism of S.

In fact, we also obtain a decomposition property at the level of the geometry E,
which is used for proving the latter theorem:

Theorem 1.2. Let S be a thick generalized quadrangle, and let S′ ↪→ S be a thick
full subquadrangle which is a geometrical hyperplane of S. Define A and E as above,
and let π : A 7→ E be the natural projection. Then any cover γ : A 7→ E factorizes as
γ = α ◦ π, with α a unique automorphism of E.

In categorical terms, this means that if Co(A,E) is the category with objects the
covers κ : A 7→ E and natural morphisms, then π : A 7→ E is an initial object. (In
fact, it easily follows that each object is a zero object.)

Once both theorems are established, we obtain the affirmative answer of the ques-
tion of Cardinali and Sastry as a corollary of Theorem 1.1.

After that, we proceed our study of covers. We first construct an abstract semipartial
geometry from a θ-cover, which generalizes a construction of Brown [1]. From
a number of general results, we obtain a second proof of Theorem 1.2, and we
develop a second approach to answer the question of Cardinali and Sastry.

In a last section, we show that the Kantor-Knuth generalized quadrangles contain
subquadrangles that are 1-subtended, an unknown result. This in its turn implies
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that no new semipartial geometries can arise from Brown’s construction in the case
of the Kantor-Knuth quadrangles.

In an appendix we will consider a related problem, namely the extension problem
of automorphisms of subquadrangles.

2. DEFINITIONS

2.1. Quadrangles. A generalized quadrangle (GQ) of order (s, t), where s and t are
cardinal numbers, is a point-line incidence geometry with the following properties:

(a) Each point is incident with t + 1 lines and each line is incident with s + 1
points.

(b) If (x, L) is a non-incident point-line pair, there is precisely one point-line
pair (y, M) such that xIMIyIL (here, “I” denotes the incidence relation).

(c) Two distinct points are incident with at most one line.

If both s and t are at least 2, we say that the GQ is thick; otherwise it is called thin.

We use the usual notation x ∼ y to indicate that the points x and y are collinear,
and any point is collinear with itself. For any point x, x⊥ := {z|z ∼ x}, and for any
subset Y of the point set, Y ⊥ := ∩y∈Y y⊥; we make no distinction between y⊥ and
{y}⊥. In particular, we denote (Y ⊥)⊥ by Y ⊥⊥.

Finally, if u and v are distinct points, then cl(u, v) is the point set {w|w⊥∩{u, v}⊥⊥ 6=
∅}.

2.2. Subquadrangles. If S = (P,L, I) is a generalized quadrangle (where P is
the point set, L the line set, and I is incidence), then a subgeometry is a triple
Γ = (P′,L′, I′) such that P′ ⊆ P, L′ ⊆ L, and I′ is the induced incidence relation.

A subquadrangle (subGQ) is a subgeometry which is a generalized quadrangle. A
subquadrangle S′ of a generalized quadrangle S is full if for all its lines U , we have
the property that any point of S incident with U is also a point of S′. Dually, we
speak of “ideal subquadrangles.”

2.3. Ovoids. If S is a generalized quadrangle, an ovoid of S is a set of points O in
S such that each line contains precisely one point of O.

2.4. Geometrical hyperplanes. A geometrical hyperplane of a generalized quad-
rangle S is a subgeometry Γ each line of which contains at least 2 points of S, such
that every line L of S either contains 1 point of Γ, or all its points are points of Γ
and then L is a line of Γ.

If S is a thick generalized quadrangle of order (s, t), a geometrical hyperplane is
always one of the following two:

• an ovoid (seen as a subgeometry);
• a full subquadrangle of order (s, t/s), and then t ≡ 0 mod s if both pa-

rameters are finite.

If Γ is a geometrical hyperplane of order (s, 1) of a thick generalized quadrangle of
order (s, t), then t = s.
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3. COVERS

3.1. Morphisms. If Γ = (P,L, I) and Γ′ = (P′,L′, I′) are point-line incidence ge-
ometries, then a morphism γ : Γ 7→ Γ′ is a map from P ∪ L to P′ ∪ L′ which sends
points to points, lines to lines, and preserves incidence. If γ is bijective and the
inverse map also preserves incidence, we say γ is an isomorphism. If Γ = Γ′, an
isomorphism is also called an automorphism, and the set of automorphisms of Γ
naturally forms a group under composition of maps, which is denoted by Aut(Γ).

If Γ is a point-line geometry and S ≤ Aut(Γ), then for any point v of Γ, S[v] denotes
the subgroup of S each element of which fixes v linewise. Such groups will be
needed later on.

3.2. A and E. Let S be a thick generalized quadrangle, and let S′ ↪→ S be a thick
full subquadrangle of S. Let x be a point of S \ S′. Then x⊥ ∩ S′ =: Ox is easily
seen to be an ovoid of S′, which we call a subtended ovoid (by x). Let L be any
line of S \ S′ which meets S′ in a point ` (which is necessarily unique w.r.t. this
property). Then each point of L \ {`} subtends an ovoid in S′, and the set of all
these ovoids is called the rosette RL of ovoids determined by L. If S′ is also a
geometrical hyperplane, there is a natural bijection between the lines incident with
x and the points of x⊥ ∩ S′.

Keeping the latter hypothesis, we define the geometry E to have as points the sub-
tended ovoids of S′, and as lines the rosettes RL. Incidence is symmetrized con-
tainment. We also define a geometry A, which is just the affine quadrangle which
arises when taking away the geometrical hyperplane S′ of S.

Note that there is a natural projection

(1) π : A 7→ E :

{
x 7→ Ox ∀ points x

L 7→ RL ∀ lines L.

By the mere definition of E, π is surjective on both points and lines.

3.3. Covers. Let γ : Γ 7→ Γ′ be a morphism between point-line incidence geome-
tries. Suppose both geometries are not empty — so they have either at least one
point or at least one line. (In fact, since γ is a map, it suffices to ask that Γ is not
empty.) Then γ is a cover if γ is locally a bijection, that is, if x is any point of Γ, γ
induces a bijection between the lines incident with x, and the lines incident with
γ(x), and if L is a line of Γ, it induces a bijection between the points incident with
L and the points incident with γ(L). Sometimes we also say that (Γ, γ) is a cover
(of Γ′), or even that Γ is a cover, if the covering map is clear.

In the statement of the next lemma, by “connected point-line geometry,” we mean
a geometry with point set P and line set L such that any two elements in P∪L are
contained in a path of elements in P ∪ L.

Lemma 3.1. If Γ′ is connected, then a cover γ : Γ 7→ Γ′ is necessarily surjective.

Proof. Let X be any element of Γ′. Since Γ is not empty, we can take some ele-
ment of Γ, say Y . As Γ′ is connected, we then know there is a path in Γ′ in which
γ(Y ) and X are elements. Now apply the definition of cover to conclude that X is
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an image for γ. �

If γ : Γ 7→ Γ′ is a cover, and each fiber (of lines and points) has constant size θ, we
say that γ, or (Γ, γ), or Γ is a θ-fold cover (of Γ′) or simply θ-cover (of Γ′). We also
say that Γ′ is θ-covered by Γ.

Remark 3.2. Note that the map π : A 7→ E of the previous section is a cover. We
call it the canonical cover.

4. FACTORIZATION OF MORPHISMS, I — LOWER DECOMPOSITION

In this section, we aim to prove the following theorem.

Theorem 4.1 (Lower decomposition). Let S be a thick generalized quadrangle, and
let S′ ↪→ S be a thick full subquadrangle which is a geometrical hyperplane of S.
Define A and E as above, and let π : A 7→ E be the natural projection. Then any cover
γ : A 7→ E factorizes as γ = α ◦ π, with α an automorphism of E.

We call this property “lower decomposition” (of γ over π, or simply of γ).

Before starting with the proof, let us remark that the assumption of γ being a cover
is essential: in general, morphisms between generalized quadrangles need not be
injective — e.g., map every point of a quadrangle Γ to one and the same point x of
a quadrangle Γ′, and every line of Γ to one fixed line of Γ′ incident with x. (Mor-
phisms preserve incidence, but not necessarily non-incidence.)

We will obtain the proof of Theorem 4.1 in a series of short lemmas. First assume
that γ is as in the statement of Theorem 4.1; then α is uniquely determined by the
expression

(2) γ = α ◦ π

if it is well defined. Namely, if x is a point or a line of E, let y ∈ π−1(x); then
α(x) = γ(y). If γ(y) is independent of the choice of y ∈ π−1(x), then it follows
easily that α is indeed an automorphism of E (see below).

Observation 4.2. If u and v are different points in A for which u⊥ ∩ v⊥ = ∅ in
A, then π(u) = π(v) (i.e., they subtend the same ovoids at infinity). Conversely, if
π(u) = π(v) for different points u and v in A, then u⊥ ∩ v⊥ = ∅ in A.

Proof. Suppose that {u, v}⊥ ∩ A is empty. As S′ is a geometrical hyperplane, it
follows easily that, in S, we have

(3) {u, v}⊥ ⊆ (u⊥ ∩ S′) ∩ (v⊥ ∩ S′),

hence the first statement.

Now suppose that π(u) = π(v) for different points u and v in A. If v ∈ u⊥, then
triangles arise in S since they subtend the same ovoid in S′. For, if w ∈ {u, v}⊥ ∩A,
then the line vw of S contains a point r of the ovoid, yielding a triangle with vertices
u, w, r, contradiction. �
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Corollary 4.3. Define the relation P on the points of A as follows:

(4) xPy if x⊥ ∩ y⊥ ∩A = ∅.
Then P is an equivalence relation. �

Lemma 4.4. If x is a point of A and y, z are points in γ−1(γ(x)), then y⊥ ∩ z⊥ = ∅
in A. (In other words, if γ(y) = γ(z), then y⊥ ∩ z⊥ = ∅ in A.)

Proof. Let γ(y) = γ(z), and suppose u is some point of A such that u 6= y ∼ u ∼
z 6= u. As γ induces a local bijection between u⊥ and γ(u)⊥, it must follow that
γ(yu) 6= γ(zu). But then γ(y) 6= γ(z), contradiction. �

The next lemma proves the converse of Lemma 4.4.

Lemma 4.5. Let u and v be different points in A. If u⊥ ∩ v⊥ = ∅ in A, then γ(u) =
γ(v).

Proof. Suppose u and v are as in the statement, and suppose γ(u) 6= γ(v). We
consider the possibilities.

(1) γ(u) ∼ γ(v). Let M be the line incident with both γ(u) and γ(v); as γ is a
cover, it induces a bijection between the lines incident with u and the lines incident
with γ(u), so there is a unique line UIu such that γ(U) = M . Similarly, there is
a unique line V Iv such that γ(V ) = M . As γ(U) = γ(V ), each point on this line
has unique inverse images on both U and V . So there is a point w incident with
U such that γ(w) = γ(v). But now v⊥ ∩ w⊥ 6= ∅ (as P is an equivalence relation),
contradicting Lemma 4.4.

(2) γ(u) 6∼ γ(v), and there is a point z ∈ E such that γ(u) ∼ z ∼ γ(v). First note
that such a point z exists; let ũ and ṽ be points in A such that π(ũ) = γ(u) and
π(ṽ) = γ(v). Then ũ⊥ ∩ ṽ 6= ∅ in A, as otherwise γ(u) = γ(v). So in A we can find
a point z̃ such that ũ ∼ z̃ ∼ ṽ; with z := π(z̃), it follows that γ(u) ∼ z ∼ γ(v).
Then there are point-line pairs (u′, U) and (v′, V ) such that uIUIu′ and vIV Iv′

and γ(u′) = γ(v′) = z. It follows that γ(U) = γ(u)z and γ(V ) = γ(v)z. Some
(unique) V ′Iu′ satisfies γ(V ′) = γ(V ), and V ′ contains a (unique) point v′′ for
which γ(v′′) = γ(v). As u⊥ ∩ v⊥ = ∅ in A, v′′ 6= v, and it follows that v′′

⊥ ∩ v⊥ = ∅
in A by Lemma 4.4. By Corollary 4.3, it then follows that u⊥ ∩ v′′

⊥ = ∅, contradic-
tion. �

By Observation 4.2 and Lemmas 4.4 and 4.5, the map α is well defined on points.
The proof for lines becomes easier at this point.

Lemma 4.6. Let L be a line of E. Then γ maps any line of π−1(L) to the same line of
E. Also, if M is any line of E, then π maps any line of γ−1(M) to the same line of E.

Proof. Let U, V ∈ π−1(L), and let vIV in A. Then r := v⊥∩S′ is a point of E on L;
π−1(r) is a set of points in A which meets every line in π−1(L) in exactly one point
of A. All these points subtend v⊥ ∩ S′. By Observation 4.2 and Lemma 4.5 γ maps
all these points to γ(u), where u := π−1(r) ∩ U . It follows easily by letting (V, v)
vary, that all lines in π−1(L) are mapped on γ(U).
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The proof of the second part of Lemma 4.6 is similar, but now one has to rely on
Observation 4.2 and Lemma 4.4. �

We are now ready to obtain the proof of Theorem 4.1.

Proof of Theorem 4.1. We have that α is well defined on points and lines, and it
easily follows that incidence is preserved. �

Remark 4.7 (The automorphism α). Note that for each line L of E the lines of
γ−1(L) all contain the same point u of S′. (For, let U, V ∈ γ−1(L), and suppose
U ∩ S′ 6= V ∩ S′; then π(U) 6= π(V ), so that γ = α ◦ π implies that γ(U) 6= γ(V ),
contradiction.) If the ovoids of the rosette L all share the point u′, then for any
rosette M 6= L whose ovoids share u′, the lines of γ−1(M) contain u. (For, suppose
U ∈ γ−1(L) and V ′ ∈ γ−1(M) such that U ∩ S′ 6= V ′ ∩ S′; then we can find a line
W of S in {U, V ′}⊥ for which the points W ∩ U =: w and W ∩ V ′ =: w′ are points
of A. The rosette defined by W contains the points (subtended ovoids) Ow and
Ow′ of E, and so these points are collinear in E. It follows that γ(w) = α(Ow) and
γ(w′) = α(Ow′) are also collinear points in E. Since γ(w) is a point of the rosette L,
and γ(w′) is a point of the rosette M 6= L, this is clearly not possible.) If u′ =: ζ(u),
and we let u vary, we obtain a permutation

(5) ζ : w 7→ w′

of the points of S′. For distinct collinear points v and v1 of S′, we have that ζ(v) =: v′

and ζ(v1) =: v′1 are also collinear as otherwise v′ and v′1 belong to a common point
(subtended ovoid) O′ of E, and hence α−1(O′) = O contains v and v1, contradiction.
Similarly, if v′ and v′1 are distinct collinear points of S′, then ζ−1(v′) and ζ−1(v′1)
are collinear as well. It follows that the map ζ defines an automorphism α of S′.

The next result yields more information about lower decomposition.

Corollary 4.8. Let Co(A,E) be the category with objects the covers κ : A 7→ E and
morphisms defined as follows:

elements of hom(κ′ : A 7→ E, κ′′ : A 7→ E) are morphisms ϑ : E 7→ E

such that the following diagram commutes:

E E

A

ϑ

κ′′
κ′

Then π : A 7→ E is an initial object. It follows that each object is a zero object.

Proof. The fact that π : A 7→ E is initial is a direct corollary of Theorem 4.1. The
fact that it is zero (so also terminal) follows from the fact that α (in Theorem 4.1) is
an automorphism. Now consider two objects γ : A 7→ E and γ′ : A 7→ E in Co(A,E).
Using the fact that π : A 7→ E is a zero object, one now easily proves that there are
unique δ : E 7→ E and δ′ = δ−1 : E 7→ E such that the following diagram commutes:
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E E

A

δ

δ′

γ′
γ

�

Corollary 4.9. Let S be a thick generalized quadrangle, and let S′ ↪→ S be a thick full
subquadrangle which is a geometrical hyperplane of S. Define A and E as above, and
let π : A 7→ E be the natural projection. Then any 2-cover γ : A 7→ E factorizes as
γ = α ◦ π, with α some automorphism of E. �

Corollary 4.10. Let Q(4, q) be a subquadrangle of Q(5, q). Define A and E as before,
and let π : A 7→ E be the natural projection. Then any 2-cover γ : A 7→ E factorizes as
γ = α ◦ π, with α some automorphism of E.

Proof. The proof follows from Corollary 4.9 and the fact that Q(4, q) is a geomet-
rical hyperplane of Q(5, q). �

5. FACTORIZATION OF MORPHISMS, II — HIGHER DECOMPOSITION

We now handle higher decomposition.

5.1. Higher decomposition and higher extension. We keep using the notation of
the previous section. In that section, we have shown that given a cover γ : A 7→ E,
there exists an automorphism α of E such that γ = α ◦ π, with π the canonical
cover. Now suppose that α itself is induced by an automorphism α̃ of S (so that
α̃ ∈ Aut(S)S′ , and α̃ extends α, cf. Remark 4.7). It is then obvious that

(6) γ = α ◦ π = π ◦ α̃,

and so we have (in this general setting) a “higher decomposition” of morphisms as
asked (for every cover) by Cardinali and Sastry. Vice versa, if an automorphism β̃

in Aut(S)S′ exists such that γ = π ◦ β̃, then β̃ necessarily induces α, or equivalently
extends α, so the existence of the decomposition of Cardinali and Sastry for γ is
equivalent with the existence of an extending automorphism β̃. In other words, we
have the following result.

In the next theorem, we say that π : A 7→ E has the higher decomposition property
if any cover γ : A 7→ E factorizes as γ = π ◦ α̃ for some α̃ ∈ Aut(S). By abuse of
terminology, we also say that γ : A 7→ E has the higher decomposition property if
it factorizes as above.

Theorem 5.1 (Extension property). The cover π : A 7→ E has the higher decompo-
sition property if and only if any automorphism of E is induced by an automorphism
of S. �
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We call the latter property the “higher extension property” (for the cover π : A 7→
E). If ι : S′ 7→ S is a natural embedding of generalized quadrangles, then we say
that it has the “higher extension property” if each automorphism of S′ extends to
an automorphism of S. Theorem 5.1 yields a criterion which makes it rather easy
to check whether higher decomposition is true for all covers γ : A 7→ E. We need
to develop some more tools in order to apply the criterion.

Remark 5.2. It is very important to note that α̃ need not be unique with respect
to this property: any α̃ which extends α gives rise to the same decomposition. This
is in stark contrast with the automorphism α, which is necessarily unique. If α̃′ is
another such extending automorphism, α̃(α̃′)−1 fixes S′ elementwise, and it easily
follows that we have a natural bijection

(7) η : Aut(S)[S′] 7→ E(α) : θ −→ α̃θ,

where E(α) is the set of automorphisms of S that extend α.

Let Aut(S)S′ be the stabilizer of S′ in S, and let N = AutS[S′] be the subgroup of
elements that fix S′ elementwise. Then obviously Aut(S)S′/N ≤ Aut(S′). Each
element of Aut(S)S′ induces an element of Aut(E) in a unique way, and modulo N
this happens in a faithful way. So

(8) Aut(S)S′/N ≤ Aut(E).

The following is immediate.

Observation 5.3. If every automorphism of S′ extends to an automorphism of S, then
every automorphism of S′ induces an automorphism of E in a faithful manner. �

Now if Aut(S)S′/N ∼= Aut(S′) as in Observation 5.3, then the higher decomposition
property is not true if and only if Aut(S′) 6= Aut(E).

6. THE ORIGINAL QUESTION

When S = Q(5, q) and S′ = Q(4, q), the higher decomposition property is always
true (in any characteristic), since any automorphism of Q(4, q) extends in two ways
(since the group of automorphisms of Q(5, q) fixing Q(4, q) elementwise has order
2). In Brown [1, Theorem 3.3], the following is shown:

Theorem 6.1 (Brown). If Γ is a finite thick GQ of order (u, u2) and ∆ a subGQ of
order u which is 2-covered by Γ \ ∆, and Γ′ is a GQ of order (u, u2) with a subGQ
∆′ of order u which is also 2-covered by Γ′ \∆′, then the geometry E is isomorphic to
the geometry E′ if and only if there is an isomorphism κ : ∆ 7→ ∆′ that induces an
isomorphism κ′ : E 7→ E′.

As a corollary of the proof of Theorem 6.1, he deduces the following.

Corollary 6.2 (Brown). If Γ is a finite thick GQ of order (u, u2) and ∆ a subGQ of
order u which is 2-covered by Γ \∆, then Aut(E) is the stabilizer of E in Aut(S′).

Remark 6.3. We will generalize Theorem 6.1 later on. Note that Theorem 6.1 also
follows from the same reasoning as in Remark 4.7.

Combining Theorem 5.1, Observation 5.3 and Corollary 6.2 we conclude that the
question of Cardinali and Sastry has an affirmative answer.
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7. MORE ON SUBTENDED OVOIDS

In this section, as in the sections 8–9–10–11, we only consider finite GQs.

Let S′ = (P′,B′, I′) be a proper subquadrangle of order (s, t′), s 6= 1, of a general-
ized quadrangle S = (P,B, I) of order (s, t). Then t ≥ st′ and each point x of S not
in S′ is collinear with exactly st′+1 points of an ovoid Ox of S′; the ovoid Ox is said
to be subtended by x. The points of S not in S′ are called the external points of S′. If
t = st′, then each line of S is incident with a point of S′.

Suppose that the subtended ovoid Ox of S′ is subtended by θ points of P \ P′; then
we say that Ox is θ-subtended. By [5, §1.4.1] we have that

(9) (θ − 1)t′ ≤ s.

If θ = s + 1, t′ = 1, and if Sx is the set of the s + 1 points subtending Ox, then any
point z ∈ P\ (Ox∪Sx) is collinear with exactly two points of Ox∪Sx [5, §1.4.1(i)].
If (θ − 1)t′ = s, t′ 6= 1 and Ox = Ox′ with x 6= x′, then by [5, §1.4.1(ii)] we have
that t = st′, and each point w 6∈ cl(x, x′) is collinear with t/s+1 = t′+1 points of Ox.

We now provide some examples of GQs S, S′ with S′ ⊂ S, where each subtended
ovoid Ox is θ-subtended for some θ.

7.1. Examples.

(1) Consider the subquadrangle Q(4, q) of the GQ Q(5, q). Then s = t′ = q,
t = q2, and θ = 2. Here t = st′, (θ − 1)t = s2 and (θ − 1)t′ = s.

(2) Consider the subquadrangle Q(3, q) of the GQ Q(5, q). Then s = q, t = q2,
t′ = 1, and θ = q + 1. Here t 6= st′, (θ − 1)t 6= s2 and (θ − 1)t′ = s.

(3) Consider the subquadrangle Q(3, q) of the GQ Q(4, q). Then s = t = q and
t′ = 1. If q is odd, then θ = 2. For q even each subtended ovoid of Q(3, q)
is subtended by just one point of Q(4, q).

(4) Consider the subquadrangle H(3, q2) of the GQ H(4, q2). Then s = q2,
t = q3, t′ = q, and θ = q + 1. Here t = st′, (θ − 1)t = s2 and (θ − 1)t′ = s.

(5) It is well known that the GQ of order (q, q2) arising from the Kantor-Knuth
flock has subquadrangles of order q isomorphic to Q(4, q). This also yields
examples with s = t′ = q, t = q2, and θ = 2; see [1, §5].

Remark 7.1. Let S′ be a subquadrangle of order s of the GQ S of order (s, s2),
s 6= 1. If every subtended ovoid of S′ is 2-subtended, then by [6] we have:

(i) for s even we have S′ ∼= Q(4, s), and
(ii) for s odd all points of S′ are antiregular.

Lemma 7.2. If t′ 6= 1, t = st′, (θ − 1)t = s2, if every subtended ovoid of S′ is θ-
subtended, and if x′ ∈ P\P′ is collinear with no point of O⊥

x , then |Ox∩Ox′ | = t/s+1.
If x′ 6∈ O⊥

x is collinear with a point of O⊥
x , then |Ox ∩ Ox′ | = 1.

Proof. The second part of the statement is clear. So assume that x′ ∈ P \ P′ is
collinear with no point of O⊥

x . Let y ∈ O⊥
x \ {x}. As x′ 6∈ cl(x, y), |cl(x, y)| = θ and

(θ − 1)t = s2, the point x′ is collinear with t/s + 1 points of {x, y}⊥ = Ox, and so
|Ox ∩ Ox′ | = t/s + 1. �
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8. THE GEOMETRY Γ(S, S′) = E

Assume again that every subtended ovoid Ox of S′ is θ-subtended, θ > 1. Let L
be a line of S not in S′ which has a point z in common with S′. If x1, x2, . . . , xs

are the points of L not in S′, then the ovoids Ox1 ,Ox2 , . . . ,Oxs form a rosette RL

of ovoids in S′. Any two elements of RL have just z in common and |RL| = s.
Also, the union of all ovoids of RL is P′. Now we introduce the point-line geometry
E =: Γ(S, S′) = (Ω,Φ,∈), with Ω the set of all subtended ovoids of S′ and with Φ
the set of all rosettes of subtended ovoids in S′.

Theorem 8.1. Let S be a GQ of order (s, t) and S′ a subGQ of order (s, t′). If every
subtended ovoid Ox of S′ is θ-subtended, θ > 1, with t′ 6= 1, t = st′, and (θ−1)t = s2,
then the geometry E = (Ω,Φ,∈) is a semi partial geometry with parameters

s∗ = s− 1, t∗ = t, α∗ = θ, µ∗ = θ(t− t′).

Proof. Every line of E contains s points of E, every point of E is contained in
st′ +1 = t+1 lines of E, and from Lemma 7.2 it easily follows that any two distinct
points of E are incident with at most one line of E.

Ler RL ∈ Φ, Ox ∈ Ω and Ox 6∈ RL. Let z be the common point of the ovoids
in RL, and let x = x1, x2, . . . , xθ be the elements of S subtending Ox. If x and z
are collinear in S, then also xi and z, with i = 1, 2, . . . , θ, are collinear in S. In
such a case the point Ox of E is collinear with no point of the line RL of E. Now
assume that x and z are not collinear in S; then xi and z, with i = 1, 2, . . . , θ, are
not collinear in S. Let ui ∼ xi, with uiIL, i = 1, 2, . . . , θ. As {xi, xj}⊥ = Ox, i 6= j,
we have ui 6= uj . If Mi = xiui, with i = 1, 2, . . . , θ, then the rosettes RMi are the
lines of E which contain Ox and are concurrent with RL in E. Remark that these θ
rosettes are independent of the choice of the line L′ with RL = RL′ . Consequently,
α∗ = θ.

Now let Ox and Ox′ be two points of E which do not belong to a common rosette
of Φ. Let x = x1, x2, . . . , xθ be the elements of S subtending Ox and let x′ =
x′1, x

′
2, . . . , x

′
θ be the elements of S subtending Ox′ . The points of {xi, x

′
j}⊥ in S but

not in S′, with i, j = 1, 2, . . . , θ, subtend the ovoids collinear with Ox and Ox′ in
E. Clearly, we may choose xi, say xi = x. By Lemma 7.2 we have |Ox ∩ Ox′

j
| =

|Ox ∩ Ox′ | = t/s + 1 = t′ + 1, with j = 1, 2, . . . , θ. Hence

(10) |
(
{x, x′1}⊥ ∪ . . . ∪ {x, x′θ}⊥

)
\ P′| = θ(t− t′).

We conclude that µ∗ = θ(t− t′), and this proves the theorem. �

8.1. Examples.

(1) Considering the items (1) and (5) of §§7.1, we obtain semi partial geome-
tries with parameters

(11) s∗ = q − 1, t∗ = q2, α∗ = 2, µ∗ = 2q(q − 1).

(2) Considering the item (4) of §§7.1, we obtain a semi partial geometry with
parameters

(12) s∗ = q2 − 1, t∗ = q3, α∗ = q + 1, µ∗ = q(q + 1)(q2 − 1).
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Remark 8.2. For the geometries described in the previous examples, we also refer
to Brown [1] and Hirschfeld and Thas [4].

9. UNIQUENESS OF COVERS

Consider again the geometry E = Γ(S, S′) = (Ω,Φ,∈). Then E is θ-covered by
the geometry A = S \ S′ = (P \ P′,B \ B′, I′′), with I′′ the restriction of I to(
(P \P′)× (B \B′)

)
∪

(
(B \B′)× (P \P′)

)
; the geometry A through the mapping

γ : A 7→ E is a θ-cover of E.

The following theorem generalizes Theorem 3.3 of [1].

Theorem 9.1. If γ : C 7→ E is any θ-cover of E without triangles, then there exists
a GQ χ, a subquadrangle χ′ of χ and an isomorphism σ∗ from χ′ to S′, such that
χ \ χ′ = C and Γ(χ, χ′)σ∗

= E.

Proof. It is clear that each line of C has s points and that each point of C is on t+1
lines.

Let x be a point of S′. The lines of S not in S′ containing x define (t− t′)/θ rosettes
by canonical projection, and the set of these rosettes is covered by a set of t − t′

mutually disjoint lines of C. The set of these t − t′ lines of C is by definition a
point x∗ of χ′. If we consider s + 1 collinear points x1, x2, . . . , xs+1 of S′, then the
corresponding points x∗1, x

∗
2, . . . , x

∗
s+1 constitute a line M∗ of χ′. In such a case the

lines of the corresponding s + 1 sets of t− t′ lines of C are mutually disjoint. Each
point of χ′ is contained in t′+1 lines of χ′. The incidence structure χ′ is isomorphic
to the GQ S′, and

(13) σ∗ : x∗ 7→ x

defines an isomorphism from χ′ to S′.

Let us now extend the geometry C to a geometry χ. The line set of χ is the union
of the line set of C and the line set of χ′; the point set of χ is the union of the point
set of C and the point set of χ′. A line N of C is incident with a point x∗ of χ′ if N
belongs to the set x∗; the other incidences are the incidences of C and χ′. Each line
of χ contains s + 1 points of χ, and each point of χ is contained in t + 1 lines of χ.
The geometry χ contains (s + 1)(st + 1) points and (t + 1)(st + 1) lines.

Assume, by way of contradiction, that the non-collinear points z1, z2, z3 of χ form
a triangle. As we assumed that C does not contain triangles, at least one of the
points z1, z2, z3 belongs to χ′; also at least one of the points z1, z2, z3 belongs to C

(as χ′ has no triangles as well). Let z1, z2 belong to C, and z3 to χ′. The points
z1, z2 cover ovoids Ou1 ,Ou2 of S′ with Ou1 ∩ Ou2 = {u}, and with z3 corresponds
a point z̃3 of S′ which belongs to Ou1 and Ou2 . So u = z̃3 and the line z1z2 of χ
contains the point z3 of χ, a contradiction. Next, let z1, z2 belong to χ′, and z3

to C. With z3 corresponds an ovoid Ou3 of S′, and with the lines z1z3 and z2z3

correspond rosettes containing Ou3 . Hence with z1, z2 correspond points z̃1, z̃2 of
Ou3 . As z1 ∼ z2 in χ′, also z̃1 ∼ z̃2 in S′, a contradiction as z̃1 and z̃2 are points of
an ovoid. Consequently χ does not contain triangles.
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From the foregoing it follows that χ is a GQ of order (s, t) and that Γ(χ, χ′)σ∗
= E.

�

10. PARTICULAR CASE

Assume that γ : A 7→ E is a θ-cover of E (which is not necessarily the canonical
projection). Let x be a point of S′. The lines of S not in S′ containing x define
(t − t′)/θ rosettes by canonical projection, and these rosettes are covered by t − t′

mutually disjoint lines of A. The set of these t− t′ lines is a point x∗ of χ′.

Lemma 10.1. The t− t′ lines of A in x∗ are incident (in S) with a common point x∗∗

of S′.

Proof. Assume, by way of contradiction, that the distinct collinear points x, y of A

define a common ovoid of S′ (through γ). This contradicts the fact that the s points
of the line xy of A define the s distinct ovoids of a rosette in S′.

Let L,M be distinct lines of A contained in x∗ and assume, by way of contradiction,
that L and M , considered as lines of S, are incident with distinct points l and m of
S′. Let y be a point of L, z a point of M , with y ∼ z. The ovoids of S′ defined by y
and z belong to a common rosette R. Let R(L) be the rosette defined by L and let
R(M) be the rosette defined by M .

First, assume that R(L) = R(M). The ovoids defined by y and z belong to R(L),
R(M) and R. Hence R = R(L), a contradiction as L and yz are not disjoint in A.

Next, assume that R(L) 6= R(M). Let O(y) be the ovoid defined by y and let O(z)
be the ovoid defined by z. If y′ is any point subtending O(y), then y′ is collinear
in S with at least one point z′ subtending O(z). So in S there arises a triangle with
vertices y′, z′ and O(y) ∩O(z), a contradiction.

We conclude that the t − t′ lines of A in x∗ are incident with a common point x∗∗

of S′. �

Theorem 10.2. The generalized quadrangles χ′ and S′ can be identified.

Proof. We may identify the point x∗ of χ′ with the point x∗∗ of S′. Let x∗ and y∗

be distinct noncollinear points of χ′. Assume by way of contradiction, that x∗∗ and
y∗∗ are collinear in S′. Then the points x = (x∗)σ∗

and y = (y∗)σ∗
belong to some

ovoid Oz of S′. If z′ is a point of C defining Oz, then z′ ∼ x∗∗ and z′ ∼ y∗∗ in S.
hence there arises a triangle in S, a contradiction. �

Note that x∗∗ 7→ x is the automorphism α of S′; see Remark 4.7. For the permu-
tation x∗∗ 7→ x also the notation σ∗ will be used. Hence Theorem 10.2 leads to
another proof of the lower decomposition property.

We keep using the same notation for the rest of this section.
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Condition (C). Consider again the geometry E = Γ(S, S′) = (Ω,Φ,∈). Let M1,M2,
. . . , Mr, with 1 ≤ r ≤ θ, be lines of S covering a common rosette in S′ and let L
be a line of S not in S′, which is not concurrent with M1,M2, . . . ,Mr in S. Put
M := {M1,M2, . . . ,Mr}. Assume that x0 is the common point of Mi and S′,
with i = 1, 2, . . . , r, and that x1, x2, . . . , xα are α points of S \ S′ on the lines
M1,M2, . . . ,Mr, with α ∈ {s − 1, s}, and where for each i the line Mi contains
at least one of the points x1, x2, . . . , xα. Let Ni be the line incident with xi and con-
current with L, with i = 0, 1, . . . , α. Assume that all points Ni ∩ L are distinct, so
that there arise s or s + 1 points on L. The set consisting of all points of S′ incident
with the lines N0, N1, . . . , Nα is denoted by WL,M if N0 is not a line of S′ and by
WL,M if N0 is a line of S′. We say that Condition (C) is satisfied if no sets of type
WL′,M′ with |M′| = 1 and of type WL,M with |M| > 1, are isomorphic in S′, and if
additionally no sets of type WL′,M′ with |M′| = 1 and of type WL,M with |M| > 1,
are isomorphic in S′.

The next theorem shows that if (C) holds, higher decomposition is possible.

Theorem 10.3. Consider a θ-cover γ : A 7→ E and suppose that Condition (C) is
satisfied. Then there exists an automorphism σ of S with σ∗ the restriction of σ to S′.

Proof. We will construct an automorphism σ of S, such that σ∗ is the restriction of
σ to S′.

Choose a point z of A and choose a line N of S incident with z; the point of S′

incident with N is denoted by x∗. The point z covers an ovoid O(z) of S′ and O(z)
is subtended by the points z′ = z1, z2, . . . , zθ of S. Let zσ = z′. Then the line Nσ is
the line N ′ = z′x, with x = x∗σ = x∗σ∗

. For any line T of S′, we define T σ = T σ∗
.

Now let y be a point of zx∗, with x∗ 6= y 6= z. The point y covers an ovoid O(y)
of S′ and O(y) is subtended by a unique point y′ of N ′; let y′ = yσ. Next, consider
a point v of A, which is not collinear with x∗. Let V be the line incident with v
and concurrent with N , let w∗ be the common point of V and S′, and let a be the
common point of N and V . The point v covers and ovoid O(v) of S′ and O(v) is
subtended by a point v′ of the line V ′ = waσ (note that this is indeed a line), with
w∗σ = w. Let V ′ = V σ and v′ = vσ. Then σ is defined for all points of S not
colllinear with x∗, for all points of the line N , for all points of S′, for the line N ,
for all lines concurrent with N but not containing x∗, and for all lines of S′; for all
these points and lines σ preserves incidence.

Next, let U be a line of S not concurrent with N and not contained in S′. Let u∗

be the common point of U and S′. The line U of A covers a rosette consisting
of s ovoids O(u1),O(u2), . . . ,O(us) of S′, with u1, u2, . . . , us the points of A inci-
dent with U . These ovoids have as common point u = u∗σ. The ovoid O(ui) is
subtended by the points u1

i , u
2
i , . . . , u

θ
i of the lines U1, U2, . . . , Uθ incident with u,

i = 1, 2, . . . , s. The points ui which are not collinear with x∗ are mapped by σ
onto points uσ

i , where uσ
i is incident with a line U1, U2, . . . , Uθ. Call the subset of

{U1, U2, . . . , Uθ} which consists of the lines containing the points uσ
i , with ui 6∼ x∗

and i ∈ {1, 2, . . . , s}, U′, and put r := |U′|. The lines concurrent with N and U
which are not incident with x∗ are mapped by σ onto the lines incident with uσ

i ,
where ui 6∼ x∗, and concurrent with Nσ, i ∈ {1, 2, . . . , s}, and the line incident
with u∗σ and concurrent with Nσ. So there arise either s or s + 1 lines intersecting
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Nσ in distinct points. These two sets of lines define isomorphic point sets WN,{U}
and WNσ,U′ , or WN,{U} and WNσ,U′ in S′. As Condition (C) is satisfied we have
r = 1. So the points uσ

i , with ui 6∼ x∗, are incident with the line Uj for some
j ∈ {1, 2, . . . , θ}, say Uj = U1. Now we put Uσ = U1.

We conclude that σ is defined on all lines of S not incident with x∗ and on all points
not collinear with x∗. For all these points and lines σ preserves incidence. One
easily shows that such a σ can be extended to an automorphism of S for which σ∗

is the restriction to S′. �

Remark 10.4. Note that the proof implies that there are θ such automorphisms σ.

The first part of the next theorem yields the higher decomposition property for the
case S ∼= Q(5, q), S′ ∼= Q(4, q).

Theorem 10.5. (i) If S = Q(5, q), S′ = Q(4, q), C = A = S \ S′, then there
exists an automorphism σ of Q(5, q) with σ∗ the restriction of σ to Q(4, q).

(ii) If S = H(4, q2), S′ = H(3, q2), C = A = S \ S′, then there exists an automor-
phism σ of H(4, q2) with σ∗ the restriction of σ to H(3, q2).

Proof. By Theorem 10.3 it is sufficient to show that Condition (C) is satisfied. In
both cases sets WL,M and WL,M are contained in a plane of the ambient projective
space of S′, while sets WL,M and WL,M, with |M| > 1, are never contained in a
plane of the ambient space of S′. It follows that Condition (C) is satisfied, and so
the theorem is proved. �

11. SUBTENDING IN THE KANTOR-KNUTH QUADRANGLES

Let S be a nonclassical Kantor-Knuth GQ of order (q, q2). By [10], Aut(S) does
not act transitively on the subquadrangles of order q (which are all isomorphic to
Q(4, q)). Let Γ1 and Γ2 be two such subGQs in different Aut(S)-orbits (it is known
that there are two such orbits). If they are both doubly subtended, then we obtain
two SPGs E1 and E2. Suppose they are isomorphic. Then if there would be an
element κ in Aut(S) sending E1 to E2, and so Γ1 to Γ2, we have a contradiction. So
under this assumption (which we call (#) for now), the SPGs are not isomorphic,
and in [1] Brown only found one particular subGQ which was doubly subtended.
From this point of view it is of fundamental interest to check whether all Q(4, q)
subGQs of S are doubly subtended.

In this section we will show that the elements of one of these orbits do not have
this property, so that no new SPGs can arise.

Below, S is a nonclassical Kantor-Knuth GQ of order (q, q2) — see [7, §4.5 and
§4.7.3]. It has a line [∞] which is fixed by Aut(S), and there are q3 + q2 subGQs
of order q, all isomorphic to Q(4, q), that contain the line [∞]. There are no other
subquadrangles of order q. All this can be found in [7, §5.1].

From [7, Theorem 5.2.1(b)] the following result on orbits of subquadrangles can
be deduced.
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Orbit property There are two Aut(S)-orbits of subquadrangles of order q; one of size
2q2 (called Ω1), one of size (q − 1)q2 (called Ω2). In particular, if Γ is a
line grid with parameters (q, 1) and containing [∞], then there are 2 Ω1-
subquadrangles containing Γ, and q − 1 Ω2-subquadrangles containing Γ.

In Brown [1], it is shown that the elements in Ω1 are all doubly subtended. Now
suppose that the elements in Ω2 also are. Consider any grid Γ as above. As we
assume that all q +1 subquadrangles of order q containing Γ are doubly subtended,
we obtain precisely q + 1 distinct involutory automorphisms of S, each fixing one
of the subquadrangles of order q containing Γ pointwise. So the group ϑ generated
by these involutions has at least size q + 2. Each element of ϑ fixes Γ elementwise.
Now ϑ acts on the subquadrangles S1 and S2 in Ω1 that contain Γ. In particular, it
follows that if θ1 is the involution that fixes S1 elementwise, we have

(14) 2 ≥ |ϑS1/〈θ1〉| ≥
q + 2

4
,

since the subgroup of Q(4, q) (q odd) that fixes a grid with parameters (q, 1) ele-
mentwise, has size 2.

It follows that q ≤ 6, so that q is a prime. In those cases, S ∼= Q(5, q) [7, §4.5],
contradiction.

We have essentially proven the following.

Theorem 11.1. No elements of Ω2 are doubly subtended. In particular, each element
of Ω2 contains (q + 1)q2(q − 1) Kantor-Knuth ovoids which are 1-subtended.

Proof. The proof follows from the discussion preceding the statement of the the-
orem, plus the fact that for any subquadrangle of order q containing [∞], any sub-
tended ovoid is a Kantor-Knuth ovoid by [8, Theorem 14]. �

In a forthcoming paper, we will study the assumption (#), the Kantor-Knuth quad-
rangles and the associated SPGs in more depth.
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APPENDIX A. EXTENSION IN NONCLASSICAL CASES

In this appendix, we digress to focus on the extension property for S′ instead of E.

A.1. TGQs. A translation generalized quadrangle (TGQ) is a generalized quadran-
gle S which has a point u called translation point such that there is an abelian
automorphism group A ≤ Aut(S)[u] that acts sharply transitively on the points not
collinear with u. For details about the results and notions on TGQs used in this
section, we refer to the monograph [7].

Let S be any thick TGQ of order (q, q2) which is not classical, and which has a
subGQ S′ isomorphic to Q(4, q) (if a GQ of order (q, q2) has a classical subGQ of
order (s′, t′) which is a geometrical hyperplane, then s′ = t′ = q, and the subGQ
must be isomorphic to Q(4, q)). It is well known (see for example [9]) that S′

contains all the translation points of S (and either there is one such point, or a
line of translation points). Suppose the embedding ι : S′ ↪→ S has the higher
extension property. Then any automorphism of the Q(4, q)-subquadrangle extends
to an automorphism of S. In particular, it follows that Aut(S)S′ acts transitively on
the points of S′, so any point of S′ is a translation point of S. So S is classical, a
contradiction.

So any such S gives rise to embeddings which do not have the higher extension
property. Of the known examples, only the Q(5, q) quadrangles and the Kantor-
Knuth quadrangles also give rise to covers which are not 1-covers (see, e.g., [10]).

A.2. Generalization to EGQs. If we leave out the term “abelian” in the definition
of TGQ, we have, by definition, an elation generalized quadrangle (EGQ) with ela-
tion point u. Most of the standard results on EGQs can be found in the book [11].

Now consider the same situation as in the previous section, with “TGQ” replaced
by “EGQ.” Suppose the embedding ι : S′ ↪→ S has the higher extension property.

Suppose first that x is an elation point of S which is contained in S′. Then as above
any point of S′ is an elation point of S. So each point of S is an elation point. By
the main result of [12], S is classical, a contradiction.

Now suppose that x is not contained in S′. Let u ∼ x be a point of S′. As S′

is classical, there is an automorphism κ of S′ which moves u to a collinear point
u′ 6= u. Let κ̃ be an automorphism of S which induces κ in S′. Then y := xeκ 6= x. If
y ∼ x, yx is a line of elation points of S, so that xy ∩ S′ is also an elation point of S,
and then we are in the previous case. If y 6∼ x, each point of S is an elation point,
and then again by [12], S is classical, contradiction.

A.3. Quadrangles with reguli. Let S′ be a GQ with finite parameters (s, 1), and
let it be a full geometrical hyperplane in a GQ S. Then S necessarily has parameters
(s, s). Suppose that every automorphism of S′ extends to automorphisms of S. The
automorphism group of S′ is isomorphic to (Ss+1×Ss+1)oµ2, where S` denotes the
symmetric group on ` letters, and µ2 is a group of order 2. Now if s is a prime power,
Ss+1 × Ss+1 (by which we mean the subgroup of Aut(S′) that preserves the reguli
of S′) contains the natural action(s) of PSL2(s)×PSL2(s) (in the language of De
Kaey and Van Maldeghem [3]), and by loc. cit., it follows that S ∼= Q(4, s). However,
in that case Aut(S)S′ induces PΓO+

4 (s) (which has size (s+1)2s2(s−1)2 ·2h, where
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s = ph with p prime) on S′. It follows that s ∈ {2, 3, 4}. For s = 2, 3, one easily
sees that the higher extension property is true. However, for s = 4, it is not: this
follows immediately by comparing the sizes of PΓO+

4 (4) and (S5 × S5) o µ2, but
can also easily be seen by observing that the action of the latter group would imply
that every ovoid of S′ would be subtended by at least one point of S, and this is not
possible in Q(4, 4).

When s is a not a prime power, see the discussion below, and Remark A.1.

Suppose now that ∆ is an infinite generalized quadrangle which has a full thin
subquadrangle Ω of order (ω, 1) that is a geometrical hyperplane, and such that
ι : Ω ↪→ ∆ has the higher extension property.

Let ∆ and Ω be as above. Let A be an automorphism group of ∆ which induces
the full automorphism group of Ω on Ω. So A induces (S(Ω1) × S(Ω2)) o µ2 on
Ω, where Ω1 and Ω2 are the two reguli of Ω, and S(S), with S a set, denotes the
symmetric group of S. Note that

(15) |A| ≥ |S(Ω1)| = |S(Ω2)| > |Ω1| = |Ω2| = ω.

Now let A1 be the subgroup of A that fixes each line of Ω2; it induces S(Ω1) on Ω1.
Let z be any point of ∆ which is not contained in Ω. For each line M ∈ Ω2 ∪Ω1, let
ZM be the line incident with z which meets M . Let L be the set of lines {ZL|L ∈
Ω2}. Then as Ω is a geometrical hyperplane, we have that t = |L| = |Ω2| = ω,
where (ω, t) is the order of ∆.

So the number of points of ∆ equals ω as well. As |A1| > ω, we have |(A1)z| > 1.
But the fixed elements structure of any element δ 6= id of (A1)z is a subquadrangle
which is full and ideal, so by [13, 1.8.2], δ is the identity in A, contradiction. So if
Ω is supposed to be a geometrical hyperplane, then no examples can arise.

Remark A.1. Note that the latter approach also works for the finite case.

The next general question naturally comes to mind, but might be hard:

Classify the infinite quadrangles ∆ of order (ω, t) with t ≥ ω which
have a full thin subquadrangle Ω of order (ω, 1), such that ι : Ω ↪→
∆ has the higher extension property.
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